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Abstract

Two algorithms for sorting n! numbers on an n-star interconnection

network are described. Both algorithms are based on arranging the n!

processors of the n-star in a virtual (n � 1)-dimensional array. The

�rst algorithm runs in O(n3 logn) time. This performance matches

that of the fastest previously known algorithm for the same problem.

In addition to providing a new paradigm for sorting on the n-star, the

proposed algorithm has the advantage of being considerably simpler

to state while requiring no recursion in its formulation. Its idea is to

sort the input by repeatedly sorting the contents of all rows in each

dimension of the (n � 1)-dimensional array. The second algorithm

presented in this paper is more e�cient. It runs in O(n2) time and thus

provides an asymptotic improvement over its predecessors. However,

it is more elaborate as it uses an existing result for sorting optimally

on an (n� 1)-dimensional array.
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1 Introduction

For a positive integer n > 1, an n-star interconnection network, denoted Sn,

is de�ned as follows:

1. Sn is an undirected graph with n! vertices, each of which is a processor;

2. The label v of each processor Pv is a distinct permutation of the sym-

bols f1; 2; : : : ; ng;

3. Processor Pv is directly connected by an edge to each of n�1 processors

Pu, where u is obtained by interchanging the �rst and ith symbols of

v, that is, if

v = v(1)v(2) : : : v(n);

where v(j) 2 f1; 2; : : : ; ng for j = 1; 2; : : : ; n, then

u = v(i)v(2) : : : v(i� 1)v(1)v(i + 1) : : : v(n);

for i = 2; 3; : : : ; n.

Network S4 is shown in Fig. 1.

Because its degree and diameter are both sublogarithmic in the number

of vertices [1], the n-star interconnection network has received a fair bit of

attention lately [2], [3], [5] - [10], [12], [15] - [23], [26], [40], [42], [44] - [52],

[57]. Of particular interest in this paper is the problem of sorting on the

n-star. Speci�cally, given n! numbers, held one per processor of the n-star,

it is required to sort these numbers in nondecreasing order. The previous

best algorithm for sorting n! numbers on an n-star has a running time of

O(n3 logn) [40, 51].

In this paper we describe two algorithms for sorting on Sn. The cen-

tral idea in both algorithms is to map the processors of the n-star onto an

(n�1)-dimensional array. The �rst algorithm is relatively simple to state. It

uses a generalization of the algorithm in [53] and [54] and runs in O(n3 logn)

time. This performance matches that of the algorithm in [40, 51]. However,

the new algorithm is considerably simpler to state and provides an alterna-

tive paradigm for sorting on the n-star. Furthermore, it can be expressed

quite simply without the need for recursion and, therefore, may be easier to

implement. The second algorithm is directly based on an algorithm devel-

oped in [32] for sorting on an (n� 1)-dimensional lattice. It runs in O(n2)

time, thus achieving an asymptotic improvement over the fastest previous

algorithm [40, 51].
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Figure 1: A 4-star interconnection network.
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2 Ordering the Processors

As mentioned in Section 1, each of the n! processors of the n-star holds one

of the n! numbers to be sorted. To properly de�ne the problem of sorting,

it is imperative to impose an order on the processors. This way, one can say

that the set of numbers has been sorted once the smallest number of the set

resides in the `�rst' processor, the second smallest number of the set resides

in the `second' processor, and so on. (If two numbers are equal then the one

with the smaller initial index precedes the other). One such order on the

processors is now de�ned.

For a given permutation v = v(1)v(2) : : : v(n), let

(a) vmax (n) = maxfv(k) j v(k) < v(n); 1 � k � n � 1g, if such a v(k)

exists; otherwise, vmax (n) = maxfv(k) j 1 � k � n� 1g.

(b) vmin(n) = minfv(k) j v(k) > v(n); 1 � k � n � 1g, if such a v(k)

exists; otherwise, vmin(n) = minfv(k) j 1 � k � n� 1g.

Beginning with the processor label v = 12 : : : n, the remaining n! � 1

labels are arranged in the order produced by algorithm LABELS (n; j) given

below. This algorithm is a modi�cation of a procedure described in [25] (see

also [55]) for generating permutations. It operates throughout on the array

v = v(1)v(2) : : : v(n). Initially, v(i) = i, 1 � i � n, and the algorithm is

called with j = 1. A new permutation is produced every time two elements

of the array v are swapped.

Algorithm LABELS(n; j)

Step 1: i 1

Step 2: while i � n do

(2.1) if n > 2

then LABELS(n� 1; i)

end if

(2.2) if i < n

then if j is odd

then v(n)$ vmax (n)

else v(n)$ vmin(n)

end if

end if

(2.3) i i+ 1

end while. 2
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The order produced by the above algorithm satis�es the following prop-

erties:

1. All (n� 1)! permutations with v(n) = ` precede all permutations with

v(n) = `0, for each ` and `0 such that 1 � `0 < ` � n.

2. Consider the jth group of (m� 1)! consecutive permutations in which

v(m)v(m + 1) : : : v(n) are �xed, where 1 � j � n!=(m � 1)! and 2 �

m � n� 1. Within this group, the m� 1 elements of the set

f1; 2; : : : ; ng � fv(m); v(m + 1); : : : ; v(n)g

take turns in appearing as v(m � 1), each repeated (m � 2)! times

consecutively. They appear in decreasing order if j is odd and in

increasing order if j is even.

For example, for n = 4, the 4! labels, that is, the 24 permutations of

f1; 2; 3; 4g, ordered according to algorithm LABELS, are as follows:

1: 1234 7: 4213 13: 1342 19: 4321

2: 2134 8: 2413 14: 3142 20: 3421

3: 3124 9: 1423 15: 4132 21: 2431

4: 1324 10: 4123 16: 1432 22: 4231

5: 2314 11: 2143 17: 3412 23: 3241

6: 3214 12: 1243 18: 4312 24: 2341

3 Rearranging the Data

An important operation in our sorting algorithms is data rearrangement

whereby pairs of processors exchange their data. We now de�ne this oper-

ation. Recall that in any interconnection network, two processors that are

directly connected by an edge are called neighbors. A processor can send

a datum of constant size to a neighbor in constant time. In Sn each pro-

cessor Pv has n� 1 neighbors Pu. The label u of the kth neighbor of Pv is

obtained by swapping v(1) with v(k + 1), for k = 1; 2; : : : ; n� 1. The edges

connecting Pv to its neighbors are referred to as connections 2; 3; : : : ; n. If

each processor of Sn holds a datum, then the phrase \rearranging the data

over connection i" means that all processors directly connected through
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connection i exchange their data. Speci�cally, each processor Pv , where

v = v(1)v(2) : : : v(i� 1)v(i)v(i+1) : : : v(n) sends its datum to processor Pu,

where u = v(i)v(2) : : : v(i� 1)v(1)v(i + 1) : : : v(n).

4 The Star Viewed As a Multidimensional Array

The n! processors of Sn are thought of as being organized in a virtual (n�1)-

dimensional 2� 3� � � � � n orthogonal array. This organization is achieved

in two steps: The processors are �rst listed according to the order obtained

from algorithm LABELS, they are then placed (�guratively) in this order

in the (n � 1)-dimensional array. For example, for n = 4, the 24 processor

labels appear in the 2� 3� 4 array as shown below:

1234 2134 1243 2143 1342 3142 2341 3241

1324 3124 1423 4123 1432 4132 2431 4231

2314 3214 2413 4213 3412 4312 3421 4321

It is important to note that the processors are placed in snakelike order

by dimension. When n = 2, this corresponds to the familiar snakelike row-

major order. The rule for placing the processors is as follows. Each position

of the (n � 1)-dimensional array has coordinates I(1); I(2); : : : ; I(n � 1),

where 1 � I(k) � k + 1. For example, for n = 4, the coordinates of the 24

positions in the 2� 3� 4 array are as follows:

1; 1; 1 2; 1; 1 1; 1; 2 2; 1; 2 1; 1; 3 2; 1; 3 1; 1; 4 2; 1; 4

1; 2; 1 2; 2; 1 1; 2; 2 2; 2; 2 1; 2; 3 2; 2; 3 1; 2; 4 2; 2; 4

1; 3; 1 2; 3; 1 1; 3; 2 2; 3; 2 1; 3; 3 2; 3; 3 1; 3; 4 2; 3; 4

In dimension k, 1 � k � n� 1, there are

2� 3� � � � � k � (k + 2)� � � � � n

(i.e., n!=(k+1)) groups of k+1 consecutive positions. The positions in each

group have the same

I(1); I(2); : : : ; I(k � 1); I(k + 1); I(k + 2); : : : ; I(n� 1)

6



coordinates (in other words, they di�er only in coordinate I(k), with the

�rst position in the group having I(k) = 1, the second I(k) = 2, and the

last I(k) = k + 1).

The following recursive function snakek (adapted from [32] for our pur-

poses) maps the coordinates of each position of a multidimensional array

into an integer: snake1(I(1)) = I(1), for I(1) = 1; 2, and

snakek(I(1); I(2); : : : ; I(k)) = k!(I(k) � 1)

+

(
snakek�1(I(1); I(2); : : : ; I(k � 1)) if I(k) is odd

k! + 1� snakek�1(I(1); I(2); : : : ; I(k � 1)) if I(k) is even,

for 2 � k � n � 1, 1 � I(i) � i + 1, and 1 � i � k. Thus the function

snakek maps the coordinates I(1); I(2); : : : ; I(n� 1) of each position of the

(n � 1)-dimensional 2 � 3 � � � � � n array into a unique integer in the set

f1; 2; : : : ; n!g according to snakelike order by dimension.

As a result of the arrangement just described, processor Pv, such that

v = v(1)v(2) : : : v(n), occupies that position of the (n�1)-dimensional array

whose coordinates I(1); I(2); : : : ; I(n� 1) are given by

I(k) = k + 1�
kX

j=1

[v(k + 1) > v(j)];

for 1 � k � n � 1, where [v(k + 1) > v(j)] equals 1 if v(k + 1) > v(j) and

equals 0 otherwise.

It should be stressed here that two processors occupying adjacent posi-

tions in some dimension k, 1 � k � n� 1, on the (n� 1)-dimensional array

are not necessarily directly connected on the n-star. Now suppose that in

dimension k, each processor in a group of k + 1 processors occupying con-

secutive positions holds a datum. Our purpose in what follows is to show

that after rearranging the data over connection k + 1, these k + 1 data are

stored in k + 1 processors forming a linear array (i.e., the �rst of the k + 1

processors is directly connected to the second, the second is directly con-

nected to the third, and so on). To simplify the presentation, we assume in

what follows that the k + 1 consecutive positions (of the multidimensional

array) occupied by the k+ 1 processors begin at the position with I(k) = 1

and end at that with I(k) = k + 1 (the argument being symmetric for the

case where the k+1 processors are placed in the opposite direction, that is,

from the position with I(k) = k + 1 to that with I(k) = 1). We proceed in

two steps.
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1. First we show how the labels of these k + 1 processors, which are

permutations of f1; 2; : : : ; ng, can be obtained from one another. Let

v(1)v(2) : : : v(k + 1) : : : v(n) be the label of the last processor in the

group, and let dm, 1 � m � k+1, be the position of the mth smallest

symbol among v(1)v(2) : : : v(k+1), where d1 = k+1. Then, the label

of the (k+1� i)th processor in the group, 1 � i � k, is obtained from

the label of the (k + 1� i+ 1)st processor by exchanging the symbols

in positions k + 1 and di+1. For example, for n = 4, consider the four

processors, occupying consecutive positions over dimension 3, whose

labels are 1324, 1423, 1432, and 2431. The second of these (i.e., 1423)

can be obtained from the third (i.e., 1432) by exchanging the symbol

in position 4 (i.e., 2) with the third smallest symbol among 2, 4, 3,

and 1 (i.e., 3). This property follows directly from the de�nition of

the LABEL ordering.

2. Now consider a group of k + 1 processors occupying consecutive posi-

tions over dimension k, with each processor holding a datum and the

label of the (k + 1)st processor in the group being v(1)v(2) : : : v(k +

1) : : : v(n). From the property established in the previous paragraph,

the label of the (k+1�i)th processor has the (i+1)st smallest symbol

among v(1)v(2) : : : v(k+1) in position k+1, for 0 � i � k. Rearrang-

ing the data over connection k + 1 moves the data from this group to

another group of k+1 processors in which the label of the (k+1� i)th

processor has the (i+1)st smallest symbol among v(1)v(2) : : : v(k+1)

in position 1, for 0 � i � k. In this new group, the label of the

(k+1�i)th processor can be obtained from that of the (k+1�i+1)st

by exchanging the symbol in position 1 with that in position di+1, for

1 � i � k. It follows that the processors in the new group are con-

nected to form a linear array. For example, consider once again the four

processors, occupying consecutive positions over dimension 3, whose

labels are 1324, 1423, 1432, and 2431. Rearranging the data held by

these processors over connection 4 moves them to the processors whose

labels are 4321, 3421, 2431, and 1432, respectively.

5 Sorting on the Linear Array

The algorithm for sorting on the n-star is based on the idea of repeat-

edly sorting sets of data held by processors forming a linear array. For

completeness, we describe an algorithm to perform this operation. Let
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P (1); P (2); : : : ; P (k + 1) be a set of processors forming a linear array (such

that, for 2 � i � k, P (i) is directly connected to P (i � 1) and P (i + 1),

and no other connections are present). Each processor holds a number. We

denote the number held by P (i) at any given time by x(i), for 1 � i � k+1.

It is desired to sort the set of numbers held by the processors in nondecreas-

ing order (such that, upon termination of the sorting process, the smallest

number is held by P (1), the second smallest is held by P (2), and so on).

The only operation allowed is a `comparison-exchange' applied to x(i) and

x(i+1), whereby the smaller of the two data ends up in P (i) and the larger

in P (i+ 1). The following algorithm satis�es these conditions.

Algorithm SORTING ON LINEAR ARRAY

for j = 1 to k + 1 do

for i = 1 to k do in parallel

if i mod 2 = j mod 2

then if x(i) > x(i+ 1)

then x(i)$ x(i+ 1)

end if

end if

end for

end for. 2

A proof that this algorithm sorts correctly in k + 1 steps, that is, O(k)

time, is presented in [5]. It is interesting to note in this context that this

algorithm is oblivious, that is, the sequence of comparisons it performs is

predetermined. Thus, the algorithm's behavior and the number of iterations

it requires are not a�ected by the actual set of numbers to be sorted.

6 A Simple Sorting Algorithm for Sn

Let each of the n! processors of the n-star hold a number. It is required to

sort these numbers in nondecreasing order. We now present an algorithm

that solves this problem by viewing the n-star as an (n � 1)-dimensional

array. The n! numbers are sorted on the array in snakelike order by dimen-

sion, as de�ned in Section 4. This order matches that of the processors on

the (n� 1)-dimensional array.

The algorithm consists of a number of iterations. During an iteration, the

numbers are sorted either in the forward or reverse direction along each of the
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n�1 dimensions in turn. Here, \sorting in the forward (reverse) direction in

dimension k" means sorting the numbers in nondecreasing (nonincreasing)

order from the processor with I(k) = 1 to the processor with I(k) = k + 1.

This sorting is performed using the algorithm of Section 5. Note that since in

dimension k the k+1 processors in each group are not necessarily connected

on the n-star to form a linear array, their contents are copied in constant

time to another set of k + 1 processors which are connected on the n-star

as a linear array. This is done simply by rearranging the numbers to be

sorted over connection k + 1, as described in Section 3. After the sorting is

performed, the numbers are brought back to the original processors, also in

constant time. Henceforth, we refer to each group of consecutive positions

in a given dimension of the multidimensional array, as a `row'. Thus, a row

in dimension k consists of k + 1 consecutive positions. Let

D(k) =
n�1X

r=k+1

(I(r)� 1);

for k = 1; 2; : : : ; n� 1, where the empty sum (when k = n� 1) is equal to 0

by de�nition, and let

N =
nX

k=2

dlog ke:

The algorithm is as follows:

Algorithm SORTING ON STAR

for i = 1 to N do

for k = 1 to n� 1 do

for each row in dimension k do in parallel

if D(k) is even

then sort in the forward direction

else sort in the reverse direction

end if

end for

end for

end for. 2

For example, let n = 5, and let the set to be sorted be f1; 2; : : : ; 120g.

The numbers are initially stored in the 120 processors of S5, one number

per processor, in arbitrary order. Once algorithm SORTING ON STAR has

been applied, the following arrangement results:
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1 2 12 11 13 14 24 23

4 3 9 10 16 15 21 22

5 6 8 7 17 18 20 19

48 47 37 38 36 35 25 26

45 46 40 39 33 34 28 27

44 43 41 42 32 31 29 30

49 50 60 59 61 62 72 71

52 51 57 58 64 63 69 70

53 54 56 55 65 66 68 67

96 95 85 86 84 83 73 74

93 94 88 87 81 82 76 75

92 91 89 90 80 79 77 78

97 98 108 107 109 110 120 119

100 99 105 106 112 111 117 118

101 102 104 103 113 114 116 115

As pointed out earlier, algorithm SORTING ON STAR is nonrecursive,

making it straightforward to implement. Its idea of repeatedly going through

the dimensions of the multidimensional array during each iteration of the

outer for loop is reminiscent of the ASCEND paradigm (originally proposed

for the hypercube and related interconnection networks [43]).

Concerning a minor implementation detail, note that each processor

computes D(k) over its coordinates I(1); I(2); : : : ; I(n � 1) using two vari-

ables C and D as follows. Initially, it computes

C =
n�1X
r=1

(I(r)� 1):

Then, prior to the second for loop, it computes D(1) as D = C�(I(1)�

1). Finally, at the end of the kth iteration of the second for loop, where

k = 1; 2; : : : ; n� 2, it computes D(k + 1) as D = D � (I(k + 1)� 1).
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Analysis. We now show that N iterations, each of which sorts the rows

in dimensions 1; 2; : : : ; n�1, su�ce to correctly sort n! numbers stored in an

(n� 1)-dimensional 2� 3� � � � �n array. Because algorithm SORTING ON

LINEAR ARRAY is oblivious, then so is algorithm SORTING ON STAR.

This property allows us to use the 0-1 principle [29]: If we can show that the

algorithm correctly sorts any sequence of 0s and 1s, it will follow that the

algorithm correctly sorts any sequence of numbers. Suppose then that the

input to algorithm SORTING ON STAR consists of an arbitrary sequence

of 0s and 1s. Once sorted in nondecreasing order, this sequence will consist

of a (possibly empty) subsequence of 0s followed by a (possibly empty)

subsequence of 1s. In particular, the sorted sequence will contain at most

one (0, 1) pattern, that is, a 0 followed by a 1. (If the input consists of

all 0s or all 1s, then of course the output contains no such (0, 1) pattern.)

If present, the (0, 1) pattern will appear either in a row in dimension 1,

or at the boundary between two adjacent dimension 1 rows (consecutive in

snakelike order) such that the 0 appears in one row and the 1 in the next.

Now consider the rows in dimension k, 1 � k � n�1. There are n!=(k+1)

such rows. A row in dimension k is said to be clean if it holds all 0s (all

1s) and there are no 1s preceding it (no 0s following it) in snakelike order;

otherwise, the row is dirty.

Suppose that an iteration of the algorithm has just sorted the contents

of the rows in dimension n�2, and let us focus on two such rows, adjacent in

dimension n� 1. For example, for n = 4, the coordinates of two dimension

2 rows, adjacent in dimension 3 of the 2� 3� 4 array, are

1; 1; 1 1; 1; 2

1; 2; 1 and 1; 2; 2

1; 3; 1 1; 3; 2;

respectively. Because these two dimension n�2 rows were sorted in snakelike

order, they yield at least one clean dimension n�2 row when the dimension

n� 1 rows are sorted. To illustrate, suppose that the two dimension 2 rows

above contained

0 1

0 and 0

1 0;

respectively after they were sorted. Then (regardless of what the other

dimension 2 rows contained) a clean dimension 2 row containing all 0s is
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created after the dimension 3 rows are sorted. Thus, after dlog ne iterations

all dimension n � 2 rows are clean, except possibly for (n � 2)! dimension

n� 2 rows contiguous in dimension n� 2. All dimension n� 1 rows are now

permanently sorted.

By the same argument, dlog(n� 1)e iterations are subsequently needed

to make all dimension n�3 rows clean (except possibly for (n�3)! dimension

n�3 rows contiguous in dimension n�3). In general, dlog(k+1)e iterations

are needed to make all dimension k�1 rows clean (except possibly for (k�1)!

dimension k � 1 rows contiguous in dimension k � 1) after all dimension k

rows have been permanently sorted, for k = n� 1; n� 2; : : : ; 2. This leaves

possibly one dirty dimension 1 row holding the (0; 1) pattern. Since that

row may not be sorted in the proper direction for snakelike ordering, one

�nal iteration completes the sort. The algorithm therefore sorts correctly in

N = dlog ne+ dlog(n� 1)e+ � � � + dlog 3e+ 1

< dlog n!e+ n

= O(n log n)

iterations.

Finally, observe that algorithm SORTING ON LINEAR ARRAY is used

in dimensions 1; 2; : : : ; n� 1, and hence each iteration of the outer for loop

in algorithm SORTING ON STAR requires

n�1X
k=1

O(k) = O(n2)

time. Since the outer loop is executed O(n log n) times, the algorithm has

a running time of O(n3 logn).

The previous discussion suggests that the running time of algorithm

SORTING ON STAR may in fact be reduced by a constant factor as fol-

lows. Because all dimension n� 1 rows are permanently sorted after dlog ne

iterations of the outer for loop, there is no purpose in applying any sorting

operations to these rows in subsequent iterations. After another dlog(n�1)e

iterations, dimension n�2 rows require no more attention. In general, after

nX
k=j+1

dlog ke

iterations, dimension j rows need not be sorted.
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7 An E�cient Sorting Algorithm for Sn

Suppose that M processors, whereM = n1n2 � � �nr and each ni is a positive

integer, reside in an r-dimensional n1 � n2 � � � � � nr array such that the

processors in each row in dimension k, 1 � k � r, are connected to form

a linear array. This interconnection network is known as an r-dimensional

lattice (or grid, or mesh). Clearly, the special case where M = n!, r = n� 1,

and ni = i + 1, 1 � i � n � 1, is of particular interest in this paper, and

we refer to the (n� 1)-dimensional 2� 3� � � � � n network as an n!-lattice.

The diameter of the n!-lattice, that is, the shortest distance separating the

farthest two processors, is

1 + 2 + � � � + n� 1 = n(n� 1)=2:

It follows therefore that a lower bound on the number of steps required to

sort n! numbers on the n!-lattice is 
(n2).

Algorithms and lower bounds for the problem of sorting n! numbers on

the n!-lattice can be derived from [11], [13], [14], [24], [27], [28], [30] - [38],

[41], [56], [58], [59] and [60]. Some of these algorithms are oblivious (see, for

example, [11], [13], [14], [32], [33], and [34]), while others are input-sensitive,

that is, nonoblivious (see, for example, [27], and [56]); some are deterministic

(see, for example, [41], [58],[59] and [60]), while others are randomized (see,

for example, [28]); and, �nally, some are e�cient in the worst case (see,

for example, [36]), while others have a good average running time (see,

for example, [38]). The deterministic and oblivious algorithm of Section 6

can also be used to sort n! numbers on the n!-lattice. However, many of

these algorithms have running times that exceed n2 asymptotically and, as

a result, are not (worst-case) optimal in light of the 
(n2) lower bound. By

contrast, the (deterministic and oblivious) algorithms obtained from [32],

[33], and [34] run in O(n2) time and are therefore optimal in the worst case.

Furthermore, like algorithm SORTING ON STAR, the algorithms of [32],

[33], and [34] arrange the processors in snakelike order by dimension.

In what follows we provide a brief description of how the algorithm of [34]

sortsM = n1n2 � � � nr data stored in an r-dimensional lattice (for details, see

also [32] and [33]). For each ni, let ui and vi be positive integers such that

uivi = ni, 1 � i � r. The r-dimensional lattice is viewed as consisting of

u1u2 � � � ur r-dimensional v1�v2�� � ��vr sublattices, called blocks, numbered

in snakelike order by dimension from 1 to u1u2 � � � ur. Alternatively, the r-

dimensional lattice consists of u1u2 � � � ur (r� 1)-dimensional hyperplanes of
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v1v2 � � � vr processors each, numbered from 1 to u1u2 � � � ur. The algorithm

is given below.

Algorithm SORTING ON LATTICE

Step 1: Sort the contents of block i, 1 � i � u1u2 � � � ur.

Step 2: Move the data held by the processors in block i

to the corresponding processors in hyperplane i,

1 � i � u1u2 � � � ur.

Step 3: Sort the contents of all r-dimensional

v1 � v2 � � � � � nr `towers' of blocks.

Step 4: Move the data held by the processors in hyperplane i

to the corresponding processors in block i,

1 � i � u1u2 � � � ur.

Step 5: Sort the contents of

(5.1) All pairs of consecutive blocks i and i+ 1,

for all odd i, 1 � i � u1u2 � � � ur.

(5.2) All pairs of consecutive blocks i� 1 and i,

for all even i, 2 � i � u1u2 � � � ur. 2

The algorithm requires O(n1+n2+ � � �+nr) elementary steps (in which

a datum is sent from a processor to its neighbor). For an n!-lattice (i.e.,

when r = n� 1 and ni = i+ 1, 1 � i � n� 1) the running time is O(n2).

The n!-lattice is essentially the (n � 1)-dimensional array of Section 4,

augmented with edges connecting the processors. Therefore, any constant-

time exchange of data between two neighboring processors on the n!-lattice

can be executed on the n-star in constant time. Consequently, using the

techniques described in Sections 2 - 5, algorithm SORTING ON LATTICE

directly translates into an algorithm for sorting on Sn in O(n2) time.

8 Conclusion

Two algorithms for sorting n! numbers on an n-star interconnection network

were described. Both algorithms are based on arranging the n! processors

of Sn in a virtual (n � 1)-dimensional array. The �rst algorithm sorts the

input by using the simple idea of repeatedly sorting all the rows in each

dimension. Its running time is O(n3 logn). While our main objective was

to develop an algorithm for sorting on the n-star, the algorithm of Section
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6 is e�ectively an algorithm for sorting on an n!-lattice and is su�ciently

interesting in its own right. It is nonrecursive and does not require that data

be exchanged between pairs of distant processors: The only operation used,

namely, `comparison-exchange', applies to neighboring processors. Thus, be-

cause no routing is needed, the algorithm has virtually no control overhead.

Note also that this algorithm, while intended in Section 6 for a 2�3�� � ��n

array, is easily extended to arbitrary n1 � n2 � � � � � nr r-dimensional lat-

tices. In particular, when ni = 2 for 1 � i � r, a very simple algorithm is

obtained for sorting M = 2r numbers on a hypercube with M processors in

O(log2M) time. Other algorithms for sorting on the hypercube, including

those with the same running time (i.e., O(log2M)) as well as asymptotically

faster ones, are considerably more complicated [4, 39].

The second algorithm described in this paper for sorting on Sn is essen-

tially an adaptation of an algorithm appearing in the literature for sorting

on a multidimensional lattice of processors. It runs in O(n2) time. In view

of the 
(n2) lower bound on the running time of any algorithm for sort-

ing on the lattice, this performance is the best that one can hope for using

the approach taken in this paper. Nonetheless, this represents an improve-

ment by a factor of O(n logn) over the best previous algorithm for sorting

on Sn. For the problem of sorting on a lattice, however, note that, algo-

rithm SORTING ON LATTICE, while appealing in theory due to its time

optimality, is signi�cantly more complex than an algorithm obtained from

SORTING ON STAR. Deriving a simple time-optimal algorithm for sorting

on an r-dimensional lattice remains an interesting open problem.

Since n! numbers are sorted optimally using one processor in O(n! log n!)

time, a parallel algorithm using n! processors must have a running time of

O(log n!), that is, O(n log n), in order to be time optimal. In that sense, the

algorithm of Section 7 is suboptimal by a factor of O(n= log n). However, it

is not known at the time of this writing whether an O(n log n) running time

for sorting n! numbers is achievable on the n-star.

A related open question is formulated as follows. Let G be a graph

whose set of vertices is V and set of edges is E. A Hamilton cycle in G is

a cycle that starts at some vertex v of V , traverses the edges in E, visiting

each vertex in V exactly once, and �nally returns to v. Not all graphs

possess a Hamilton cycle; those that do are said to be Hamiltonian. As it

turns out, it is often useful in parallel computation to determine whether

the graph underlying an interconnection network is Hamiltonian. When

this is the case, the processors can be viewed as forming a ring , that is, a

linear array with an additional link connecting the �rst and last processors.
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Several useful operations can thus be performed e�ciently on the data held

by the processors. For example, one such operation is a circular shift. Now,

while the n-star can be shown to be Hamiltonian, it is easily veri�ed that

the order de�ned on the processors by algorithm LABELS does not yield a

Hamilton cycle for n > 3. Thus, for n = 4, P1234 and P2341, the �rst and

last processors, respectively, are not neighbors. Does there exist an e�cient

sorting algorithm for the n-star when the processors are ordered to form a

Hamilton cycle?

Finally, a randomized sorting algorithms that sorts n! numbers on the

n-star in O(n3) time with high probability is described in [52]. In light of

the results of this paper, another interesting question is to develop a faster

randomized algorithm for sorting on the n-star.
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