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Abstract

Several object-oriented analysis and design (OOAD) methods have been

developed in recent years. Although they are more similar to each other than

they are to other types of software development methods such as structured

analysis and design, the OOAD methods still di�er from each other in many

aspects. Our interest is in studying the modeling techniques of the OOAD

methods and understanding their similarities and di�erences. This disserta-

tion addresses the problem of systematically comparing the representational

properties of the OOAD methods.

The dissertation presents a formal approach to specifying design theories

for OOADs' representational properties, and presents a systematic mechanism

for determining the similarities and di�erences between di�erent design the-

ories. Speci�cally, it describes (1) the formalization of the representational

properties under the Theory-Model paradigm, and (2) the development of the

formal core theory among the variety of the design theories and the exten-

sions of these theories to the core. The formalization can lead to a rigorous

comparison, which provides a deeper insight into the OOAD methods.

We illustrate the approach by applying it to the object model of OMT

[RBP+91] and the information model of Shlaer-Mellor OOA [SM88, SM92].

OMT and Shlaer-Mellor OOA are popular among the existing OOADmethods,

and are being used in industry. After the formalization and the comparison, we

reveal some ambiguities residing in the methods and record their similarities

and di�erences in detail.
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Chapter 1

Introduction

This dissertation presents an investigation into the problem of formalizing the

object-oriented analysis and design (OOAD) methods and systematically com-

paring them. This introduction explains why comparison of OOAD methods

is necessary, motivates a rigorous approach to this problem, and outlines how

this dissertation addresses the problem.

1.1 Motivation

The object-oriented approach is increasingly popular in developing large, com-

plex software systems that can be easily understood, maintained, extended,

and reused. It provides a more natural way to manage software systems than

traditional software development approaches. An object-oriented method rep-

resents a system with a collection of correlated objects. Objects integrate

data and functions, and cooperate with each other to accomplish the system's

responsibility.

Object-oriented concepts have matured for nearly three decades; how-

ever, object-oriented system development methodologies have emerged only

in recent years [Boo94, CY91a, CY91b, EKW92, JCJO92, MO92, RBP+91,

SM88, SM92, WBWW90]. Since the object-oriented methods are not as
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well-developed as other traditional software development techniques such as

structured analysis and design, their modeling techniques may not be well-

understood.

1.1.1 Di�erences among Methods

Although they are more similar to each other than they are to other types of

software development methods, the object-oriented methods still di�er from

each other in many aspects. They lack standardization in that the constructs

and terminologies used for the object-oriented concepts di�er from method to

method. The modeling techniques of di�erent methods may also be slightly

di�erent in semantics. As a result, users of di�erent methods sometimes �nd

it hard to understand each other.

Thus, there is an increasing need to understand the similarities and di�er-

ences among the methods. This understanding can be achieved by a rigorous

and detailed comparison of the methods.

There are several obvious reasons for comparing methods [CCW91]:

� Comparison discovers real di�erences between methods. This will sug-

gest which method is more suitable in a particular work environment, or

for a particular type of problem.

� Comparison discovers compatibility between methods. This will help

develop a degree of interchangeability and integration of the methods.

� Comparison discovers weaknesses in individual methods. This will prompt

the improvement of a method, possibly by incorporation of features of

other methods.

� Comparison uncovers false assumptions about methods.

Many attempts have already been made to compare and evaluate various

object-oriented methods [WBJ90, CMR92, MP92, FK92, vdG92, Fow93, SC93,

2



YP93, ICO95, Obj95, Zha95]. They are useful in helping to understand the

methods; however, some limitations still exist:

� The results depend largely on people who perform the comparisons: they

choose the comparison topics according to which aspects of the methods

they want to focus on, or according to the application domains of their

own interest.

� There are few detailed comparisons: most of them give only an overall

comparison which is neither comprehensive nor detailed enough to ex-

plain and interpret many di�erences and similarities among the methods.

� The comparisons fail to explain why the components can be compared

and how the conclusions are drawn.

Song and Osterweil [SO94b, SO94a] have observed that because of these lim-

itations, the conclusions drawn by di�erent people sometimes con
ict. This

de�ciency inspires us to seek the way to an objective, detailed, and systematic

comparison of object-oriented methods.

1.1.2 The Need for Formalization

Performing a comparison of the object-oriented methods is a di�cult task due

to:

� The lack of formalism in current object-oriented methods: Most of the

methods are expressive but do not have formal foundations. Among the

methods mentioned at the beginning of this section, only Embley et al.'s

OOSA [EKW92] provides formally de�ned models. Based only on the

informal descriptions, it is hard to obtain a rigorous comparison because

the descriptions of the methods themselves are not rigorous.

� The variety of constructs and terminologies used by the methods: The

comparability of the constructs and the consistency of the terminologies

3



among the methods are more di�cult to identify when the constructs

and the terms are not formally de�ned.

Therefore, before a comparison takes place, it is essential to establish a formal

speci�cation of each method.

Compared with speci�cations in natural language, formal speci�cations

have many advantages [Geh82, GE86, Fuc92]. Since a formal language has

well-de�ned syntax and semantics, all details of a method must be stated

explicitly; thus missing, ambiguous or inconsistent information can be found

more easily. In addition, formal reasoning about the speci�cation, especially

veri�cation and validation of the designs and the underlying design methods,

is possible.

1.1.3 Statement of Thesis

A group of methods may be compared in several aspects. To narrow our focus,

we concentrate on the representational properties (i.e., design artifacts and the

relationships among the artifacts) of the methods at analysis and design level.

The thesis of this dissertation is

Following a rigorous approach, the comparison of the representa-

tional properties of the object-oriented analysis and design methods

can be precise, detailed and objective.

1.2 Problem Statement and A Solution

This section de�nes the problem to be tackled and brie
y describes a proposed

solution to the problem.
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1.2.1 Problem Statement

The problem to be tackled is to develop a systematic comparison of the rep-

resentational properties of the OOAD methods to better understand the sim-

ilarities and di�erences among them. The methods, with perhaps di�erent

notations (syntaxes), are to be compared based on their meaning (semantics).

To derive as clear and precise a comparison as possible, we shall follow a formal

approach.

Methods may be compared and evaluated with respect to three sets of

properties: technical, managerial, and usage properties [KC93]. Technical

properties deal with a method's representational notations and procedures for

applying them to solve technical problems. Managerial properties are con-

cerned with the organized, cost-e�ective development of the end product,

including such issues as sta�ng, project planning and cost estimation. Us-

age properties are concerned with practical issues such as the availability of

training and tool support. Of the technical properties, the representational

properties, also called architectural properties, are de�ned as structures and

patterns for specifying and organizing the work products of the analysis and

design. They also include the rules that must be followed and the criteria that

must be met in specifying the analysis and design. The procedural properties

are de�ned as processes for performing the analysis and design. They also in-

clude the method guidelines. Our comparison focuses on the representational

properties.

The central theme of the work is a formal approach. From a mathematical

point of view, an analysis or a design is a complex mathematical object. Its

concepts, work products, and rules can be described using set theory and

predicate logic.
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1.2.2 A Solution

We decompose the problem into two sub-problems and then devise solutions

for each of them.

� Establishing a formal meta-model for each OOAD method by extract-

ing it from the informal description of the method. The meta-model,

expressed in formal notation, provides the speci�cation for the OOAD

method. The semantics of the method is determined by its formally

de�ned components (e.g., concepts, work products) and a set of well-

formed rules that these components must satisfy. The meta-model is

also called the design theory of the method.

Our formalization applies a standard mathematical representation, ex-

pressed in Z [Spi89], a formal speci�cation language, to the OOAD meth-

ods description.

� Developing a systematic mechanism for the comparison of the OOAD

methods. A systematic mechanism can help manage comparison activi-

ties relatively easily, and also help judge the completeness of a compar-

ison. The design theories serve as a �rm theoretical foundation for the

comparison. The basic idea of our approach is to extract from the formal

speci�cations of the OOAD methods a core which contains features com-

mon to the methods being compared, and then characterize each method

by an extension to the core. The process of comparison is essentially the

process of deriving the core and the extensions, which clearly reveal the

similarities and di�erences among the methods.

We apply the approach to the object model of Object Modeling Technique

(OMT) [RBP+91] and the information model of Shlaer-Mellor OOA (SMOOA)

[SM88, SM92].

Figure 1.1 sketches the processes embodied in the above approach. The

processes of both formalization and comparison are iterative.
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Method 1 Method 2 Method n

guidelinesformalizing the methods

theories 1 .. n

theory 1 theory 2 theory n

guidelines

core and extensions

core and extensions
developing

Figure 1.1: Processes of formalization and comparison

1.3 Desirable Properties of A Solution

A set of desirable properties of a solution determines whether or not the so-

lution is satisfactory. Our approach to the comparative study of the rep-

resentational properties of the OOAD methods should possess the following

properties:

General. It should be general enough to accommodate the existing object-

oriented analysis and design methods. The comparison framework should

be able to cover various aspects with regard to the representational fea-

tures of the methods.

Precise. It should be precise enough to facilitate identifying similarities and

di�erences. A formal description of the method is precise and rigorous;
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it provides a basis for precise comparison. The precision and formality

are also preconditions to make the comparative approach objective and

systematic.

Objective and detailed. It should provide an objective and detailed com-

parison in order to avoid any bias result due to the specialized interests

of individuals who perform the comparison. By objective we mean that

we do not choose the comparison topics. Instead, we compare all as-

pects with regard to the design theories. This objective and detailed

comparison is very important in gaining a thorough and comprehensive

understanding of the methods.

Systematic. It should provide a systematic comparison. The comparison is

accomplished through a series of steps, each of which is based on a for-

malism. By systematic we also mean that a well-established mechanism

is used to reason about the comparability of the components.

The way of formalizing the methods and systematically comparing their

design theories guarantees that these properties can be satis�ed.

1.4 Thesis Outline

The next chapter gives background information. It mainly consists of three

topics: (1) a review of previous work on studying and comparing software

design methods; (2) an introduction to the Theory-Model paradigm [Rym89,

RLJ91, LMZ96], which is the theoretical foundation for our formalization ap-

proach; and (3) the Z notation, which is the vehicle we use to convey semantics

of a design method.

Chapter 3 discusses the approach to establishing a formal design theory of

an OOAD method from its informal descriptions. It describes the principles

and guidelines for ful�lling the formalization task, the style of formalization,

8



and how to deal with ambiguity, missing details, and other relevant issues. It

also discusses the possible ways of verifying a theory.

Chapter 4 and 5 apply the formalization approach to the object model of

OMT and the information model of SMOOA. We obtain a set of Z schemas

for each theory.

Chapter 6 presents the systematic comparison mechanism. It gives formal

de�nitions of core and extension, describes the procedure that a comparison

process should follow, and provides a set of decision rules for classifying the Z

schemas, which represent the design theories, into the core and extensions.

Chapter 7 discusses the comparison of the two formalized methods, i.e.,

OMT and SMOOA.

In Chapter 8, we conclude the dissertation with a summary of the work

that supports the thesis claim and meets the desirable properties of a solution.

We also suggest directions for future research and improvements.

Appendix A gives a brief overview of the Z notation.

Appendix B presents a set of rules for classifying a core into four char-

acterizing sets, which further describe the di�erences among the concepts in

the core. It shows the result of applying the rules to the core obtained in

Chapter 7.
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Chapter 2

Background

This chapter gives a review of the literature and the background material. It

mainly consists of three topics: (1) a review of previous work on studying and

comparing software design methods. It is relevant to the problem addressed in

Section 1.2.2; (2) an introduction to the Theory-Model paradigm, which is the

theoretical foundation for the formalization approach; and (3) Z notation, a

formal speci�cation language we use to describe semantics of a design method.

2.1 Related Work

This section deals with the related work on two topics: formal approaches to

studying software design methods (SDMs) and approaches to the comparison

of SDMs.

2.1.1 Formal Approaches to Studying SDMs

Formal methods are increasingly used in the software development life-cycle to

specify a system's desired structural and behavioral properties [SFD92, Nic91,

PT91, Cly93, LX93, Fei93, Pay93]. However, applying formal approaches to

the domain of software development itself is a relatively undeveloped research

10



area. The work in this area would be establishing a formal meta-model to

capture the underlying system description techniques of a method. Most of

the meta-modeling techniques surveyed by Moser [Mos95] and Isazadeh and

Lamb [IL97] do not have a formal basis. No matter how they vary in textual

and graphical forms, these meta-modeling techniques are basically variants or

extensions of the entity-relationship (ER) modeling technique [Che76]. Some

of them, such as Metaview [Zhu94], provide means of de�ning consistency

constraints and other simple constraints like cardinality. They do not have

formal reasoning capability and therefore the correctness of a meta-model is

not ensured.

Several attempts have been made to formalize SDMs and the individual

methods they include. Bourdeau and Cheng [BC95] provide an algebraic for-

malization of the semantics for the object model of OMT, using Larch Shared

Language. They state that the semantics of an object model O is the set

of algebras consistent with the algebraic speci�cation for O . Their work for-

malizes the primary concepts in the object model such as class, association,

aggregation, and subtyping; but it omits many details of the object model,

including the concepts like role, operation, key, and so on. On the other

hand, it introduces a few extensions to the object model: graph-based no-

tations for attributes, object states, external classes, and an error object for

each class. Misic et al. [MVL92] establish a formal basis for the extended

ER (XER) model concepts, using the Z notation. They formalize data struc-

tures, integrity constraints, and update and retrieval operations. Larsen et

al. [LPT93] provide a formal semantics of data 
ow diagrams, using VDM.

The semantics consists of a collection of VDM functions, which transform an

abstract syntax representation of a data 
ow diagram into an abstract syntax

representation of a VDM speci�cation.

Rice and Seidman [RS94] propose a model that formalizes Module Inter-

connection Languages (MILs). The model is speci�ed by a collection of Z

schemas that are fundamental to all of these languages. A particular applica-
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tion is described by specifying the values of generic parameters of the schemas

and adding application-speci�c declarations and constraints to the schema def-

initions. The model provides a formal semantics basis for various MILs. Dean

and Lamb [DL94] formalize MILs under the Theory-Model paradigm (which

is to be discussed in Section 2.2). The properties fundamental to all languages

are recorded in a core theory, and the properties speci�c to each individual

language are in an extension. The essential di�erence between the two ap-

proaches is that the former is top-down and latter is bottom-up. Dean and

Lamb do not use generic schemas in the �rst place; rather, they formalize

each individual MIL and then derive the core theory of the MILs from the

formalizations. In this way, the core is based on the solid understanding of the

MILs.

Other software design methods formalized under the Theory-Model paradigm

include Jackson System Development (JSD) by Lamb et al. [LJR89], informa-

tion hiding design method by Lamb and Schneider [LS92], and the information

model of SMOOA [Zha94]. These are preliminary work towards the formal-

ization approach discussed in the dissertation.

2.1.2 Approaches to Comparing SDMs

Sol [Sol83] suggests a number of approaches to comparing and evaluating var-

ious methods. They can be classi�ed into two basic categories.

A comparison of the �rst category distills a set of important features from a

number of existing methods. The software development methods can then be

compared against these features. Using this approach, the success of the com-

parison and evaluation relies on the features selected and the relative weight

given to a feature. Many comparisons, including those discussed in Section 1.1

on page 2, fall into this category.

The other category de�nes a meta-model, or framework, as a vehicle for

communication or as a frame reference in which various methods can be de-
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scribed. Sol states that the attractiveness of this approach lies in the fact that

implicit, contextual features as well as process aspects of a method can be

made explicit. However, the success of the comparison and evaluation relies

on the quality and expressiveness of the meta-model. Research that attempts

to provide a basis for the comparison and evaluation falls into the second

category because most of its e�ort concentrates on developing a framework

[KC93, CCW91, Par93, SO92, SO94a, SO94b, Tse91]. Its aim is to develop a

general approach to comparison.

Karam and Casselman's cataloging framework [KC93] lists 21 SDM prop-

erties, along with guidelines for their application. The properties are doc-

umented by rating values and/or narrative values. Comparisons are made

against these properties. The limitation of this approach resides in the ambigu-

ity of the three rating levels and the narrative descriptions (of the properties),

in which a method could not be precisely described.

Cameron et al.'s classi�cation scheme [CCW91] has similarity to the cata-

loging framework in that it also suggests a set of properties. Its distinguishing

feature is that it proposes two schemes to compare notations. One scheme is to

derive an algorithm for translating one notation (or portion of that notation)

into the other. The other scheme is to de�ne a more abstract notation to which

both notations can be reduced, and to design algorithms for the reduction of

both notations to the underlying notation. Unfortunately, a general approach

to translation and reduction is not given; rather, translations are carried out

case by case, informally through examples with graphical notations and tex-

tual explanations. Moreover, a foundation for determining the equivalence of

two notations is not provided.

Parsons' knowledge representation framework MIMIC [Par93] is used to

examine mechanisms and constructs found in object-oriented methods. The

cognitive foundation embedded in MIMIC is that information systems rep-

resent human knowledge about things in some domain, and the knowledge

is organized into categories. MIMIC consists of a number of constructs for
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representing knowledge about things. It encapsulates the concepts of object,

attribute (structural, relational, and behavioral), state, event, potential class,

and class structure. Derived from the results of research in cognitive sciences,

MIMIC is independent of any object-oriented method. In this sense, it can be

viewed as an \ideal" model used to compare object-oriented methods. This

ideal model may re
ect the knowledge representation scheme naturally; how-

ever, sometimes it is too simple to evaluate complex representational notations

in software modeling. Further, informal design methods are not formalized be-

fore being compared against the formal framework.

Song and Osterweil's comparison approach [SO92, SO94a, SO94b], called

CDM (Comparing Design Methodologies), is more sophisticated than those of

others. CDM di�ers from the above approaches (which compare SDMs in a

casual way) in that it helps compare SDMs more systematically. It emphasizes

discovering di�erences between similar design components. CDM comprises

several steps:

1. Decide and de�ne the aspects of SDMs to be compared, and develop or

adopt a modeling formalism and classi�cation framework.

2. Develop and validate the meta-models of SDMs. The modeling for-

malisms adopted include software process modeling, mathematical set-

de�nition notation, Ada-like notation, ER modeling and IR (inheritance

relation) modeling formalisms.

3. Classify the components of the SDMs within the classi�cation framework.

The classi�cation helps to show which components address the same or

similar design issues.

4. Select the comparison topics based on the classi�cation.

5. Make the comparisons.
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From the viewpoint of our proposed approach, we �nd CDM has two limi-

tations. Firstly, although the meta-model developed during the �rst two steps

is used to \formalize" the design methodologies, it does not provide a thorough

formal foundation. CDM uses ER and IR models to \formalize" an artifact

model (which comprises representational properties); nevertheless, ER and IR

models themselves are not formal in the mathematical sense, and they cannot

express many kinds of constraints. Secondly, the classi�cation framework is

not formally described. The framework has a hierarchical structure. At each

level, a set of types is used to characterize the parts of the methods. A de-

composition of types at the next level represents a more detailed description

of the methods. The de�nition of types in the framework is in textual form,

which is by no means formal.

The above discussion shows that Parsons, Song and Osterweil urge the need

of a formal theoretical foundation to compare software modeling methods. But

their work remains informal to a certain extent.

Tse's unifying framework [Tse91] establishes a theoretical link between

structured analysis and design methodologies. Tse de�nes a term algebra of

structured systems, which can be mapped by unique homomorphisms to a

DeMarco algebra of data 
ow diagrams, a Yourdon algebra of structure charts

and a Jackson algebra of structure texts. He also �nds that the proposed

term algebra as well as the deMarco, Yourdon and Jackson notations �t into a

category-theoretic framework. DeMarco data 
ow diagrams can be mapped to

term algebras through free functors. Conversely, speci�cations in term algebras

can be mapped to other notations such as Yourdon structure charts by means

of functors. Tse proves that, under the framework, a design developed using

one method can be transformed to a design supported by another method.

The limitation of the unifying framework is that it concentrates on examining

compatibility among the methods but ignores the di�erences.

Our approach has advantages over the above approaches in that it is based

on formal speci�cations of design methods, it can discover very detailed aspects
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of the methods, it provides a systematic mechanism, and it reveals not only

similarities but also di�erences among the methods.

It is worthwhile to mention the work done by Dean and Lamb [DL94],

which is an experiment of the initial form of the proposed comparison ap-

proach. They conclude that the approach can be used to formalize and com-

pare the structural representation of MILs. The conclusion demonstrates that

our approach is feasible for comparing notations on a relatively smaller scale

in comparison with the more complicated SDMs.

Last, we present a brief discussion on the Uni�ed Modeling Language

(UML) [Rat97]. The UML is a visual modeling language for specifying, visu-

alizing, and constructing the artifacts of object-oriented systems. One of the

key motivations behind the development of the UML was to create a notation

and semantics that adequately addresses all scales of architectural complex-

ity, across all domains. The UML integrates the concepts used by Booch

[Boo94], OMT [RBP+91], and OOSE (use-cases) [JCJO92], as well as other

object-oriented methods. Its speci�cation consists of two parts:

� UML Semantics. A metamodel that speci�es the abstract syntax and

semantics of UML object modeling concepts.

� UML Notation. A graphic notation for the visual representation of the

UML semantics.

The language is still under development.

Despite the emergence of the UML, our idea of formalization and compar-

ison is still necessary. The UML semantics, i.e. the metamodel, is de�ned in

UML class diagrams, Object Constraint Language (OCL), and English prose.

OCL is a speci�cation language that uses simple logic for specifying invariant

properties of systems comprising sets and relationships between sets. OCL is

used in the UML to formally specify simple constraints on the concepts. Some

parts of the semantics which are described in natural language could be more

precise if formalized under our approach.
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The UML claims to consolidate a set of core modeling concepts that are

generally accepted across many current methods and modeling tools. We have

not yet seen justi�cation for the UML concepts, so we have to trust that it

accurately re
ects the original methods. The comparison of the UML and the

original methods can show what concepts are adapted by the UML and what

are omitted. The UML is still one of the existing object-oriented methods.

Some OOAD methods are used in industry but are not merged into the UML,

such as Shlaer-Mellor OOAD. Comparing these methods with the UML is still

essential in understanding their similarities and di�erences. In addition, the

comparison results are important for de�ning interchange of tools that support

di�erent methods, or customizing meta-CASE tools. Furthermore, migration

from the systems developed under other OOAD methods to the UML requires

knowledge of the commonality and di�erences between the methods, which

our work can provide.

2.2 The Theory-Model Paradigm

The Theory-Model Paradigm [Rym89, RLJ91, LMZ96] is a way of describing

and understanding design methods, designs, and design veri�cation. The ideas

originate in the \model theory" [CK73] of mathematics. There, a theory is a

collection of expressions or statements made in an formal language of uninter-

preted operations and symbols. For example, group theory, having expressions

over variables, one constant, one unary operation, and one binary operation,

is a collection of equations induced by the usual rules of equality and a set

of �ve axioms. An interpretation of a theory gives meaning to the uninter-

preted symbols of the theory. For example, an interpretation of group theory

might involve letting variables vary over integers, letting the constant be 0, the

unary operation be negation, and the binary operation be addition. A model

of the theory is an interpretation that satis�es all the axioms. Thus, the in-

tegers under addition are a model of group theory. A di�erent interpretation
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might not be a model of the theory: you may not let the binary operation be

multiplication over the integers.

These ideas are applied to software design in the following way:

� A design method corresponds to a theory: it introduces certain cate-

gories; its design rules and their consequences correspond to theorems

about the categories.

� A design, that is the work produced by a designer, corresponds to an

interpretation: a particular set for each category.

� A design is \correct" if it follows the design rules; correspondingly, an

interpretation is valid (i.e., is a model of the corresponding theory) if it

satis�es all the axioms.

The development of a design theory and the design veri�cation proceeds

as follows:

1. Develop a formal description of the design method, using mathematical

notation where possible for precision. Lately, we have been using the Z

notation for this step. It is the hardest step, requiring about 80% of the

e�ort [LMZ96].

2. Develop a data model for the theory. A tool supporting the design

method must be able to represent the design information, and so it is

appropriate to develop a data model for it using typical data modeling

methods. At present we use ER diagrams [Che76] for this purpose. There

is usually a close correspondence between some of the sets described in

the mathematical theory and some of the entity sets of the ER model,

but the relationship is not necessarily direct.

3. Develop an executable form for the checks of whether any axioms are

violated. In the past we have used Prolog for this purpose; in the future

we will consider using G�odel [HL94].
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There are feedback loops among the three steps; while developing the data

model, for example, one might �nd a simpler method of expressing a concept

from the formal description.

2.3 The Z Notation

Several formal speci�cation techniques have been proposed so far and most of

them are based on some well-developed mathematical notations [Win90]. The

Z notation [Spi89], one of the most popular techniques among these, is being

used as a tool for expressing the mathematical aspects of SDMs. It is based

on a typed set theory and the �rst order predicate logic. For precision, we use

the Z notation to write formal speci�cations of design methods.

There seems to be a perceived di�erence between model-oriented speci�ca-

tion languages, like Z and VDM [AI91], and algebraic (or property-oriented)

speci�cation languages, like the Larch Shared Language (LSL) [GH93], regard-

ing their applicability to the speci�cation of software systems. Model-oriented

speci�cation languages are assumed to be suited better for the description of

state based systems, abstract machines or abstract data types with state, while

algebraic speci�cation languages are assumed to be better for (functional) ab-

stract data type speci�cations.

What formal language we choose as the vehicle of formalization is mainly

determined by the aspects of the methods we will formalize as well as the

availability of supporting tools of the formal language.

The set-oriented style of Z matches our requirement. We are going to

specify the representational features (which includes concepts, work products,

relationships, and rules) of a method, ignoring its modeling process (which de-

scribes a designer's behavior). Moreover, Z provides a structuring mechanism,

the \schema", which we can use to organize our speci�cations.

Available with Z is a type-checker, fuzz, which can help catch many simple
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mistakes in drafts of the mathematical expressions1. For example, we can check

the Z speci�cation for compliance with the Z scope and type rules; we can also

check that the speci�cation itself is consistent in syntax.

Appendix A provides a brief overview of the Z notation.

1Z/EVES [MS95] is a more powerful tool for parsing, type checking, well-de�nedness

checking, and proving theorems about Z speci�cations. However, it was not available to us

until very late.
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Chapter 3

Approach to Formalizing the

OOAD Methods

This chapter discusses the approach to formalizing the representational prop-

erties of the OOAD methods under the Theory-Model paradigm1. A design

theory speci�es the semantics of a design method. A method can be formalized

in many di�erent but logically equivalent ways. The fundamental principle for

formalization is to make the descriptions of design theories precise, simple, and

readable. This chapter describes the principles and guidelines for ful�lling the

formalization task, the style of formalization, and how to deal with ambiguity,

missing details, and other relevant issues. It also discusses the possible ways

of verifying a theory. The formalization process is iterative.

3.1 Investigating the Original Materials

The methods we study are documented in book format. Design categories and

rules are expressed in various forms in the books, such as natural language,

1Most of the discussion in this chapter has previously appeared in the technical report

[LMZ96].
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diagrams, charts, and tables. They may be given formal de�nitions or ex-

plained only via examples. The informal nature of method descriptions means

that misunderstandings are possible and that formal veri�cation of a model

is not possible. Graphical notations may not guarantee a precise understand-

ing of a method. Therefore, the �rst step of the formalization is to develop

a reasonable understanding of the method through a careful examination of

the original source material, to avoid incorrect interpretations of the informal

descriptions.

The mapping from informal to formal is typically achieved through an it-

erative process not subject to proof. At all times, the formal speci�cation

is only a mathematical representation of the method's architectural proper-

ties. Any inconsistencies in the method would be preserved in the mapping.

The formalization is to improve the degree of precision of the method, but

not to improve the method itself. For every lack of precision in the original,

some choice must be made about how to �ll in missing details; however, the

formalization should not diverge from the original.

A formalization requires decisions about how to represent things precisely

while the original materials de�ne them imprecisely. In documenting such

decisions, we cite the original sources, supplying page numbers or page ranges

for the discussion of the imprecise concepts.

3.2 Basic Rhetorical Principle

The formalization is fundamentally intended to give precise but readable de-

scriptions of design methods. This means that concerns of rhetoric (the art

of conveying meaning) are at least as important as the associated technical

concerns.

A basic rhetorical principle for this work is that the formal description

cannot stand on its own. Between the original informal description and our

formal description there must be additional material, in informal but techni-
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cally precise language. This is called the technical description.

The technical description should be able to stand on its own, with the

formal description to make it precise. In principle, it should be possible to

obtain a sensible (though possibly imprecise) view of the design theory by

omitting the formal description and leaving only the technical one. While

many styles of composition are appropriate, in our view it is better to develop

the technical and formal descriptions concurrently. The technical description

must be written eventually, and each helps make the other clearer as choices

are taken and revised.

The situation somewhat resembles that of a software requirements docu-

ment and the code that implements it. The requirements correspond to the

informal description; the technical description corresponds to the software de-

sign document and code comments; the formal description corresponds to the

code. Well written design documents and comments can stand alone. Soft-

ware engineers generally accept that they should write design documents and

comments with the implementation.

3.3 The Formalization Task

This section describes the fundamental principles of developing and record-

ing design theories. We use the Z notation to capture information of design

theories; and use the formalization of OMT's object model as an example2.

3.3.1 Design-Time Concepts and Run-Time Concepts

The concepts involved in a design method are classi�ed into two kinds: run-

time and design-time concepts. Run-time concepts are concerned with the

elements that build up a run-time system; such concepts include object, at-

2The Z code for OMT presented in this Chapter is a simpli�ed version of that in Chap-

ter 4.
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tribute value, and link in OMT. Design-time concepts are concerned with pat-

terns of run-time elements; such concepts include class, attribute, operation,

association, aggregation, and generalization in OMT.

The theory of a design method is a formalization of the design-time con-

cepts and the design rules. It represents the formal semantics of the method.

Since the two kinds of concepts are closely associated with each other, the

semantics of some design-time concepts could not be complete without the

consideration of run-time concepts. For example, in OMT the objects (i.e.,

instances of classes) which play the role on a \many" side of an association

sometimes are ordered. Such a role is called \ordered role". With only the

design-time concepts, we can introduce ordered roles by stating that they are

\multiple roles":

orderedRole : PROLE

orderedRole � multipleRole

After introducing the run-time concept \object" and the relation mulOfRole

among the run-time and the design-time concepts, we are able to explain

further the meaning of an ordered role:

ordering : ROLE $ iseqOBJECT

domordering = orderedRole

8 r : orderedRole; os : P object j r 7! os 2 mulOfRole �

(9
1
os 0 : iseq object j os = ran os 0 � r 7! os 0 2 ordering)

This shows that the complete semantics of ordered roles is expressed in terms

of both the design-time and the run-time concepts.

Run-time concepts in our formalization are only a supplement for specifying

the semantics of a design theory. In other words, the theory about run-time

concepts is not yet complete. However, we can say it is complete from the

viewpoint that a run-time instance should conform to the constraints on the
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design-time model. That is, the semantics of a run-time instance is implicitly

expressed in the theory about the design-time concepts as well. For example,

in OMT, each class has a name and this property is formalized as follows.

nameOfClass 2 class �! className

This also implies that the instances of a class have a name, which is exactly

the name of the class.

derives

design

 has instance

run-time application

formalized as

design method
formalized as

design theory

run-time theory

design-time theory

has model

run-time model

model

design-time model

formalized as

Figure 3.1: Relationships among design method, design, run-time application,

design theory, and model.

Our approach deals with concepts at three di�erent levels: design method,

design, and run-time application. Figure 3.1 illustrates the relationships of

these three kinds of concepts with design theory and model. A design theory is

composed of a design-time theory and a run-time theory; a model is composed

of a design-time model and a run-time model. A design method is formalized

as a design theory; a concrete design is formalized as a design-time model; a

run-time application is formalized as a run-time model. Figure 3.2 shows a

portion of the design theory of OMT's object model and two models of this
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theory: (a) is the ER diagram of the design theory; (b) is a concrete design

of (a); (c) and (d) are two run-time instances of (b). The combination of (b)

and (c) is a model of (a), so is the combination of (b) and (d). (b), (c), and

(d) use OMT notations.

Theory

Models

C3 C2C1

role

player class object

linkassociation

c_instance

a_instance

(a)
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(b)

a2  a1

(c)
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C22
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C14
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a15 C23

C24
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C34

a23

a24

a25

C33

Figure 3.2: The Theory-Model formalization of a portion of OMT's object

model.

3.3.2 Design Categories { Introducing Types

A design method is expressed wholly within some limited set of graphical and

textual notations which are used to describe the elements of the design. Every

class of the design elements is a design category.

During the formalization, we must develop formal representations for each
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design category. The formalization language, Z, is strongly typed. For each

design category, we introduce a type to correspond to it. We choose one of

three ways of formalizing a category:

� Introducing a given set.

� Introducing a subset of some previously introduced set.

� Introducing a schema, the variables of which formalize essential proper-

ties of design elements in that category.

Given Sets

On recognizing a design category, the simplest way of formalization is the

introduction of a new given set. As an example, in formalizing OMT, we may

introduce given sets as follows.

[CLASS ;ASSOCIATION ]

Di�erent members of these sets, with their unique identity, correspond to

di�erent design elements.

Combining Given Sets

Since Z is strongly typed, two di�erent given sets have no elements or oper-

ations in common. If two design categories share similarities but are de�ned

as given sets, strong typing would prevent the two categories from sharing

assertions and operators between each other. There are three alternatives for

this situation:

1. Duplicate Z text for both types. This violates the \separation of con-

cerns" principle.

2. Withdraw the disjoint given sets, and replace them with a single given

set to represent their union. We then de�ne the assertions and operators
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once only, and introduce the two originally separate categories as subsets

of the union set.

In OMT, \classes" and \associations" share common features, and so we

prefer to consider them together as \entities". We introduce a new given

set,

[ENTITY ]

and two disjoint global subsets, one each for classes and associations,

CLASS : PENTITY

ASSOCIATION : PENTITY

hCLASS ;ASSOCIATION i partition ENTITY

This consideration is very similar to that for designing an inheritance

hierarchy for an object-oriented system. Unfortunately, this reduces the

amount of checking available with fuzz, since it only checks types, and

di�erent subsets of the same given set have the same type.

3. Combine the two given sets in a disjoint union, which can be clumsy and

hard to read. For example,

ENTITY ::= ClassToEntityhhCLASS ii

j AssociationToEntityhhASSOCIATION ii

In this way, we may be forced to introduce more variables than the second

alternative as the formalization proceeds, because ENTITY , CLASS ,

and ASSOCIATION are still three di�erent types. This can be seen

from the following two sets of code, which specify the same thing in

di�erent ways.

The variables in the following Z code
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entity : PENTITY

class : PCLASS

association : PASSOCIATION

hclass; associationi partition entity

are de�ned based on the de�nition that CLASS and ASSOCIATION

are subsets of ENTITY (the second alternative). The variables de�ned

as follows are based on the de�nition that CLASS and ASSOCIATION

are di�erent given sets (the third alternative).

entity : PENTITY

class : PCLASS

association : PASSOCIATION

classEntity ; associationEntity : PENTITY

classEntity = ClassToEntity(j class j)

associationEntity = AssociationToEntity(j association j)

entity = classEntity [ associationEntity

It is obvious that, to use the third alternative, we have to introduce more

variables. To retain clarity and brevity, and to avoid duplicate assertions, we

choose the second alternative.

Similar to \class" and \association", in OMT, \attribute", \operation",

and \role" appear at �rst glance to be signi�cantly di�erent. It would seem

natural to introduce three given sets. But they share some commonalities.

This leads us to consider a new category \feature":

[FEATURE ]

Attributes, operations, and roles will be known collectively as features:
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ATTRIBUTE : PFEATURE

OPERATION : PFEATURE

ROLE : PFEATURE

hATTRIBUTE ;OPERATION ;ROLE i partition FEATURE

Schemas for Design Categories

Schemas arise in Z speci�cations for collecting several pieces of related infor-

mation. Formally, a Z schema means a subset of a cross product; it is an

\indexed product" because the individual components of the product have in-

dividual names in Z (which are called variables). When elements of a design

category are characterized by certain essentials, it might well be appropriate to

formalize the category as a schema, and so collect the essential characteristics

together as components of the product. There are, however, two phenomena

that prevent or condition using a schema to formalize a design category:

� a requirement for unique identity, and

� a lack of uniformity.

Since a schema means an indexed product, instances of a schema type are

distinguished only by the values of their component variables. However, design

methods often allow for two elements of a design category to be present in a

design with identical attribute values, or allow for an element to have di�erent

attribute values within di�erent context. The unique identity of an element

is not characterized by its attributes but by context. Our solution to this

problem is to use a given set for the identity, and use relations to associate the

design category with their essential characteristics, which may be in various

forms such as given set, schema, and relation.

Since a schema means an indexed product, every attribute (variable) in the

product must always be present. Optional attributes cannot be introduced as

schema variables, and if a basic category lacks the uniformity of a small set of
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required attributes, formalizing it as a schema will be di�cult to understand.

The way we solve this problem is to use partial functions for optional elements.

Furthermore, using schemas in de�ning design categories may increase com-

plexity of formalization, because a variable in a schema may as well be a design

category, which in turn may be de�ned as a schema. A schema is thus nested

and the formalization of its relationships to other design categories becomes

complicated. The way we formalize the design categories provides a simple

solution.

How to formalize the relationships between design categories using relations

and functions is discussed in the following section.

3.3.3 Design-Time Formalization { Introducing Vari-

ables and Predicates

Category Variables

In any software design method there are design categories; a particular design is

made up of elements of those categories, related to one another according to the

design rules of the method. This aspect is called the design-time formalization

of a theory. A design category, viewed as a set of possible design elements,

is usually in�nite, because there are in�nitely many possible designs. The

elements of a particular design, viewed as a subset of possible design elements,

is always �nite, because any given design is a �nite construction. We use Z

types to formalize the in�nite potential of design categories, and introduce Z

variables to stand for their �nite subsets that are the elements of particular

designs. We call these variables category variables. They are usually set-

valued. Variables entity , class, and association declared in Section 3.3.2 are

such variables.
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Relation Variables

The required relationships between design categories are captured by relations

and functions in Z. Typically the relationships in a particular design apply not

to all possible design elements of the categories, but only to those elements

which have actually been introduced into the present design. We call the

relations and functions to model the relationships in particular designs relation

variables. These variables are also set-valued.

We take the formalization of relationships between entities (including classes

and associations) and features (including attributes, operations, and roles) in

OMT as an example to illustrate how we make decision on formalizing the

relationships.

In OMT, features never exist independently, but are always associated with

some entity. Given a particular feature in a valid design, we can discover the

particular class or association in which the feature is introduced. In math-

ematical English we would say something like \for every feature, there is a

corresponding point of de�nition in some class or association". Such a \for ev-

ery ... there is a ..." suggests a formalization as a function in the mathematical

sense. Here, the function

de�nedIn : FEATURE 7! ENTITY

yields an ENTITY element in the design (the introduction point) for any

FEATURE element introduced in the design. It is a partial function ( 7!)

instead of a total one (!) because the design theory does not insist that each

FEATURE necessarily has a corresponding ENTITY . A design theory should

make few claims about the set of all possible design elements, and restrict itself

to the properties of the design elements in the context of particular designs.

Sometimes the relationships called for in a design theory do not suggest a

functional style of formalization, but a more general relational style. However,

it is better to write a relation in a functional style if possible. A functional
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style leads itself to equations, and equational presentations and reasoning are

clearer and more elegant.

In OMT, we need to express the meaning of \all the features of an entity".

There are two ways to formalize this. One way is to de�ne a function from

entities to sets of features, that is,

f : ENTITY 7! PFEATURE

and \all the features of c" is f (c). The other way is to de�ne a general

relation between entities and features, which happens to be the relational

inverse of the function de�nedIn, i.e., de�nedIn�; and \all the features of c" is

de�nedIn�(j fcg j). We prefer the second way in the formalization because the

type of the relation (which is P(ENTITY � FEATURE )) is simpler than the

type of the function (which is P(ENTITY � PFEATURE )). The complexity

of one relation can make the expression of its relationships to other relations

complicated.

A \minimalist" attitude in the formalization is to de�ne a single expression

of each idea. Since the purpose in speci�cation is to make the design theory not

only simple but also readable, there is a need for trade-o� between minimality

and readability. It is usually helpful to introduce by name all the relations

and functions that will be used regularly later. If we will be writing equations

in each direction of a relation, we give names to each direction. We have

mentioned de�nedIn formalizing the relationship between each feature and its

de�ned entity; we also need hasFeature formalizing the inverse relation:

de�nedIn : FEATURE 7! ENTITY

hasFeature : ENTITY $ FEATURE

de�nedIn 2 feature ! entity

hasFeature 2 entity $ feature

hasFeature = de�nedIn�
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Predicates

The predicates in Z introduce restrictions over the variables. These restric-

tions represent the rules that the design categories must follow. It should be

noted that there is no way in a theory to state that a property is not required

or supported; one may only be explicit about such matters in the technical

description.

If displayed in an ER diagram, category variables become entities, and re-

lation variables become relationships. For example, in Figure 3.2 \class", \as-

sociation", \role", \object", and \link" are category variables, and \player",

\isRoleOf", \c instance", and \a instance" are relation variables.

3.3.4 Building Theories Piece by Piece { Introducing

Schemas

The variables and the predicates for a design theory may all be de�ned globally,

such as the examples given earlier in this chapter, or can be incorporated into

one huge schema. In order to make a theory more comprehensible, in the

formalization, we group the related categories and constraints into a set of

schemas. The schemas are used as a modularity mechanism that decompose

a large speci�cation into units. Another reason for using schemas is the need

for incremental comparison and the need for referencing predicates, which will

be discussed in Chapter 6.

A basic principle of rhetoric is to introduce new information evenly. We

therefore introduce new design elements and their essentials as variables in

small schemas. Subordinate design properties and relationships are formalized

later, by introducing new schemas focussed on the subordinate material.

For example, we use schema OMTentity to incorporate entities, classes, and

associations. ENTITY is the type of potential design elements that are classes
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or associations; a given design will involve particular classes and associations,

formalized as a set variable entity in the basic schema, having subsets class

and association.

OMTentity

entity : PENTITY

class : PCLASS

association : PASSOCIATION

hclass; associationi partition entity

Similarly, FEATURE is the type of potential design elements which are

attributes, operations, or roles:

OMTfeature

feature : PFEATURE

attribute : PATTRIBUTE

operation : POPERATION

role : PROLE

hattribute; operation; rolei partition feature

To collect the rules about basic concepts for future reference, we de�ne

schema that combines the properties of the above two schemas.

OMTBasic b= OMTentity ^ OMTfeature

This construct, called schema conjunction, essentially means that OMTBasic

includes all the de�nitions and predicates of both OMTentity and OMTfeature.

We use schema OMTFeature to represent the Z code in Section 3.3.3.
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OMTFeature

OMTBasic

de�nedIn : FEATURE 7! ENTITY

hasFeature : ENTITY $ FEATURE

de�nedIn 2 feature ! entity

hasFeature 2 entity $ feature

hasFeature = de�nedIn�

Because of the scope rule, when schema OMTFeature wants to use variables

entity and feature declared in schema OMTBasic,OMTBasic must be included

in OMTFeature.

A recommended style of the technical descriptions for each schema is to

provide a list of descriptions, one per predicate. Thus, for OMTFeature, we

have

� Every feature has a corresponding entity .

� There may be more than one feature for each entity .

� hasFeature is the relational inverse of de�nedIn.

All the schemas about a method are regarded as the theory of the method.

In fact, the theory is the combination of all the variables and predicates de�ned

in these schemas. After establishing individual schemas, we must eventually

put all these parts together to form an entire formalization. We do so in

de�ning a new schema which incorporates the properties of all the previous

schemas.

3.3.5 Formalizing Properties of Design Elements

Sets introduced for design categories have members which formalize design

elements. This captures the identity of design elements. However, design
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theories usually allow for additional properties of design elements, optional for

their category; and impose or allow for further relationships between elements.

In OMT, a \role" of an \association" must have two data:

� the \class" whose objects can play the role in an association, and

� the \multiplicity", which governs how many objects can play the role (in

a dynamic sense).

In general, this kind of relationship-determining data can be formalized in

either of two ways.

1. Represent each datum separately as a function of the design category.

Every role has an associated class and a multiplicity; thus we introduce

OMTRoleProperty

OMTBasic

player : ROLE 7! CLASS

multiplicity : ROLE $ N

player 2 role ! class

dommultiplicity = role

2. Represent the data collectively as variables of a new schema which for-

malizes the relationship.

Role

role : ROLE

player : CLASS

multiplicity : P
1
N

Some predicates are needed to quantify over members of the role set; to

talk about the corresponding properties, we then need a way to �nd the

schema representing the properties of a role, given the role itself:
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xOMTRoleProperty

OMTBasic

roleData : ROLE 7! Role

dom roleData = role

fr : role � (roleData(r)):playerg � class

8 r : role � (roleData(r)):role = r

The second alternative seems attractive, since it gathers all the information

about a type in one place. However, we choose the �rst one for several reasons:

� The need to use the roleData function complicates several of the predi-

cates.

� Using a schema in this way requires that every element of the design

category in question possesses the properties to be described. \Name",

for example, cannot be formalized as a variable of a schema describing

roles in OMT, because not all roles have names.

� De�ning a schema for a design category requires that we discuss all the

properties of the design category in one place. It makes it more di�cult

for us to distribute our discussion of properties among separate sections

of the formalization.

3.3.6 Evolving and Revising a Formalization

Software design methods are typically de�ned in large books. It is common in

such books to cover basic features �rst, then introduce advanced features sepa-

rately. This sometimes means that decisions made earlier in the formalization

process require revision later.

What we have for roles is adequate for most kinds of associations one

�nds in an object model in OMT. However, two of the advanced features
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complicate the representation. In both aggregation and generalization, there

can be several sets that play a particular role. In aggregation there is a single

container class and possibly several \part of" classes. In generalization there

is a single superclass and possibly several subclasses.

In the earlier stage of our thinking about this problem, it seemed necessary

to introduce several di�erent roles to represent the di�erent parts in an ag-

gregation, and similarly several di�erent roles to represent the subclasses of a

generalization. The formalization began to look more and more complicated as

we introduced several new schemas and other elements to represent properties

of aggregation and generalization.

Whenever things look like they are getting too complicated, it is wise to

look over the material again to see if one can discover an appropriate simpli-

�cation. For example, we considered representing all the di�erent parts of a

�xed aggregate as one role, where the role simply had several distinct play-

ers. This would have required changing the OMTRoleProperty schema so that

the player function (from ROLE to CLASS ) became a general relation. This

introduced its own complications, but would let us talk about the \part-of"

role as meaning all the parts of an aggregation. However, [RBP+91] gives

examples of aggregates where, for example, a microcomputer is an aggregate

of a monitor, a system box, a mouse, and a keyboard, and each of those parts

of the microcomputer aggregate could potentially have di�erent multiplicities.

For example, there are one or more monitors and zero or one mouse (Figure

3.22 on p.38 of [RBP+91]). Thus, we are forced to regard an aggregate as

having many di�erent \part of" roles. This vindicates our original idea that

the \part of" elements of an aggregate could each be thought of as a distinct

role { but it required examination of the original material to ensure that this

was an essential aspect of the formalization, and not just a convenience.

The fundamental question arises at this point: can we still view the rela-

tionships between the container and its parts in an aggregation as associations,

or must we introduce a new category? If aggregates were to be completely dif-
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ferent from other kinds of associations, they would require a new Z base type

as their representation in the formalization. However, aggregates still seem to

have roles, just as simple associations do, but require additional information

and additional structure in their descriptions.

Thus, we introduce a given set to represent aggregations, and a schema to

represent the basic information associated with an aggregation:

[AGGREGATION ]

OMTAggregationBasic

OMTBasic

aggregation : PAGGREGATION

collectedIn : ASSOCIATION 7! AGGREGATION

collectedIn 2 association 7! aggregation

We de�ne the set of aggregations in a particular design (aggregation), and the

relationship between associations and the aggregations that collect them. An

aggregation isn't just an arbitrary collection of associations. We need to ex-

press several consistency requirements. The detail is discussed in Section 4.1.5.

Regardless of the speci�c choice we make, incorporating new pieces of the

formalization requires going back to edit old ones. We regard such revision

cycles as normal.

Even in the course of comparison, we may need to go back to revise some

parts. One of the purposes of formalization is to provide theoretical basis for

method comparison. Roughly speaking, two design categories in two methods

can be compared if they have similar properties. It will be bene�cial to the

comparison if these properties are formalized in a similar way. Further, when

comparing similar properties of the two methods, we may �nd that our un-

derstanding of one method is not accurate with respect to this property. We

then need to go back to revise the formalization at this point.
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3.3.7 Levels of Abstraction

When formalizing a concept and its properties, we need to decide what level

of abstraction the formalization should stay at.

In OMT, entities and features may have names, which may be strings. But

unless we need to model naming conventions explicitly, it is unnecessary to

distinguish names to this level of detail. Instead, we simply introduce a given

set for names:

[NAME ]

In OMT, an operation can be a \query" or an \update" operation. A query

operation is an operation that computes a functional value without modifying

any object; an update operation changes attribute values. OMT does not

describe in further details how a query or update operation behaves, and we

do not intend to improve the method; thus, we just simply formalize the two

kinds of operations as subsets of operations:

OMTOperationType

OMTBasic

queryOp : POPERATION

updateOp : POPERATION

hqueryOp; updateOpi partition operation

3.3.8 Adding Auxiliary Concepts and Missing Details

We sometimes use auxiliary concepts in applying the formalization to make the

theory easier understood and more precise. These concepts are not part of the

original, but are created under the condition that the added concepts do not

alter the semantics of the method. As an example, OMT discusses di�erent

kinds of associations, such as one-to-one and many-to-many associations, in
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terms of multiplicity of their roles; but it does not de�ne di�erent kinds of

roles in terms of multiplicity. It is possible to capture this level of abstraction

by directly referencing the multiplicity attribute of the OMTRoleProperty .

However, we �nd that the formalization will become less complex if we give

formal de�nition of di�erent kinds of roles. Thus, we have

OMTRoleType

OMTRoleProperty

singularRole; optionalRole;multipleRole : PROLE

hsingularRole; optionalRole;multipleRolei partition role

8 s : singularRole � multiplicity(j fsg j) = f1g

8 o : optionalRole � multiplicity(j fog j) = f0; 1g

8m : multipleRole � (9 n : multiplicityOfRole(j fmg j) � n > 1)

Another example of auxiliary concepts is the use of \entity" as already dis-

cussed. By introducing this concept, we can specify properties common to

both class and association in one set of predicates that should otherwise be

two sets; it thus avoids the duplicates.

Some categories are not explicitly discussed in the methods; some are only

mentioned in examples. During the formalization, we need to make implicit

concepts in the method explicit. For example, OMT only mentions one-to-

many, optional-to-many, and many-to-many binary associations. In fact, there

are other possible combinations, such as one-to-one, optional-to-one, and so

on. In our formalization, we make these missing details explicit.

3.4 Veri�cation of Theories

Veri�cation of a design theory is to use various techniques (including mathe-

matical analysis techniques, but not limited to them) for gaining con�dence
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in the correctness of the theory. The veri�cation task includes type-checking,

validation, consistency checking, and completeness checking.

Type-checking is to check syntactic inconsistency. Validation is to show

that certain properties are logical consequences of the theory. Consistency

checking is to prove that no con
icting properties can be deduced from the the-

ory. Completeness checking is to ensure that all the properties of the method

are captured in the theory. Consistency and completeness of a theory are in-

terrelated: often inconsistency leads to incompleteness and vice versa. If an

error is found during the veri�cation, it implies that either the theory or the

corresponding design method is incomplete or inconsistent. This is a way to

improve the theory and gain deep insight into the method.

Type-checking is accomplished with the aid of the fuzz type checker. This

is an automatic process. Besides the automatic type-checking, there are basi-

cally three ways to verify a theory: inspection, reasoning, and execution.

Inspection

Finding defects by inspection should be more e�cient than �nding them by

simulation or other testing. We do the inspection manually by examining the

theory against the informal descriptions in the publications about the method.

Comparing one theory with another can also help improve the accuracy of the

theories. For example, in schema OMIsKindOf (on p.78) which describes

the properties of inheritance in OMT, we initially did not include predicate

isDescendentOf \ id class = ;. However, in schema IMInheritanceBasic (on

p.137) of SMOOA, there is a predicate similar to this one, i.e., inherit \

id object = ;. When we compared the two theories, we found that we missed

the predicate in the theory for OMT's object model. There are a few other

similar cases.
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Reasoning

A rigorous way of veri�cation is via theorem proving or model checking. This

is a research topic related to formal reasoning [ABC82, Boe84, VW86, MP91,

BMZ91, Hun93, AK94, LvK94, Gra96], and is beyond the scope of our research.

In the absence of automated tool support, rigorous proofs are extremely la-

borious. We performed some reasoning manually to examine whether certain

properties of a method can be deduced from its theory. Z/EVES can be used

to prove theorems about Z speci�cations; however, it became available too late

for us to use during the thesis work.

Execution

An alternative and simple way to check consistency is to establish a concrete

model of the theory. According to the completeness theorem of model theory

[CK73], if a theory is inconsistent, it is impossible to �nd a model of it. In

this way, we can also validate and debug a design theory. This requires us

to make the formal description executable, that is to develop an executable

representation of the theory.

We have developed a reasonable straightforward method for translating our

style of formal description into Prolog [LMZ96]. Since, in general, the sets and

design rules we are dealing with are all �nite, we know that it is theoretically

possible to test whether a concrete design is a model of the corresponding

theory, by searching for contradictions to the predicates. We hope it will also

prove to be feasible. The translation method so far developed falls into four

main steps:

� Represent the entity sets.

� Represent the relationship sets.

� Represent basic integrity constraints, such as type and multiplicity con-

straints.
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� Represent other axioms of the theory.

Each member x of a given set M is represented by a Prolog ground fact, of

the formM (x ), asserting that its single argument is an element of the set, and

de�ning x 's identity. There are several possibilities for representing entities:

� A simple method is to pick Prolog atoms formed by appending a number

to a base name. Thus, for example, roles might be represented as

role(role_001).

role(role_002).

� If a collection of given sets forms a single generalization hierarchy, we

might consider using the representation of the parent of the hierarchy

for the children as well. Thus, for example, classes and associations are

both entities:

class(entity_001).

class(entity_002).

association(entity_003).

With this approach, it would be natural to represent the parent by a

rule rather than by enumeration:

entity(X) :- class(X).

entity(X) :- association(X).

N-ary relationship sets can be represented by n-ary Prolog predicates.

Thus, we might represent part of the information about an \employee works-in

department" relationship as:

nameOfEntity(entity_001,"employee").

nameOfEntity(entity_002,"department").
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nameOfEntity(entity_003,"works in").

player(role_001,entity_001).

isRoleOf(role_001,entity_003).

Integrity constraints are straightforward. In general, constraints are veri-

�ed by searching for a counter-example; on failure, the constraint is considered

to be satis�ed.

� Type constraints on relationships can be checked by rules that search for

elements of the wrong type:

badNameOfEntityFirstArg(X) :-

nameOfEntity(X,_),

not(entity(X)).

� Cardinality constraints on functions and relations can be checked by

stylized rules that build sets and check their sizes.

More complex axioms may require hand-translation.

Running Prolog program on small examples serves to increase our con�-

dence in the correctness of the formalization.
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Chapter 4

Formalization of OMT's Object

Model

This chapter describes a formalization of the object model of OMT [RBP+91].

The product of the formalization is the design theory of the object model

described in Z notation.

OMT uses three models to capture three related but di�erent aspects of a

system. These models are object model, dynamic model, and functional model.

They separate a system into orthogonal views that can be represented and

manipulated with a uniform notation. The di�erent models are not completely

independent { the interconnections between them are limited and explicit {

but each model can be examined and understood by itself to a large extent.

Object model. The object model describes the static structure of

objects in a system { their identity, their relationships to other ob-

jects, their attributes, and their operations that characterize each

class of objects.

Dynamic model. The dynamic model describes those aspects of

a system concerned with time and the sequencing of operations {

events that mark changes, sequences of events, states that de�ne
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the context for events, and the organization of events and states.

Functional model. The functional model describes those aspects

of a system concerned with transformations of values { functions,

mappings, constraints, and functional dependencies.

The object model provides the essential framework into which the dynamic

and functional models can be placed.

4.1 Basic Design-Time Concepts

Design-time concepts describe the possible patterns of run-time applications.

These concepts in an object model include class, association, attribute, op-

eration, method, role, aggregation, generalization, and module. This section

gives the formal de�nitions of the design-time concepts and formalizes some

design rules on these concepts. The original material on which the following

discussion is based can be found in Chapter 3 of [RBP+91].

4.1.1 Fundamental Concepts

Class and association are the central concepts in an object model. A class

describes a group of objects1 with similar properties (attributes), common

behaviors (operations), common relationships to other objects, and common

semantics. An association describes a group of links (of objects) with common

structure and common semantics. We introduce a given set,

[ENTITY ]

and two global sets, one each for classes and associations,

CLASS : PENTITY

ASSOCIATION : PENTITY

1Object, link, attribute value, and other run-time concepts are discussed in Section 4.3.
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As discussed in Chapter 3, the reason we formalize both classes and associ-

ations to be elements of the same given set is that they have properties in

common. Both a class and an association may have attributes.

An association may be modeled as a class (see [RBP+91]: p.33). There

are two interpretations for this. One interpretation is formally represented by

the above two subset de�nitions. In this case, the intersection of \classes" and

\associations" might be an non-empty set, meaning that an association may

also be a class and vice versa. The other interpretation is formally represented

by the two subset de�nitions as well as a predicate

hCLASS ;ASSOCIATION i partition ENTITY

indicating that a class and an association are distinct; however, the properties

common to both are attached to entities, of which classes and associations

are subsets. From the example given on page 34 of [RBP+91], we �nd that,

while an association is modeled as a class, the association and the association

class may have di�erent names. This indicates that the two concepts should

be considered distinct. Therefore, we adopt the second interpretation.

Attribute, operation, and role are basic concepts with some properties in

common. An attribute is a data value that may be held by the objects in

a class. An operation is a function or transformation that may be applied

to, or by, objects in a class. A role is an end of an association. Each role

\starts" from an association and \ends" in a class. The three concepts have

the following common aspects:

� They do not exist independently, but rather are always associated with

some class or association.

� They may have names, although roles are not necessary named. Their

items associated with an entity should have di�erent names from each

other.
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� In generalization relationships, which are formalized in Section 4.1.5,

subclasses can inherit attributes and operations from superclasses.

We introduce a given set,

[FEATURE ]

and three disjoint subsets,

ATTRIBUTE : PFEATURE

OPERATION : PFEATURE

ROLE : PFEATURE

hATTRIBUTE ;OPERATION ;ROLE i partition FEATURE

for attributes, operations, and roles respectively.

The global given sets and subsets represent the design categories; they are

the sets of all possible elements of all possible object models. We will need

to de�ne the sets that represent a particular object model. An object model

consists of

� a set of entities,

� a set of classes,

� a set of associations,

� a set of features,

� a set of attributes,

� a set of operations, and

� a set of roles.
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OMDTData

entity : PENTITY

class : PCLASS

association : PASSOCIATION

feature : PFEATURE

attribute : PATTRIBUTE

operation : POPERATION

role : PROLE

class 6= ;

hclass; associationi partition entity

hattribute; operation; rolei partition feature

� The object model must contain some classes.

� Classes and associations are subsets of the entity set.

� Attributes, operations, and roles are subsets of the feature set.

4.1.2 Features of Entities

A basic property of attributes, operations, and roles is that they are always

associated with some particular class or association. Thus, given a \feature",

one can discover the particular \entity" in which it is �rst de�ned. This section

formalizes some basic properties of the features as well as the relationships

between the features and the entities.

Attributes

The value of an attribute belongs to certain value type. We introduce given

sets

[ATOMIC VALUE ;ATT TYPE ]

51



for all the possible atomic values and value types.

Each attribute type de�nes a set of values:

valueOfType : ATT TYPE $ ATOMIC VALUE

valueOfType� 2 ATOMIC VALUE 7! ATT TYPE

Schema OMAttributeProperty de�nes a function specifying the value type

of which the values of each attribute are.

OMAttributeProperty

OMDTData

typeOfAttr : ATTRIBUTE 7! ATT TYPE

dom typeOfAttr = attribute

� Each attribute has a de�ned value type.

Schema OMAttribute de�nes a relation indicating the entity in which each

attribute is originally de�ned.

OMAttribute

OMDTData

attrDe�nedIn : ATTRIBUTE $ ENTITY

domattrDe�nedIn = attribute

ran attrDe�nedIn � entity

� Each attribute must be de�ned in some class(es) or association(s) (see

[RBP+91]: pp.31-33 about link attribute).

� A class or an association may have one or more attributes.
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Operations

Every operation has a prede�ned signature. The signature of an operation is

the number and types of arguments and the type of the result value if any.

Each operation has a target object as an implicit argument; but there is no

indication of the forms that other arguments can take (see [RBP+91]: p.25).

At this level of detail, we de�ne a given set

[ARG TYPE ]

for the types of arguments and results.

Schema OMOperationProperty denotes

� a function specifying the types of the arguments of each operation, and

� a function specifying the type of the result of each operation.

OMOperationProperty

OMDTData

argumentOfOp : OPERATION 7! seq1ARG TYPE

resultOfOp : OPERATION 7! seqARG TYPE

domargumentOfOp = operation

dom resultOfOp � operation

� Each operation takes some arguments. An operation has at least one

argument, since it always has a target object as an argument.

� An operation may return some result.

Schema OMOperation de�nes a relation indicating the entity in which each

operation is originally de�ned.

53



OMOperation

OMDTData

opDe�nedIn : OPERATION $ CLASS

domopDe�nedIn = operation

ran opDe�nedIn � class

� Each operation must be applied to, or by, one or more classes.

� A class may have one or more operations on it.

An operation can be a query or an update operation (see [RBP+91]: p.26,

p.64). A query operation is an operation that computes a functional value

without modifying any object. An update operation changes attribute values.

Schema OMOperationType1 denotes that query operations and update op-

erations in the object model partition the operation set.

OMOperationType1

OMDTData

queryOp : POPERATION

updateOp : POPERATION

hqueryOp; updateOpi partition operation

Roles

The formalization of the relationships between classes and associations are

based on the concept of roles. Although attributes, operations, and roles

are all de�ned as features, roles have some special properties. This is because

attributes and operations are merely attached to classes, while roles are related

to both classes and associations.

Schema OMRoleProperty denotes
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� a function specifying the class that plays each role, and

� a relation specifying the multiplicity of each role. The multiplicity of a

role at run-time speci�es the number of instances of one class that appear

in a given role of an association when the instances that can appear in the

remaining roles are �xed. Multiplicity is a (possibly in�nite) subset of

the non-negative integers. For the role r of an association, each number

n in the set multiplicityOfRole(j frg j) indicates that the multiplicity of

r can be n. Section 4.3.5 gives the semantics of multiplicity in terms of

run-time model.

OMRoleProperty

OMDTData

playerOfRole : ROLE 7! CLASS

multiplicityOfRole : ROLE $ N

playerOfRole 2 role ! class

dommultiplicityOfRole = role

� Each role has a player, which is a class.

� Each role has a prede�ned multiplicity.

Schema OMRole de�nes two relations indicating the association in which

each role is involved.
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OMRole

OMDTData

roleDe�nedIn : ROLE 7! ASSOCIATION

hasRole : ASSOCIATION $ ROLE

roleDe�nedIn 2 role !! association

hasRole = roleDe�nedIn�

8 a : association � #(hasRole(j fag j)) � 2

� Each role must be associated with one and only one association.

� Each association must have roles associated with it.

� An association may have two or more roles, i.e., an association may be

binary, ternary, or higher order.

In discussing associations, it is common that there is need to refer to roles

that are optional, singlular or multiple. Thus, for example, a many-to-many

association has two multiple roles whereas a one-to-one association has either

two singleton roles or two optional roles or one of each. It is possible to

capture this level of abstraction by referencing the multiplicity attribute of

the OMRoleProperty schema. But it is more convenient to be able to directly

refer to a property of role as to whether it is in one of the above mentioned

set. Thus, we extend the role description schema as follows.
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OMRoleType

OMRoleProperty

singularRole; optionalRole;multipleRole : PROLE

hsingularRole; optionalRole;multipleRolei partition role

8 s : singularRole � multiplicityOfRole(j fsg j) = f1g

8 o : optionalRole � multiplicityOfRole(j fog j) = f0; 1g

8m : multipleRole � (9 n : multiplicityOfRole(j fmg j) � n > 1)

� Singular, optional, and multiple roles are special types of roles with

respect to multiplicity.

� Given a role of an association, when the instances of other roles in the

same association are �xed in a run-time model,

{ if the role is singular, then there is exactly one object playing the

role;

{ if the role is optional, then there is one object, or none at all, playing

the role;

{ if the role is multiple, then there may be zero, one or more objects

playing the role. And there must be the cases, in which two or more

objects play the role.

Features

Putting schemas OMAttribute, OMOperation, and OMRole together, we in-

troduce the following schema to express the relations between features and

entities in the object model.
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OMFeatureBasic

OMAttribute

OMOperation

OMRole

de�nedIn : FEATURE $ ENTITY

hasFeature : ENTITY $ FEATURE

de�nedIn = attrDe�nedIn [ opDe�nedIn [ roleDe�nedIn

hasFeature 2 entity $ feature

de�nedIn� � hasFeature

� Function de�nedIn relates each feature to the entity in which it is �rst

de�ned.

� Function hasFeature has di�erent semantics from that of relation de�nedIn�.

Because of inheritance, an attribute or an operation of a class may not be

de�ned in the class, but rather inherited from the ancestors of the class.

Function hasFeature speci�es the features of each entity, disregarding

whether they are �rst de�ned or inherited.

Default Attribute Values

An attribute may have a prede�ned default value. The following schema de-

�nes a function which associates the attributes in an entity with their default

values.
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OMDefaultValueBasic

OMAttributeProperty

OMFeatureBasic

defaultValOfAttr : ENTITY 7! (ATTRIBUTE 7! ATOMIC VALUE )

domdefaultValOfAttr � entity

8 e : dom defaultValOfAttr � dom(defaultValOfAttr(e)) � hasFeature(j feg j)

8 e : entity ; a : attribute; v : ATOMIC VALUE j

v = defaultValOfAttr(e)(a) � v 2 valueOfType(j ftypeOfAttr(a)g j)

� The �rst two predicates state that the attributes of an entity may have

prede�ned default values.

� The default value of an attribute must be of the value type of the at-

tribute.

Methods

A method is an implementation of an operation for a class. We introduce a

given set

[METHOD ]

for all of possible methods.

Similar to schema OMOperationProperty , schema OMMethodProperty de-

notes

� a set of methods,

� a function specifying the types of the arguments of each method, and

� a function specifying the type of the result of each method.
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OMMethodProperty

OMDTData

method : PMETHOD

argumentOfMethod : METHOD 7! seq1ARG TYPE

resultOfMethod : METHOD 7! seqARG TYPE

domargumentOfMethod = method

dom resultOfMethod � method

Schema OMMethod formalizes the relationship between operations and

their methods. It denotes

� a function associating each operation with its implementations, and

� a function indicating the implementation of each operation in di�erent

classes.

OMMethod

OMOperationProperty

OMMethodProperty

OMFeatureBasic

implement : METHOD 7! OPERATION

methodLookup : OPERATION 7! (CLASS 7! METHOD)

implement 2 method ! operation

8 op : operation; m : method j implement(m) = op �

argumentOfOp(op) = argumentOfMethod(m) ^

resultOfOp(op) = resultOfMethod(m)

dommethodLookup = ran implement

8 op : dommethodLookup �

methodLookup(op) 2 hasFeature�(j fopg j) 7! implement�(j fopg j)
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� Each method is an implementation of some operation.

� A method has the same signature as the operation which it implements.

� The last two predicates indicate that, when applied to more than one

class, an operation may be implemented in same or di�erent way in

di�erent classes.

Schema OMFeature is a combination of the schemas that specify the prop-

erties of features.

OMFeature b=
OMFeatureBasic ^

OMAttributeProperty ^ OMOperationProperty ^ OMRoleProperty ^

OMOperationType1 ^ OMRoleType ^

OMDefaultValueBasic ^ OMMethod

4.1.3 Names and Naming

In order to formalize the names that various elements may have, we introduce

a given set

[NAME ]

for all possible names.

The following three schemas formalize the naming of entities.

Schema OMClassName de�nes

� a set of class names in the object model, and

� a function from classes to class names, specifying the name of each class.
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OMClassName

OMDTData

className : PNAME

nameOfClass : CLASS 7� NAME

nameOfClass 2 class �! className

� Each class has a unique name.

Schema OMAssociationName de�nes

� a set of association names in the object model, and

� a function from associations to association names, specifying the name

of each association.

OMAssociationName

OMDTData

assocName : PNAME

nameOfAssoc : ASSOCIATION 7!! NAME

nameOfAssoc 2 association 7!! assocName

� In OMT, an association may be left unnamed (see [RBP+91]: p.28). If

associations have names, some of them may have the same name.

Schema OMEntityName speci�es that a class and an association should

not have the same name.

OMEntityName

OMClassName

OMAssociationName

className \ assocName = ;
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The naming of features is slightly more complicated, because the scope of

feature names is not global. The scope for features is the entity with which

they are associated. When formalizing the naming in the local scope, we

parameterize the sets and functions by the scope. The following two schemas

formalize the naming of the features.

Schema OMFeatureNameBasic de�nes, within a given entity,

� a set of feature names,

� a set of named features, and

� a function from features to names, specifying the name of a feature.

OMFeatureNameBasic

OMFeature

featureName : ENTITY 7! PNAME

namedFeature : ENTITY 7! PFEATURE

nameOfFeature : ENTITY 7! (FEATURE 7� NAME )

dom featureName = domnamedFeature = domnameOfFeature

dom featureName � domhasFeature

8 e : domnamedFeature �

namedFeature(e) � hasFeature(j feg j) ^

nameOfFeature(e) 2 namedFeature(e)�! featureName(e)

Given an entity,

� features of the entity may have names;

� if features have names, they have distinct names.

In OMT, both attributes and operations must be named; the use of role

name is optional (see [RBP+91]: pp.34-35).
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OMFeatureName

OMFeatureNameBasic

8 e : entity ; f : attribute [ operation j f 2 hasFeature(j feg j) �

e 2 domnamedFeature ^ f 2 namedFeature(e)

The following schema combines the properties of the previous name-related

schemas.

OMName b= OMEntityName ^ OMFeatureName

4.1.4 More Concepts Concerning Associations and Roles

This section discusses four concepts related to special types of associations

and roles. They are: ordered role, association class, binary association, and

quali�ed association.

Ordering

Usually the objects which play a role on the \many" side of an association

have no explicit order, and can be regarded as a set. Sometimes, however, the

objects are explicitly ordered (see [RBP+91]: p.35). Such ordered roles in the

object model are speci�ed in the following schema:

OMOrderedRole

OMFeature

orderedRole : PROLE

orderedRole � multipleRole

� The ordered roles are a subset of the \many" roles.

The semantics of ordering implies the existence of a run-time function which,

given a role, returns a sequence of objects in some order. This semantics is

formalized in Section 4.3.5.
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Association Classes

An association can be modeled as a class. In such a case, the attributes of the

association become the attributes of the class, and the links of the association

become the instance of the class. The latter is formalized in Section 4.3.4.

The following schema de�nes

� a set of association classes, and

� a function that maps the associations to the association classes.

OMAssociationClass

OMFeature

associationClass : PCLASS

modeledAs : ASSOCIATION 7� CLASS

associationClass � class

modeledAs 2 association 7� associationClass

ranmodeledAs = associationClass

dommodeledAs \ ran attrDe�nedIn = ;

� Association classes are a subset of classes.

� An association may be modeled as a class.

� Each association class models an association.

� If an association is modeled as a class, the association itself no longer

possesses attributes; instead, the attributes of the association become

the attributes of the class.
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Binary Associations

In practice, the majority of the associations are binary. The binary associations

in the object model are formalized as follows.

OMBinaryAssociationBasic

OMFeature

binaryAssociation : PASSOCIATION

binaryAssociation � association

8 a : binaryAssociation � #(hasRole(j fag j)) = 2

� The binary associations are a subset of the associations.

� A binary association has exactly two roles.

OMT puts certain constraints on the names of the roles in binary associa-

tions (see [RBP+91]: p.35).
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OMBinaryAssociationRoleName

OMName

OMBinaryAssociationBasic

8 c : class; rs : P role; bs : P binaryAssociation j

rs = playerOfRole�(j fcg j) ^

bs = roleDe�nedIn(j rs j) \ binaryAssociation �

(9 f : ROLE 7� NAME �

fb : bs; r : rs; r 0 : role; n : NAME j

hasRole(j fbg j) = fr ; r 0g ^

n = nameOfFeature(b)(r 0) � r 0 7! ng � f )

8 ba : binaryAssociation; r1; r2 : role; c1; c2 : class j

hasRole(j fbag j) = fr1; r2g ^

playerOfRole(r1) = c1 ^

playerOfRole(r2) = c2 �

nameOfFeature(ba)(r1) =2

(nameOfFeature(c2))(j hasFeature(j fc2g j) \ attribute j) ^

nameOfFeature(ba)(r2) =2

(nameOfFeature(c1))(j hasFeature(j fc1g j) \ attribute j)

� All role names on the far end of binary associations attached to a class

must be unique.

� In a binary association, no role name should be the same as an attribute

name of the player of the other role.

According to the multiplicity of the two roles, binary associations can

be classi�ed as one-to-one, optional-to-one, one-to-many, optional-to-many,

many-to-many, and so on. Among the various binary associations, one-to-

many, optional-to-many, and many-to-many are further discussed in the con-

text of keys (see Section 4.2.8). We de�ne these binary associations as subsets
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of binaryAssociation with speci�c properties.

OMBinaryAssociationType

OMBinaryAssociationBasic

one oneAssoc; one mulAssoc;mul mulAssoc : PASSOCIATION

one optAssoc; opt mulAssoc; opt optAssoc : PASSOCIATION

hone oneAssoc; one mulAssoc;mul mulAssoc; one optAssoc;

opt mulAssoc; opt optAssoci partition binaryAssociation

8 a : one oneAssoc �

(9 r1; r2 : singularRole � hasRole(j fag j) = fr1; r2g)

8 a : one mulAssoc �

(9 r1 : singularRole; r2 : multipleRole � hasRole(j fag j) = fr1; r2g)

8 a : mul mulAssoc �

(9 r1; r2 : multipleRole � hasRole(j fag j) = fr1; r2g)

8 a : one optAssoc �

(9 r1 : singularRole; r2 : optionalRole � hasRole(j fag j) = fr1; r2g)

8 a : opt mulAssoc �

(9 r1 : optionalRole; r2 : multipleRole � hasRole(j fag j) = fr1; r2g)

8 a : opt optAssoc �

(9 r1; r2 : optionalRole � hasRole(j fag j) = fr1; r2g)

� One-to-one, one-to-many, many-to-many, one-to-optional, optional-to-

many, and optional-to-optional associations are binary associations.

� A one-to-one association has two singular roles.

� A one-to-many association has one singular role and one multiple role.

� A many-to-many association has two multiple roles.
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� A one-to-optional association has one singular role and one optional role.

� An optional-to-many association has one optional role and one multiple

role.

� An optional-to-optional association has two optional roles.

Quali�cation

A quali�ed association relates a quali�er and two classes, which play two roles.

A quali�er is a special attribute that reduces the e�ective multiplicity of an

association.

Schema OMQuali�edAssociation denotes

� a set of quali�ed associations in the object model, and

� a function relating each quali�ed association to its quali�er and the qual-

i�ed role to which the quali�er is attached.

OMQuali�edAssociation

OMRoleProperty

OMBinaryAssociationBasic

quali�edAssociation : PASSOCIATION

qualify : ASSOCIATION 7� ATTRIBUTE � ROLE

quali�edAssociation � binaryAssociation

dom qualify = quali�edAssociation

8 q : quali�edAssociation; r ; r 0 : role; a : attribute j

hasRole(j fqg j) = fr ; r 0g ^ qualify(q) = (a; r) �

r 2 multipleRole ^ a 7! playerOfRole(r 0) 2 attrDe�nedIn

� The quali�ed associations are binary associations.
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� Only quali�ed associations have quali�ers and quali�ed roles.

� For each quali�ed association, the quali�ed role is on a \many" side of

the association; the quali�er is an attribute of the player of the other

role in the quali�ed association.

To collect properties about various binary associations, we have

OMBinaryAssociation b=
OMBinaryAssociationBasic ^

OMBinaryAssociationRoleName ^

OMBinaryAssociationType ^

OMQuali�edAssociation

Putting the schemas for special associations and roles together, we obtain

the following schema:

OMAssociation b=
OMOrderedRole ^

OMAssociationClass ^

OMBinaryAssociation

4.1.5 Aggregations and Generalizations

Aggregation is the \part-whole" or \a-part-of" relationship in which objects

representing the components of something are associated with an object repre-

senting the entire assembly. Generalization is the relationship between a class

and one or more re�ned versions of the class. In a generalization relationship,

one class is called superclass, and its re�ned versions are called subclasses.

The superclass is considered to be a generalization of its subclasses, while the

subclasses might be viewed as specializations of their superclass.
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Grouping

Aggregation and generalization have similar structure. They both can be

viewed as a grouping of a set of classes, with a single class at one side, and

several classes at the other side. Let

[GROUPING ]

represent such grouping relationships among classes.

We de�ne aggregation and generalization to be two kinds of the grouping

relationships. Let two disjoint subsets of set GROUPING

AGGREGATION : PGROUPING

GENERALIZATION : PGROUPING

hAGGREGATION ;GENERALIZATION i partition GROUPING

represent all possible aggregations and generalizations.

Schema OMGroupingBasic denotes

� a set of grouping relationships in the object model,

� a set of aggregations in the object model, and

� a set of generalizations in the object model.

OMGroupingBasic

OMDTData

grouping : PGROUPING

aggregation : PAGGREGATION

generalization : PGENERALIZATION

haggregation; generalizationi partition grouping

� Aggregation set and generalization set are subsets of grouping set.
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Schema OMGroupedClass denotes

� a function, mapping each grouping relationship to a single class, which is

an assembly class if the relationship is an aggregation, or is a superclass

if the relationship is a generalization, and

� a relation, mapping each grouping relationship to a group of classes,

which are component classes or subclasses.

OMGroupedClass

OMGroupingBasic

single : GROUPING 7! CLASS

group : GROUPING $ CLASS

single 2 grouping ! class

dom group = grouping ^ ran group � class

� Each aggregation has an assembly class; each generalization has a super-

class.

� Each aggregation has several component classes; each generalization has

several subclasses.

OMT views an aggregation as a set of binary associations, each of which

associates an assembly with one of its components. Similarly, a generalization

represents relationships between a superclass and each of its individual sub-

classes. Therefore, we treat a generalization as a set of binary associations,

each of which associates a superclass with one of its subclasses.

Schema OMGroupedAssociation denotes

� a set of grouped associations that make up the aggregations and the

generalizations,
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� a set of aggregation associations,

� a set of generalization associations,

� a function specifying the parent roles played by assemblies in the aggre-

gation associations or by superclasses in the generalization associations,

and

� a function specifying the child roles played by components in the aggre-

gation associations or by subclasses in the generalization associations.

OMGroupedAssociation

OMAssociation

groupedAssociation : PASSOCIATION

aggAssociation; genAssociation : PASSOCIATION

parent : ASSOCIATION 7� ROLE

child : ASSOCIATION 7� ROLE

groupedAssociation � binaryAssociation

haggAssociation; genAssociationi partition groupedAssociation

parent 2 groupedAssociation � singularRole

child 2 groupedAssociation � role

8 a : groupedAssociation � hasRole(j fag j) = fparent(a); child(a)g

� The grouped associations are binary associations.

� A grouped association is either an aggregation or a generalization asso-

ciation.

� Each grouped association has one parent role, which is a singular role,

according to the de�nition of aggregation and generalization.
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� Each grouped association has one child role.

� The roles of a grouped association is made up of a parent and a child of

the parent.

Schema OMGrouping de�nes the mapping between the grouping relation-

ships and the grouped associations.

OMGrouping

OMGroupedClass

OMGroupedAssociation

collectedIn : ASSOCIATION 7! GROUPING

collectedIn 2 (aggAssociation !! aggregation) [ (genAssociation !! generalization)

8 a : groupedAssociation; g : grouping j collectedIn(a) = g �

playerOfRole(parent(a)) = single(g) ^

playerOfRole(child(a)) 2 group(j fgg j)

8 g : grouping � #(group(j fgg j)) = #(collectedIn�(j fgg j))

� Each grouped association belongs to a grouping relationship. A grouping

relationship may be associated with a set of grouped associations.

� For a grouped association of an aggregation, the parent role is the as-

sembly class, and the child role is one of the component classes. It is

similar to generalization.

� The number of the grouped associations of an aggregation (or general-

ization) is the same with the number of the components (or subclasses)

in the aggregation (or generalization).

Besides the similar characteristics discussed above, both aggregations and

generalizations are
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� transitive, that is, if a is a part of (or a kind of) b and b is a part of (or

a kind of) c, then a is a part of (or a kind of) c; and

� asymmetric, that is, if a is a part of (or a kind of) b, then b is not a part

of (or a kind of) a.

We de�ne a relation po that is transitive and antisymmetric.

[X ]

po : X $ X

8 a; b; c : X j a 7! b 2 po ^ b 7! c 2 po � a 7! c 2 po

8 a; b : X j a 7! b 2 po � b 7! a =2 po

The remainder of this section discusses the properties speci�c to aggrega-

tion or generalization.

Aggregations and Their Characteristics

A component and the assembly in an aggregate are in the \is-part-of" rela-

tionship, that is, the component is a part of the assembly.

OMIsPartOf

OMGrouping

isPartOf : CLASS $ CLASS

isPartOf = fa : aggregation; c : class j

c 2 group(j fag j) � (c; single(a))g

isPartOf + � po[CLASS ]

� isPartOf relates each individual component to its assembly.

� An aggregation is transitive and asymmetric.
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OMT's examples show that aggregation associations do not have names.

OMAggregationName

OMName

OMGroupedAssociation

aggAssociation \ domnameOfAssoc = ;

The existence of a component object may depend on the existence of the

aggregate object of which it is a part (see [RBP+91]: p.38). In other cases, the

component objects have an independent existence. Schema OMDependence

de�nes a relation existenceDependOn to specify this dependency relationship.

Schema OMRTDependence in Section 4.3.6 further speci�es the semantics of

dependency in terms of run-time concepts.

OMDependence

OMIsPartOf

existenceDependOn : CLASS $ CLASS

existenceDependOn � isPartOf

Propagation

In aggregation associations, some properties of the assembly propagate to

the components, possibly with some local modi�cations (see [RBP+91]: p.37).

As an example, the speed and the location of a door handle are obtained from

the door of which it is a part; the door in turn obtains its properties from the

car of which it is a part. Propagation of an operation (also called triggering)

is the automatic application of an operation, according to propagation rules,

to a network of objects when the operation is applied to some starting object

(see [RBP+91]: p.60). This means that both attributes and operations of the

assembly can propagate to the components.
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Function featurePropagate in the following schema speci�es what attributes

and operations in aggregations may propagate.

OMPropagation

OMGrouping

featurePropagate : AGGREGATION $ FEATURE

featurePropagate 2 aggregation $ (attribute [ operation)

8 a : dom featurePropagate; f : feature j f 2 featurePropagate(j fag j) �

f 2 hasFeature(j fsingle(a)g j) ^

(8 c : group(j fag j) � f 2 hasFeature(j fcg j))

� Certain operations and attributes of some aggregations may propagate.

� The propagation of an operation or an attribute of an assembly to its

components means that the components also possess the operation or

attribute.

The local modi�cation of an operation is to apply a di�erent method of

the operation to the components. This is implicitly formalized by function

methodLookup in schema OMMethod in Section 4.1.2.

Putting the schemas for aggregation together, we obtain

OMAggregation b=
OMIsPartOf ^

OMAggregationName ^

OMDependence ^ OMPropagation

Generalizations and Their Characteristics

A generalization association shares fewer similarities with other types of asso-

ciation. It is a way of structuring the description of a single object. However,

it still can be formalized as a special association, with the roles played by the
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subclasses having multiplicity f0; 1g. In this way, an instance of a subclass is

simultaneously an instance of the superclass; but not vice-versa.

OMGeneralizationBasic

OMGrouping

8 g : generalization � (collectedIn� o
9 child)(j fgg j) � optionalRole

A subclass and the superclass in a generalization are in the \is-kind-of"

relationship, that is, a subclass is a re�ned version of the superclass. Schema

OMIsKindOf de�nes three relations between classes:

� isKindOf from subclasses to superclasses,

� isDescendentOf from descendents to ancestors, and

� isAncestorOf from ancestors to descendents.

OMIsKindOf

OMGeneralizationBasic

isKindOf : CLASS $ CLASS

isDescendentOf : CLASS $ CLASS

isAncestorOf : CLASS $ CLASS

isKindOf = fg : generalization; sub : class j

sub 2 group(j fgg j) � sub 7! single(g)g

isDescendentOf = isKindOf +

isDescendentOf \ id class = ;

isDescendentOf � po[CLASS ]

isAncestorOf = isDescendentOf �

� isKindOf associates each subclass with its superclass.
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� isDescendentOf relates the descendents to their ancestors.

� Any class cannot be a descendent of its own.

� A generalization is transitive and asymmetric.

� isAncestorOf relates the ancestors to their descendents. A class should

not be the ancestor of itself.

The property of inheritance in a generalization is formalized as follows.

OMInheritance

OMIsKindOf

8 super ; sub : class j sub 7! super 2 isKindOf �

hasFeature(j fsuperg j) � hasFeature(j fsubg j)

� Attributes and operations common to a group of subclasses are attached

to the superclass and shared by each subclass. Each subclass is said to

inherit the features of its superclass.

A discriminator is de�ned to be an attribute of enumeration type that

indicates which property of an object is being abstracted by a particular gen-

eralization. OMT views the discriminator as simply a name for the basis of

the generalization, and it is optional. Thus, discriminators would appear to

be closely resembling names of associations.

OMGeneralizationName

OMName

OMGrouping

8 g : generalization �

(collectedIn�(j fgg j) \ domnameOfAssoc = ; _

(8 a1; a2 : collectedIn�(j fgg j) � nameOfAssoc(a1) = nameOfAssoc(a2)))
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� The generalization associations that belong to the same generalization

construct either have the same name or have no name.

Overriding

A subclass may override a superclass feature. First of all, we introduce

a schema with a generic parameter X . The function featureOverride in the

schema speci�es that when some features (attributes and operations) of a

superclass are inherited by a subclass, elements of type X that are related to

these features can be overridden by other elements of the same type.

OMOverride[X ]

OMIsKindOf

featureOverride : CLASS 7! (CLASS 7! (FEATURE 7! X ))

dom featureOverride � ran isKindOf

8 c : dom featureOverride �

featureOverride(c) 2 isKindOf �(j fcg j) 7!

(hasFeature(j fcg j) \ (attribute [ operation) 7! X )

The default value of an attribute can be overridden.
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OMDefaultValueOverride

OMOverride[ATOMIC VALUE ][defaultValOverride=featureOverride]

8 super ; sub : class; a : attribute j

sub 7! super 2 isKindOf ^

a 2 dom(defaultValOfAttr(super)) �

a 2 dom(defaultValOfAttr(sub)) ^

(a 2 dom(defaultValOverride(super)(sub)))

defaultValOverride(super)(sub)(a) =

defaultValOfAttr(sub)(a) 6=

defaultValOfAttr(super)(a) ^

a =2 dom(defaultValOverride(super)(sub)))

defaultValOfAttr(sub)(a) =

defaultValOfAttr(super)(a))

� The attribute a of the subclass sub is inherited from its superclass super .

If the default value of a is overridden, then the default values of a in

super and sub are di�erent; otherwise, they are the same.

The method of an operation can be overridden by another method of the

same operation, but the signature of an operation should never be overridden.
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OMMethodOverride

OMOverride[METHOD ][methodOverride=featureOverride]

8 super ; sub : class; o : operation j

sub 7! super 2 isKindOf ^

o 2 ran implement ^

super 2 dom(methodLookup(o)) �

sub 2 dom(methodLookup(o)) ^

(o 2 dom(methodOverride(super)(sub)))

methodOverride(super)(sub)(o) =

methodLookup(o)(sub) 6=

methodLookup(o)(super) ^

o =2 dom(methodOverride(super)(sub)))

methodLookup(o)(sub) =

methodLookup(o)(super))

� The operation o of the subclass sub is inherited from its superclass super .

If the implementation of o is overridden, then the methods of o in super

and sub are di�erent; otherwise, they are the same.

Putting the schemas for generalization together, we obtain,

OMGeneralization b=
OMGeneralizationBasic ^

OMIsKindOf ^ OMInheritance ^

OMGeneralizationName ^

OMDefaultValueOverride ^ OMMethodOverride
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4.1.6 Modules

A module is a logical construct for grouping classes, associations, and general-

izations. We introduce a given set

[MODULE ]

for all of the possible modules.

An object model consists of several modules; each module contains a set

of classes.

OMModule

OMDTData

module : PMODULE

containedIn : CLASS $ MODULE

dom containedIn = class ^ ran containedIn = module

� The classes of the object model can be grouped into several modules.

4.1.7 Object Model with Basic Concepts

Schema OMDTBasic de�nes the object model involving the concepts discussed

in previous sections.

OMDTBasic b=
OMDTData ^ OMFeature ^ OMName ^

OMAssociation ^ OMAggregation ^

OMGeneralization ^ OMModule

4.2 Advanced Design-Time Concepts

This section formalizes the advanced object modeling concepts, based on the

original material in Chapter 4 of [RBP+91].
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4.2.1 Fixed, Variable, and Recursive Aggregations

There are three kinds of aggregations: �xed, variable, or recursive (see [RBP+91]:

p.59).

OMAggregationType

OMAggregation

OMGeneralization

�xedAgg : PAGGREGATION

variableAgg : PAGGREGATION

recursiveAgg : PAGGREGATION

�xedAgg [ variableAgg [ recursiveAgg � aggregation

disjoint h�xedAgg ; variableAgg ; recursiveAggi

8 fa : �xedAgg ; comp : role j

(child� o
9 collectedIn)(comp) = fa �

(9 n : N1 � multiplicityOfRole(j fcompg j) = fng)

8 ra : recursiveAgg ; asse : class j

asse = single(ra) �

(9 comp : group(j frag j) � comp = asse _

comp 2 isKindOf (j fasseg j))

� An aggregation can be �xed, variable, or recursive.

� The three types of aggregations are distinct.

� A �xed aggregate has a �xed structure; the number and types of subparts

are prede�ned.

� A recursive aggregate, directly or indirectly, contains an instance of the

same kind of aggregate; the number of potential levels is unlimited.
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There is no predicate for specifying variable aggregations, since they are

the most general type of aggregations. A variable aggregation di�ers from a

�xed aggregation in that the number of its parts may vary. Generally, the

multiplicity of a component class in a variable aggregation is a set of integers,

which implies that the number of the parts of the assembly may vary. The

variable aggregate di�ers from a recursive aggregate in that the assembly does

not contain the instances of its own or of its ancestors; therefore the potential

levels of aggregation are limited.

4.2.2 Multiple Inheritance

Multiple inheritance permits a class to have more than one superclass and

to inherit features from all parents. A class with more than one superclass

is called a join class. Multiple inheritance can be viewed as a relationship

across the superclasses and the subclasses in an object model. The multiple

inheritance in the object model is formalized as follows.

OMMultipleInheritance

OMGeneralization

joinClass : PCLASS

joinClass � dom isKindOf

8 jc : joinClass � #(isKindOf (j fjcg j)) > 1

� Join classes are a subset of classes. A join class is always a subclass in

some generalizations.

� A join class has more than one superclass.
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4.2.3 Disjoint and Overlapping Generalizations

The generalization subclasses may or may not be disjoint. SchemaOMGeneralizationType

de�nes that disjoint generalizations and overlapping generalizations are sub-

sets of generalizations in an object model. The two types of generalizations

are distinct.

OMGeneralizationType

OMGeneralization

OMMultipleInheritance

disjointGen : PGENERALIZATION

overlappingGen : PGENERALIZATION

hdisjointGen; overlappingGeni partition generalization

8 c1; c2 : class; g : generalization j

fc1; c2g � group(j fgg j) �

g 2 disjointGen )

dom(isDescendentOf B fc1g) \ dom(isDescendentOf B fc2g) = ;

8 jc : joinClass; c1; c2 : class; g : generalization j

fc1; c2g � group(j fgg j) ^

fc1; c2g � isDescendentOf (j fjcg j) � g 2 overlappingGen

� A generalization is either disjoint or overlapping.

� A class never multiply inherits from two classes in the same disjoint

generalization.

� If there is a class that multiply inherits from two classes in the same

generalization, then the generalization is an overlapping generalization.

The semantics of disjoint and overlapping generalizations is further discussed

in Section 4.3.8
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4.2.4 Generalization as Extension and Restriction

Extension

A subclass may add new features. This is called extension. The extension of a

generalization by adding new attributes or operations is formalized in schema

OMGenExtension.

OMGenExtension

OMGeneralization

extension : CLASS 7! (CLASS $ FEATURE )

dom extension � ran isKindOf

8 c : dom extension � extension(c) 2

isKindOf �(j fcg j)$ (attribute [ operation) n hasFeature(j fcg j)

8 c; c 0 : class; f : feature j c 0 7! f 2 extension(c) � de�nedIn(f ) = c 0

� The domain of function extension is a set of superclasses.

� For a given generalization, function extension maps each new feature

(attribute or operation) to the subclass to which the feature is added.

� The extension of a generalization means that certain subclasses have

attributes or operations that the superclass does not have.

Restriction

A subclass may also constrain its ancestors' attributes. This is called restric-

tion. A restriction restricts the values an attribute can assume, or renames

the inherited attributes in a subclass. A restriction should follow certain rule.

Let

[RULE ]
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represent these rules.

Function restrict in the following schema speci�es that the values of some

attributes, inherited from superclasses, of subclasses may be restricted under

certain rules. restrict has the similar signature to the function featureOverride.

OMGenAttrRestriction

OMGeneralization

OMOverride[RULE ][restrict=featureOverride]

Further semantics of value restrictions will be discussed in Section 4.2.5.

Inherited attributes may be renamed. The following schema formalizes the

renaming of the attributes in subclasses.

OMGenRenaming

OMName

OMGeneralization

OMOverride[NAME ][rename=featureOverride]

8 super ; sub : class; f : feature j

sub 7! super 2 isKindOf ^

f 2 dom(nameOfFeature(super)) �

f 2 dom(nameOfFeature(sub)) ^

(f 2 dom(rename(super)(sub))) rename(super)(sub)(f ) =

nameOfFeature(sub)(f ) 6=

nameOfFeature(super)(f ) ^

f =2 dom(rename(super)(sub))) nameOfFeature(sub)(f ) =

nameOfFeature(super)(f ))

� While renaming an inherited attribute, one assigns the attribute in the

subclass a name that is di�erent from the name for the same attribute

in the superclass. Otherwise, the names of the attribute are the same in

both superclass and subclass.
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4.2.5 Constraints

OMT mentions three kinds of constraints. They are constraints on attributes,

constraints on links, and general constraints. Constraints on attributes re-

strict the values that the attributes can assume (see [RBP+91]: pp.73-74). In

Section 4.2.4, function restrict in schema OMGenAttrRestriction is de�ned to

formalize the attribute restrictions in generalizations. Here, we de�ne a more

generic function used to formalize constraints on the attributes of any kinds

of classes or associations under certain restriction rules.

OMAttributeConstraintBasic

OMFeature

generalRestrict : ENTITY 7! (ATTRIBUTE $ RULE )

dom generalRestrict � entity

8 c : dom generalRestrict �

dom(generalRestrict(c)) � hasFeature(j fcg j) \ attribute

Since the de�nition for \rule" is very vague in [RBP+91], we can only

formalize it at a very abstract level.

Certain constraint rules restrict the range of the values that an attribute

can assume. Given an entity, an attribute of the entity and a constraint rule,

function constraint de�ned in the following schema returns a set of atomic

values which are values the attributes can take on.
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OMAttributeConstraint

OMGenAttrRestriction

OMAttributeConstraintBasic

constraint : ENTITY � ATTRIBUTE 7! (RULE $ ATOMIC VALUE )

dom constraint � fe : entity ; a : attribute j a 2 hasFeature(j feg j) � (e; a)g

8 e : entity ; a : attribute; r : RULE ; vs : PATOMIC VALUE j

vs = (constraint(e; a))(j frg j) �

((9 e 0 : entity � r 2 (restrict(e 0)(e))(j fag j)) _

r 2 (generalRestrict(e))(j fag j)) ^

vs � valueOfType(j ftypeOfAttr(a)g j)

� The domain of constraint is a set of pairs of entities and the attributes

of the entities.

� If a rule is applied to an attribute in an entity to restrict the attribute

values, then the attribute can only take on the values within a restricted

range.

After formalizing the constraints on attributes, we are able to de�ne the

value range for each attribute of a given entity.
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OMAttributeRange

OMAttributeConstraint

valueRange : ENTITY 7! (ATTRIBUTE $ ATOMIC VALUE )

dom valueRange = dom(hasFeature B attribute)

8 e : dom valueRange �

dom(valueRange(e)) = hasFeature(j feg j) \ attribute

8 e : entity ; a : attribute �

(e; a) 2 dom constraint )

(valueRange(e))(j fag j) = valueOfType(j ftypeOfAttr(a)g j)\
T
fr : RULE � (constraint(e; a))(j frg j)g ^

(e; a) =2 dom constraint )

(valueRange(e))(j fag j) = valueOfType(j ftypeOfAttr(a)g j)

� For each attribute in a class or an association, if there are constraint rules

applied to it, then the value range of the attribute is the intersection

of the restricted range by each rule; otherwise the value range of the

attribute is the same as the original range.

The default value of an attribute can only take on the value within the

value range of the attribute.

OMDefaultValue

OMDefaultValueBasic

OMAttributeRange

8 e : entity ; a : attribute; v : ATOMIC VALUE j

v = defaultValOfAttr(e)(a) � v 2 (valueRange(e))(j fag j)

If there are constraints on an inherited attribute, then the value range of

the attribute in the subclass is a subset of the value range of the attribute in

the superclass.
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OMSubclassAttributeRange

OMGeneralization

OMAttributeRange

8 super ; sub : class; a : attribute j

a 2 dom(restrict(super)(sub)) �

(valueRange(sub))(j fag j) � (valueRange(super))(j fag j)

Constraints on links include multiplicity, \ordered", and \quali�ed" (see

[RBP+91]: p.74), which are formalized in Section 4.1.4.

OMT does not give explicit semantics on general constraints.

4.2.6 Abstract Classes

A class in a generalization relationship may be an abstract class. An abstract

class is a class that has no direct instances but whose descendent classes have

direct instances. A concrete class is a class that is instantiable; that is, it

can have direct instances. In schema OMClassType1, we de�ne three sets of

classes:

� a set of abstract classes,

� a set of concrete classes, and

� a set of leaf classes.
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OMClassType1

OMGeneralization

abstractClass : PCLASS

concreteClass : PCLASS

leafClass : PCLASS

concreteClass � class

abstractClass � dom(isAncestorOf B concreteClass)

leafClass = (ran isAncestorOf n dom isAncestorOf ) � concreteClass

� A concrete class is a class in the object model.

� Any abstract class must have one or more concrete descendents.

� A leaf class is a leaf in inheritance trees. Only a concrete class may be

a leaf class.

The semantics of concrete and abstract classes is further expressed in terms of

run-time concepts in Section 4.3.2.

Accordingly, an operation can be abstract or concrete. An abstract opera-

tion is the protocol of an operation without a corresponding method.

OMOperationType2

OMMethod

OMClassType1

abstractOp : POPERATION

concreteOp : POPERATION

habstractOp; concreteOpi partition operation

concreteOp = ran implement

dom(opDe�nedIn B concreteClass) � concreteOp
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� An operation is either an abstract operation or a concrete operation.

� A concrete operation has methods as its implementations.

� A concrete class may not contain abstract operations.

4.2.7 Metadata

Metadata is data that describes other data. OMT discusses two types of

metadata: patterns and class descriptors. An example of a pattern is class

CarModel, which is the pattern of class Car. A class descriptor has class

attributes, which describe values common to an entire class of objects, and class

operations, which are operations on the class itself (see [RBP+91]: pp.69-71).

Schema OMPattern denotes

� a set of pattern classes in the object model, and

� a function from pattern classes to instance classes, indicating the instan-

tiation relationship.

OMPattern

OMDTData

pattern : PCLASS

instantiation : CLASS 7! CLASS

pattern � class

instantiation 2 class 7! pattern

instantiation \ id class = ;

� Pattern classes are a subset of classes in the object model.

� Pattern classes may have some instance classes.

94



� A class cannot be the pattern of itself.

Schema OMDescriptor denotes

� a set of class descriptors in the object model, and

� a set of class features, i.e., class attributes and class operations, of the

class descriptors.

OMDescriptor

OMFeature

classDescriptor : PCLASS

classFeature : PFEATURE

classDescriptor � class

classFeature � attribute [ operation

8 f : classFeature; c : class j de�nedIn(f ) = c � c 2 classDescriptor

� Class descriptors are a subset of classes in the object model.

� Class attributes and class operations are subsets of attributes and oper-

ations in the object model.

� A class feature must belong to a class descriptor, not to other kind of

classes.

The following schema combines the above two kinds of metadata.

OMMetadata b= OMPattern ^ OMDescriptor

4.2.8 Candidate Keys

A candidate key is a minimal set of attributes that uniquely identi�es an object

or a link (see [RBP+91]: pp.71-73). OMT does not consider the e�ect of in-

heritance on candidate keys to avoid making any presumptions about whether
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the same set of attributes could serve as a candidate key for more than one

class. We introduce a unique identity for each candidate key speci�cation:

[KEY ]

The following schema de�nes

� a set of candidate keys in the object model, and

� a relation specifying the features that form each candidate key.

OMCandidateKeyBasic

OMFeature

key : PKEY

hasKeyElement : KEY $ FEATURE

domhasKeyElement = key

ran hasKeyElement � feature

� Every candidate key is composed of a set of features.

Schema OMCandidateKeyBasic denotes

� a set of entities that have speci�ed candidate keys,

� a mapping from each candidate key to its entity, and

� a mapping from each entity to its candidate keys.
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OMCandidateKey

OMCandidateKeyBasic

keyedEntity : PENTITY

isKeyOf : KEY 7! ENTITY

theKey : ENTITY $ KEY

keyedEntity � entity

isKeyOf 2 key !! keyedEntity

theKey = isKeyOf �

8 c : keyedEntity \ class �

(8 k : theKey(j fcg j) �

hasKeyElement(j fkg j) � attribute \ hasFeature(j fcg j))

8 a : keyedEntity \ association �

(8 k : theKey(j fag j) �

hasKeyElement(j fkg j) � role \ hasFeature(j fag j))

8 k1; k2 : key j

isKeyOf (k1) = isKeyOf (k2) ^ k1 6= k2 �

: hasKeyElement(j fk1g j) � hasKeyElement(j fk2g j) ^

: hasKeyElement(j fk2g j) � hasKeyElement(j fk1g j)

� Entities in the object model may have candidate keys.

� Each candidate key is associated with an entity.

� An entity may have one or more candidate keys.

� A candidate key for a class is a combination of its attributes.

� A candidate key for an association is a combination of its related roles.
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� If an entity has more than one candidate key, the feature combination

of one key is di�erent from that of other keys.

Furthermore, the patterns of candidate keys for many-to-many, one-to-

many, and optional-to-one binary associations are formalized as follows (see

pp.71-73 of [RBP+91] for informal explanation).

A many-to-many association requires both related roles to uniquely identify

each link:

OMm mKey

OMAssociation

OMCandidateKey

8m : mul mulAssoc \ keyedEntity �

(9 k : key � theKey(j fmg j) = fkg ^ hasKeyElement(j fkg j) = hasRole(j fmg j))

A one-to-many association has a single candidate key, that is, the role on

the \many" end:

OMone mKey

OMAssociation

OMCandidateKey

8 o : one mulAssoc \ keyedEntity ; r : multipleRole j

r 2 hasRole(j fog j) �

(9 k : key � theKey(j fog j) = fkg ^ hasKeyElement(j fkg j) = frg)

An optional-to-one association has two candidate keys, that is, either of

the roles:
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OMopt oneKey

OMAssociation

OMCandidateKey

8 p : one optAssoc \ keyedEntity ; r1 : optionalRole; r2 : singularRole j

fr1; r2g = hasRole(j fpg j) �

(9 k1; k2 : key � theKey(j fpg j) = fk1; k2g ^

hasKeyElement(j fk1g j) = fr1g ^

hasKeyElement(j fk2g j) = fr2g)

The following schema combines the above schemas related to candidate

keys.

OMCandidateKeys b=
OMCandidateKey ^

OMm mKey ^ OMone mKey ^ OMopt oneKey

More about the semantics of candidate keys will be discussed in Sec-

tion 4.3.9.

4.2.9 Derived Classes, Associations, and Attributes

Classes can be classi�ed into base and derived classes. A base class is inde-

pendent of any other classes; and a derived class is de�ned as a function of

one or more classes, which in turn can be derived. Similarly, there are also

base association, derived association, base attribute, and derived attribute. For

example, \birthday" may be a base attribute of class Person, and \age" may

be a derived attribute, the value of which can be derived by a function of

\birthday" and \current date". Let

[FUNCTION ]

represent the functions that determine the derived entities and features.
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Schema DerivedElement describes

� a derived element derived with type X , where X may be CLASS , ASSOCIATION ,

or ATTRIBUTE ,

� a set of elements, from which the derived element is derived, and

� a function which is used to compute the derived element.

DerivedElement [X ]

derived : X

deriving : PX

computeDerived : FUNCTION

Schema OMClassType2 denotes

� a set of base classes in the object model,

� a set of derived classes in the object model, and

� a function from each derived class to the schema describing how the class

is derived.

OMClassType2

OMDTData

baseClass : PCLASS

derivedClass : PCLASS

clsDeriving : CLASS 7! DerivedElement [CLASS ]

hbaseClass; derivedClassi partition class

dom clsDeriving = derivedClass

8 dc : derivedClass � (clsDeriving(dc)):derived = dc ^

(clsDeriving(dc)):deriving � class
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� Base classes and derived classes partition the class set in the object

model.

� Each derived class satis�es a DerivedElement [CLASS ] schema.

Similarly, the base and derived associations and the base and derived at-

tributes are de�ned as follows.

OMAssociationType

OMDTData

baseAssoc : PASSOCIATION

derivedAssoc : PASSOCIATION

assocDeriving : ASSOCIATION 7! DerivedElement [ASSOCIATION ]

hbaseAssoc; derivedAssoci partition association

domassocDeriving = derivedAssoc

8 da : derivedAssoc � (assocDeriving(da)):derived = da ^

(assocDeriving(da)):deriving � association

� Base associations and derived associations partition the association set

in the object model.

� Each derived association satis�es a DerivedElement [ASSOCIATION ]

schema.
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OMAttributeType

OMDTData

baseAttr : PATTRIBUTE

derivedAttr : PATTRIBUTE

attrDeriving : ATTRIBUTE 7! DerivedElement [ATTRIBUTE ]

hbaseAttr ; derivedAttri partition attribute

domattrDeriving = derivedAttr

8 da : derivedAttr � (attrDeriving(da)):derived = da ^

(attrDeriving(da)):deriving � attribute

� Base attributes and derived attributes partition the attributes set in the

object model.

� Each derived attribute satis�es aDerivedElement [ATTRIBUTE ] schema.

4.2.10 Object Model with Advanced Concepts

Schema OMDTAdvanced de�nes the object model involving the advanced con-

cepts.

OMDTAdvanced b=
OMAggregationType ^ OMGeneralizationType ^

OMMultipleInheritance ^

OMGenExtension ^ OMGenAttrRestriction ^ OMGenRenaming ^

OMAttributeConstraint ^ OMAttributeRange ^ OMDefaultValue ^

OMClassType1 ^ OMOperationType2 ^

OMMetadata ^

OMCandidateKeys ^

OMClassType2 ^ OMAssociationType ^ OMAttributeType
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A design-time object model combines both basic and advanced concepts

and their properties.

OMDTModel b= OMDTBasic ^ OMDTAdvanced

4.3 Run-Time Concepts

A run-time model represents the internal operation of a running application.

It is described with a set of run-time concepts, which represent the instances of

the design-time elements of the system. In choosing how to formalize the run-

time concepts, we focus on choosing features required to explain the semantics

of an object model. Since an object model describes the static view of a system,

we do not discuss the concepts related to timing and order of operations.

In this section we formally de�ne the run-time concepts, including object,

link, and attribute value. Moreover, we further formalize the semantics of the

design-time concepts by specifying the relationships between the design-time

and run-time concepts.

4.3.1 Fundamental Concepts

An object is de�ned as a concept, abstraction, or thing with crisp boundaries

and meaning for the problem at hand. Link is a physical or conceptual con-

nection between objects. We introduce a given set,

[INSTANCE ]

and two global subsets, one each for objects and links,

OBJECT : P INSTANCE

LINK : P INSTANCE

hOBJECT ;LINK i partition INSTANCE
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The formalization of object and link is parallel to that of class and associa-

tion. We de�ne both objects and links to be elements of INSTANCE because

a link can be modeled as an object in certain cases (see Section 4.1.1 and

[RBP+91]: p.33).

It should be noted that we de�ne INSTANCE and ATOMIC VALUE as

two di�erent given sets. This guarantees that an attribute is a pure data value,

not an object (see [RBP+91]: p.23).

A basic run-time system consists of

� a set of instances,

� a set of objects, and

� a set of links that connect the objects.

OMRTData

instance : P INSTANCE

object : POBJECT

link : P LINK

hobject ; linki partition instance

� Objects and links are instances of the run-time system.

4.3.2 Entities and Their Instances

The following schema describes the connection between the entities (i.e., classes

and associations) in an object model and the instances (i.e., objects and links)

in a run-time system. We de�ne

� function directInstanceOf relating each entity to its direct instances, and

� relation hasInstance relating each class to its instances, which include

its direct instances and the instances of its subclasses if any.
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In a generalization relationship, an abstract class does not have direct instances

but its descendent classes have. The abstract class, however, has instances

which are the instances of its descendent classes (see [RBP+91]: p.61). This

property of the abstract class is formalized via hasInstance.

OMRTInstance

OMDTModel

OMRTData

directInstanceOf : INSTANCE 7! ENTITY

hasInstance : CLASS $ OBJECT

directInstanceOf 2 (object ! concreteClass) [ (link ! association)

domhasInstance � class ^ ran hasInstance = object

8 o : object ; c : class j directInstanceOf (o) = c � o 2 hasInstance(j fcg j)

8 super ; sub : class j sub 7! super 2 isDescendentOf �

hasInstance(j fsubg j) � hasInstance(j fsuperg j)

� Every object is a direct instance of some concrete class, and every link

is a direct instance of some association.

� Every object is a (direct or indirect) instance of one or more classes.

� If an object is a direct instance of a class, then it is an instance of the

class.

� In an inheritance hierarchy, an instance of a subclass is simultaneously

an instance of all its ancestor classes.

4.3.3 Attributes and Their Values

An attribute value is a data value held by an object. SchemaOMRTAttributeValue

de�nes a function indicating the value of each attribute in each object.
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OMRTAttributeValue

OMRTInstance

holdValue : INSTANCE 7! (ATTRIBUTE 7! ATOMIC VALUE )

domholdValue = dom((directInstanceOf o
9 hasFeature)B attribute)

8 i : dom holdValue �

dom(holdValue(i)) = ((directInstanceOf o
9 hasFeature)B attribute)(j fig j)

8 i : instance; a : attribute; v : ATOMIC VALUE j

v = holdValue(i)(a) � v 2 (valueRange(directInstanceOf (i)))(j fag j)

� The domain of function holdValue is a set of instances. They are direct

instances of the entities that have attributes.

� Each attribute of an entity has a value for each instance of the entity.

� The attribute value is within the value range for the attribute.

4.3.4 Associations and Their Links

Schema OMRTLink de�nes

� a function indicating player instances of each role in each link, and

� a relation associating each link with the objects it connects.
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OMRTLink

OMRTInstance

roleOfLink : LINK 7! (ROLE 7! OBJECT )

connection : LINK $ OBJECT

dom roleOfLink = link

8 l : link �

dom(roleOfLink(l)) = ((directInstanceOf o
9 hasFeature)B role)(j flg j)

8 l : link ; r : role; o : object j

o = roleOfLink(l)(r) � o 2 hasInstance(j fplayerOfRole(r)g j)

connection = fl : link ; o : object ; r : role j roleOfLink(l)(r) = o � l 7! og

� The domain of function roleOfLink is the set of links in the object model.

� Each role of each link has a role instance as the player.

� These role instances are the instances of the class that plays the role.

� Function connection associates each link with the objects it connects.

Schema OMRTAssociationObject further formalizes the semantics of func-

tion modeledAs in Schema OMAssociationClass de�ned in Section 4.1.4. The

schema de�nes a function mapping each link to the association object that is

used to model the link.
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OMRTAssociationObject

OMRTLink

rtModeledAs : LINK 7� OBJECT

dom rtModeledAs = dom(directInstanceOf B dommodeledAs)

ran rtModeledAs = hasInstance(j associationClass j)

8 l : link ; o : object j rtModeledAs(l) = o �

o 2 hasInstance(j fmodeledAs(directInstanceOf (l))g j)

� The domain of function rtModeledAs is a set of links, which are the

instances of the associations that are modeled as classes.

� The range of function rtModeledAs is a set of objects, which are the

instances of the classes that are used to model the associations.

� If an association is modeled as a class, then each link of the association

corresponds to an object of the class.

4.3.5 Roles and Their Player Instances

Each object that is connected to others via a link plays a role in the link.

OMRTRole

OMRTInstance

OMRTLink

instanceOfRole : ROLE $ OBJECT

instanceOfRole = fl : link ; r : role; o : object j

o = roleOfLink(l)(r) � r 7! og

The relation de�ned in the following schema also deals with the relationship

between roles and their instances. Each role corresponds to a set of object
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sets. Each such object set is de�ned as a set of instances of the role (in certain

association) when the instances that can appear in the remaining roles (of the

same association) are �xed. Thus, this gives the semantics of multiplicity of

role.

OMRTRoleMultiplicity

OMRTRole

mulOfRole : ROLE $ POBJECT

dommulOfRole = dom instanceOfRole

8 r : dommulOfRole �
S
(mulOfRole(j frg j)) = instanceOfRole(j frg j)

8 r : dommulOfRole; os : P object j

r 7! os 2 mulOfRole � #os 2 multiplicityOfRole(j frg j)

SchemaOMRTOrderedRole gives semantics of ordered roles (see Section 4.1.4)

in terms of run-time model.

OMRTOrderedRole

OMRTRoleMultiplicity

ordering : ROLE $ iseqOBJECT

domordering = orderedRole

8 r : orderedRole; os : P object j r 7! os 2 mulOfRole �

(9
1
os 0 : iseq object j os = ran os 0 � r 7! os 0 2 ordering)

� Each ordered role corresponds to a sequence of objects, representing

certain order among the objects.

� These objects are the instances of the player of the ordered role.
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4.3.6 Existence Dependence between Assemblies and

Components

Schema OMRTDependence gives semantics of dependency between objects in

an aggregation association (see Section 4.1.5) in a run-time model.

OMRTDependence

OMRTInstance

OMRTLink

OMRTRole

8 a : aggregation; r1; r2 : role; o : object j

(child� o
9 collectedIn)(r1) = a ^

(parent� o
9 collectedIn)(r2) = a ^

playerOfRole(r1) 7! playerOfRole(r2) 2 existenceDependOn ^

o 2 instanceOfRole(j fr1g j) �

(9 l : directInstanceOf �(j fparent�(r2)g j);

o 0 : instanceOfRole(j fr2g j) �

o = roleOfLink(l)(r1) ^

o 0 = roleOfLink(l)(r2))

� r1 plays the role of one of the components and r2 plays the role of the

assembly of aggregation a. The existence of r1 depends on the existence

of r2. If there is an instance o of r1 in a run-time object model, then

there must exist an instance o 0 of r2, and o and o 0 are connected by an

aggregation link.

4.3.7 Attribute Propagation in Aggregation

If two instances are in an aggregation relationship and certain attributes prop-

agate from the assembly to the component, then the component instance and

the assembly instance have the same values for the attributes.
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OMRTPropagation

OMRTAttributeValue

8 agg : dom featurePropagate �

(8 a : featurePropagate(j faggg j) \ attribute;

assei : hasInstance(j fsingle(agg)g j);

compi : hasInstance(j group(j faggg j) j) �

holdValue(assei)(a) = holdValue(compi)(a))

4.3.8 Disjoint and Overlapping Generalizations

The following schema gives the semantics of disjoint generalizations and over-

lapping generalizations.

OMRTGeneralizationType

OMDTModel

OMRTInstance

8 sub1; sub2 : class; dg : disjointGen j fsub1; sub2g � group(j fdgg j) �

hasInstance(j fsub1g j) \ hasInstance(j fsub2g j) = ;

� The subclasses of a disjoint generalization do not have common instances;

the subclasses of an overlapping generalization may have common in-

stances.

4.3.9 Candidate Keys

The formal de�nition and some characteristics of candidate keys have been

discussed in Section 4.2.8. The following schema speci�es that a candidate

key of an entity uniquely identi�es an instance of the entity.
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OMRTCandidateKey

OMRTAttributeValue

OMRTLink

8 c : keyedEntity \ class; o1; o2 : object ; k : key j

fo1; o2g � hasInstance(j fcg j) ^

isKeyOf (k) = c �

hasKeyElement(j fkg j)C holdValue(o1) =

hasKeyElement(j fkg j)C holdValue(o2), o1 = o2

8 a : keyedEntity \ association; l1; l2 : link ; k : key j

directInstanceOf (l1) = directInstanceOf (l2) = a ^

isKeyOf (k) = a �

hasKeyElement(j fkg j)C roleOfLink(l1) =

hasKeyElement(j fkg j)C roleOfLink(l2), l1 = l2

� Given a candidate key and a set of objects of a class, the values of the

attributes, which make up the key, of one object are di�erent from those

of other objects.

� Given a candidate key and a set of links of an association, the object

instances of the roles, which make up the key, of one link are di�erent

from those of other links.
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4.3.10 Object Model with Run-Time Concepts

Schema OMRunTime de�nes the object model involving the run-time con-

cepts.

OMRTModel b=
OMRTData ^

OMRTInstance ^

OMRTAttributeValue ^

OMRTAssociationObject ^

OMRTLink ^

OMRTRole ^

OMRTOrderedRole ^

OMRTDependence ^

OMRTPropagation ^

OMRTGeneralizationType ^

OMRTCandidateKey

4.4 Object Model

So far, we have discussed the object model with the design-time concepts and

the run-time concepts. Putting the semantics for all these concepts together,

we obtain the theory for the object model.

OM b= OMDTModel ^ OMRTModel

113



Chapter 5

Formalization of SMOOA's

Information Model

This chapter presents a formalization of the informationmodel of Shlaer-Mellor

object-oriented analysis (SMOOA) [SM88, SM92]. The product of the formal-

ization is the design theory of the information model described in Z notation.

SMOOA is described in two books, one on information modeling [SM88]

and one on state modeling and process modeling [SM92]. The method provides

three models with the corresponding representations to describe entities in a

problem domain and how they interact with each other.

Information model. An information model is used to identify the

conceptual entities, or objects, their characteristics, or attributes,

and the relationships between these entities in the problem do-

main under analysis. There is one information model for the do-

main; however, it can be partitioned into multiple smaller infor-

mation models, each of which is assigned to a separate subsystem.

The graphic notation for the information model is based on entity-

relationship diagrams. A complete description or de�nition of each

object, attribute, and relationship must be prepared as documen-

114



tation for the graphic model.

State model. In SMOOA, each object or relationship has a life-

cycle | the behavior over time. A state model is concerned with

this dynamic behavior. A set of state models, each of which is used

to depict the behavior of an object or a relationship, communicate

with one another by means of events, and are organized in layers

to make the system communication orderly. The representation

techniques used in this modeling activity include state transition

diagrams (STDs), state transition tables (STTs), STD action de-

scription lists, event lists, and object communication models.

Process model. The process models capture the functional com-

ponents of a system. They specify the processing contained in the

actions of the state models in the form of action data 
ow diagrams

(ADFDs).

This chapter focuses on the information modeling aspects of SMOOA,

which resemble conventional relational database design extended with a notion

of inheritance. A detailed discussion on the information model is presented in

[SM88], and is reviewed in Chapter 2 of [SM92]. Information modeling is the

most basic among the three kinds of modelings in SMOOA. The information

model is used at the beginning of the analysis phase to capture the information

of the problem domain under study.

5.1 Design-Time Concepts

Design-time concepts describe the possible patterns of run-time applications.

These concepts include object, relationship, attribute, role, and subtype-supertype

construct. This section gives the formal de�nition of the design-time concepts,

and formalizes some design rules applied to these concepts.
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5.1.1 Fundamental Concepts

Two fundamental concepts in SMOOA, object and relationship, are discussed

in detail in Chapter 3 and 5 of [SM88]. SMOOA uses the word object where

other methods use class. An object is an abstraction of a set of real-world

things, which have the same characteristics, and subject to and conform to

the same rules. A relationship is the abstraction of a set of associations that

hold systematically between di�erent objects. One object in a system usually

has one or more relationships with other objects. We introduce a given set,

[ENTITY ]

and two global sets, which partition the given set, one each for objects and

relationships,

OBJECT : PENTITY

RELATIONSHIP : PENTITY

hOBJECT ;RELATIONSHIPi partition ENTITY

Another important concept is attribute. An attribute is the abstraction of

a single characteristic possessed by all the instances of an object.

Although SMOOA does not include the concept \role" when discussing

relationships, it is useful to adopt it in the formalization. Each object that

participates in a relationship plays a particular role in the relationship. Each

relationship has roles, each of which is played by a participating object. The

role name signi�es the role that an instance of a participating object plays

in each relationship instance. Under some circumstances, the same object

participates more than once in a relationship in di�erent roles, so it is essential

to distinguish the meaning of each participation by roles.

We introduce a given set,

[FEATURE ]
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and two disjoint subsets,

ATTRIBUTE : PFEATURE

ROLE : PFEATURE

hATTRIBUTE ;ROLE i partition FEATURE

for attributes and roles respectively.

The global given sets and subsets we introduced so far represent the design

categories; they are the sets of all possible elements of all possible information

models. We will need to de�ne the sets that represent a particular informa-

tion model. An information model consists of the following elements that are

identi�ed by analyzing the problem domain:

� a set of entities,

� a set of objects,

� a set of relationships between the objects,

� a set of features,

� a set of attributes of the objects, and

� a set of roles involved in the relationships.
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IMDTData

entity : PENTITY

object : POBJECT

relationship : PRELATIONSHIP

feature : PFEATURE

attribute : PATTRIBUTE

role : PROLE

object 6= ;

hobject ; relationshipi partition entity

hattribute; rolei partition feature

� The information model must contain some objects.

� Objects and relationships are subsets of the entity set.

� Attributes and roles are subsets of the feature set.

5.1.2 Features of Entities

A basic property of attributes and roles is that they are always associated

with some particular objects or relationships. Thus, given a \feature", we can

discover the particular \entity" in which it is de�ned.

Attributes

In the �rst stage of the system development, that is in the information model,

the major information about an object is recorded in a set of attributes. Chap-

ter 4 of [SM88] gives detailed discussion on attribute.

Schema IMAttributeBasic de�nes

� a relation that relates each attribute to the object in which the attribute

is de�ned, and

118



� a relation that relates each object to the attributes the object may have.

IMAttributeBasic

IMDTData

attrDe�nedIn : ATTRIBUTE $ OBJECT

hasAttribute : OBJECT $ ATTRIBUTE

domattrDe�nedIn = attribute

ran attrDe�nedIn = object

hasAttribute = attrDe�nedIn�

� Every attribute belongs to one or more objects.

� Every object has one or more attributes.

� Function hasAttribute is the inverse of function attrDe�nedIn.

Types of Attributes

The attributes fall into three categories (see Section 4.3 in [SM88]):

1. Descriptive attributes: intrinsic characteristics of the object.

2. Naming attributes: arbitrary names and labels.

3. Referential attributes: facts that tie an instance of one object

to an instance of another object.

IMAttributeType

IMAttributeBasic

descriptiveAttr : PATTRIBUTE

namingAttr : PATTRIBUTE

referentialAttr : PATTRIBUTE

hdescriptiveAttr ; namingAttri partition attribute

referentialAttr � namingAttr
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� An attribute can be descriptive or naming attribute.

� A referential attribute is a naming attribute.

Domains

For each attribute, there is a range of legal values that the attribute can

take on. This range is called the domain of the attribute. SMOOA suggests

several ways to de�ne these domains (see [SM88]: pp.37-40). All these domains

for the attributes are speci�ed within the scope of objects.

The values an attribute can take on, are of a certain type, such as integers,

natural numbers, characters, and strings, which could be expressed as some

given set in Z notation. Since it is impossible to enumerate in the theory

all real-world types that could be used in a design model, a simpler way to

represent all these types is to put them together in a single given set, for

example ATOMIC VALUE , in the design theory. Each type can be viewed

as a subset of the given set. We hereinbelow introduce a given set

[ATOMIC VALUE ]

which contains elements of all possible types that the attribute values may

belong to.

Thereafter, a function domainSpec is de�ned that maps each attribute, of

an object, to a set of legal values that the attribute can take on:

IMDomainSpeci�cation

IMAttributeBasic

domainSpec : OBJECT 7! (ATTRIBUTE $ ATOMIC VALUE )

domdomainSpec = object

8 obj : object � dom(domainSpec(obj )) = hasAttribute(j fobjg j)

� Domain speci�cations must be provided for the attributes of every object.
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� Every attribute of every object must have a set of legal values as its

domain.

Identi�ers

An identi�er for an object is a set of one or more attributes whose values

uniquely distinguish each instance of the object (see Section 4.4 in [SM88]).

In some cases, the same set of attributes could serve as identi�ers in more

than one object. For instance, in a subtype-supertype construct, which will be

discussed in Section 5.1.5, the supertype object and its subtype objects have

the same set of attributes as their identi�ers. We introduce a unique identity

for each identi�er speci�cation. Identi�ers are formally de�ned as elements of

the given set

[IDENTIFIER]

Schema IMIdenti�erBasic de�nes

� a set of identi�ers, and

� a relation that relates each identi�er to the attributes the identi�er con-

tains.

IMIdenti�erBasic

IMAttributeBasic

identi�er : P IDENTIFIER

hasIdElement : IDENTIFIER$ ATTRIBUTE

domhasIdElement = identi�er

ran hasIdElement � attribute

� Each identi�er is composed of one or more attributes.

� An attribute can participate in constructing one or more identi�ers.
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Every object can have several identi�ers. Only one of them becomes the

preferred identi�er of the object that is used as the identi�er of the object in

a design model. The following schema de�nes

� function isIdOf mapping from each identi�er to the object it belongs to,

and

� function hasPreferredId mapping from each object to its preferred iden-

ti�er.

IMIdenti�er

IMIdenti�erBasic

isIdOf : IDENTIFIER 7! OBJECT

hasPreferredId : OBJECT 7� IDENTIFIER

isIdOf 2 identi�er !! object

8 id : identi�er � hasIdElement(j fidg j) � hasAttribute(j fisIdOf (id)g j)

8 id1; id2 : identi�er j

isIdOf (id1) = isIdOf (id2) ^ id1 6= id2 �

: hasIdElement(j fid1g j) � hasIdElement(j fid2g j) ^

: hasIdElement(j fid2g j) � hasIdElement(j fid1g j)

hasPreferredId 2 object � identi�er

8 obj : object � isIdOf (hasPreferredId(obj )) = obj

� Every identi�er belongs to one object, and every object must have at

least one identi�er.

� An identi�er of an object contains only the attributes of this object, not

the attributes of others.

� If an object has more than one identi�er, the attribute combination of

one identi�er is di�erent from that of other identi�ers.
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� Each object has a unique preferred identi�er.

� An object's preferred identi�er is one of its identi�ers.

Combining the schemas about attributes, we obtain the following schema

that speci�es the properties of attributes:

IMAttribute b= IMAttributeType ^

IMDomainSpeci�cation ^

IMIdenti�er

Roles

The concept role is important for the formalization of relationships. Each

relationship involves several roles, and each role is played by an object.

Schema IMRoleBasic de�nes two relations indicating the relationship in

which each role is involved.

IMRoleBasic

IMDTData

roleDe�nedIn : ROLE 7! RELATIONSHIP

hasRole : RELATIONSHIP $ ROLE

roleDe�nedIn 2 role !! relationship

hasRole = roleDe�nedIn�

8 rel : relationship � #(hasRole(j frelg j)) � 2

� Every role belongs to exactly one relationship.

� Function hasRole is inverse of function roleDe�nedIn.

� Every relationship must have two or more roles, i.e., a relationship may

be binary, ternary, or higher order.
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The multiplicity and conditionality of a relationship are called the form of

the relationship. SMOOA does not give the de�nition of multiplicity; however,

it classi�es binary relationships into three fundamental forms with respect to

multiplicity. They are one-to-one, one-to-many, and many-to-many relation-

ships:

� A one-to-one relationship exists when a single instance of an object is

associated with a single instance of another.

� A one-to-many relationship exists when a single instance of an object is

associated with one or more instances of another, and each instance of

the second object is associated with just one instance of the �rst.

� A many-to-many relationship exists when a single instance of an object

is associated with one or more instances of another, and each instance of

the second object is associated with one or more instances of the �rst.

If every instance of both objects is required to participate in the relationship,

the relationship is unconditional. If there can be instances of the objects that

do not participate, the relationship is conditional.

Since they are actually concerned with the property of the objects that play

roles in relationships, multiplicity and conditionality are associated with roles

in the formalization. We de�ne them as multiplicity of roles. The multiplicity

of a role at run-time speci�es the number of instances of one object that

appear in a given role of a relationship when the instances that can appear in

the remaining roles are �xed. This number may be \0" if the relationship is

conditional on that role.

Schema IMRoleProperty de�nes

� a function that speci�es the player of each role, and

� a relation that speci�es the multiplicity of each role. In the formalization,

we de�ne the multiplicity of a role as a (possibly in�nite) subset of the
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non-negative integers. For the role r of a relationship, each number n in

the set multiplicityOfRole(j frg j) indicates that the multiplicity of r can

be n.

IMRoleProperty

IMDTData

playerOfRole : ROLE 7! OBJECT

multiplicityOfRole : ROLE $ N

playerOfRole 2 role ! object

dommultiplicityOfRole = role

� Each role has a player, which is an object. Each object may play one or

more roles.

� Each role has the prede�ned multiplicity.

According to their multiplicity, roles can be classi�ed into four types. We

de�ne them as single, conditional single, multiple, and conditional multiple:
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IMRoleType

IMRoleProperty

single : PROLE

conditionSingle : PROLE

multiple : PROLE

conditionMultiple : PROLE

hsingle; conditionSingle;multiple; conditionMultiplei partition role

8 s : single � multiplicityOfRole(j fsg j) = f1g

8 cs : conditionSingle � multiplicityOfRole(j fcsg j) = f0; 1g

8m : multiple � 0 =2 multiplicityOfRole(j fmg j) ^

(9 n : multiplicityOfRole(j fmg j) � n > 1)

8 cm : conditionMultiple � 0 2 multiplicityOfRole(j fcmg j) ^

(9 n : multiplicityOfRole(j fcmg j) � n > 1)

� Single, conditional single, multiple, and conditional multiple roles are

special types of roles with respect to multiplicity.

� Given a role of a relationship, when the instances of other roles in the

same relationship are �xed in a run-time model,

{ if the role is single, then there is exactly one instance playing the

role;

{ if the role is conditional single, then there is one instance, or none

at all, playing the role;

{ if the role is multiple, then there are one or more instances playing

the role;

{ if the role is conditional multiple, then there are one or more in-

stances, or none at all, playing the role.
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For a multiple or conditional multiple role, there must be the cases in

which two or more instances play the role.

Schema IMRTRoleType in Section 5.2.5 explains the semantics of multiplicity

of roles in binary relationships, in terms of run-time model.

Combining the schemas about roles, we obtain schema IMRole:

IMRole b= IMRoleBasic ^

IMRoleProperty ^

IMRoleType

Features

Relation hasFeature in the following schema expresses the relationship between

features and entities in the information model.

IMFeature

IMAttribute

IMRole

hasFeature : ENTITY $ FEATURE

hasFeature = hasAttribute [ hasRole

5.1.3 Binary Relationships

SMOOA gives a detailed discussion on coping with binary relationships in an

information model, but puts less emphasis on relationships with higher order

(see Chapter 5 of [SM88]).

Schema IMBinaryRelationship de�nes a set of binary relationships in the

information model.
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IMBinaryRelationship

IMRole

binaryRelationship : PRELATIONSHIP

binaryRelationship � relationship

8 rel : binaryRelationship � #(hasRole(j frelg j)) = 2

� The binary relationships are a subset of the relationships in the infor-

mation model.

� A binary relationship has exactly two roles.

Figure 5.1 summarizes all possible forms of the binary relationships de-

scribed in SMOOA (see Figure on p.59 of [SM88]). Schema IMBinaryRelationshipType

de�nes the semantics for these forms of binary relationships.
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IMBinaryRelationshipType

IMBinaryRelationship

R 11;R 1M ;R MM : PRELATIONSHIP

R 11c;R 1cM ;R 1Mc;R MMc : PRELATIONSHIP

R 1c1c;R 1cMc;R McMc : PRELATIONSHIP

hR 11;R 1M ;R MM ;R 11c;R 1cM ;R 1Mc;

R MMc;R 1c1c;R 1cMc;R McMci partition binaryRelationship

8 rel : R 11 �

(9 r1; r2 : single � hasRole(j frelg j) = fr1; r2g)

8 rel : R 1M �

(9 r1 : single; r2 : multiple � hasRole(j frelg j) = fr1; r2g)

8 rel : R MM �

(9 r1; r2 : multiple � hasRole(j frelg j) = fr1; r2g)

8 rel : R 11c �

(9 r1 : single; r2 : conditionSingle � hasRole(j frelg j) = fr1; r2g)

8 rel : R 1cM �

(9 r1 : conditionSingle; r2 : multiple � hasRole(j frelg j) = fr1; r2g)

8 rel : R 1Mc �

(9 r1 : single; r2 : conditionMultiple � hasRole(j frelg j) = fr1; r2g)

8 rel : R MMc �

(9 r1 : multiple; r2 : conditionMultiple � hasRole(j frelg j) = fr1; r2g)

8 rel : R 1c1c �

(9 r1; r2 : conditionSingle � hasRole(j frelg j) = fr1; r2g)

8 rel : R 1cMc �

(9 r1 : conditionSingle; r2 : conditionMultiple � hasRole(j frelg j) = fr1; r2g)

8 rel : R McMc �

(9 r1; r2 : conditionMultiple � hasRole(j frelg j) = fr1; r2g)

� There are ten forms of binary relationships.
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Figure 5.1: Forms of binary relationships

� In a one-to-one unconditional relationship, denoted by R 11, a given

instance of role r1 is associated with one and only one instance of role

r2. Furthermore, every instance of role r2 must have an instance of role

r1 so associated.

� In an one-to-many unconditional relationship, denoted by R 1M , a sin-

gle instance of role r1 is associated with one or more instances of role

r2. Every instance of role r2 is associated with exactly one instance of

role r1.

� In a many-to-many unconditional relationship, denoted by R MM , every
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instance of role r1 is associated with one or more instances of role r2,

and every instance of role r2 is associated with one or more instances of

role r1.

� A one-to-one conditional relationship, denoted by R 11c, is just like a

one-to-one unconditional relationship, except that not all instances of

role r1 need to participate in the relationship.

� A one-to-many conditional relationship (on the \one" side), denoted by

R 1cM , has the following properties:

{ Each instance of role r1 is associated with one or more of instances

of role r2. Every instance of role r1 participates in the relationship.

{ An instance of role r2 is associated with one or zero instance of role

r1; that is, not all instances of role r2 participate.

� A one-to-many conditional relationship (on the \many" side), denoted

by R 1Mc, is conditional on the \many" side: each instance of role r1

is associated with zero or more instances of role r2, while each instance

of role r2 is associated with exactly one instance of role r1.

� A many-to-many conditional relationship, denoted by R MMc, is just

like the ordinary unconditional (R MM ) relationship, except that in-

stances of role r1 can exist which do not participate in the relationship.

� In a one-to-one biconditional relationship, denoted by R 1c1c, one in-

stance of role r1 is associated with zero or one instance of role r2. Fur-

thermore, one instance of role r2 is associated with zero or one instance

of role r1.

� A one-to-many biconditional relationship, denoted by R 1cMc, is a form

of the basic one-to-many relationship, but there can be instances of both

types of objects which do not participate in the relationship.
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� A many-to-many biconditional relationship, denoted by R McMc, re-

sembles the basic many-to-many unconditional form, except there can

be instances of both objects which do not participate in the relationship.

5.1.4 Composition of Relationships

Some relationships come about as a necessary consequence of the existence of

other relationships (see [SM92]: pp.27-28). Such a relationship is said to have

been formed by composition (as in composition of functions in mathematics).

Let

[FUNCTION ]

represent the functions that determine how composition relationships are com-

posed from other relationships.

Schema IMCompositionRelationship de�nes

� a set of composition relationships in the information model, and

� a function that associates a composition relationship to the relationships

that compose it according to certain function.

IMCompositionRelationship

IMDTData

comRelationship : PRELATIONSHIP

composedBy : RELATIONSHIP 7! PRELATIONSHIP � FUNCTION

dom composedBy = comRelationship

8 r : comRelationship � �rst (composedBy(r)) � relationship

� Composition relationships are a subset of relationships.

� Each composition relationship is formed by a set of relationships.
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5.1.5 Generalizations

When several objects in the information model are signi�cantly similar, they

can be modeled in a subtype-supertype construct. We call such a construct a

generalization. Generalization is a distinguished feature of object orientation.

It is a special kind of relationships between objects. Section 6.1 in [SM88]

discusses the concept.

Generalizations

In a generalization construct, attributes that are common to all the subtype

objects are placed in the supertype object. The subtype objects will also have

additional attributes to support the more specialized abstractions represented

by each subtype. Let

[GENERALIZATION ]

represent all possible generalization constructs.

Each such construct can be obtained under a certain specialization prin-

ciple. It is also possible to apply several di�erent principles to one supertype

object. Hence, a supertype object may be involved in more than one general-

ization.

Schema IMGeneralizationBasic de�nes

� a set of generalization constructs in the information model,

� a function from each generalization construct to the supertype object in

the generalization.

� a relation from each generalization construct to the subtype objects in

the generalization.
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IMGeneralizationBasic

IMDTData

generalization : PGENERALIZATION

supertype : GENERALIZATION 7! OBJECT

subtype : GENERALIZATION $ OBJECT

supertype 2 generalization ! object

dom subtype = generalization ^ ran subtype � object

� Each generalization has a supertype object. An object may be involved

as a supertype object in one or more generalizations.

� Each generalization has a set of subtype objects. An object may be

involved as a subtype object in one or more generalizations.

Similar to formalizing OMT's object model (discussed in Chapter 4), we

view a generalization as a set of binary relationships. Each such relationship

associates the supertype object with one of the subtype objects:

IMGeneralizationRelationship

IMBinaryRelationshipType

IMGeneralizationBasic

genRelationship : PRELATIONSHIP

superRole : RELATIONSHIP 7� ROLE

subRole : RELATIONSHIP 7� ROLE

genRelationship � binaryRelationship

superRole 2 genRelationship � single

subRole 2 genRelationship � conditionSingle

8 rel : genRelationship � hasRole(j frelg j) = fsuperRole(rel); subRole(rel)g
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� A generalization relationship is a one-to-one conditional binary relation-

ship. SMOOA requires that, in a generalization construct, if an instance

for a subtype object is created, an instance for the supertype object

must be created as well, and vice versa. Therefore, in a generalization

relationship, each instance of the subtype object, sub, corresponds to an

instance of the supertype object super ; but an instance of super may

correspond to an instance of sub or may correspond to an instance of

other objects that are also subtype objects of super in the same general-

ization construct. Schema IMRTGenInstance in Section 5.2.4 formalizes

this property in terms of run-time concepts.

� The role whose player is a supertype object is a single role.

� The role whose player is a subtype object is a conditional single role.

� Each generalization relationship contains a supertype object and a sub-

type object.

Schema IMGeneralization de�nes the mappings between the generalization

relationships and the generalization constructs in which these relationships are

involved.
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IMGeneralization

IMGeneralizationRelationship

collectedIn : RELATIONSHIP 7! GENERALIZATION

collectedIn 2 genRelationship !! generalization

8 rel : genRelationship; gen : generalization j

collectedIn(rel) = gen �

playerOfRole(superRole(rel)) = supertype(gen) ^

playerOfRole(subRole(rel)) 2 subtype(j fgeng j)

8 gen : generalization �

#(subtype(j fgeng j)) = #(collectedIn�(j fgeng j))

� Each generalization relationship belongs to a generalization construct. A

generalization construct may contain a set of generalization relationships.

� For a generalization relationship, the player of the super-role is the super-

type object, and the player of the sub-role is one of the subtype objects

of the generalization construct, in which the generalization relationship

is involved.

� The number of generalization relationships in one generalization con-

struct is the same as the number of subtype objects involved in the

construct.

Inheritance and the Characteristics

A subtype object and the supertype object of a generalization construct are

in a \is-kind-of" relationship, that is, the subtype object is a re�ned ver-

sion of the supertype object. An object can be the subtype object of several

supertype objects, each of which is in a di�erent generalization construct.

This is called \multiple inheritance". Each generalization construct can be
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drawn on repeatedly in the same problem. All the objects that participate in

subtype-supertype relationships in the information model make up an inheri-

tance hierarchy. These concepts are formalized in schema IMIsKindOf , which

de�nes

� a relation that associates each subtype object with all of its direct su-

pertype object(s), no matter which generalization construct it is in, and

� a relation that associates each subtype object with all of its supertype

objects, possibly through repeated generalization constructs.

IMInheritanceBasic

IMFeature

IMGeneralization

isKindOf : OBJECT $ OBJECT

inherit : OBJECT $ OBJECT

isKindOf = fgen : generalization; sub : object j

sub 2 subtype(j fgeng j) � sub 7! supertype(gen)g

inherit = isKindOf +

inherit \ id object = ;

8 gen : generalization; sub1; sub2 : object j

fsub1; sub2g � subtype(j fgeng j) �

dom(inherit B fsub1g) \ dom(inherit B fsub2g) = ;

� isKindOf associates each subtype object with all of its supertype objects.

� inherit associates each subtype object with its ancestors.

� inherit should be a directed acyclic graph, which means that any object

is not a subtype (or supertype) object of itself.
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� In a generalization construct, any two subtype objects of a supertype

object must not have common descendants. The allowance of such in-

heritance is incorrect in semantics. SMOOA requires that the properties

of the subtype objects should be a partition of that of the supertype

object, so any descendant of one subtype object could not have property

of another subtype object.

As is explained in schema IMGeneralizationRelationship, there is a one-to-

one mapping between the instances of the supertype object and the instances

of the subtype objects in a given generalization. It is also known that, given an

object, the values of its identi�er uniquely identify each instance of the object.

We therefore draw the conclusion that there is a one-to-one mapping between

the values of the supertype preferred identi�er and the values of the subtype

preferred identi�ers. Assuming the domains of the subtype preferred identi�ers

are disjoint1, we de�ne the domain of the supertype preferred identi�er to be

the union of the domains of the subtype preferred identi�ers.

1When the domains of the subtype preferred identi�ers are not disjoint, SMOOA provides

two ways of modi�cation (see [SM88]: p.67) in order to ensure the one-to-one mapping

between the instances of the supertype object and the subtype objects. Here we formalize

the �rst one. In this way, the supertype and subtype preferred identi�ers consist of the same

set of attributes, and the domains of subtype preferred identi�ers are guaranteed disjoint.
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IMAttributeInheritance

IMInheritanceBasic

8 super ; sub : object j

sub 7! super 2 isKindOf �

hasIdElement(j fhasPreferredId(sub)g j) =

hasIdElement(j fhasPreferredId(super)g j)

8 gen : generalization; super : object ; a : attribute j

supertype(gen) = super ^

a 2 hasIdElement(j fhasPreferredId(super)g j) �

(domainSpec(super))(j fag j) =
S
fsub : subtype(j fgeng j) � (domainSpec(sub))(j fag j)g

� The supertype object and its subtype objects have the same preferred

identi�er.

� Given a generalization construct, if an attribute is a part of the preferred

identi�er, then its domain in the subtype object is a subset of its domain

in the supertype object. Further, the union of the domains of the at-

tribute in all the subtype objects is the domain of the attribute in the

supertype object.

The properties of the subtype-supertype constructs and the rules and con-

straints on these constructs are summarized as follows.

IMInheritance b= IMInheritanceBasic ^

IMAttributeInheritance

5.1.6 Relationship Formalization

SMOOA indicates that the purpose of a relationship is to allow us to state

which instances of one object are associated with instances of others. This is
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accomplished by placing referential attributes in appropriate objects. When

this has been done, the relationship is said to have been formalized in data.

The Z schemas in this section specify the semantics for formalizing relation-

ships by means of referential attributes.

Certain referential attribute(s) in an object always captures some relation-

ships in the information model. The referential attributes in an object may

capture several relationships; thus, an object can be used to formalize one or

more relationships. We call the object that has referential attributes a formal-

izer. The formalizer of a relationship functions as a connector that connects

itself to each participating object via referential attributes.

Schema IMRelationshipFormalizingBasic de�nes

� a set of formalizers in the information model, and

� a function from each relationship to its formalizer.

IMRelationshipFormalizingBasic

IMCompositionRelationship

IMInheritance

formalizer : POBJECT

formalizedBy : RELATIONSHIP 7!! OBJECT

formalizer = ran(referentialAttr C attrDe�nedIn)

formalizedBy 2 relationship n comRelationship !! formalizer

� The formalizers in the information model are a set of objects that have

referential attributes.

� Each relationship, except for composition relationships, is formalized by

an object.
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Within the scope of a formalizer, function referencing in the following

schema de�nes a mapping from each relationship that is formalized by the for-

malizer to the referential attributes of the formalizer that capture the relation-

ship. These referential attributes, called foreign keys, are actually attributes

of the identi�ers of other objects that participate in the relationship.

IMReferencing

IMRelationshipFormalizingBasic

referencing : OBJECT 7! (RELATIONSHIP $ ATTRIBUTE )

dom referencing = formalizer

8 obj : formalizer ; rel : relationship j formalizedBy(rel) = obj �

rel 2 dom(referencing(obj )) ^

(referencing(obj ))(j frelg j) � hasAttribute(j fobjg j) \ referentialAttr

� The domain of function referencing is the formalizers in the information

model.

� One or more referential attributes of a formalizer capture a relationship.

Players as Formalizers

The information model provides rules to formalize relationships. The assign-

ments of referential attributes to objects in conditional and unconditional

one-to-one and one-to-many binary relationships are formalized in schema

IMPlayerFormalizing . The common characteristic of these relationships is

that their formalizers are also their players. Generalization relationships are

formalized di�erently from other binary relationships. We discuss this later in

the section (see p.144).
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IMPlayerFormalizing

IMReferencing

IMBinaryRelationshipType

8 rel : binaryRelationship n (genRelationship [ comRelationship); r1; r2 : role j

hasRole(j frelg j) = fr1; r2g ^

formalizedBy(rel) = playerOfRole(r1) �

(referencing(playerOfRole(r1)))(j frelg j) =

hasIdElement(j fhasPreferredId(playerOfRole(r2))g j) ^

(rel 2 R 11) r1 2 single ^ r2 2 single) ^

(rel 2 R 1M ) r1 2 multiple ^ r2 2 single) ^

(rel 2 R 11c ) r1 2 conditionSingle ^ r2 2 single) ^

(rel 2 R 1c1c ) r1 2 conditionSingle ^ r2 2 conditionSingle) ^

(rel 2 R 1cM ) r1 2 multiple ^ r2 2 conditionSingle) ^

(rel 2 R 1Mc ) r1 2 conditionMultiple ^ r2 2 single) ^

(rel 2 R 1cMc ) r1 2 conditionMultiple ^ r2 2 conditionSingle)

� To model an unconditional one-to-one relationship (R 11), we place the

foreign key in either of the objects.

� To model an unconditional one-to-many relationship (R 1M ), we take

the identi�er from the \one" side and make it as a foreign key in the

\many" side.

� A one-to-one conditional relationship (R 11c) is modeled by adding the

referential attributes to the object which always participates in the re-

lationship.

� Modeling a one-to-one biconditional relationship (R 1c1c) is similar to

modeling a one-to-one unconditional relationship.

� A one-to-many conditional (on the \one" side) relationship (R 1cM ) can

be modeled by adding the foreign key to the object on the \many" side
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of the relationship.

� A one-to-many conditional (on the \many" side) relationship (R 1Mc)

can be modeled by adding the foreign key to the \many" side.

� A one-to-many biconditional relationship (R 1cMc) can be modeled by

adding a foreign key to the object on the \many" side.

Associative Objects

Relationships R 1c1c, R MM , R MMc, R McMc, and higher-order relation-

ships can be formalized in associative objects. SMOOA uses both associative

objects and correlation tables for this purpose in [SM88]; however, it omits

the concept of correlation table in [SM92]. In fact, a correlation table can be

treated as a special form of associative objects. Here we only formalize the

concept of associative object. Generally speaking, any form of relationships

can be formalized in associative objects.

IMAssociativeObjectFormalizing

IMReferencing

associativeObject : POBJECT

associativeObject � formalizer

8 rel : dom formalizedBy n genRelationship; obj : associativeObject j

formalizedBy(rel) = obj � obj =2 playerOfRole(j hasRole(j frelg j) j)

8 rel : dom formalizedBy n genRelationship; obj : associativeObject j

formalizedBy(rel) = obj �

(referencing(obj ))(j frelg j) =

hasIdElement(j (hasRole o
9 playerOfRole o

9 hasPreferredId)(j frelg j) j) �

hasIdElement(j fhasPreferredId(obj )g j)

� Associative objects are formalizers.
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� The associative object that formalizes a relationship is not the player of

the relationship.

� The identi�er of an associative object contains the combination of the

identi�ers of all players of the relationship that is formalized in the as-

sociative object.

The formalizing can be in one of the two forms when the formalizers are

associative objects. The two forms are single occurrence and multiple occur-

rence:

IMAssociativeObjectFormalizingType

IMAssociativeObjectFormalizing

singleOccurrence : RELATIONSHIP 7� OBJECT

multipleOccurrence : RELATIONSHIP 7� OBJECT

hsingleOccurrence;multipleOccurrencei partition

formalizedBy B associativeObject

We give further semantics in Section 5.2.6.

Formalizing Generalization Relationships

The schemas already discussed in this sections do not take generalization rela-

tionships into consideration. The generalization relationships are modeled by

the subtype objects involved in the relationships:

144



IMGenRelationshipFormalizing

IMPlayerFormalizing

8 obj : dom isKindOf � obj 2 formalizer

8 rel : genRelationship � formalizedBy(rel) = playerOfRole(subRole(rel))

8 rel : genRelationship; obj : object j formalizedBy(rel) = obj �

(referencing(obj ))(j frelg j) = hasIdElement(j fhasPreferredId(obj )g j)

� Every subtype object is a formalizer.

� Every generalization relationship is modeled by the subtype object in

the relationship.

� The referential attributes of a formalizer is its preferred identi�er.

Domain Restriction on Referential Attributes

A referential attribute has the same domain as the corresponding identi�er

attribute does. Given a relationship rel , if a is a referential attribute of rel 's

formalizer obj and is also an identi�er attribute of one of rel 's players, obj 0,

then the domain of a in obj is the same as the domain of a in obj 0:

IMReferentialAttributeDomain

IMPlayerFormalizing

IMAssociativeObjectFormalizing

8 rel : relationship n genRelationship; obj : formalizer j

formalizedBy(rel) = obj �

(8 a : (referencing(obj ))(j frelg j);

obj 0 : (hasRole o
9 playerOfRole)(j frelg j) �

domainSpec(obj )(a) = domainSpec(obj 0)(a))
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Combining the schemas about relationship formalizing, we obtain the fol-

lowing schema.

IMRelationshipFormalizing b=
IMPlayerFormalizing ^

IMAssociativeObjectFormalizing ^

IMAssociativeObjectFormalizingType ^

IMGenRelationshipFormalizing ^

IMReferentialAttributeDomain

5.1.7 Names and Naming

Objects, relationships, and attributes have names. Each object also has a

unique key letter, which is an abbreviation of the object's name; and each

relationship has a unique label as its short-form representation. We introduce

given sets

[NAME ;KEY LETTER;LABEL]

to represent all possible names, key letters, and labels.

Entity Names

The following two schemas formalize the naming of objects and relationships.

Schema IMObjectName de�nes

� a set of names for the objects in the information model,

� a function that maps each object to a unique object name, and

� a function that maps each object to a unique key letter.
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IMObjectName

IMDTData

objectName : PNAME

nameOfObject : OBJECT 7� NAME

keyLetterOfObject : OBJECT 7� KEY LETTER

nameOfObject 2 object �! objectName

keyLetterOfObject 2 object � KEY LETTER

� Each object is given a unique name.

� Each object is given a unique key letter.

Schema IMRelationshipName de�nes

� a set of names for the relationships in the information model,

� a function that maps each relationship to a relationship name, and

� a function that maps each relationship to a label.
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IMRelationshipName

IMDTData

IMGeneralization

relationshipName : PNAME

nameOfRelationship : RELATIONSHIP 7!! NAME

labelOfRelationship : RELATIONSHIP 7! LABEL

nameOfRelationship 2 relationship n genRelationship !! relationshipName

labelOfRelationship 2 (relationship n genRelationship � LABEL)[

(genRelationship ! LABEL)

8 rel1; rel2 : genRelationship �

collectedIn(rel1) = collectedIn(rel2),

labelOfRelationship(rel1) = labelOfRelationship(rel2)

labelOfRelationship(j relationship n genRelationship j)\

labelOfRelationship(j genRelationship j) = ;

� Each relationship, except for generalization relationships, has a name.

Sometimes two or more relationships have the same name.

� Each relationship, except for generalization relationships, has a unique

label.

� The generalization relationships in a generalization construct have a

unique label.

� The labels for generalization relationships and the labels for other rela-

tionships are disjoint sets.

Feature Names

The naming of features is di�erent from the naming of entities, because the

scope of feature names is not global. The scope for features is the entity with
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which they are associated. When formalizing the naming in the local scope, we

parameterize the sets and functions by the scope. The following two schemas

formalize the naming of attributes and roles.

Schema IMAttributeName de�nes, within a given object, a function from

attributes to their names.

IMAttributeName

IMFeature

IMInheritance

nameOfAttribute : OBJECT 7! (ATTRIBUTE 7� NAME )

domnameOfAttribute = object

8 obj : object �

nameOfAttribute(obj ) 2 hasAttribute(j fobjg j)� NAME

� Each attribute of an object has a unique name.

In the information model, each end of a relationship, except for general-

ization relationships, is always attached a name to. This name speci�es the

role that end plays in the relationship. We regard this name as the role name,

and call the combination of these role names as the name of the relationship.

Schema IMRoleName de�nes, within a given relationship, a function from roles

to their names.

IMRoleName

IMDTData

IMGeneralization

nameOfRole : RELATIONSHIP 7! (ROLE 7� NAME )

domnameOfRole = relationship n genRelationship

8 rel : domnameOfRole �

nameOfRole(rel) 2 hasRole(j frelg j)� NAME
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� Each role of a relationship, except for generalization relationships, has a

unique name.

The following schema combines the properties of the above name-related

schemas.

IMName b=
IMObjectName ^

IMRelationshipName ^

IMAttributeName ^

IMRoleName

5.1.8 Descriptions

An object description is a short, informative statement which allows one to

tell, with certainty, whether or not a particular real-world thing is an instance

of the object as conceptualized in the information model. An attribute de-

scription is a short, informative description that tells how the formal attribute

re
ects the real-world characteristic of interest. A relationship description is a

short, informative description that provides statements about the relationship

between the objects. Let

[TEXT ]

represent such descriptions.

Schema IMDescription de�nes

� a function from objects to their text descriptions,

� a function from relationships to their text descriptions, and

� a function, within the scope of the objects, from attributes to their text

descriptions.
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IMDescription

IMFeature

objectDescription : OBJECT 7! TEXT

relationshipDescription : RELATIONSHIP 7! TEXT

attributeDescription : OBJECT 7! (ATTRIBUTE 7! TEXT )

domobjectDescription = object

dom relationshipDescription = relationship

domattributeDescription = object

8 obj : object �

attributeDescription(obj ) 2 hasFeature(j fobjg j)! TEXT

� An object description must be provided for each object in the information

model.

� A relationship description must be provided for each relationship in the

information model.

� An attribute description must be provided for each attribute of each

object.

5.1.9 Information Model with Design-Time Concepts

Schema IMDTModel de�nes an information model involving the concepts dis-

cussed in the previous sections.

IMDTModel b=
IMDTData ^ IMFeature ^

IMBinaryRelationshipType ^ IMCompositionRelationship ^

IMGeneralization ^ IMInheritance ^

IMRelationshipFormalizing ^

IMName ^ IMDescription
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5.2 Run-Time Concepts

A run-time model represents the internal operation of a running application.

It is described with a set of run-time concepts, which represent the instances of

the design-time concepts of the system. In choosing how to formalize the run-

time concepts, we focus on choosing features required to explain the semantics

of an information model. Since an information model describes the static view

of the system, we do not discuss the concepts related to timing and order of

operations.

In this section, we formally de�ne the run-time concepts, including in-

stance, real-world instance, and attribute value. Moreover, we further formal-

ize the semantics of the design-time concepts by specifying the relationships

between the design-time and run-time concepts.

5.2.1 Fundamental Concepts

At run-time, an object can be instantiated as a set of instances. These object

instances are real-world things that the object represents. They have the

same characteristic and behavior. A relationship also has a set of relationship

instances, each of which connects instances of objects that participate in the

relationship. We introduce a given set

[INSTANCE ]

and two subsets, one each for object instances and relationship instances,

OBJ INSTANCE : P INSTANCE

REL INSTANCE : P INSTANCE

hOBJ INSTANCE ;REL INSTANCE i partition INSTANCE

In an inheritance hierarchy, a real-world thing is not represented by a single

subtype or supertype object, but by the combination of a set of objects in the
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hierarchy (see [SM92]: pp.28-29). Let

[RW INSTANCE ]

represent all possible real-world instances.

A basic run-time system consists of

� a set of instances,

� a set of object instances,

� a set of relationship instances, and

� a set of real-world instances.

IMRTData

instance : P INSTANCE

objInstance : P INSTANCE

relInstance : P INSTANCE

rwInstance : PRW INSTANCE

hobjInstance; relInstancei partition instance

� Object instances and relationship instances are instances in the run-time

system.

5.2.2 Entities and Their Instances

An object may have one or more instances in the run-time system being mod-

eled. The following schema de�nes the relationship between objects and their

instances.
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IMRTInstance

IMDTModel

IMRTData

isInstanceOf : INSTANCE 7! ENTITY

hasInstance : ENTITY $ INSTANCE

isInstanceOf 2 (objInstance ! object) [ (relInstance ! relationship)

hasInstance = isInstanceOf �

� Every instance belongs to an object or a relationship.

� An object or a relationship may have one or more instances.

5.2.3 Attributes and Their Values

An attribute value is the data value held by an object. Schema IMRTAttributeValue

de�nes a function specifying the value of each attribute in the object instances.

IMRTAttributeValue

IMRTInstance

holdValue : OBJ INSTANCE 7! (ATTRIBUTE 7! ATOMIC VALUE )

domholdValue = objInstance

8 obji : objInstance �

dom(holdValue(obji)) = hasAttribute(j fisInstanceOf (obji)g j)

8 obji : objInstance; a : attribute; v : ATOMIC VALUE j

v = holdValue(obji)(a) �

v 2 (domainSpec(isInstanceOf (obji)))(j fag j)

� The domain of function holdValue is the set of object instances in the

information model.
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� Each attribute of an object instance has a value.

� The attribute value is within the value range speci�ed for the attribute.

The following schema speci�es the semantics of attribute identi�ers in

terms of run-time concepts.

IMRTIdenti�er

IMRTAttributeValue

8 obj : object ; obji1; obji2 : objInstance; id : identi�er j

isInstanceOf (obji1) = isInstanceOf (obji2) = obj ^

isIdOf (id) = obj �

hasIdElement(j fidg j)C holdValue(obji1) =

hasIdElement(j fidg j)C holdValue(obji2), obji1 = obji2

� Two instances of an object must have di�erent identi�er values.

5.2.4 Generalizations and Real World Instances

SMOOA does not allow \abstract" object within the inheritance hierarchy.

That is, if an object in an inheritance hierarchy has instances, its ancestors

and descendants have instances as well.

IMRTGenInstance

IMRTInstance

8 super ; sub : object j sub 7! super 2 isKindOf �

hasInstance(j fsuperg j) 6= ; , hasInstance(j fsubg j) 6= ;

As discussed in Section 5.1.5, there is a bijection from the instances of the

subtype objects to the instances of the supertype object.
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IMRTGeneralization

IMRTAttributeValue

insGen : GENERALIZATION 7! (OBJ INSTANCE 7� OBJ INSTANCE )

dom insGen = dom(supertype o
9 hasInstance)

8 g : dom insGen �

insGen(g) 2 hasInstance(j subtype(j fgg j) j)�!

hasInstance(j fsupertype(g)g j)

8 g : generalization; subi ; superi : objInstance j subi 7! superi 2 insGen(g) �

hasIdElement(j fhasPreferredId(isInstanceOf (subi))g j)C holdValue(subi) =

hasIdElement(j fhasPreferredId(isInstanceOf (superi))g j)C holdValue(superi)

� The domain of insGen is the set of generalizations whose supertype (and

also subtype) objects have instances in a run-time model.

� Given a generalization, the mapping from the subtype instances to the

supertype instances is a bijection.

� For each instance pair in the bijection, the value of the identi�er of one

instance is the same as the value of the identi�er of the other.

Based on the function de�ned in the above schema, we de�ne a mapping

from each subtype instance to all its corresponding supertype instances re-

gardless of the generalization constructs.

IMRTInheritance

IMRTGeneralization

insIsKindOf : OBJ INSTANCE $ OBJ INSTANCE

insIsKindOf = fg : generalization; i1; i2 : objInstance j

i1 7! i2 2 insGen(g) � i1 7! i2g
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In a subtype-supertype construct, one real-world instance is composed of

an instance of the supertype object and an instance of exactly one subtype

object (see [SM92]: pp.28-29). An inheritance hierarchy consists of repeated

subtype-supertype constructs and multiple inheritance. In such a hierarchy, a

real-world instance is composed of a set of instances:

IMRTrwInstanceBasic

IMRTInheritance

represent : OBJ INSTANCE 7!! RW INSTANCE

represent 2 objInstance !! rwInstance

8 rw : rwInstance; i : objInstance j represent(i) = rw �

i =2 dom insIsKindOf [ ran insIsKindOf )

dom(represent B frwg) = fig ^

i 2 dom insIsKindOf [ ran insIsKindOf )

(8 i 0 : insIsKindOf (j fig j) [ insIsKindOf �(j fig j) � represent(i 0) = rw)

� Every real-world instance can be represented by a set of object instances.

� The second predicate indicates that,

{ if an object is not in any inheritance hierarchy, then each of its

instance represents a real-world instance;

{ if an object is in an inheritance hierarchy, then its instance i can

only partially represent a real-world instance of the object. The

instances that are in insIsKindOf relation with i also represent the

real-world instance.

The following function de�nes a mapping from each object to the set of

real-world instances it represents. If a real-world instance contains an instance

of an object, we may say that the object has the real-world instance.
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IMRTrwInstance

IMRTrwInstanceBasic

hasrwInstance : OBJECT $ RW INSTANCE

hasrwInstance = hasInstance o
9 represent

� Relation hasrwInstance is derived from the composition of hasInstance

and represent .

We de�ne that the attributes that a real-world instance has are the at-

tributes that its representing instances have:

IMRTrwAttributeValue

IMRTAttributeValue

IMRTrwInstance

rwHoldValue : RW INSTANCE 7! (ATTRIBUTE 7! ATOMIC VALUE )

dom rwHoldValue = rwInstance

8 rwi : rwInstance �

dom(rwHoldValue(rwi)) = hasAttribute(j hasrwInstance�(j frwig j) j)

8 rwi : rwInstance; obji : objInstance; a : attribute j

represent(obji) = rwi ^

a 2 dom(holdValue(obji)) �

rwHoldValue(rwi)(a) = holdValue(obji)(a)

� The domain of rwHoldValue is the set of real-world instances in the

information model.

� Each attribute of a real-world instance has a value.

� If a real-world instance consists of object instance obji , and obji has

attribute a, then the value of a in the real-world instance is the same as

the value of a in obji .
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5.2.5 Relationships and Roles

In a run-time application, it is real-world instances, but not instances, of ob-

jects that participate in the relationships. Schema IMRTRelationship de�nes

� a function specifying player instances of each role in each relationship

instance, and

� a relation mapping from each relationship instance to the real-world

instances that participate in the relationship.

IMRTRelationship

IMRTrwInstance

relConnect : REL INSTANCE 7! (ROLE 7! RW INSTANCE )

connection : REL INSTANCE $ RW INSTANCE

dom relConnect = relInstance

8 reli : relInstance �

dom(relConnect(reli)) = hasRole(j fisInstanceOf (reli)g j)

8 reli : relInstance; r : role; rwi : rwInstance j

rwi = relConnect(reli)(r) � rwi 2 hasrwInstance(j fplayerOfRole(r)g j)

connection = freli : relInstance; rwi : rwInstance j

(8 r : role � relConnect(reli)(r) = rwi)g

� The �rst three predicates state that each role of each relationship in-

stance has a real-world instance as its player. This real-world instance

is a real-world instance of the object that plays the role.

� Relation connection maps each relationship instance to the real-world

instances that play the roles in the relationship.
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The following schema gives the semantics of multiplicity of roles involved

in binary relationships.

IMRTRoleType

IMDTModel

IMRTInstance

IMRTRelationship

8 r ; r 0 : role; rel : binaryRelationship j

hasRole(j frelg j) = fr ; r 0g �

(8 rwi : hasrwInstance(j fplayerOfRole(r)g j); n : N j

n = #freli : hasInstance(j frelg j) j

reli 7! rwi 2 connectiong �

n 2 multiplicityOfRole(j fr 0g j))

� Given a binary relationship rel with its two roles r and r 0, and a real-

world instance rwi of r , the number of the relationship instances of rel

that the rwi participates in is the number of the real-world instances of

r 0 that have relations with rwi . This number is one of the numbers in

multiplicityOfRole(j fr 0g j).

5.2.6 Relationship Formalization

Function insFormalizedBy in the following schema gives the semantics of the

associative objects in terms of run-time model. It associates each relation-

ship and its formalizer with a function that maps from the instances of the

relationship to the instances of the formalizer.
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IMRTRelationshipFormalizingBasic

IMRTRelationship

insFormalizedBy : RELATIONSHIP � OBJECT 7!

(RW INSTANCE $ REL INSTANCE )

8 rel : dom formalizedBy � (rel ; formalizedBy(rel)) 2 dom insFormalizedBy

8 rel : relationship; obj : object j

(rel ; obj ) 2 dom insFormalizedBy ^

obj 2 playerOfRole(j hasRole(j frelg j) j) �

(insFormalizedBy(rel ; obj ))� 2 hasInstance(j frelg j)

� hasrwInstance(j fobjg j)

8 rel : relationship; obj : object j

(rel ; obj ) 2 dom insFormalizedBy ^

rel 7! obj 2 singleOccurrence �

insFormalizedBy(rel ; obj ) 2 hasrwInstance(j fobjg j)

�! hasInstance(j frelg j)

8 rel : relationship; obj : object j

(rel ; obj ) 2 dom insFormalizedBy ^

rel 7! obj 2 multipleOccurrence �

insFormalizedBy(rel ; obj ) 2 hasrwInstance(j fobjg j)

!! hasInstance(j frelg j)

� An element in the domain of insFormalizedBy is the pair of a relationship

and its formalizer.

� If the formalizer of a relationship is one of its players, then the mapping

from the formalizer instances to the relationship instances is an injection

with the entire set of relationship instances as range.
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� If the formalizer of a relationship is an associative object, and it is in a

single occurrence form, then the mapping from the formalizer instances

to the relationship instances is a bijection.

� If the formalizer of a relationship is an associative object, and it is in

a multiple occurrence form, then the mapping from the formalizer in-

stances to the relationship instances is a total surjection.

The following schema speci�es the relationship between the values of for-

malizers' referential attributes and the values of players' identi�ers.

IMRTRelationshipFormalizing

IMRTrwAttributeValue

IMRTRelationshipFormalizingBasic

8 rel : relationship; obj : object ; reli : relInstance; rwi ; rwi 0 : rwInstance j

frwi ; rwi 0g = connection(j frelig j) ^

rwi 7! reli 2 insFormalizedBy(rel ; obj ) �

(referencing(obj ))(j frelg j)C rwHoldValue(rwi) =

hasIdElement(j fhasPreferredId(hasrwInstance�(rwi 0))g j)C rwHoldValue(rwi 0)

8 rel : relationship; obj : object ; reli : relInstance; rwi : rwInstance j

rwi =2 connection(j frelig j) ^

rwi 7! reli 2 insFormalizedBy(rel ; obj ) �

(referencing(obj ))(j frelg j)C rwHoldValue(rwi) =
S
frwi 0 : connection(j frelig j) �

hasIdElement(j fhasPreferredId(hasrwInstance�(rwi 0))g j)C rwHoldValue(rwi 0)g

� If the formalizer of a binary relationship is one of its players, then the

values of the referential attributes of the formalizer instance should be

the same as the values of the identi�er attributes of the other player

instance that participates in the same relationship instance.
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� If the formalizer of a relationship is an associative object, the values of

the referential attributes of the formalizer instance should be the same

as the values of the identi�er attributes of all the player instances that

participate in the same relationship instance.

5.2.7 Information Model with Run-Time Concepts

Schema IMRTModel de�nes the information model involving the run-time con-

cepts.

IMRTMOdel b=
IMRTData ^

IMRTInstance ^ IMRTrwInstance ^

IMRTAttributeValue ^ IMRTrwAttributeValue ^

IMRTIdenti�er ^

IMRTRelationship ^ IMRTRoleType ^

IMRTRelationshipFormalizing

5.3 Information Model

In summary, the theory for the information model is represented as follows.

IM b= IMDTModel ^ IMRTMOdel
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Chapter 6

Approach to Comparing the

OOAD Methods

This chapter discusses the approach to comparing the representational prop-

erties of the OOAD methods. We propose a mechanism to systematically

reason about their similarities and di�erences. The formal descriptions of the

methods serve as the theoretical basis for the comparison. The basic idea

of the comparison approach is to extract from these abstract theories a core

which contains the features common to all the methods being compared, and

characterize each of the methods by an extension to the core.

In this chapter, we ful�ll the following tasks: (1) formally de�ne the con-

cepts and notations that are used to describe the comparison approach, (2)

identify some patterns of similarities and di�erences between the methods, (3)

de�ne the core, the extensions to the core, and the characterizing sets in the

core, (4) describe the procedure that a comparison process should follow, and

(5) give decision rules to guide the formation of the core and the extensions.

We make use of mathematical notations of sets, relations, and functions to

de�ne the concepts and notations discussed in this chapter. We also use Z sym-

bols when appropriate, to reduce the number of new mathematical notations
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that have to be introduced1.

6.1 Formal De�nitions of Concepts

This section gives the de�nitions of the concepts and notations that the com-

parison is based on.

6.1.1 Type

Z is based on typed set theory. Each variable declared in Z is given a

type. As the design methods are formalized using the Z notation, we need to

present the formal de�nition of types. The simplest types are given sets. More

complex types can be built up with type-constructors. The type-constructors

available in Z are power set, Cartesian product, and schema [Spi88]. The

formal de�nition of types is given in De�nition 6.1, which is simpli�ed from

Spivey's de�nition2.

De�nition 6.1 Types are de�ned as follows.

1. Given sets are types.

2. If t is a type, so is P t .

3. If t1, t2, . . . , tn are types, so is their Cartesian product t1� t2� : : :� tn .

4. If the declaration part of a schema has n variables x1, x2, . . . , xn , with

types t1, t2, . . . , tn , respectively, then the schema is of type hj x1 : t1; x2 :

t2; : : : ; xn : tn ji .

1Alternatively, we can employ exclusively Z notation to serve the purpose. In this way,

there will be a uniform style throughout the dissertation. This can be done in the future

research by translating the mathematical notations used in this chapter to Z. For now, it is

not a critical issue.
2If the de�nition of a concept is adapted from Spivey, we give explicit citation; otherwise,

the de�nition is given by us.
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Note that X �Y �Z , X � (Y �Z ), and (X �Y )�Z are di�erent types.

Also, note that hj x : X ; y : Y ji and hj y : Y ; x : X ji are the same type:

order of components does not matter.

More elaborate structures like functions and sequences which are also used

in declarations are not part of the Z type system. These structures are merely

shorthands for the types described above, e.g., function A � B has type

P(A� B), with certain restrictions on it.

A type determines a set of values which are its elements. This set is

called carrier of the type [Spi88]. Here we employ the concept \world of

sets" introduced in [Spi88]. Let W stand for the world of sets. The carrier of

a type is an element of W .

6.1.2 Signature and Predicate

A signature de�nes a set of types, a set of carriers for the types, a set of

variables, and a declaration that assigns a type to each variable.

A declaration is normalized if it introduces variables by specifying their

names and types without imposing further restrictions on them. The decla-

ration x : Z is normalized because Z is a type. On the other hand, x : 0::10

is non-normalized because, besides de�ning the type of x (i.e., Z), it speci�es

that x 2 0::10.

De�nition 6.2 We call Sig = hType;Carrier ;Var ;Decli a normalized signa-

ture, where

1. Type is a set of types in Z.

2. Carrier : Type !W is a total function, which de�nes a carrier for each

type.

3. Var is a set of variables.
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4. Decl : Var ! Type is a total function, which relates each variable to its

corresponding type.

As is mentioned in Section 3.3.3, the variables in a theory are divided into

two classes: category variables and relation variables. Thus, given a signature

Sig , the variable set Var can be further divided into two subsets catVar and

relVar , that is,

hcatVar ; relVari partition Var

We can always formalize category variables in any design theory to be set-

valued.

Let Sig and Sig 0 be normalized signatures. Sig 0 is a subsignature of Sig ,

denoted as Sig 0 � Sig , if

Type 0 � Type

Carrier 0 = Type 0 C Carrier

Var 0 � Var

Decl 0 = Var 0 CDecl

De�nition 6.3 Given a normalized signature Sig , a predicate p of Sig is

a �rst-order formula containing the usual connectives and quanti�ers. Free

variables and the types of bound variables of p must be members of Var and

Type respectively.

It can easily be proven that, if Sig 0 is a subsignature of Sig and p is a

predicate of Sig 0, then p is a predicate of Sig .

De�nition 6.4 We call Sig� = hType�;Carrier �;Var �;Decl�;Var
0
�
;Pred

0
�
;Cons�i

an extended signature, where

1. Type�, Carrier �, Var �, Decl� have the same de�nitions as those de�ned

in a normalized signature. That is, hType�;Carrier �;Var �;Decl�i is a

normalized signature.
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2. Var
0
� is a subset of Var �, i.e., Var

0
� � Var �. The declarations of the

variables in Var
0
� impose further restrictions on the variables besides the

assignment of types.

3. Pred
0
� is a set of predicates.

4. Cons� : Var
0
�
�! Pred

0
� is a bijection. For each variable v 2 Var

0
� whose

declaration imposes certain restriction on the values that v can take,

Cons�(v) represents the restriction, and it is a predicate of hType�;Carrier �;Var �;Decl�i.

A predicate of the extended signature Sig� is de�ned as a predicate of

hType�; Carrier �; Var �; Decl�i.

6.1.3 Theory

A formalization of a design method under the Theory-Model paradigm is called

a theory of the method. The theory is represented in terms of a set of schemas

in Z. As stated in Chapter 3, a theory is composed of a set of categories of

concepts and rules that the elements of these categories must satisfy. In a Z

schema, the categories of the concepts for a design are formalized as variables,

and the rules as predicates.

If the declaration of a schema is normalized, we say that the schema is

normalized itself. If all the schemas of a theory are normalized, the theory is

normalized.

De�nition 6.5 A normalized theory is a tuple T = hSig ;Predi, where

1. Sig is a normalized signature.

2. Pred is a set of predicates of Sig .

3. T is closed. That is, if p is a predicate of Sig and Pred j= p, then

p 2 Pred . According to the Completeness Theorem [CK73], this is the

same as requiring that T be closed under `.

168



For a normalized theory, Sig corresponds to the declaration parts of the

Z schemas, and Pred corresponds to the predicate parts. It should be noted

that a design theory is closed. The standard way of giving the properties that

a design theory T possesses is by listing a �nite set of predicates for T . The

predicates in the Z schemas for a theory are such a set. Any other predicate

which is not given in the schemas but is consequence of the predicates in the

schemas belongs to the theory. This property of a design theory is important.

During the comparison, it is sometimes necessary to add new predicates to

facilitate comparing a certain part of one theory with another. These auxiliary

predicates are obtained by applying rules of inference to, or by changing the

forms of, the existing predicates of the theory. With the property that a theory

is closed, we can assure that the new predicates belong to the theory.

For human readability, not all the schemas are normalized in our formaliza-

tion. If a schema declares that a relation variable is a function, then the schema

is non-normalized. We call a theory containing non-normalized schemas an ex-

tended theory.

De�nition 6.6 An extended theory is a tuple T � = hSig�;Pred�i, where

1. Sig� is an extended signature.

2. Pred� is a set of predicates of Sig�.

3. T � is closed. That is, if p� is a predicate of Sig� and Pred� [ Pred
0
� j= p�,

then p� 2 Pred� [ Pred
0
�.

We will analyze the formalization in terms of normalized theories.

Proposition 6.1 Every extended theory can be normalized.

Proof. A non-normalized schema can always be transformed into an equiv-

alent normalized schema by simply moving the restrictions introduced in its

declaration about the variables to its predicate part.
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After every schema of a theory is normalized, the theory is normalized.

Let T � be an extended theory and T be the corresponding normalized

theory after the transformation, we have

Sig = hType�;Carrier �;Var �;Decl�i

Pred = Pred� [ Pred
0
�

As an extended theory can be transformed to an equivalent normalized

theory, the discussion about properties of normalized theories also applies to

extended theories. We will use \theory" when the distinction is not relevant.

6.1.4 Subtheory

De�nition 6.7 Given theories T = hSig ;Predi and T 0 = hSig 0;Pred 0i, T 0 is

a subtheory of T , denoted as T 0 � T , if

1. Sig 0 � Sig

2. Pred 0 is a set of predicates of Sig 0, and Pred 0 � Pred .

A schema or a combination of several schemas of the entire schema set for

a design theory is in fact a subtheory of the design theory.

6.1.5 Model

De�nition 6.8 An interpretation for a theory T is de�ned as I = hVal ; Inti,

where

1. Val is a set of values, and Val �W .

2. Int : Var ! Val is a total function, which assigns a value in Val to every

variable in Var with correct type, that is, it must satisfy the following

constraint:

8 v : Var � Int(v) 2 Carrier(Decl(v))
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Any concrete design developed under a design method is an interpretation

of the corresponding design theory.

De�nition 6.9 An interpretation I of theory T is a model of T i�, under I ,

every predicate in Pred is true.

Formally, a model of T is denoted as mT , and the set of all models of T

is denoted as M T .

De�nition 6.10 Let mT be a model of theory T and Sig 0 be a subsignature

of T 's signature. A submodel of mT restricted on Sig 0 is de�ned as mT "

Sig 0 = hVal 0; Int 0i, where,

1. Val 0 � Val

2. Int 0 = Var 0 ! Val 0 = Var 0 C Int

A submodel corresponds to a partial concrete design.

Proposition 6.2 A submodel of a model of theory T restricted on the sig-

nature of T 's subtheory T 0 is a model of T 0.

Proof. Let T be a theory, T 0 be a subtheory of T , mT be a model of T , and

m 0 be a submodel of mT restricted on Sig 0.

Firstly, we prove that m 0 is an interpretation of T 0. According to the

de�nition for submodel, the following exist

(1). Val 0 � Val �W

(2). Int 0 = Var 0 ! Val 0

From Int 0 = Var 0 C Int and Decl 0 = Var 0 CDecl , we have

(3). 8 v : Var 0 � Int 0(v) = Int(v) ^ Int(v) 2 Val 0

(4). 8 v : Var 0 � Decl 0(v) = Decl(v)
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From Carrier 0 = Type 0 C Carrier , we have

(5). 8 t : Type 0 � Carrier 0(t) = Carrier(t)

From (3), (4), (5), and Var 0 � Var , we have

(6). 8 v : Var 0 � Int(v) 2 Carrier(Decl(v))

) 8 v : Var 0 � Int 0(v) 2 Carrier 0(Decl 0(v))

(1), (2), and (6) show that m 0 is an interpretation of T 0.

Secondly, we prove that, under m 0, every predicate p in Pred 0 is true.

According to the de�nition of subtheory, p is a predicate in Pred and is a

predicate of Sig 0, so its free variables are in Var 0. Since each v in Var 0 takes

the same value in both mT and m 0, if p is true under mT , p is also true under

m 0.

According to the de�nition of model, m 0 is a model of T 0.

On the contrary, not every model of T 0 can be extended to a model of T ,

because a predicate in (Pred n Pred 0) may impose additional constraints on

variables in Var 0.

6.1.6 Speci�cation Space and State Space

As discussed in Chapter 3, a design theory involves both design-time concepts

and run-time concepts. The signature part of the theory contains variables

for both kinds of concepts. Thus, a theory can be divided into two parts:

design-time and run-time.

De�nition 6.11 Assume that T is the theory for a design method. The

design-time signature, dtSig , of T describes variables only concerning design-

time concepts and their relationships. The run-time signature, rtSig , of T

describes variables involving run-time concepts. It includes category variables
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for run-time concepts and relation variables that specify relationships between

run-time concepts and design-time concepts.

Both design-time and run-time signatures are subsignatures of T :Sig , and

the following holds,

hdtSig :Var ; rtSig :Vari partition Sig :Var

De�nition 6.12 Assume that T is the theory for a design method. The

design-time theory, TD , of T is a subtheory of T , for which:

1. TD :Sig = T :dtSig

2. TD :Pred � T :Pred , and TD :Pred is the maximum set of predicates of

TD :Sig .

The run-time theory, TR, of T is a subtheory of T , for which:

1. TR:Sig = T :rtSig

2. TR:Pred � T :Pred , and TR:Pred is the maximum set of predicates of

TR:Sig .

The combination of TD and TR is T .

The signature of a theory T corresponds to a theory space, which is multi-

dimensional. Each axis represents a variable in T :Sig :Var with the corre-

sponding type de�ned in T :Sig :Decl , namely a pair of (v ; t). The theory

space of T 's subtheory T 0 is the subspace of T 's theory space projected on

T 0
:Sig . Each axis of such a subspace represents a pair of (v ; t) in T 0

:Sig :Decl .

The design-time theory TD and run-time theory TR of T correspond to a spec-

i�cation space and a state space respectively. The speci�cation space can be

viewed as the theory space projected on dtSig . Similarly, the state space is the

theory space projected on rtSig . The two spaces are subspaces of the theory

space.
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A concrete design is represented by a point in the speci�cation space, and

a run-time application is represented by a point in the state space. Each point

in the speci�cation space corresponds to a set of points in the state space,

meaning that these state points represent the run-time applications of the

concrete design. All the models of the theory constitute a subset of the theory

space. We call the points in this subset the legal points in the theory space.

Accordingly, the legal points in a theory space projected on the speci�cation

space and the state space of the theory space are the legal points of these

subspaces. Figure 6.1 illustrates two theory spaces, their speci�cation spaces

and state spaces, and the equivalence mapping between the legal points of the

spaces.

According to Proposition 6.2, given a subtheory T 0 of theory T , the legal

points of T 's theory space projected on T 0's theory space are a subset of the

legal points of T 0's theory space.

6.1.7 Semantic Equivalence

One design method having the same expressive power as another one, means

every application developed under the former can also be developed under the

latter. We say that the two methods are semantically equivalent. By this

de�nition, there should be one-to-one mapping between the legal points in the

state spaces of two semantically equivalent design theories.

A run-time theory cannot stand on its own, because its semantics by itself

is not complete. A run-time instance relies heavily on the design-time theory

in the sense that the instance conforms to the constraints on its design-time

counterpart, as is already discussed in Section 3.3.1. To be more precise,

semantic equivalence with respect to two design theories means that given a

model for one theory, there should be a corresponding model for the other

theory, and vice versa.
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a

b

c

d

s1
s2

s7
s6

s5

s3s4

dt-theory rt-theory

dt-theory rt-theory

 spec-space  state-space

 state-space spec-space

theory-space

theory-space

Figure 6.1: Two design theories and their theory spaces.

a, b, c, and d are legal points in the speci�cation spaces; s1 .. s7 are legal

points in the state spaces. A line connecting a point in the speci�cation spaces

with a point in the state spaces associates a concrete design with its run-time

application. A pair of lines drawn from a pair of points in one theory space

to a pair of points in the other means that the two models represent the same

real-world application. s3 does not have a corresponding point in the other

theory, meaning that the application represented by (b, s3) cannot be modeled

by the other design method.
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De�nition 6.13 Theory T1 semantically includes theory T2 (T2 vsem T1) i�,

for every legal point mT2 in the theory space of T2, there is a legal point m
T1

in the theory space of T1 so that m
T1 and mT2 model the same application in

the real-world.

Such a pair of mT1 and mT2 is de�ned to have equivalence relation \�sem",

that is,

mT1 �sem mT2

De�nition 6.14 Theory T1 is semantically equivalent to theory T2 i�

T1 vsem T2 ^ T2 vsem T1

De�nition 6.15 Theory T1 is not semantically equivalent to theory T2 i�

: (T1 vsem T2) ^ : (T2 vsem T1)

Vertical lines between the two theory spaces in Figure 6.1 illustrate the

equivalence mapping between the models of the two theories. In reality, be-

cause of the semantic di�erences between the methods, usually the theories

are not semantically equivalent. That is, only a subset of the models of one

theory has counterparts in the other theory, and vice versa. What the com-

parison will do is to determine which subset of the models of one theory is

semantically equivalent to which subset of the models of the other theory.

6.2 Mappings between Components of the The-

ories

The fundamental components of a theory are types, variables, and predicates.

A comparison is performed by comparing these components of two theories.

First of all, we need to determine which components are comparable and which

are not. This section discusses mappings between comparable components.
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6.2.1 Mapping between Types

Before de�ning the comparable mapping between types of two theories in

general, we must de�ne the comparable mapping between given sets, i.e., basic

types. The mapping between basic types is established according to (1) the

original de�nitions for the design categories in the two methods, and (2) the

semantics of the categories described in the theories. If two concepts address

similar issues, have similar de�nition, comply with similar constraints, and

have similar relationships with other comparable concepts, then the two basic

types that represent the two concepts are de�ned to be comparable. For

example, we de�ne \class" in OMT to be comparable to \object" in SMOOA,

because they have similar de�nition and similar relationships to other concepts,

and constraints on them are similar.

Based on the mapping between basic types, we are able to de�ne the com-

parable mapping between any other types.

De�nition 6.16 The two types T1:t and T2:t , one each de�ned in theories

T1 and T2 respectively, are comparable

T1:t �ty T2:t

i� one of the following situations is satis�ed:

1. T1:t and T2:t are given sets, and we have de�ned the two given sets to

be comparable;

2. T1:t = PT1:t
0 and T2:t = PT2:t

0 and

T1:t
0 �ty T2:t

0

3. T1:t = T1:t1 �T1:t2 � : : :�T1:tn and T2:t = T2:t1 �T2:t2 � : : :�T2:tn ,

and for every i 2 1 : : n,

T :ti �ty T2:ti
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4. T1:t = hj T1:x1 : T1:t1; T1:x2 : T1:t2; : : : ; T1:xn : T1:tn ji and T2:t =

hj T2:x1 : T2:t1; T2:x2 : T2:t2; : : : ; T2:xn : T2:tn ji , and there is an

isomorphism f between T1:t and T2:t , which satis�es that for every i 2

1: :n, there is a unique j 2 1: :n so that f ((T1:xi : T1:ti)) = (T2:xj : T2:tj )

and

T1:ti �ty T2:tj

If two types are comparable, then we assume that some values in the two

carrier sets are the same. That is, if T1:t �ty T2:t , then

T1:Carrier(T1:t) \ T2:Carrier(T2:t) 6= ;

6.2.2 Mapping between Variables

After de�ning the comparable mapping between types of the two theories, we

are able to de�ne the comparable mapping between signatures, and hence the

comparable mapping between variables of the theories.

De�nition 6.17 Let T1 and T2 be two theories.

1. Signature mapping from T1 to T2 is de�ned as an injection:

fsigj(T1;T2) : T1:Sig :Decl 7� T2:Sig :Decl

It satis�es that, for every (T1:v ;T1:t) 2 T1:Sig :Decl and every (T2:v ;T2:t) 2

T2:Sig :Decl , if fsigj(T1;T2)((T1:v ;T1:t)) = (T2:v ;T2:t), then T1:t �ty T2:t .

The reverse may not be true.

The signature mapping from theory T2 to theory T1 is the inverse of

fsigj(T1;T2), i.e., fsigj(T2;T1) = f �sigj(T1;T2)
.

2. From a signature mapping fsigj(T1;T2), we can de�ne a variable mapping

fv j(T1;T2):

fv j(T1;T2) : T1:Sig :Var 7� T2:Sig :Var
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It satis�es that

if fsigj(T1;T2)((T1:v ;T1:t)) = (T2:v ;T2:t), then fv j(T1;T2)(T1:v) = T2:v

T1:v and T2:v are said to be comparable, and are called comparable

variables.

Determining the comparability of two variables is similar to determining

the comparability of two types, as discussed at the beginning of Section 6.2.1.

The comparable variables must have comparable types. For example, we de�ne

variables singularRole in OM and single in IM to be comparable, because they

have comparable types (i.e., ROLE in both theories), and the second pred-

icate in schema OMRoleType (on p.57) and the second predicate in schema

IMRoleType (on p.126) show that they have similar meaning. However, two

variables with comparable types may not be comparable variables. For exam-

ple, association in OM and binaryRelationship in IM have comparable types,

but these two variables are not comparable because association is a more gen-

eral concept than binary relationship.

Sometimes, a set-valued variable T1:v in theory T1 corresponds to two or

more set-valued variables in theory T2. In this case, we introduce two or more

new variables, in T1, the values of which partition the values of T1:v . In this

way, each of the newly introduced variable is related to one of the variables in

T2. The new variables are used as auxiliary variables during the comparison.

6.2.3 Non-comparable Variables

If (T1:Sig :Varndom fv j(T1;T2)) 6= ;, then there must be some variables de�ned in

theory T1 having no counterparts in theory T2. After analyzing OM and IM ,

we �nd that if this is the case, a variable T1:v 2 (T1:Sig :Var n dom fv j(T1;T2))

is in one of the following situations.

Redundant. Variable T1:v is redundant. When formalizing a method, we

sometimes use auxiliary variables to make the theory more readable.
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Without these variables, the theory does not change the semantics of

the method. In the following formula,

a : X $ Y ; b : Y $ X j b = a�

either a or b is redundant. Whenever the redundant variable T1:v ap-

pears in a predicate, it can always be replaced by a non-redundant vari-

able in T1. Therefore, T1:v can be ignored during the comparison.

Explicitly de�ned. The concept in T2 exists, but is not explicitly men-

tioned. It may be made explicit by adding an auxiliary variable. For

example, SMOOA has naming, descriptive, and referential attributes,

but OMT does not classify attributes into such detail. Nevertheless,

attributes in OMT can also be naming and descriptive, although not

referential. Thus, we may add two auxiliary variables, naming and

descriptive, in the theory of OMT, to represent the two subsets of the

attribute set. The added auxiliary variable in T2 then can be compared

to T1:v .

Mistyped. T2 has the variable T2:w that speci�es the same aspect of a

design as T1:v does, but the type of T2:w is not comparable to the type

of T1:v . We may rede�ne either T1:v or T2:w , such as changing a schema

to a relation, to make the two variables comparable.

Underlying. T2 does not support the concept, but supports its under-

lying meaning. For example, a design in OMT may use one or more

rules to restrict the legal values that an attribute of certain class can

take on; but SMOOA has no such concept as rules. Instead, a design in

SMOOA gives direct description of an attribute's value range once the at-

tribute is de�ned in an object. To formalize this aspect of OMT, we need

to introduce type RULE and several variables such as generalRestrict ,

constraint , valueRange, etc. By contrast, for SMOOA, we only need to
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introduce one variable, i.e. domainSpec. Despite their di�erent appear-

ances, both theories have the same capability to specify a value range for

an attribute. Therefore, we can regard the description of each attribute

in an information model as adding rules about it.

Subsumed. T1:v can be \subsumed" in another concept. In other words, the

concept speci�ed by T1:v is used to explain another concept. objInstance

in IM is such a variable. It is used to explain rwInstance (on p.153).

Technically di�erent. The two methods use di�erent techniques to model

the same aspect of an application. The two sets of concepts involved in

the modeling techniques thus may not have one-to-one correspondence,

although they actually result in the same real-world applications. They

may employ di�erent notions, which become non-comparable category

variables; and among the category concepts there may exist di�erent re-

lationships, which yield non-comparable relation variables. For example,

SMOOA \formalizes" relationships by means of referential attributes but

OMT does not have similar modeling technique, so SMOOA has extra

concepts in this aspect. However, the two methods have similar expres-

sive power.

In this case, we need to reformulate some de�nitions so that the two

methods in this aspect are as similar as possible and then we can de�ne

the mapping between variables.

Pure non-comparable. T2 does not provide the concept, also does not

support the underlying meaning. For example, operation in OMT is not

supported in SMOOA. In this case, T1:v is a \pure" non-comparable

variable.

181



6.2.4 Mapping between Predicates

De�nition 6.18 Let T1:p be a predicate formula of theory T1, and T1:v1;

T1:v2; : : : ; T1:vn be all free variables in T1:p. If each of these variables has a

comparable variable in theory T2, then T1:p is transformable from T1 to T2.

Let T1:vi and T2:vi be comparable variables, i.e., T2:vi = fv j(T1;T2)(T1:vi),

where i 2 1 : : n. T1:p[T2:v1=T1:v1; T2:v2=T1:v2; : : : ; T2:vn=T1:vn ] (simply de-

noted as T1:p[T2=T1]) is a substitution ofT2:v1; T2:v2; : : : ; T2:vn forT1:v1;T1:v2; : : : ;T1:vn .

T1:p[T2=T1] is a predicate of T2:Sig .

Let T1:P be a set of predicates, T1:P = fT1:p1;T1:p2; : : : ;T1:png, where

every predicate in T1:P is transformable fromT1 to T2. We de�ne T1:P [T2=T1] =

fT1:p1[T2=T1]; T1:p2[T2=T1]; : : : ; T1:pn [T1=T2]g

Similarly, ifT2:p is a transformable predicate formula of theory T2, T2:p[T1=T2]

denotes T2:p [f
�

v j(T1;T2)
(T2:v1)=T2:v1; f

�

v j(T1;T2)
(T2:v2)=T2:v2; : : : ; f

�

v j(T1;T2)
(T2:vn)=T2:vn ].

De�nition 6.19 A predicate p in T1 is non-transformable to T2 if not all

free variables in T1:p have comparable variables in T2. T1:p is conditionally

transformable from T1 to T2, if T1:p becomes transformable after each non-

comparable variable in it is assigned a \null" value to. For the set-valued

variables, the \null" value is the empty set ;.

One example of conditionally transformable predicates is the predicate

\de�nedIn = attrDe�nedIn[opDe�nedIn[roleDe�nedIn" in schemaOMFeatureBasic

(on p.58). Since variable opDe�nedIn does not have a counterpart in IM , this

predicate is not transformable to IM . If let opDe�nedIn = ;, the predicate

becomes \de�nedIn = attrDe�nedIn [ roleDe�nedIn", and hence, becomes

transformable.

If a predicate of T1 is transformable or conditionally transformable to T2,

then we may be able to compare this predicate to the predicates in T2. If two

predicate sets, each from one theory, impose similar constraints on comparable

variables, then we compare them. These predicates are called comparable
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predicates. A non-comparable predicate describes properties speci�c to one

theory and does not have a counterpart in the other theory.

We may compare a conditionally transformable predicate p in one theory

with the predicates in the other theory under the condition that the non-

comparable variables in the predicate all have a \null" value (e.g., ;). Under

this condition, the variable substitution can take place by ignoring the non-

comparable variables.

De�nition 6.20 Given two sets of comparable predicates, T1:P and T2:Q , if

for every p 2 T1:P , T2:Pred j= T1:p[T2=T1] and

for every q 2 T2:Q , T1:Pred j= T2:q [T1=T2]

then we say the two sets of predicates are equivalent, denoted as T1:P 'sem

T2:Q .

Sometimes, when comparing T1:p and T2:q , we may not directly obtain

T1:Pred j= T2:q [T1=T2] or T2:Pred j= T1:p[T2=T1]. However, if putting fur-

ther constraints on free variables in T1:p or T2:q , we may get the conclusion

that T1:Pred j= T2:q [T1=T2] or T2:Pred j= T1:p[T2=T1] or both.

De�nition 6.21 Given two sets of comparable predicates, T1:P and T2:Q . If

T1:P and T2:Q are equivalent under the condition that the restricted values

are assigned to certain free variables in the predicate(s), then we say the two

sets of predicates are conditionally equivalent, denoted as T1:P �sem T2:Q .

Given two comparable predicates T1:p and T2:q . It can be easily proven

that

(T1:p[T2=T1] = T2:q), (T2:q [T1=T2] = T1:p)

Even under the condition that certain variables in T1:p and T2:q take re-

stricted values, the above formula still holds. Based on De�nition 6.20 and
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De�nition 6.21, we have

(T1:p[T2=T1] = T2:q) _ (T2:q [T1=T2] = T1:p))8>>><
>>>:

T1:p �sem T2:q some variables in T1:p and T2:q

take restricted values

T1:p 'sem T2:q otherwise

6.3 Characterizing the Similarities and Di�er-

ences between the Methods

After comparing two theories T1 and T2 under the guidelines to be given in

Section 6.4 and 6.5, as the result, we obtain a core and two extensions to the

core.

6.3.1 Core

The core has properties common to both T1 and T2. It contains a subthe-

ory of T1, denoted as CoreT1
, and a subtheory of T2, denoted as CoreT2

.

CoreT1
:Sig :Var and CoreT2

:Sig :Var contain the variables except \pure" non-

comparable variables ofT1 and T2. The predicates inCoreT1
:Pred and CoreT2

:Pred

place the same constraints on these variables. There is an isomorphic mapping

between the models of CoreT1
and CoreT2

:

8mCoreT1 : M CoreT1 9mCoreT2 : M CoreT2 � mCoreT1 �sem mCoreT2

8mCoreT2 : M CoreT2 9mCoreT1 : M CoreT1 � mCoreT2 �sem mCoreT1

According to Proposition 6.2, each model of T1 restricted on CoreT1
:Sig

is a model of CoreT1
. Similarly, each model of T2 restricted on CoreT2

:Sig is

a model of CoreT2
. However, some models of the core may not be able to be

extended to a model of T1 or T2, because there may be additional restrictions
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on T1 or T2 that prevent the extension. That is,

fmT1 : M T1 � mT1 " CoreT1
:Sigg � M CoreT1

fmT2 : M T2 � mT2 " CoreT2
:Sigg � M CoreT2

6.3.2 Extensions

The extension of each theory to the core contains properties speci�c to the

theory. The extension of T1 is denoted as ExtT1
. It contains a subsignature

and a set of predicates from T1, denoted as ExtT1
:Sig and ExtT1

:Pred respec-

tively. The variables in the extension are \pure" non-comparable variables.

The predicates in ExtT1
can be divided into two parts:

1. the predicates about the variables in ExtT1
, denoted as ExtT1

:ecPred ,

and

2. the predicates imposing further constraints on the variables in CoreT1
,

denoted as ExtT1
:ccPred .

A similar discussion applies to T2.

The predicates in ExtT1
:ccPred (or ExtT2

:ccPred) can be divided into three

parts: ccPredT1
, ccPredT2

, and ccPredT1�T2
. ExtT1

:ccPredT1
imposes more con-

straints on the comparable variables in the core than ExtT2
:ccPredT1

does. Sim-

ilarly, ExtT2
:ccPredT2

imposes more constraints on the comparable variables in

the core than ExtT1
:ccPredT2

does. ExtT1
:ccPredT1�T2

and ExtT2
:ccPredT1�T2

contain comparable predicates that impose di�erent constraints on comparable

variables in the core.

A complete theory is a combination of the core and an extension. That is,

T1 = CoreT1
[ ExtT1

T2 = CoreT2
[ ExtT2

The Venn diagram in Figure 6.2 (a) demonstrates the relationships between

the core and extensions of the two theories.
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 Core_T1 / Core_T2

Ext_T1

Ext_T2

(a) (b)

 Sig_Core

Sig_T2 Sig_T1

  Sig_T1.T2

Ext_T2

Ext_T1

Figure 6.2: Venn Diagrams for relationships between core and extensions.

6.3.3 Characterizing Sets

The signature of CoreT1
(or CoreT2

) can be divided into four parts: SigCore ,

SigT1
, SigT2

, and SigT1�T2
. We call each of them a characterizing set. They are

a partition of CoreT1
:Sig (or CoreT2

:Sig). In the core, there are therefore four

pairs of characterizing sets: (CoreT1
:SigCore ;CoreT2

:SigCore), (CoreT1
:SigT1

;CoreT2
:SigT1

),

(CoreT1
:SigT2

;CoreT2
:SigT2

), and (CoreT1
:SigT1�T2

, CoreT2
:SigT1�T2

). The vari-

ables de�ned in each pair of the signatures are comparable. The Venn diagram

in Figure 6.2 (b) demonstrates that the signature in the core is partitioned by

the characterizing sets. In practice, some of the characterizing sets may be

empty depending on how similar the two theories are.

The meaning of the characterizing sets and their relationships to the pred-

icates in ExtT1
:ccPred and ExtT2

:ccPred are described as follows.

CoreT1
:SigCore and CoreT2

:SigCore :
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ExtT1
and ExtT2

do not impose constraints on the variables in the two

sets. Thus, given a model mT1 , there is a model mT2 so that mT1 "

CoreT1
:SigCore and mT2 " CoreT2

:SigCore represent the same portion of a

concrete design. The converse is also true. That is,

fmT1 : M T1; mT2 : M T2 j

mT1 " CoreT1
:SigCore �sem mT2 " CoreT2

:SigCore � m
T1g = M T1

fmT1 : M T1; mT2 : M T2 j

mT1 " CoreT1
:SigCore �sem mT2 " CoreT2

:SigCore � m
T2g = M T2

CoreT1
:SigT1

and CoreT2
:SigT1

:

ExtT1
imposes more constraints on the variables in CoreT1

:SigT1
than

ExtT2
does on the corresponding variables in CoreT2

:SigT1
. The con-

straints are recorded in ExtT1
:ccPredT1

and ExtT2
:ccPredT1

respectively.

Theory T2 is said to be more general than theory T1 in these aspects.

Thus, a modelmT1 can always �nd a modelmT2 so thatmT1 " CoreT1
:SigT1

and mT2 " CoreT2
:SigT1

represent the same portion of a concrete design.

But the converse is not true. That is,

fmT1 : M T1; mT2 : M T2 j

mT1 " CoreT1
:SigT1

�sem mT2 " CoreT2
:SigT1

� mT1g = M T1

fmT1 : M T1; mT2 : M T2 j

mT1 " CoreT1
:SigT1

�sem mT2 " CoreT2
:SigT1

� mT2g � M T2

CoreT1
:SigT2

and CoreT2
:SigT2

:

ExtT2
imposes more constraints on the variables in CoreT2

:SigT2
than

ExtT1
does on the corresponding variables in CoreT1

:SigT2
. The con-

straints are recorded in ExtT2
:ccPredT2

and ExtT1
:ccPredT2

respectively.

Theory T1 is said to be more general than theory T2 in these aspects.

Thus, a modelmT2 can always �nd a modelmT1 so thatmT2 " CoreT2
:SigT2
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and mT1 " CoreT1
:SigT2

represent the same portion of a concrete design.

But the converse is not true. That is,

fmT1 : M T1; mT2 : M T2 j

mT1 " CoreT1
:SigT2

�sem mT2 " CoreT2
:SigT2

� mT1g � M T1

fmT1 : M T1; mT2 : M T2 j

mT1 " CoreT1
:SigT2

�sem mT2 " CoreT2
:SigT2

� mT2g = M T2

CoreT1
:SigT1�T2

and CoreT2
:SigT1�T2

:

ExtT1
imposes constraints, recorded in ExtT1

:ccPredT1
and ExtT1

:ccPredT1�T2
,

on the variables inCoreT1
:SigT1�T2

; and ExtT2
imposes constraints, recorded

in ExtT2
:ccPredT2

and ExtT2
:ccPredT1�T2

, on the variables in CoreT2
:SigT1�T2

.

The constraints imposed by ExtT1
are di�erent from those imposed by

ExtT2
. Thus, there must be some model mT1 , but not every model, in

M T1, that cannot �nd a model mT2 so that mT1 " CoreT1
:SigT1�T2

and

mT2 " CoreT2
:SigT1�T2

represent the same portion of a concrete design.

The converse is also true. That is,

fmT1 : M T1; mT2 : M T2 j

mT1 " CoreT1
:SigT1�T2

�sem mT2 " CoreT2
:SigT1�T2

� mT1g � M T1

fmT1 : M T1; mT2 : M T2 j

mT1 " CoreT1
:SigT1�T2

�sem mT2 " CoreT2
:SigT1�T2

� mT2g � M T2

6.3.4 Semantically Equivalent Models

Given a model of T1, if any of the variables in ExtT1
is of value other than the

empty set ;, then the model does not have a semantically equivalent model of

T2.

The semantically equivalent models of the two theories are the models of

the core:

8mT1 : M T1 ; mT2 : M T2 �

mT1 �sem mT2 ) mT1 2 M CoreT1 ^ mT2 2 M CoreT2
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The semantically equivalent models in T1 are

fmT1 : M T1 ; mT2 : M T2 j

mT1 " CoreT1
:SigT1

�sem mT2 " CoreT2
:SigT1

^

mT1 " CoreT1
:SigT1�T2

�sem mT2 " CoreT2
:SigT1�T2

� mT1g

Similarly, the semantically equivalent models in T2 are

fmT1 : M T1 ; mT2 : M T2 j

mT1 " CoreT1
:SigT2

�sem mT2 " CoreT2
:SigT2

^

mT1 " CoreT1
:SigT1�T2

�sem mT2 " CoreT2
:SigT1�T2

� mT2g

6.4 Comparison Process

The concepts and categories of a theory are usually closely related to each

other. If comparing the related concepts all at once, we have to consider

almost the entire theory, which makes the comparison di�cult to manage.

The way we organize a theory into schemas provides a basis for the com-

parison to proceed incrementally. In this way, we can make the comparison

better organized and more understandable.

A theory is composed of a series of subtheories, which are presented in a

series of Z schemas. When formalizing the method, we begin with the schemas

with some basic concepts and categories. Based on the established schemas,

we then introduce new schemas that may include some new concepts, relations

between the concepts, and constraints on the concepts and the relations. Each

newly introduced schema usually includes one or more established schemas.

Each schema is regarded as a subtheory.

The comparison may be accomplished under a stepwise strategy. Initially,

the core and extensions are empty. They are extended as the comparison

continues.

At each step, we choose one or more schemas from each theory to compare.

We do not take arbitrary schemas; they are intentionally constructed. The
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chosen schemas should describe the same or similar aspect of the theories. In

accordance with the order in which the concepts are formalized in a theory, a

comparison begins with the design-time concepts and predicates, then moves

on to run-time ones.

At each step, we need to determine the comparability between newly in-

troduced variables and predicates. We may add auxiliary variables or change

the way some variables are formalized when necessary, and accordingly, add or

change the related predicates. If a variable or a predicate in the chosen schema

of one theory does not have a comparable counterpart in the chosen schema

of the other theory, but has a comparable counterpart in other schemas of the

other theory, we split the schema into two or more parts. The comparison of

these schemas then proceeds in several steps.

We do not consider the schemas that are just the combinations of other

schemas, e.g. OMName b= OMEntityName ^ OMFeatureName, because they

do not introduce new variables and predicates, and thus do not give any new

information.

At each step, guided by the decision rules given in Section 6.5, we compare

the newly introduced variables and predicates, and classify them into the core

or extensions.

The comparison repeats the above steps until all the schemas are compared.

6.5 Decision Rules

The decision rules serve as criteria during the comparison in deciding whether

a part of a theory should belong to the core or an extension.

The rules are generalized from the analyses of the theories for OMT's

object model and SMOOA's information model. They are general enough to

be applied to comparing other design methods that embody similar modeling

techniques. Should we encounter any circumstances that none of the rules

could be applied to, we make decision based on the de�nitions of core and
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extension.

The characterizing sets reveal the more detailed di�erences between the

two theories. The rules for dividing the signatures in the core into the char-

acterizing sets are presented in Appendix B.

6.5.1 Rules for Variables

1. The comparable variables belong to the core.

2. A \pure" non-comparable variable of T discussed in Section 6.2.3 belongs

to ExtT .

3. Let T :v be a \redundant" non-comparable variable which can be re-

placed by a non-redundant variable T :w . T :v belongs to the core or to

the extension as T :w does.

4. Let T1:v be an \explicitly de�ned" or "mistyped" non-comparable vari-

able. We can create auxiliary variables in T2 or change the declaration

of T1:v to make T1:v comparable. The comparison is then guided by

rule 1 and rule 2.

5. An \underlying" non-comparable variable belongs to the core.

6. A \subsumed" non-comparable variable belongs to the core or to the

extension as the variable that \subsumes" it does.

7. A set of \technically di�erent" non-comparable variables needs reformu-

lating during the comparison. Whether these variables should belong to

the core or to the extensions is determined by the new variables.

6.5.2 Rules for Comparable Predicates

8. If two sets of comparable predicates are transformable and are equivalent,

then they belong to the core.
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9. Given two sets of comparable predicates T1:P and T2:Q . If they are

transformable, and if

� T1:Pred j= T2:Q [T1=T2] but T2:Pred j== T1:P [T2=T1], then

T1:P � ExtT1
:ccPredT1

and T2:Q [T1=T2] � CoreT1

T2:Q � CoreT2

� T2:Pred j= T1:P [T2=T1] but T1:Pred j== T2:Q [T1=T2], then

T1:P � CoreT1

T2:Q � ExtT2
:ccPredT2

and T1:P [T2=T1] � CoreT2

10. Given two sets of comparable predicates T1:P and T2:Q .

� If they are conditionally transformable with T1:P having non-comparable

variables, and T1:P �sem T2:Q or T2:Pred j= T1:P [T2=T1], then

T1:P � ExtT1
:ccPredT2

T2:Q � ExtT2
:ccPredT2

� If they are conditionally transformable with T2:Q having non-comparable

variables, and T1:P �sem T2:Q or T1:Pred j= T2:Q [T1=T2], then

T1:P � ExtT1
:ccPredT1

T2:Q � ExtT2
:ccPredT1

11. Given two sets of comparable predicates T1:P and T2:Q . If they do not

satisfy the conditions for rule 9 and rule 10, then

T1:P � ExtT1
:ccPredT2�T2

T2:Q � ExtT2
:ccPredT1�T2
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6.5.3 Rules for Non-comparable Predicates

12. If a non-comparable predicate T1:p (or T2:q) is about the properties of

the variables in CoreT1
(or CoreT2

), then it belongs to ExtT1
:ccPredT1

(or ExtT2
:ccPredT2

).

13. If a non-comparable predicate T1:p (or T2:q) is about the properties of a

\pure" non-comparable variable, then the predicate belongs to ExtT1
:ecPred

(or ExtT2
:ecPred).

14. If a non-comparable predicate is about how a \redundant" non-comparable

variable can be replaced by a non-redundant variable, then the predicate

belongs to the core or to the extension as the redundant variable does.

15. If a non-comparable predicate T1:p is about the properties of an \explic-

itly de�ned" or \mistyped" non-comparable variable, then the predicate

may become comparable after adding auxiliary variables and predicates

in T2 or changing the de�nition of the variable. In this case, the com-

parison follows rule 8 to rule 13.

16. If a non-comparable predicate T1:p is about the properties of an \under-

lying" non-comparable variable, we do not consider it non-comparable.

In this case, T1:p belongs to the core.

17. If a non-comparable predicate T1:p is about the properties of a \sub-

sumed" non-comparable variable, whether it should belong to the core

or to the extension is determined by the non-comparable variable.

18. If a non-comparable predicate T1:p is about properties of a \techni-

cally di�erent" non-comparable variable, we do not consider it non-

comparable. In this case, the comparison proceeds after we reformulate

the variables and predicates.
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Chapter 7

Comparison of OMT and

SMOOA

In this chapter, we discuss the comparison of the design-time theories of OM

and IM . We extract the core from the two theories, and identify the extension

to the core for each theory. Both OM and IM are subtheories with respect to

the methods as a whole1.

Section 7.1 de�nes the mapping between types. Section 7.2 presents the

stepwise comparison of the two theories. Section 7.3 summarizes the compar-

ison result.

7.1 Mapping between Types

Table 7.1 illustrates the mapping between the basic types and subsets of the

basic types of OM and IM . Some of the types in one theory do not have com-

parable counterparts in the other theory. The comparability of other complex

types that are constructed from the basic types is determined according to

De�nition 6.16 in Chapter 6.

1The complete theory for OMT also includes the theories for dynamic model, functional

model, and other representational aspects of the method. It is the same with SMOOA.
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7.2 Comparing the Two Theories

For convention, we de�ne some simpli�ed notations to be used in the compar-

ison.

1. Each schema is regarded as a subtheory. We take the schema name as

the subtheory name.

2. For a variable v of theory OM , we use OM :v to denote it, or simply use v

if the context is clear. It is the same with a variable in IM . Furthermore,

we use fv as shorthand for fv j(OM ;IM ).

3. Given two schemas subOM and subIM from the two theories, fv "

(subOM ; subIM ) denotes a set of comparable pairs, each of which is

composed of a variable de�ned in subOM and a variable in subIM . The

union of all such sets is fv . These variables belong to the core.

The set (subOM :Sig :Var n dom fv) denotes the \pure" non-comparable

variables de�ned in subOM . These variables belong to ExtOM . Similarly,

(subIM :Sig :Var n ran fv) denotes the \pure" non-comparable variables

de�ned in subIM . These variables belong to ExtIM .

4. To each predicate in a schema, we give a numerical subscript according

to the order it appears in the schema. A predicate p of schema subOM

of OM is denoted as subOM :p or simply OM :p if the context is clear.

It is the same with a predicate in IM .

5. We de�ne a transformation function from the predicates of OM to the

predicates of IM . Given two subtheories subOM and subIM , and a

predicate subOM :p which is transformable from OM to IM , the trans-

formation function � is de�ned as follows.

�(subOM :p) b= p[subIM =subOM ]
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�(subOM :p) is a predicate of subIM :Sig . If the scope of discussion is in

certain subtheory, we can simply use �(OM :p).

Similarly, �� is de�ned as a transformation function from the predicates

of IM to the predicates of OM . For a transformable predicate subIM :p,

�
�(subIM :p) b= p[subOM =subIM ]

The transformation function can be applied to a conditionally trans-

formable predicate after the non-comparable variables in the predicate

take \null" values.

Each of the following subsections compares one or more schemas from

each theory. Every schema to be compared is accompanied with the page

number which refers to where the schema is de�ned in the dissertation. At

each comparison step, two parts may be presented: variable and predicate.

The variable part lists the pairs of the comparable variables as well as the

non-comparable variables. The predicate part discusses the predicates that

impose constraints on the variables.

7.2.1 Basic Design Elements

OMDTData (p.51) vs. IMDTData (p.118) :

Variable:

fv " (OMDTData; IMDTData) =

f(entity ; entity); (class; object); (association; relationship);

(feature; feature); (attribute; attribute); (role; role)g

OMDTData:Sig :Var n dom fv = foperationg

IMDTData:Sig :Var n ran fv = ;

Predicate:

OM :p1 vs. IM :p1:
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�(OM :p1) = �(OM :class 6= ;)

= (IM :object 6= ;)

= IM :p1

According to rule 8,

OM :p1 2 CoreOM and IM :p1 2 CoreIM

OM :p2 vs. IM :p2:

�(OM :p2) = �(hOM :class;OM :associationi partition OM :entity)

= (hIM :object ; IM :relationshipi partition IM :entity)

= IM :p2

According to rule 8,

OM :p2 2 CoreOM and IM :p2 2 CoreIM

OM :p3 vs. IM :p3:

�(OM :p3) = �(hOM :attribute;OM :operation;OM :rolei partition OM :feature)

When OM :operation = ;, we have

�(OM :p3) = �(hOM :attribute;OM :rolei partition OM :feature)

= (hIM :attribute; IM :rolei partition IM :feature)

= IM :p3

Otherwise, �(OM :p3) 6= IM :p3. According to rule 10,

OM :p3 2 ExtOM :ccPredIM and IM :p3 2 ExtIM :ccPredIM
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7.2.2 Attributes

OMAttribute (p.52) vs. IMAttributeBasic (p.119) :

Variable:

In IMAttributeBaisc, variable hasAttribute is redundant because hasAttribute =

attrDe�nedIn�. Therefore, we only considerOM :attrDe�nedIn and IM :attrDe�nedIn.

fv " (OMAttribute; IMAttributeBasic) = f(attrDe�nedIn; attrDe�nedIn)g

According to rule 3,

IM :hasAttribute 2 CoreIM

Predicate:

OM :p1 vs. IM :p1:

�(OM :p1) = �(domOM :attrDe�nedIn = OM :attribute)

= (dom IM :attrDe�nedIn = IM :attribute)

= IM :p1

According to rule 8,

OM :p1 2 CoreOM and IM :p1 2 CoreIM

OM :p2 vs. IM :p2:

�(OM :p2) = �(ranOM :attrDe�nedIn � OM :entity)

= (ran IM :attrDe�nedIn � IM :entity)

IM :p2 = (ran IM :attrDe�nedIn = IM :object)

We can prove that

IM :Pred j= �(OM :p2)

Proof. From IMDTData:p2, we have

IM :object � IM :entity
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so

IM :p2 = (ran IM :attrDe�nedIn = IM :object)

) (ran IM :attrDe�nedIn � IM :entity)

= �(OM :p2)

Therefore,

IMDTData:p2; IM :p2 j= �(OM :p2)

On the other hand, IM :p2 does not always hold when �(OM :p2) is true.

That is, OM :Pred j== �
�(IM :p2). According to rule 9,

OM :p2 2 CoreOM and IM :p2 2 ExtIM :ccPredIM and �(OM :p2) 2 CoreIM

IM :p3:

IM :p3 is the predicate about the \redundant" non-comparable variable

IM :hasAttribute. Since the variable is in CoreIM , according to rule 14, the

predicate belongs to CoreIM .

IMAttributeType (p.119) :

SMOOA introduces three types of attributes in the information model.

In contrast, OMT does not discuss speci�c types of attributes. However, at-

tributes in the object model can also be naming or descriptive. We create an

auxiliary schema for OM that describes the attribute types:

auxOMAttributeType

OMAttribute

descriptiveAttr : PATTRIBUTE

namingAttr : PATTRIBUTE

hdescriptiveAttr ; namingAttri partition attribute
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Now we can compare IMAttributeType and auxOMAttributeType.

Variable:

fv " (auxOMAttributeType; IMAttributeType) =

f(descriptiveAttr ; descriptiveAttr); (namingAttr ; namingAttr)g

auxOMAttributeType:Sig :Var n dom fv = ;

IMAttributeType:Sig :Var n ran fv = freferentialAttrg

Predicate:

OM :p1 vs. IM :p1:

�(OM :p1) = �(hOM :descriptiveAttr ;OM :namingAttri partition OM :attribute)

= (hIM :descriptiveAttr ; IM :namingAttri partition IM :attribute)

= IM :p1

According to rule 8,

OM :p1 2 CoreOM and IM :p1 2 CoreIM

IM :p2:

IM :p2 speci�es the characteristic of IM :referentialAttr . According to rule 13,

IM :p2 2 ExtIM :ecPred

7.2.3 Operations and Methods

OM :operation belongs to ExtOM , so do the variables de�ned inOMOperationProperty

(p.53), OMOperation (p.54), and OMOperationType1 (p.54). According to

rule 2,

fOM :argumentOfOp;OM :resultOfOp;

OM :opDe�nedIn;OM :queryOp;OM :updateOpg � ExtOM

According to rule 13, the predicates de�ned in these schemas belong to ExtOM :ecPred .
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Method is a concept speci�c toOM , which is formalized in schemas OMMethodProperty

(p.60), and OMMethod (p.60). The variables de�ned in the schemas belong to

ExtOM :

fOM :method ;OM :argumentOfMethod ;OM :resultOfMethod ;

OM :implement ;OM :methodLookupg � ExtOM

The predicates de�ned in the schemas belong to ExtOM :ecPred .

7.2.4 Roles

OMRoleProperty (p.55) vs. IMRoleProperty (p.125) :

Variable:

fv " (OMRoleProperty ; IMRoleProperty) =

f(playerOfRole; playerOfRole); (multiplicityOfRole;multiplicityOfRole)g

Predicate:

OM :p1 vs. IM :p1:

�(OM :p1) = �(OM :playerOfRole 2 OM :role ! OM :class)

= (IM :playerOfRole 2 IM :role ! IM :object)

= IM :p1

According to rule 8,

OM :p1 2 CoreOM and IM :p1 2 CoreIM

OM :p2 vs. IM :p2:

�(OM :p2) = �(domOM :multiplicityOfRole = OM :role)

= (dom IM :multiplicityOfRole = IM :role)

= IM :p2
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According to rule 8,

OM :p2 2 CoreOM and IM :p2 2 CoreIM

OMRole (p.56) vs. IMRoleBasic (p.123) :

Variable:

fv " (OMRole; IMRoleBasic) =

f(roleDe�nedIn; roleDe�nedIn); (hasRole; hasRole)g

Predicate:

OM :p1 vs. IM :p1:

�(OM :p1) = �(OM :roleDe�nedIn 2 OM :role !! OM :association)

= (IM :roleDe�nedIn 2 IM :role !! IM :relationship)

= IM :p1

OM :p1 2 CoreOM and IM :p1 2 CoreIM

OM :p2 vs. IM :p2:

�(OM :p2) = �(OM :hasRole = OM :roleDe�nedIn�)

= (IM :hasRole = IM :roleDe�nedIn�)

= IM :p2

OM :p2 2 CoreOM and IM :p2 2 CoreIM

OM :p3 vs. IM :p3:

�(OM :p3) = �(8 a : OM :association � #(OM :hasRole(j fag j)) � 2)

= (8 rel : IM :relationship � #(IM :hasRole(j frelg j)) � 2)

= IM :p3

OM :p3 2 CoreOM and IM :p3 2 CoreIM

OMRoleType (p.57) vs. IMRoleType (p.126) :
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Roles are classi�ed into three types in OM and four types in IM . In fact,

the members of OM :multipleRole can be further divided into two sets. We

add two auxiliary variables and two predicates in OMRoleType:

onemulRole : PROLE

optmulRole : PROLE

8m : onemulRole � 0 =2 multiplicityOfRole(j fmg j) ^

(9 n : multiplicityOfRole(j fmg j) � n > 1)

(OMRoleType:padd1)

8 om : optmulRole � 0 2 multiplicityOfRole(j fomg j) ^

(9 n : multiplicityOfRole(j fomg j) � n > 1)

(OMRoleType:padd2)

We need to prove that an element of multipleRole is either an element of

onemulRole or an element of optmulRole, that is,

honemulRole; optmulRolei partition multipleRole

This is equal to the following two formulas:

(1). onemulRole [ optmulRole = multipleRole

(2). onemulRole \ optmulRole = ;

We now prove the above two formulas hold.

Proof.

(1).

OM :padd1 = (8m : onemulRole � 0 =2 multiplicityOfRole(j fmg j) ^

(9 n : multiplicityOfRole(j fmg j) � n > 1))

) (8m : onemulRole � (9 n : multiplicityOfRole(j fmg j) � n > 1))

OM :padd2 = (8 om : optmulRole � 0 2 multiplicityOfRole(j fomg j) ^

(9 n : multiplicityOfRole(j fomg j) � n > 1))

) (8 om : optmulRole � (9 n : multiplicityOfRole(j fomg j) � n > 1))
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Comparing the above two formulas to OM :p4, we see that any element of

onemulRole or optmulRole is an element of multipleRole.

(2). The two sets onemulRole and optmulRole are de�ned to be di�er-

ent according to the di�erence of the multiplicity of their roles, described in

OM :padd1 and OM :padd2. The multiplicity of any role in optmulRole contains

\0", while the multiplicity of any role in onemulRole does not. Therefore, an

element of one set cannot be an element of another set, and vice versa.

Variable:

We de�ne

fv " (OMRoleType; IMRoleType) =

f(singularRole; single); (optionalRole; conditionSingle);

(onemulRole;multiple); (optmulRole; conditionMultiple)g

OM :onemulRole andOM :optmulRole represent OM :multipleRole, and the two

auxiliary variables are in the core. Therefore,

OM :multipleRole 2 CoreOM

Predicate:

�(OM :p1) = �(hOM :singularRole;OM :optionalRole;

OM :multipleRolei partition OM :role)

= �(hOM :singularRole;OM :optionalRole;

OM :onemulRole;OM :optmulRolei partition OM :role)

= (hIM :single; IM :conditionSingle;

IM :multiple; IM :conditionMultiplei partition IM :role)

= IM :p1

Therefore,

OM :p1 2 CoreOM and IM :p1 2 CoreIM
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Also, we can prove that

OM :p2 'sem IM :p2

OM :p3 'sem IM :p3

OM :padd1 'sem IM :p4

OM :padd2 'sem IM :p5

Therefore,

fOM :p2;OM :p3;OM :padd1;OM :padd2g � CoreOM

fIM :p2; IM :p3; IM :p4; IM :p5g � CoreIM

OM :p4 is a combination of OM :padd1 and OM :padd2. Therefore,

OM :p4 2 CoreOM

OMOrderedRole (p.64) :

The notation for ordered roles is the modeling technique speci�c to OMT.

However, an ordered role is merely an element of multipleRole. If the two

theories have a common model, there must be instances that correspond to

both orderedRole in OM and multiple in IM . Therefore, orderedRole is an

\explicitly de�ned" non-comparable variable. We can add to IM an auxiliary

variable and an auxiliary predicate similar to the ones in OMOrderedRole.

The variable OM :orderedRole and the predicate de�ned in OMOrderedRole

belong to CoreOM .

7.2.5 Features

OMFeatureBasic (p.58) vs. IMFeature (p.127) :

OMFeatureBasic has two variables but IMFeature has one, where OM :de�nedIn

is comparable to IM :hasFeature�, and OM :hasFeature has di�erent semantics

from IM :hasFeature. We add one variable to IMFeature,
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de�nedIn : FEATURE $ ENTITY

de�nedIn = hasFeature� (IMFeature:padd )

Even though OM :hasFeature and IM :hasFeature do not have the same

meaning, they are still de�ned to be comparable because a model of IM re-

stricted to IM :hasFeature is a subset of the corresponding model of OM re-

stricted to OM :hasFeature.

Variable:

fv " (OMFeatureBasic; IMFeature) =

f(de�nedIn; de�nedIn); (hasFeature; hasFeature)g

Predicate:

OM :p1 and OM :p3 vs. IM :padd :

IM :padd = (IM :de�nedIn = IM :hasFeature�)

= (IM :de�nedIn = IM :hasAttribure� [ IM :hasRole�)

= (IM :de�nedIn = IM :attrDe�nedIn [ IM :roleDe�nedIn)

OM :p1 = (OM :de�nedIn = OM :attrDe�nedIn[

OM :opDe�nedIn [ OM :roleDe�nedIn)

OM :opDe�nedIn is a non-comparable variable. When OM :opDe�nedIn =

;, we have

IM :padd �sem OM :p1

According to rule 10,

OM :p1 2 ExtOM :ccPredIM and IM :padd 2 ExtIM :ccPredIM
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�(OM :p3) = �(OM :de�nedIn� � OM :hasFeature)

= (IM :de�nedIn� � IM :hasFeature)

IM :padd = (IM :de�nedIn = IM :hasFeature�)

= (IM :de�nedIn� = IM :hasFeature)

) (IM :de�nedIn� � IM :hasFeature)

= �(OM :p3)

On the other hand, we have OM :Pred j== �
�(IM :padd). According to rule 9,

OM :p3 2 CoreOM and IM :padd 2 ExtIM :ccPredIM and �(OM :p3) 2 CoreIM

OM :p2 vs. IM :p1:

�(OM :p2) = �(OM :hasFeature 2 OM :entity $ OM :feature)

= (IM :hasFeature 2 IM :entity $ IM :feature)

IM :p1 = (IM :hasFeature = IM :hasAttribute [ IM :hasRole)

= (IM :hasFeature = IM :attrDe�nedIn� [ IM :roleDe�nedIn�)

) (IM :hasFeature 2 IM :object $ IM :attribute[

IM :relationship $ IM :role)

) (IM :hasFeature 2 IM :entity $ IM :feature)

= �(OM :p2)

On the other hand, we have OM :Pred j== �
�(IM :p1). Therefore,

OM :p2 2 CoreOM and IM :p1 2 ExtIM :ccPredIM and �(OM :p2) 2 CoreIM

7.2.6 More Schemas about Attributes

OMAttributeRange (p.91) vs. IMDomainSpeci�cation (p.120) :

Variable:

fv " (OMAttributeRange; IMDomainSpeci�cation) =

f(valueRange; domainSpec)g
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Predicate:

OM :p1 vs. IM :p1:

From IMFeature:p1:

IM :hasFeature = IM :hasAttribute [ IM :hasRole

= IM :attrDe�nedIn� [ IM :roleDe�nedIn�

= (IM :attribute $ IM :object)� [ (IM :role !! IM :relationship)�

we have

IM :hasFeature B IM :attribute = IM :hasAttribute

and

dom(IM :hasFeature B IM :attribute) = dom IM :hasAttribute

= ran IM :attrDe�nedIn

= IM :object

Therefore,

�
�(IM :p1) = �

�(dom IM :domainSpec = IM :object)

= �
�(dom IM :domainSpec = dom(IM :hasFeature B IM :attribute))

= (domOM :valueRange = dom(OM :hasFeature B OM :attribute))

= OM :p1

According to rule 8,

OM :p1 2 CoreOM and IM :p1 2 CoreIM

OM :p2 vs. IM :p2:

�
�(IM :p2) = �

�(8 obj : IM :object �

dom(IM :domainSpec(obj )) = IM :hasAttribute(j fobjg j))

= �
�(8 obj : dom IM :domainSpec �

dom(IM :domainSpec(obj )) = IM :hasFeature(j fobjg j) \ IM :attribute)

= (8 e : domOM :valueRange �

dom(OM :valueRange(e)) = OM :hasFeature(j feg j) \ OM :attribute)

= OM :p2
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Therefore,

OM :p2 2 CoreOM and IM :p2 2 CoreIM

OM :p3:

The last predicate in schema OMAttributeRange is about the values that

each attribute may take on under the constraint rules. They involve global

variable OM :valueOfType (p.52), and schemas OMAttributeProperty (p.52),

OMGenAttrRestriction (p.88), OMAttributeConstraintBasic (p.89), andOMAttributeConstraint

(p.90). These schemas are used to describe which rules are applied to which

attributes. Although SMOOA does not have \rules" on attributes, we assume

that the similar rules implicitly apply when the atomic values are assigned

to each attribute described in relation variable IM :domainSpec. Therefore, in

this aspect, the two methods are equivalent. The variables de�ned in these

schemas are \underlying" non-comparable variables. According to rule 5,

fOM :valueOfType;OM :typeOfAttr ;OM :restrict ;

OM :generalRestrict ;OM :constraintg � CoreOM

According to rule 16, OMAttributeRange:p3, the global predicate forOM :valueOfType,

and the predicates de�ned in the above four schemas belong to CoreOM .

Default Values

Attribute default value is a concept speci�c to OM , which is formalized in

schemas OMDefaultValueBasic (p.59) and OMDefaultValue (p.91). The vari-

able

OM :defaultValOfAttr de�ned in the schemas belongs to ExtOM ; the predicates

de�ned in the schemas belong to ExtOM :ecPred .

7.2.7 Keys and Identi�ers

OMCandidateKeyBasic (p.96) vs. IMIdenti�erBasic (p.121) :
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Variable:

fv " (OMCandidateKeyBasic; IMIdenti�erBasic) =

f(key ; identi�er); (hasKeyElement ; hasIdElement)g

Predicate:

OM :p1 vs. IM :p1:

�(OM :p1) = �(domOM :hasKeyElement = OM :key)

= (dom IM :hasIdElement = IM :identi�er)

= IM :p1

OM :p1 2 CoreOM and IM :p1 2 CoreIM

OM :p2 vs. IM :p2:

�(OM :p2) = �(ranOM :hasKeyElement � OM :feature)

= (ran IM :hasIdElement � IM :feature)

Since IM :attribute � IM :feature, which is derived from IMDTData:p2,

IM :p2 = (ran IM :hasIdElement � IM :attribute)

) (ran IM :hasIdElement � IM :feature)

We have

IMDTData:p2; IM :p2 j= �(OM :p2)

but OM :Pred j== �
�(IM :p2). According to rule 9,

OM :p2 2 CoreOM and IM :p2 2 ExtIM :ccPredIM and �(OM :p2) 2 CoreIM

OMCandidateKey (p.97) vs. IMIdenti�er (p.122) :

Variable OM :keyedEntity is an auxiliary variable. It is introduced to de-

note the entities that have keys. Similarly in IM , we can also introduce such
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a variable, say IM :idedEntity , which obviously equals to IM :object . We add

the following variable to IMIdenti�er :

idedEntity : PENTITY

idedEntity = object (IMIdenti�er :padd)

A preferred identi�er is merely an identi�er in IM . We assume each class

that has keys in OM has a \preferred key", which is one of the keys of the

class. We add the following variable to OMCandidateKey :

hasPreferredKey : CLASS 7� KEY

hasPreferredId 2 keyedEntity � key (OMCandidateKey :padd1)

8 c : class � isKeyOf (hasPreferredKey(c)) = c (OMCandidateKey :padd2)

Variable:

fv " (OMCandidateKey ; IMIdenti�er) =

f(isKeyOf ; isIdOf ); (keyedEntity ; idedEntity);

(hasPreferredKey ; hasPreferredId)g

OM :theKey is redundant because theKey = isKeyOf �. According to

rule 3,

OM :theKey 2 CoreOM

Predicate:

OM :p1 vs. IM :padd :

�(OM :p1) = �(OM :keyedEntity � OM :entity)

= (IM :idedEntity � IM :entity)

IM :padd = (IM :idedEntity = IM :object)
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The result of the comparison of these two predicates is the same with that

of the comparison of OMAttribute:p2 and IMAttributeBasic:p2:

IMDTData:p2; IM :padd j= �(OM :p1)

OM :Pred j== �
�(IM :padd )

Therefore,

OM :p1 2 CoreOM and IM :padd 2 ExtIM :ccPredIM and �(OM :p1) 2 CoreIM

OM :p2 vs. IM :p1:

�(OM :p2) = �(OM :isKeyOf 2 OM :key !! OM :keyedEntity)

= (IM :isIdOf 2 IM :identi�er !! IM :idedEntity)

= (IM :isIdOf 2 IM :identi�er !! IM :object)

= IM :p1

OM :p1 2 CoreOM and IM :p1 2 CoreIM

OM :p3:

OM :p3 : OM :theKey = OM :isKeyOf � belongs to CoreOM .

OM :p4 and IM :p2:

These two predicates further specify the properties of OM :hasKeyElement

and

IM :hadIdElement .

From IM :p1 : isIdOf 2 identi�er !! object , we can prove

isIdOf �(j object j) = identi�er

and therefore, given a predicate P ,

8 o : object 8 id : isIdOf �(j fog j) � P(id), 8 id : identi�er � P(id)

IM :p2 can be changed to the following form:

IM :p2 = (8 id : identi�er �
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hasIdElement(j fidg j) � hasAttribute(j fisIdOf (id)g j)))

= (8 o : object �

(8 id : isIdOf �(j fog j) �

hasIdElement(j fidg j) � hasAttribute(j fisIdOf (id)g j)))

= (8 o : idedEntity \ object �

(8 id : isIdOf �(j fog j) �

hasIdElement(j fidg j) � hasFeature(j fog j)) \ attribute)

OM :p4 = (8 c : keyedEntity \ class �

(8 k : theKey(j fcg j) �

hasKeyElement(j fkg j) � attribute \ hasFeature(j fcg j)))

= (8 c : keyedEntity \ class �

(8 k : isKeyOf �(j fcg j) �

hasKeyElement(j fkg j) � attribute \ hasFeature(j fcg j)))

It is obvious that OM :p4 'sem IM :p2. Therefore,

OM :p4 2 CoreOM and IM :p2 2 CoreIM

OM :p6 vs. IM :p3:

�(OM :p6) = IM :p3

Therefore,

OM :p6 2 CoreOM and IM :p3 2 CoreIM

OM :p5:

OM :p5 is about properties of keys for associations and cannot be compared

to any predicate in IM . It imposes the constraint on OM :hasKeyElement .

According to rule 12,

OM :p5 2 ExtOM :ccPredOM
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OM :padd1 vs. IM :p4 and OM :padd2 vs. IM :p5:

We can prove that

OM :padd1 'sem IM :p4

OM :padd2 'sem IM :p5

Therefore,

fOM :padd1;OM :padd2g � CoreOM

fIM :p4; IM :p5g � CoreIM

Candidate Keys for Relationships

The predicates in schemas OMm mKey (p.98), OMone mKey (p.98), and

OMopt oneKey (p.99) are about candidate keys for relationships. They are

speci�c toOM , and impose constraints onOM :isKeyOf andOM :hasKeyElement ,

so they belong to ExtOM :ccPredOM .

7.2.8 Binary Associations and Relationships

OMBinaryAssociationBasic (p.66) vs. IMBinaryRelationship (p.128):

Variable:

fv " (OMBinaryAssociationBasic; IMBinaryRelationship) =

f(binaryAssociation; binaryRelationship)g

Predicate:

�(OM :p1) = �(OM :binaryAssociation � OM :association)

= IM :binaryRelationship � IM :relationship

= IM :p1

�(OM :p2) = �(8 a : OM :binaryAssociation � #(OM :hasRole(j fag j)) = 2)

= (8 rel : IM :binaryRelationship � #(IM :hasRole(j frelg j)) = 2)

= IM :p2
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The result is

fOM :p1;OM :p2g � CoreOM

fIM :p1; IM :p2g � CoreIM

OMBinaryAssociationType(p.68)vs. IMBinaryRelationshipType(p.129):

Similar to \roles", \binary associations" in OM can be further divided into

ten types, based on the types of their roles. We change OMBinaryAssociationType

to the following schema:
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auxOMBinaryAssociationType

OMBinaryAssociationBasic

one oneAssoc; one onemulAssoc; one optmulAssoc : PASSOCIATION

onemul onemulAssoc; onemul optmulAssoc : PASSOCIATION

optmul optmulAssoc; one optAssoc; opt onemulAssoc : PASSOCIATION

opt optmulAssoc; opt optAssoc : PASSOCIATION

hone oneAssoc; one onemulAssoc; one optmulAssoc; onemul onemulAssoc;

onemul optmulAssoc; optmul optmulAssoc; one optAssoc; opt onemulAssoc;

opt optmulAssoc; opt optAssoci partition binaryAssociation

8 a : one oneAssoc � (9 r1; r2 : singularRole � hasRole(j fag j) = fr1; r2g)

8 a : one onemulAssoc �

(9 r1 : singularRole; r2 : onemulRole � hasRole(j fag j) = fr1; r2g)

8 a : one optmulAssoc �

(9 r1 : singularRole; r2 : optmulRole � hasRole(j fag j) = fr1; r2g)

8 a : onemul onemulAssoc � (9 r1; r2 : onemulRole � hasRole(j fag j) = fr1; r2g)

8 a : onemul optmulAssoc �

(9 r1 : onemulRole; r2 : optmulRole � hasRole(j fag j) = fr1; r2g)

8 a : optmul optmulAssoc � (9 r1; r2 : optmulRole � hasRole(j fag j) = fr1; r2g)

8 a : one optAssoc �

(9 r1 : singularRole; r2 : optionalRole � hasRole(j fag j) = fr1; r2g)

8 a : opt onemulAssoc �

(9 r1 : optionalRole; r2 : onemulRole � hasRole(j fag j) = fr1; r2g)

8 a : opt optmulAssoc �

(9 r1 : optionalRole; r2 : optmulRole � hasRole(j fag j) = fr1; r2g)

8 a : opt optAssoc � (9 r1; r2 : optionalRole � hasRole(j fag j) = fr1; r2g)

Schema auxOMBinaryAssociationType has the same semantics as schema

OMBinaryAssociationType.

Variable:
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fv " (auxOMBinaryAssociationType; IMBinaryRelationshipType) =

f(one oneAssoc;R11); (one onemulAssoc;R1M );

(one optmulAssoc;R1Mc); (onemul onemulAssoc;RMM );

(onemul optmulAssoc;RMMc); (optmul optmulAssoc;RMcMc);

(one optAssoc;R11c); (opt onemulAssoc;R1cM );

(opt optmulAssoc;R1cMc); (opt optAssoc;R1c1c)g

We have,

OM :one mulAssoc = OM :one onemulAssoc [ OM :one optmulAssoc

OM :mul mulAssoc = OM :onemul onemulAssoc [

OM :onemul optmulAssoc [ OM :optmul optmulAssoc

OM :opt mulAssoc = OM :opt onemulAssoc [OM :opt optmulAssoc

Therefore,

fOM :one mulAssoc;OM :mul mulAssoc;OM :opt mulAssocg � CoreOM

Predicate:

It can be proven that the predicates in auxOMBinaryAssociationType are

equivalent to those in IMBinaryRelationshipType. Therefore, they belong to

CoreOM and CoreIM . The predicates in OMBinaryAssociationType also belong

to CoreOM .

OMQuali�edAssociation (p.69) :

Schema OMQuali�edAssociation is about properties of quali�ed associ-

ations, which are merely binary associations. If a model for OM is also

a model for IM , then the quali�ed associations in OM must have coun-

terparts in IM . These binary relationships in IM must satisfy predicate

�(OMQuali�edAssociation:p3). Although IM does not have this modeling

concept, it still have the same expressive power as OM in this aspect. The

variables in OMQuali�edAssociation are \explicitly de�ned" non-comparable
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variables. Therefore, the variables as well as the predicates de�ned in this

schema should be in CoreOM .

7.2.9 Derived Associations, Classes, and Attributes

OMAssociationType (p.101)vs. IMCompositionRelationship (p.132):

A relationship in SMOOA can be a composition relationship. Thus, the

relationships in IM can be divided into two sets: base relationships and com-

position relationships. We modify schema IMCompositionRelationship to be

the following:

auxIMCompositionRelationship

IMDTData

baseRelationship : PRELATIONSHIP

comRelationship : PRELATIONSHIP

composedBy : RELATIONSHIP $ PRELATIONSHIP � FUNCTION

hbaseRelationship; comRelationshipi partition relationship

dom composedBy = comRelationship

8 r : comRelationship � �rst (composedBy(r)) � relationship

As to OMAssociationType, we need to reformulate OM :assocDeriving ,

which is a \mistyped" non-comparable variable:

ASSOCIATION 7! DerivedElement [ASSOCIATION ]

It can also be expressed as

ASSOCIATION 7! ASSOCIATION � PASSOCIATION � FUNCTION

The domain and the �rst item of the range of OM :assocDeriving are identical,

because OM :p3 states that

8 da : derivedAssoc � (assocDeriving(da)):derived = da
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Therefore, we change OM :assocDeriving to OM :auxassocDeriving without al-

tering its semantics:

auxassocDeriving : ASSOCIATION $ PASSOCIATION � FUNCTION

and change OM :p3 to the following:

8 da : derivedAssoc � �rst (auxassocDeriving(da)) � association

Variable:

fv " (OMAssociationType; auxIMCompositionRelationship) =

f(baseAssoc; baseRelationship); (derivedAssoc; comRelationship);

(auxassocDeriving ; composedBy)g

Since assocDeriving is equivalent to auxassocDeriving , assocDeriving belongs

to CoreOM .

Predicate:

We can prove that

OM :p1 'sem IM :p1

OM :p2 'sem IM :p2

OM :p3 'sem IM :p3

The predicates de�ned in the two schemas belong to CoreOM and CoreIM .

OMClassType2 (p.100) :

Schema OMClassType2 is about derived classes. IM does not support the

meaning of \derived object", so all the objects in IM are base objects. We

add a schema to IM :

auxIMObjectType

IMDTData

baseObject : POBJECT

baseObject = object
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Variable:

fv " (OMClassType2; auxIMObjectType) = f(baseClass; baseObject)g

OMClassType2:Sig :Var n dom fv = fderivedClass; clsDerivingg

auxIMObjectType:Sig :Var n ran fv = ;

Predicate:

OM :p1 vs. IM :p1:

OM :p1 and IM :p1 describe the values that OM :class and IM :object can

take. When OM :derivedClass = ;,

OM :p1 'sem IM :p1

According to rule 10

OM :p1 2 ExtOM :ccPredIM and IM :p1 2 ExtIM :ccPredIM

OM :p2 and OM :p3:

OM :p2 and OM :p3 are speci�c to OM . They belong to ExtOM :ecPred .

OMAttributeType (p.102) :

IM does not support the meaning of \derived attribute"; therefore, all the

attributes in IM are base attributes. The discussion about OMAttributeType

is similar to that about OMClassType2.

We add a schema to IM :

auxIMAttributeType

IMDTData

baseAttr : PATTRIBUTE

baseAttr = attribute

Variable:
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fv " (OMAttributeType; auxIMAttributeType) = f(baseAttr ; baseAttr)g

OMAttributeType:Sig :Var n dom fv = fderivedAttr ; attrDerivingg

auxIMAttributeType:Sig :Var n ran fv = ;

Predicate:

OM :p1 2 ExtOM :ccPredIM and IM :p1 2 ExtIM :ccPredIM

fOM :p2;OM :p3g � ExtOM :ecPred

7.2.10 Generalizations

Both OM and IM support the concept \generalization". OM also supports

\aggregation", which has a similar construct to generalization; IM , however,

has no such concept. While combining the commonality of the two concepts

together in theory OM , we now need to separate them and focus on each

individual.

There are four schemas about both generalization and aggregation in OM .

They areOMGroupingBasic (p.71), OMGroupedClass (p.72), OMGroupedAssociation

(p.73), and OMGrouping (p.74). According to the following two predicates in

OM ,

haggregation; generalizationi partition grouping

haggAssociation; genAssociationi partition groupedAssociation

we can assign the empty set ; to OM :aggregation and to OM :aggAssociation

while comparing generalization constructs of the two theories. By doing so,

we obtain four schemas for generalization. They are genOMGroupingBasic,

genOMGroupedClass, genOMGroupedAssociation, and genOMGrouping .

genOMGroupingBasic

OMDTData

generalization : PGENERALIZATION
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genOMGroupedClass

genOMGroupingBasic

gen single : GENERALIZATION 7! CLASS

gen group : GENERALIZATION $ CLASS

gen single 2 generalization ! class

dom gen group = generalization ^ ran gen group � class

genOMGroupedAssociation

OMAssociation

genAssociation : PASSOCIATION

gen parent : ASSOCIATION 7� ROLE

gen child : ASSOCIATION 7� ROLE

genAssociation � binaryAssociation

gen parent 2 genAssociation � singularRole

gen child 2 groupedAssociation � optionalRole

8 a : genAssociation � hasRole(j fag j) = fgen parent(a); gen child(a)g

It should be noted that the third predicate of schema genOMGroupedAssociation

is obtained from the following two predicates, which are de�ned inOMGroupedAssociation

and OMGeneralizationBasic (p.78) respectively:

child 2 groupedAssociation � role

8 g : generalization � (collectedIn� o
9 child)(j fgg j) � optionalRole
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genOMGrouping

genOMGroupedClass

genOMGroupedAssociation

gen collectedIn : ASSOCIATION 7! GENERALIZATION

gen collectedIn 2 genAssociation !! generalization

8 a : genAssociation; g : generalization j gen collectedIn(a) = g �

playerOfRole(gen parent(a)) = gen single(g) ^

playerOfRole(gen child(a)) 2 gen group(j fgg j)

8 g : generalization �

#(gen group(j fgg j)) = #(gen collectedIn�(j fgg j))

We now compare the four schemas with IMGeneralizationBasic (p.134),

IMGeneralizationRelationship (p.134), and IMGeneralization (p.136).

Variable:

fv " (genOMGroupingBasic [ genOMGroupedClass[

genOMGroupedAssociation [ genOMGrouping ;

IMGeneralizationBasic [ IMGeneralizationRelationship[

IMGeneralization) =

f(generalization; generalization); (gen single; supertype);

(gen group; subtype); (genAssociation; genRelationship);

(gen parent ; superRole); (gen child ; subRole);

(gen collectedIn; collectedIn)g

Predicate:
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We can prove that the following pairs of predicates are equivalent.

genOMGroupedClass:p1 'sem IMGeneralizationBasic:p1

genOMGroupedClass:p2 'sem IMGeneralizationBasic:p2

genOMGroupedAssociation:p1 'sem IMGeneralizationRelationship:p1

genOMGroupedAssociation:p2 'sem IMGeneralizationRelationship:p2

genOMGroupedAssociation:p3 'sem IMGeneralizationRelationship:p3

genOMGroupedAssociation:p4 'sem IMGeneralizationRelationship:p4

genOMGrouping :p1 'sem IMGeneralization:p1

genOMGrouping :p2 'sem IMGeneralization:p2

genOMGrouping :p3 'sem IMGeneralization:p3

All of the above predicates belong to the core.

OMIsKindOf (p.78) vs. IMInheritanceBasic (p.137) :

Variable:

fv " (OMIsKindOf ; IMInheritanceBasic) =

f(isKindOf ; isKindOf ); (isDescendentOf ; inherit)g

Variable OM :isAncestorOf is redundant because

OM :isAncestorOf = OM :isDescendentOf �

It belongs to CoreOM .

Predicate:

In IM , although not explicitly stated, generalization is transitive and asym-

metric. In other words, in an object model, if o1 is a subtype object of o2 and

o2 is a subtype object of o3, then o1 is a subtype object of o3; and if o1 is a

subtype object of o2, then o2 cannot be a subtype object of o1. We add two

predicates to specify these properties:
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8 o1; o2; o3 : object j o1 7! o2 2 inherit ^

o2 7! o3 2 inherit � o1 7! o3 2 inherit

(IMIsKindOf :padd1)

8 o1; o2 : object j o1 7! o2 2 inherit � o2 7! o1 =2 inherit

(IMIsKindOf :padd2)

We can prove that

OM :p1 'sem IM :p1

OM :p2 'sem IM :p2

OM :p3 'sem IM :p3

Therefore, these predicates belong to the core.

OM :p4 vs. IM :padd1 and IM :padd2 :

OM :p4 can be expanded as follows.

8 a; b; c : CLASS j a 7! b 2 isDescendentOf ^

b 7! c 2 isDescendentOf � a 7! c 2 isDescendentOf

8 a; b : CLASS j a 7! b 2 isDescendentOf � b 7! a =2 isDescendentOf

Every element in CLASS satis�es the above two predicates, so does every

element in class. We have

OM :p4 'sem fIM :padd1 ; IM :padd2g

Therefore, the predicates belong to the core.

OM :p5:

According to rule 14, it belongs to CoreOM .

IM :p4: It will be discussed when we discuss disjoint and overlapping general-

ization (on p.227).

OMInheritance (p.79) :
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The predicate in this schema is speci�c toOM , so it belongs to ExtOM :ccPredOM .

It speci�es the meaning of variable OM :hasFeature.

IMAttributeInheritance (p.139) :

This schema is about properties related to variables IM :hasIdElement and

IM :domainSpec. The properties are not possessed by any variable in OM .

Therefore, the predicates de�ned in the schema belong to ExtIM :ccPredIM .

OMSubclassAttributeRange (p.92) :

The predicate in this schema imposes the constraint on value ranges of an

inherited attribute in a subclass. It is related to variable OM :valueRange.

Since IM does not specify the similar properties on inherited attributes of

an subtype object, this predicate is speci�c to OM . Therefore, it belongs to

ExtOM :ccPredOM .

Overriding

There are three schemas about overriding: OMOverride (p.80), OMDefaultValueOverride

(p.81), and OMMethodOverride (p.82). They are about the properties perti-

nent to default attribute values and methods. The variables, OM :defaultValOverride

and OM :methodOverride, belong to ExtOM ; the predicates de�ned in the

schemas belong to ExtOM :ecPred .

Multiple Inheritance

Both OM and IM support the meaning of multiple inheritance: a class or an

object can have more than one superclass or supertype object. Such a class in

OM is called \join class", which is formalized in schema OMMultipleInheritance

(p.85). IM does not give a name to such an object. We here give an auxiliary

schema for IM to de�ne a set of \join objects", which are objects with multiple

inheritance.
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auxIMMultipleInheritance

IMInheritance

joinObject : POBJECT

joinObject � dom isKindOf

8 jo : joinObject � #(isKindOf (j fjog j)) > 1

Variable:

fv " (OMMultipleInheritance; auxIMMultipleInheritance) =

f(joinClass; joinObject)g

Predicate:

It is obvious that

OM :p1 'sem IM :p1

OM :p2 'sem IM :p2

Therefore, the predicates belong to the core.

Disjoint and Overlapping Generalizations

OM allows overlapping generalizations, as de�ned in OMGeneralizationType

(p.86); however, IM does not. The following predicate in IMInheritanceBasic

(p.137)

8 gen : generalization; sub1; sub2 : object j

fsub1; sub2g � subtype(j fgeng j) �

dom(inherit B fsub1g) \ dom(inherit B fsub2g) = ;

speci�es this property of IM .

We give the following auxiliary schema, in which the auxiliary variable

IM :disjointGen is de�ned.
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auxIMGeneralizationType

IMInheritance

auxIMMultipleInheritance

disjointGen : PGENERALIZATION

disjointGen = generalization

Variable:

fv " (OMGeneralizationType; auxIMGeneralizationType) =

f(disjointGen; disjointGen)g

OMGeneralizationType:Sig :Var n dom fv = foverlappingGeng

Predicate:

OM :p1 vs. auxIMGeneralizationType:p1:

When OM :overlappingGen = ;,

OM :p1 'sem auxIMGeneralizationType:p1

According to rule 10,

OM :p1 2 ExtOM :ccPredIM and auxIMGeneralizationType:p1 2 ExtIM :ccPredIM

OM :p2 vs. IMInheritanceBasic:p4:

Since IM :disjointGen = IM :generalization, we have

IMInheritanceBasic:p4 ,

8 gen : disjointGen; sub1; sub2 : object j

fsub1; sub2g � subtype(j fgeng j) �

dom(inherit B fsub1g) \ dom(inherit B fsub2g) = ;

It can be proven that

OMGeneralizationType:p2 'sem IMInheritanceBasic:p4
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This also shows that a generalization in IM is comparable to a disjoint

generalization in OM . The two predicates belong to the core.

OM :p3:

Predicate OM :p3 is about overlapping generalization. It is speci�c to OM ,

so it belongs to ExtOM :ecPred .

OMGenExtension (p.87) :

The variable OM :extension de�ned in this schema is an \underlying" non-

comparable variable, because new features can also be added to a subtype

object in IM . Therefore, the variable and the predicates de�ned in the schema

belong to CoreOM .

Abstract Classes and Abstract Operations

OMClassType1 (p.93) :

Classes in a generalization in OM can be abstract; however, objects in a

generalization in IM cannot. We de�ne two auxiliary variables in IM :

auxIMObjectType

concreteObject : POBJECT

leafObject : POBJECT

concreteObject � object

leafObject = (dom inherit n ran inherit) � concreteObject

These two variables have similar meaning toOM :concreteClass andOM :leafClass

in OMClassType1.

Variable:

fv " (OMClassType1; auxIMClassType) =

f(concreteClass; concreteObject); (leafClass; leafObject)g

OMClassType1:Sig :Var n dom fv = fabstractClassg

229



Predicate:

We can prove that

OM :p1 'sem IM :p1

OM :p3 'sem IM :p2

Therefore, these two predicates belong to the core.

OM :abstractClass is speci�c to OM , so is OM :p2 which de�nes the seman-

tics of OM :abstractClass. Therefore, OM :p2 belongs to ExtOM :ecPred .

OMOperationType2 (p.93) :

Operations are speci�c to OM , so are abstract and concrete operations.

The variables de�ned in OMOperationType2 belong to ExtOM .

fOM :abstractOp;OM :concreteOpg � ExtOM

The predicates de�ned in the schema belong to ExtOM :ecPred .

7.2.11 Aggregations

Although IM does not support the concept \aggregation", it still can model the

\aggregation" construct in the real-world in the form of binary relationships.

We can create a set of concepts and predicates in IM to correspond the

concepts and predicates related to aggregation in OM , and then do the similar

comparison as in Section 7.2.10. The result is

fOM :aggregation;OM :grouping ;OM :single;

OM :group;OM :groupedAssociation;OM :aggAssociation;

OM :parent ;OM :child ;OM :collectedIng � CoreOM

The predicates de�ned in schemas OMGroupingBasic, OMGroupedClass,

OMGroupedAssociation, and OMGrouping belong to CoreOM .
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We can assume that the objects involved in an aggregation have \is-part-

of" relationships. Therefore, the variable OM :isPartOf and the predicates

de�ned in schema OMIsPartOf (p.75) belong to CoreOM .

Aggregation relationships in IM can also be �xed, variable, and recursive.

Therefore, the variables and predicates de�ned in schema OMAggregationType

(p.84) belong to CoreOM .

The above variables related to aggregation are \explicitly de�ned" non-

comparable variables. However, two schemas about aggregation inOM , namely

OMDependence (p.76) and OMPropagation (p.77), are speci�c to OM . The

variables de�ned in these schemas belong to ExtOM :

fOM :existenceDependOn;OM :featurePropagateg � ExtOM

The predicates de�ned in these schemas belong to ExtOM :ecPred .

7.2.12 Metadata

Schemas OMPattern (p.94) and OMDescriptor (p.95) are speci�c to OM . The

variables de�ned in the schemas belong to ExtOM .

fOM :pattern;OM :instantiation; classDescriptor ; classFeatureg � ExtOM

The predicates de�ned in the schemas belong to ExtOM :ecPred .

7.2.13 Modules

The variables OM :module and OM :containedIn de�ned in schema OMModule

(p.83) are \explicitly de�ned" non-comparable variables, because modules in

OMT are simply a mechanism to group a collection of classes. We can add

auxiliary variables to IM to stand for the similar concepts. Therefore, the two

variables and the predicate de�ned in the schema belong to CoreOM .
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7.2.14 Relationship Formalization

In the information model, the relationships between objects are \formalized"

by means of referential attributes. This mechanism adds details that strongly

suggest the implementation of relationships as relational tables.

The object model in OM , on the other hand, does not have referential

attributes, but still can model the relationships between classes.

If taking out the referential attributes from the formalizers (except associa-

tive and subtype objects, because the referential attributes in these formalizers

also act as identi�ers and should not be taken out), we still can map an object

in IM to a class in OM if they have the same set of naming and descriptive

attributes, and map a relationship to an association if they involve the same

set of objects or classes.

Let fm be the set of formalizers whose referential attributes can be taken

out:

fm = formalizer n (associativeObject [ dom isKindOf )

After the referential attributes being taken out from every element in fm,

variable IM :attrDe�nedIn becomes IM :auxattrDe�nedIn, which is de�ned as

follows.

IM :auxattrDe�nedIn : ATTRIBUTE $ OBJECT

It satis�es

8 o : fm � IM :auxattrDe�nedIn�(j fog j) = IM :attrDe�nedIn�(j fog j) n referentialAttr

8 o : object n fm � IM :auxattrDe�nedIn�(j fog j) = IM :attrDe�nedIn�(j fog j)

We then rede�ne fv(OM :attrDe�nedIn) = IM :attrDe�nedIn to

fv(OM :attrDe�nedIn) = IM :auxattrDe�nedIn.

Since a formalizer in IM may still have a corresponding class in OM , the

variable IM :formalizer should be inCoreIM . The �rst predicate in IMRelationshipFormalizingBasic

(p.140), which is about IM :formalizer , also belongs to CoreIM .
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With the above modi�cation, variable IM :referencing is no longer needed

for fm, neither are the predicates in schemas IMReferencing (p.141), and

IMPlayerFormalizing (p.142). We put them into ExtIM .

Association classes vs. Associative Objects:

The association classes are formalized in schemaOMAssociationClass (p.65);

the associative objects are formalized in schemas IMAssociativeObjectFormalizing

(p.143) and IMAssociativeObjectFormalizingType (p.144). They have similar

meaning and therefore are de�ned to be comparable. That is,

fv(OM :associationClass) = IM :associativeObject

Relation variableOM :modeledAs speci�es the relationship between association

classes and associations in OM ; IM :formalizedBy speci�es the relationship

between associative objects and relationships in IM . They are comparable.

That is,

fv(OM :modeledAs) = IM :formalizedBy

We also obtain that,

OMAssociationClass:p1 2 CoreOM

IMAssociativeObjectFormalizing :p1 2 CoreIM

fOMAssociationClass:p2;OMAssociationClass:p3g � ExtOM :ccPredOM

IMRelationshipFormalizingBasic:p2 2 ExtIM :ccPredOM

The fourth predicate de�ned in OMAssociationClass imposes constraints

on

OM :attrDe�nedIn, so it belongs to ExtOM :ccPredOM . The second and third

predicates de�ned in IMAssociativeObjectFormalizing are speci�c to IM , so

they belong to ExtIM :ccPredIM .

IM :singleOccurrence is an \explicitly de�ned" non-comparable variable, so

it belongs to CoreIM ; IM :multipleOccurrence is speci�c to IM , so it belongs to
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ExtIM . The predicate de�ned in IMAssociativeObjectFormalizingType belongs

to ExtIM :ccPredOM .

IMGenRelationshipFormalizing (p.145):

The predicates de�ned in this schema are about generalization relation-

ships. They belong to ExtIM :ccPredIM .

IMReferentialAttributeDomain (p.145):

The predicates de�ned in this schema are about domain restriction on

referential attributes of the formalizers other than the subtype objects. They

belong to ExtIM :ecPredIM .

7.3 Summary

This section summarizes the result of the comparison presented in Section 7.2.

Table 7.2 shows the variables representing concepts from the core. The �rst

and the third column present the comparable variables, where auxiliary vari-

ables are labeled \(aux)". The second (or the fourth) column presents whether

or not the predicates in ExtOM (or ExtIM ) directly impose additional con-

straints on the variables in OM (or IM ). Table 7.3 and Table 7.4 show the

variables representing the concepts from ExtOM and ExtIM respectively.

The tables illustrate that the two theories have a big core and two small

extensions. It is unsurprising because the modeling techniques of the two

methods are very similar. The extension of OMT to the core arises mainly

because of operations and methods de�ned in classes, and because of a va-

riety of classes, such as derived classes, abstract classes, patterns, and class

descriptors. As to attributes, OMT has de�nitions for default attribute value

and derived attribute, which SMOOA does not have. The generalization con-

struct of OMT di�ers from that of SMOOA mainly in that the former allows

overlapping generalizations, abstract classes, and feature overriding. The ag-

gregation construct of OMT has richer semantics in that it de�nes semantics

of feature propagation along an aggregation network, and de�nes semantics of
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existence dependency among the classes within an aggregation. The extension

of SMOOA to the core arises mainly because it uses referential attributes to

formalize relationships.

In general, SMOOA imposes more restrictions on the variables in the core

than OMT does. The roles, the associations and the relationships in the two

theories have the same restrictions. However, SMOOA is more strict with

the category and relation variables related to attributes, features, identi�ers,

and generalizations. We can obtain more detailed di�erences between the

comparable variables by classifying the core into four characterizing sets, which

are demonstrated in Appendix B.

Since we formalize the similar design components in a similar way, the

comparison of these components is fairly straightforward. A non-comparable

variable of OM in the core means that OMT has an extra notation for certain

design category; however, without such a notation, SMOOA still can model the

same elements of that design category. It is the same with a non-comparable

variable of IM . OM has more non-comparable variables listed in the core

than IM has. This means that SMOOA uses a smaller set of concepts and

notations than OMT, but still has the same expressive power in certain aspects.

Most of the non-comparable variables in the core are \explicitly de�ned" non-

comparable variables. There is only one pair of \mistyped" non-comparable

variables, and one \technically di�erent" non-comparable variable.

The comparison reveals some ambiguities residing in the methods. One

example is the association classes and the associative objects. An early version

of our comparison results showed that the two concepts were distinct. OMT

states that \the attributes of an association are properties of the association,

and cannot be attached to any class that plays a role in the association" (see

[RBP+91]: p.32). We formalized this as a design rule:
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OMAssociationClassAttribute

OMAssociationClass

8 a : dommodeledAs �

hasFeature(j playerOfRole(j hasRole(j fag j) j) j)\

hasFeature(j fmodeledAs(a)g j) \ attribute = ;

From IMAssociativeObjectFormalizing :p3, we know that the identi�er of an

associative object contains the combination of the identi�ers of all the ob-

jects involved in the relationship. These two predicates contradict each other.

Therefore, no instance of association classes can be mapped to an instance

of associative objects, and vice versa. We concluded that the two variables

were not comparable. This result came from our interpretation of the above

ambiguous statement in OMT as a design rule. As this unexpected result is

di�erent from the intuitive assumption that the two concepts are comparable,

we went back to the original material for a careful study, and found that the

statement should be a design guideline, not a design rule.
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Table 7.1: Mapping between the basic types and subsets of the basic types of

OM and IM

type in OMT type in SMOOA type in OMT type in SMOOA

ENTITY ENTITY GROUPING n/a

CLASS OBJECT GENERALIZATION GENERALIZATION

ASSOCIATION RELATIONSHIP AGGREGATION n/a

FEATURE FEATURE MODULE n/a

ATTRIBUTE ATTRIBUTE RULE n/a

OPERATION n/a KEY IDENTIFIER

ROLE ROLE FUNCTION n/a

METHOD n/a n/a TEXT

ATT TYPE n/a INSTANCE INSTANCE ;

RW INSTANCE

ARG TYPE n/a OBJECT RW INSTANCE

NAME NAME n/a OBJ INSTANCE

n/a KEY LETTER LINK REL INSTANCE

n/a LABEL ATOMIC VALUE ATOMIC VALUE

Note: The order in which the comparable types appear in the table is in accordance

with the order in which they are introduced in the two theories.
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Table 7.2: The variables in CoreOM and CoreIM

variable in OM constraint variable in IM constraint

entity entity

feature ccPredIM feature ccPredIM

de�nedIn(2) ccPredOM de�nedIn (aux) ccPredIM

ccPredIM

hasFeature ccPredOM hasFeature ccPredIM

class ccPredIM object ccPredIM

baseClass(2) baseObject (aux)

joinClass(2) joinObject (aux)

concreteClass(2) concreteObject (aux)

leafClass(2) leafObject (aux)

formalizer (6)

associationClass associativeObject

attribute ccPredIM attribute ccPredIM

attrDe�nedIn ccPredOM attrDe�nedIn ccPredIM

hasAttribute(1)

descriptiveAttr (aux) descriptiveAttr (2)

namingAttr (aux) namingAttr (2)

baseAttr (2) baseAttr (aux)

(1): \redundant" non-comparable variable

(2): \explicitly de�ned" non-comparable variable

(3): \mistyped" non-comparable variable

(4): \underlying" non-comparable variable
(5): \subsumed" non-comparable variable

(6): \technically di�erent" non-comparable variable
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Table 7.2: The variables in CoreOM and CoreIM (continued)

variable in OM constraint variable in IM constraint

valueRange ccPredOM domainSpec ccPredIM

valueOfType(4)

typeOfAttr (4)

restrict (4)

generalRestrict (4)

constraint (4)

key identi�er

hasKeyElement ccPredOM hasIdElement ccPredIM

keyedEntity (2) idedEntity (aux) ccPredIM

isKeyOf ccPredOM isIdOf

theKey (1) ccPredOM

hasPreferredKey (aux) hasPreferredId (2)

role role

playerOfRole playerOfRole

multiplicityOfRole multiplicityOfRole

roleDe�nedIn roleDe�nedIn

hasRole hasRole

singularRole single

optionalRole conditionSingle

onemulRole (aux) multiple(2)

optmulRole (aux) conditionMultiple(2)

multipleRole(2)

orderedRole(2)

association relationship

binaryAssociation binaryRelationship

one oneAssoc R11

one onemulAssoc (aux) R1M
(2)

one optmulAssoc (aux) R1Mc
(2)

one mulAssoc(2)

onemul onemulAssoc (aux) RMM
(2)

onemul optmulAssoc (aux) RMMc
(2)

optmul optmulAssoc (aux) RMcMc
(2)

mul mulAssoc(2)
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Table 7.2: The variables in CoreOM and CoreIM (continued)

variable in OM constraint variable in IM constraint

quali�edAssociation(2)

qualify (2)

baseAssoc(2) baseRelationship (aux)

derivedAssoc comRelationship

assocDeriving (3) composedBy (3)

groupedAssociation(2)

genAssociation genRelationship

aggAssociation(2)

grouping (2)

generalization ccPredIM generalization ccPredIM

aggregation(2)

single(2)

gen single (aux) supertype

group(2)

gen group (aux) subtype

parent (2)

gen parent (aux) superRole

child (2)

gen child (aux) subRole

collectedIn(2)

gen collectedIn (aux) collectedIn

isKindOf isKindOf

isDescendentOf inherit

isAncestorOf (1)

disjointGen(2) disjointGen (aux)

extension(2)

isPartOf (2)

�xedAgg (2)

variableAgg (2)

recursiveAgg (2)

module(2)

containedIn(2)

modeledAs ccPredOM formalizedBy ccPredOM
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Table 7.3: The variables in extension ExtOM

operation implement abstractOp

argumentOfOp methodLookup concreteOp

resultOfOp derivedClass existenceDependOn

opDe�nedIn clsDeriving featurePropagate

queryOp derivedAttr pattern

updateOp attrDeriving instantiation

defaultValOfAttr defaultValOverride classDescriptor

method methodOverride classFeature

argumentOfMethod overlappingGen

resultOfMethod abstractClass

Table 7.4: The variables in extension ExtIM

referentialAttr referencing multipleOccurrence
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Chapter 8

Conclusion

The statement of the thesis is \Following a rigorous approach, the compari-

son of the representational properties of the OOAD methods can be precise,

detailed and objective." In this chapter, we summarize the work that sup-

ports the thesis claim and meets the desirable properties of a solution; we also

suggest directions for future research and improvements.

8.1 Summary

This dissertation has two major contributions:

� An approach to formalizing the representational properties of OOAD

methods.

We have described the principles and guidelines for establishing a formal

design theory for an OOAD method under the Theory-Model paradigm.

Z variables are used to de�ne the design-time and run-time concepts; and

Z predicates are used to describe the rules these concepts must satisfy.

The variables and predicates specify the formal semantics of the method.

The formalization process is iterative. The veri�cation of a design theory

can be done via type-checking, inspection, reasoning, and execution.
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We have applied the formalization approach to the object model of OMT

and the information model of Shlaer-Mellor OOA. The result has shown

that the formalization improves the accuracy of the methods and also

improves one's understanding of the methods.

� An approach to systematically comparing the OOAD methods.

We have given formal de�nitions, in terms of equivalent mapping between

models, for the core, the extensions to the core, and the characterizing

sets in the core. We have provided rules for classifying the portions of

the design theories into the core, the extensions, and the characterizing

sets, which reveal similarities and di�erences among the methods. The

comparison activities follow an incremental process.

We have compared the object model of OMT and the information model

of Shlaer-Mellor OOA, and obtained a detailed comparison result. It has

shown that given the formal description of the methods, one can precisely

compare them based on the comparison mechanism. Formal comparison

leads to a better understanding of the similarities and di�erences among

the methods.

The formalization and comparison results also contribute to the research areas

such as method evaluation, method integration, Meta-CASE tools design, and

design reuse. These are brie
y discussed in Section 8.2.

The comparison approach satis�es the desirable properties listed in Sec-

tion 1.3:

� It is general because it accommodates the existing OOAD methods. In

fact, the approach can be applied to any class of methods with similar

modeling techniques.

� It is precise because it is based on the formal theories of the methods,

and therefore formal reasoning about the equivalence of the predicates

is possible.

243



� It is objective and detailed because it forces one to compare the entire

theory of a method rather than choose speci�c topics.

� It provides a systematic comparison in that it provides guidelines and

rules for one to formalize the methods and compare the corresponding

theories step by step.

8.2 Future Work

Based on the results already achieved, the following work may be continued.

� Establish an ER model for each theory.

As is discussed in Section 2.2, an ER model serves as a data model

for managing design information. An ER diagram is also a means of

graphical representation of the design theory.

We use a variant of the entity-relationship approach [Che76] for this.

Translation of our style of Z speci�cation to an ER model is fairly

straightforward. Category variables become entity sets, represented by

boxes; prede�ned types and some given sets, such as Z and ATOMIC VALUE ,

become value sets, represented by ovals. Relation variables become rela-

tionship sets, usually represented by arrows, which point in the direction

implied by the names of the Z functions or relations. Figure 3.2(a) illus-

trates an ER diagram for object model theory.

� Develop an executable representation of each theory to check its sound-

ness.

The translation method so far developed is discussed in Section 3.4.

There is research on automatic translation from Z or other formal spec-

i�cations to Prolog [Dic89, Hab91]. A topic for future research is to

explore a suitable way of automatically translating the design theories

and their models from Z speci�cation to Prolog.
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� Develop a detailed systematic mechanism for verifying the correctness,

consistency and completeness of the theories, by means of formal tech-

niques.

Graham [Gra96] developed a method for formally testing the correctness

of program visualization tools with respect to some theory describing the

domain of the tool. The method is based on encoding the theory in logic,

and using the PVS theorem prover to investigate the properties of the

programs generated by the visualization tool. He discussed the possibil-

ity of combining our approach of verifying design with their approach.

Future research along this direction can start from this interesting point.

� Formalize dynamic and functional view as well as other aspects relevant

to the representational properties of OMT and Shlaer-Mellor OOA, and

thoroughly compare the two methods.

The OOAD methods are still being improved. Some components of a

design method may not be well de�ned, theories for these components

thereby may not be precise; some parts of a design theory may need

change as the design method evolves, and so do the comparison results.

� Formalize other OOAD methods and compare them.

We will consider Jacobson et al.'s Objectory [JCJO92] as the next method

to be compared against OMT and SMOOA. This method is widely used,

and its scenario-driven (use case) approach is di�erent from OMT and

SMOOA.

The approach discussed in this dissertation has been applied to two meth-

ods. We anticipate that when more methods are taken into considera-

tion, there will be cases which the existing decision rules cannot cover.

Then new rules need to be added or some of the existing rules need to

be improved to suit those circumstances.
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The decision rules guide a fairly straightforward comparison when two

comparable components are similar. As for two comparable components

with disparity, however, the rules do not give an e�cient solution: human

creativity is needed to modify the design theories. This is where the

approach needs to improve.

� Formalize other aspects of a design method, such as design process and

metrics for better designs.

The following research can be built on the formalization and comparison

results:

� Method evaluation. By examining the core and extensions of the design

theories, one can evaluate the design methods under certain criteria,

and therefore can obtain knowledge about the methods' comparative

strengths and weaknesses. For example, one may want to examine the

e�ect of absence of some notations in a method. SMOOA uses a smaller

set of constructs than OMT. This sometimes means that a simple concept

has to be represented in a complex way.

� Method integration. The purpose of the method integration is to enhance

a method's functional capabilities and to improve its quality or usability

[Son95, BW, Sho91]. The integration is characterized either as adding

new components into the method or as replacing old components with

new ones. Guided by formal semantics for the methods and detailed

comparison results, one can not only determine what components of

one method can be integrated into another, but also avoid con
icts or

inconsistencies that might arise during integration. Because of this, our

work can also make contribution to method standardization.

� Meta-CASE tools design. Meta-CASE tools allow de�nition and con-

struction of CASE tools that support arbitrary methodologies [IL97,
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HFMG94, Son95]. The knowledge of di�erences and similarities among

the methodologies can be used to guide how various software tools should

communicate and interoperate with each other. With the knowledge, the

Meta-CASE tool users can customize a tool e�ectively. In addition, the

knowledge can help to reduce the redundancy of data storage for method

speci�cations.

� Design reuse. The work can bene�t design reuse. A part of a design

developed under one method may be reused as a part of another design

developed under another method, if this partial design satis�es properties

in the core.
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Appendix A

Summary of the Z Notation

This appendix provides a brief summary of Z notation (adapted from [MP93]).

Since our formalization uses only a subset of the language constructs, some

complex notations that are not used in the formalization are excluded from

this summary.

De�nitions and Declarations

Schema de�nition:

A schema de�nition assigns a name to a group of variable declarations and

predicates that constrain their possible values. A schema can be used as a

type. It has the following forms (with generic parameters):

Name[Params]

Declarations

Predicates

or
Name[Params] b= [Declarations j Predicates]

Schema inclusion:

A schema S can be included in the declarations of another schema T , in

which case the declarations of S are merged with the declarations of T and

the predicates of S and T are conjoined.
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S

T

Other Declarations

Predicates

Axiomatic de�nition:

An axiomatic de�nition introduces one or more global variables inDeclarations,

and expresses constraints on these variables in Predicates.

Declarations

Predicates

or
Declarations j Predicates

Generic function de�nition:

[Params]

Declarations

Predicates

given set [ ] [S ]

Introduces a given set, S . A given set is a type.

abbreviation == t == expression

Introduces a global variable, t , whose value and

type are given by expression.

declaration : x : set-expression

Introduces a variable, x , whose value is declared

to be in the set given by set-expression.

datatype de�nition ::= j T ::= a j b j c

It is equivalent to:

[T ]

a; b; c : T j a 6= b 6= c 6= a
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constructor hh ii T ::= f hh set-expression ii

It is equivalent to:

[T ]

f : set-expression� T

First-Order Logic

The following abbreviations are used in explaining logic and num-

bers:

S { set

P ;Q { predicates

conjunction ^ P ^ Q

disjunction _ P _ Q

negation : : P

implication ) P ) Q

equivalence , P , Q

existential quanti�er 9 9 x : S j P � Q

True if at least one element of the set S subject

to P satis�es Q .

unique quanti�er 9
1

9
1
x : S j P � Q

True if exactly one element of the set S subject

to P satis�es Q .

universal quanti�er 8 8 x : S j P � Q

True if all elements of the set S subject to P

satisfy Q .

Numbers

integers Z

natural numbers N N == fx : Z j x � 0g
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positive numbers N1 N1 == fx : Z j x > 0g

integer range m : : n m : : n == fx : Z j m � x � ng

(If m > n, then the set is empty.)

size # #S The number of elements in the set S .

#s The number of elements in the sequence s.

minimum of a set min min S

(min S 2 S ) ^ (8 x : S � minS � x )

maximum of a set max max S

(max S 2 S ) ^ (8 x : S � minS � x )

arithmetic operators + � � div mod

arithmetic comparison � < = 6= > �

Sets

The following abbreviations are used in explaining sets:

S ;T { sets

x1; x2; :::; xn { elements of sets

P { predicate

E { expression

enumeration f g fx1; x2; :::; xng

(x1, x2, ..., xn must all be of the same type.)

comprehension j � fx : S j Pg

The set containing those elements of S that sat-

isfy P .

fx : S j P � Eg

The set of values of E for all values of x in S

which satisfy P .

membership 2 x 2 S
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non-membership =2 x =2 S

empty set ;

set equality = S = T == (8 s : S � s 2 T ) ^ (8 t : T � t 2 S )

set inequality 6= S 6= T == (9 s : S � s =2 T ) _ (9 t : T � t =2 S )

subset � S � T == 8 x : S � x 2 T

proper subset � S � T == (S � T ) ^ (S 6= T )

union [ S [ T

x 2 S [ T , x 2 S _ x 2 T

intersection \ S \ T

x 2 S \ T , x 2 S ^ x 2 T

di�erence n S nT

x 2 S n T , s 2 S ^ x =2 T

power set P P S

The set of all subsets of S .

non-empty power set P
1

P
1
S == P S n f;g

�nite subset F F S

The set of all �nite subsets of S .

non-empty �nite

subset

F
1

F
1
S == F S n f;g

distributed union
S S

S == fx : T j (9 s : S � x 2 s)g

where S is of type P(PT ).

distributed intersec-

tion

T T
S == fx : T j (8 s : S � x 2 s)g

where S is of type P(PT ).

Relations

The following abbreviations are used in explaining relations:

A;B ; S { sets

a; b { elements of sets

R;F ;G { relations
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Cartesian product � A� B == fa : A; b : B � (a; b)g

binary relation $ A$ B == P(A� B)

ordered pair (maplet) 7! a 7! b == (a; b)

�rst of pair �rst �rst (a; b) = a

second of pair second second (a; b) = b

domain dom domR == fa : A; b : B j (a; b) 2 R � ag

where R : A$ B .

range ran ranR == fa : A; b : B j (a; b) 2 R � bg

where R : A$ B .

relational inverse � R� == fa : A; b : B j (a; b) 2 R � (b; a)g

where R : A$ B .

composition o
9 R o

9 F == fa : A; b : B ; c : C j

(a; b) 2 R ^ (b; c) 2 F � (a; c)g

where R : A$ B and F : B $ C .

background

composition

� R � F == F o
9 R

domain restriction C S C R == fa : A; b : B j (a; b) 2 R ^ a 2 Sg

where R : A$ B and S � A.

domain subtraction �C S �C R == fa : A; b : B j (a; b) 2 R ^ a =2 Sg

where R : A$ B and S � A.

range restriction B R B S == fa : A; b : B j (a; b) 2 R ^ b 2 Sg

where R : A$ B and S � B .

range subtraction �B R �B S == fa : A; b : B j (a; b) 2 R ^ b =2 Sg

where R : A$ B and S � B .

relational image (j j) R(j S j) == fa : A; b : B j (a; b) 2 R ^ a 2 S �

bg

where R : A$ B and S � A.

overriding � F �G == ((domG �C F ) [ G)

The relation F overridden by the relation G .
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identity relation id idS == fs : S � s 7! sg

iteration k R0 == idA; Rk == Rk�1 o
9 R

transitive closure + R+ == R1 [ ::: [ Rn [ :::

where the type of R is P(A� A).

re
exive transitive

closure

� R� == R0 [ R+

where the type of R is P(A� A).

Functions

The following abbreviations are used in explaining functions:

A;B { sets

D { declaration

P { predicate

E { expression

partial function 7! A 7! B == fr : A$ B j (8 a : A; b1; b2 : B j

(a; b1) 2 r ^ (a; b2) 2 r � b1 = b2)g

total function ! A! B == ff : A 7! B j dom f = Ag

�nite partial function 7 7! A 7 7! B == ff : A 7! B j dom f 2 F Ag

partial injection 7� A 7� B == ff : A 7! B j f � = B 7! Ag

total injection � A� B == A 7� B \ A! B

�nite partial injection 7 7� A 7 7� B == A 7� B \ A 7 7! B

partial surjection 7!! A 7!! B == ff : A 7! B j ran f = Bg

total surjection !! A!! B == ff : A 7!! B j f 2 A! Bg

bijection �! A�! B == ff : A� B j f 2 A!! Bg

lambda expression � �D j P � E == fD j P � t 7! Eg

where t is the characteristic tuple of the decla-

ration D .
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choice (mu) � (�D j P � E )

The value of the expression E where the

variables of the declaration D have values

determined by predicate P .

Sequences

The following abbreviations are used in explaining sequences:

S ; S1; S2; :::; Sn ;X ;U ;V { sets

x1; x2; :::; xn { elements of sets

s; t { sequences

enumeration h i hx1; x2; :::; xni == f1 7! x1; 2 7! x2; :::; n 7! xng

�nite sequence seq seqX == ff : N 7 7! X j dom f = 1 : :#f g

non-empty sequence seq1 seq1X == seqX n f;g

injective sequence iseq iseqX

s = iseqX ) (#s = #ran s)

concatenation a s a t == s [ (� i : #s + 1 : :#s +#t �

i 7! t(i �#s))
index restriction � U � s

The sequence s restricted to just those indexes

that appear in the set U .

sequence restriction

(�ltering)

� s �V

The sequence s restricted to just those elements

that appear in the set V .

disjoint disjoint disjoint hS1; S2; :::; Sni == S1 \ S2 \ ::: \ Sn = ;

partition partition hS1; S2; :::; Sni partition S ==

disjoint hS1; S2; :::; Sni ^ S =
S
fS1; S2; :::; Sng

Schema operators
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The following abbreviations are used in explaining schema opera-

tors:

S ;T { schemas

sigS ; sigT { signatures of schemas S and T

predS ; predT { predicates of schemas S and T

conjunction ^ S ^ T == [sigS ; sigT j predS ^ predT ]

disjunction _ S _ T == [sigS ; sigT j predS _ predT ]

negation : : S == [sigS j : predS ]

implication ) S ) T == [sigS ; sigT j predS ) predT ]

equivalence , S , T == [sigS ; sigT j predS , predT ]

binding � �S

A binding between the components of S and

their current values.

Delta � �S

Values of the variables in S may change after an

operation.

Xi � �S

Values of the variables in S do not change after

an operation.

renaming [ = ] S [new=old ]

A schema consisting of schema S with compo-

nent old renamed to new .

schema hiding n ( ) S n (v1; v2; :::)

A schema consisting of schema S with variables

v1, v2, ... removed from the signature and exis-

tentially quanti�ed in the property.
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selection : w :x

It denotes the x component of w ,

where w : S , S is a schema, and x is a variable

declared in S .
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Appendix B

Rules for Subdividing the Core

This Appendix presents the rules for subdividing the signatures in a core theory

into characterizing sets. It also presents the characterizing sets in CoreOM and

CoreIM .

We introduce several notations to be used in the discussion:

De�nition B.1 Given two comparable variables T1:v and T2:v .

1. If T1:v and T2:v are in SigCore , then

T1:v =sem T2:v

2. If T1:v and T2:v are in SigT1
(or SigT2

), then

T1:v �sem T2:v (or T2:v �sem T1:v)

3. If T1:v and T2:v are in SigT1�T2
, then

T1:v 6=sem T2:v

B.1 Basic Rules

The comparison for classifying the core into the characterizing sets proceeds

incrementally. At each step, we take a pair of comparable variables from the
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core, and a set of predicates that impose constraints on the variables, and then

do the comparison guided by the following rules.

1. Given two comparable variables T1:v and T2:v . If

� there is no constraint on the variables, or

� the two sets of comparable predicates T1:P and T2:Q that impose

constraints on the variables are equivalent, and the free variables in

the predicates are in SigCore ,

then the two variables belong to SigCore . That is,

T1:v =sem T2:v

2. Given two comparable variables T1:v and T2:v , and two sets of compara-

ble predicates T1:P and T2:Q that impose constraints on the variables.

If

� T1:P 'sem T2:Q when some free variables in the predicates are

already in SigT1
and the rest of the free variables are in SigCore ,

or if

� T1:P �sem T2:Q when

{ some free variables in T2:Q take certain restricted values, and/or

{ some free variables in the predicates are already in SigT1
, and

{ the rest of the free variables are in SigCore ,

or if

� T1:Pred j= T2:Q [T1=T2] but there is at least one T1:p 2 T1:P so

that T2:Pred j== T1:p[T2=T1], and free variables in the predicates are

in SigCore or SigT1
, or some free variables in T2:Q take restricted

values.
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then the two variables belong to SigT1
. That is,

T1:v �sem T2:v

3. Given two comparable variables T1:v and T2:v , and two sets of compara-

ble predicates T1:P and T2:Q that impose constraints on the variables.

If

� T1:P 'sem T2:Q when some free variables in the predicates are

already in SigT2
and the rest of the free variables are in SigCore ,

or if

� T1:P �sem T2:Q when

{ some free variables in T1:P take certain restricted values, and/or

{ some free variables in the predicates are already in SigT2
, and

{ the rest of the free variables are in SigCore ,

or if

� T2:Pred j= T1:P [T2=T1] but there is at least one T2:q 2 T2:Q so

that T1:Pred j== T2:q [T1=T2], and free variables in the predicates are

in SigCore or SigT2
, or some free variables in T1:P take restricted

values.

then the two variables belong to SigT2
. That is,

T2:v �sem T1:v

4. Given two comparable variables T1:v and T2:v , and two sets of compara-

ble predicates T1:P and T2:Q that impose constraints on the variables.

If none of the conditions in rule 1 to rule 3 is satis�ed, then the two

variables belong to SigT1�T2
. That is,

T1:v 6=sem T2:v

270



5. Given two comparable variables T1:v and T2:v . Sometimes, we can di-

rectly prove T1:v =sem T2:v , or T1:v �sem T2:v , or T1:v 6=sem T2:v , from

the predicates that impose constraints on them and from the knowledge

about the free variables in the predicates, without proving the equiva-

lence of the predicates. We can treat \=sem", "�sem", and \6=sem" as

normal set operators.

B.2 Adjustment Rules

The comparison process is iterative. During the course of comparison, for

each comparable variable, more and more relationships between the variable

and other variables are considered, and more and more constraints on the

variable are discovered. All these constraints together �nally determine which

characterizing set the variable should belong to. Thus, it may be necessary to

move the variable from one characterizing set to another when more constraints

are imposed on it. We cannot completely avoid such adjustments, not because

it is inevitable in theory, but is due to the nature of our stepwise comparison

mechanism. The adjustment is guided by the following rules.

6. A comparable variable can only be moved from SigCore to SigT1
(or SigT2

)

to SigT1�T2
, but cannot be moved in the reverse direction.

7. Given two variables T1:v and T1:w , where T1:w � T1:v�T1:v
0�T1:v

00�

: : :. T1:v is previously in certain characterizing set, and at the current

stage we need to determine whether T1:v should still remain in the same

set or be moved to another one, based on the current result of T1:w . If

T1:w further restricts the values that T1:v can take on, then the status

of T1:v will have to change accordingly. Otherwise, there is no change

to T1:v .

Example:
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(a) OM :attribute and IM :attribute are in SigCore at the beginning of the

comparison. After we compareOM :attrDe�nedIn (OM :attrDe�nedIn �

OM :attribute�OM :entiey) and IM :attrDe�nedIn (IM :attrDe�nedIn �

IM :attribute � IM :object), it is obtained that IM :attribute cannot

be the empty set but OM :attribute = ; is possible. Therefore,

comparable variables OM :attribute and IM :attribute are moved to

SigIM , that is,

IM :attribute �sem OM :attribute

(b) OM :opDe�nedIn satis�es the predicateOM :opDe�nedIn 2 OM :operation $

OM :class. This predicate gives no further constraint on OM :class,

thus, OM :class remains unchanged.

8. Given that variable T1:v
0 is a subset of variable T1:v , i.e., T1:v

0 � T1:v .

T1:v may have to be moved to a di�erent characterizing set based on

the previous result about T1:v
0 and T1:v . Table B.1 illustrates the rule.

The �rst column shows the characterizing set which T1:v is in, and the

�rst row shows the characterizing set which T1:v
0 is in. The rest shows

which characterizing set T1:v as well as its counterpart T2:v should be

moved to. The multiple characterizing sets listed in a table item mean

that di�erent constraints imposed on T1:v
0 and T1:v may yield di�erent

results.

9. Given that variable T1:v
0 is a subset of variable T1:v , i.e., T1:v

0 � T1:v .

T1:v
0 may have to be moved to a di�erent characterizing set based on

the previous result about T1:v
0 and T1:v . Table B.2 illustrates the rule.

The �rst column shows the characterizing set which T1:v
0 is in, and the

�rst row shows the characterizing set which T1:v is in. The rest shows

which characterizing set T1:v
0 as well as its counterpart T2:v

0 should be

moved to.
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Table B.1: Adjustment rule for T1:v based on the previous result of T1:v and

T1:v
0.

T1:v T1:v
0 (T1:v

0 � T1:v)
SigCore SigT1

SigT2
SigT1�T2

ExtT1

SigCore SigCore SigT1
SigT2

SigT1�T2
SigCore ; SigT2

SigT1
SigT1

SigT1
SigT1

; SigT1�T2
SigT1

; SigT1�T2
SigT1

; SigT1�T2

SigT2
SigT2

SigT2
; SigT1�T2

SigT2
SigT2

; SigT1�T2
SigT2

SigT1�T2
SigT1�T2

SigT1�T2
SigT1�T2

SigT1�T2
SigT1�T2

Table B.2: Adjustment rule for T1:v
0 based on the previous result of T1:v

0 and
T1:v .

T1:v
0 T1:v (T1:v

0 � T1:v)

SigCore SigT1
SigT2

SigT1�T2

SigCore SigCore SigCore ; SigT1
SigCore ; SigT2

any

SigT1
SigT1

SigT1
SigT1

; SigT1�T2
SigT1

; SigT1�T2

SigT2
SigT2

SigT2
; SigT1�T2

SigT2
SigT2

; SigT1�T2

SigT1�T2
SigT1�T2

SigT1�T2
SigT1�T2

SigT1�T2

Note: \any" means any of the characterizing sets.

10. A variable T1:v sometimes has constraints from di�erent point of view

in several schemas. We may compare these schemas at several steps. In

this case, we get several separate results about T1:v . To put these results

together, we use the rule illustrated in Table B.3. The �rst column shows

the characterizing set T1:v is previously in, and the �rst row shows the

current result about T1:v . The rest shows which characterizing set T1:v

as well as its counterpart T2:v should be moved to.

11. If a non-comparable predicate T1:p is about properties of a comparable

variable T1:v , then we may need to adjust T1:v 's status, because the

predicate may restrict the relationships between the variable and other

variables and hence restrict the values the variable can take on. On the
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Table B.3: Adjustment rule for T1:v based on its previous and current results
T1:v T1:v (current)

(previous) SigCore SigT1
SigT2

SigT1�T2

SigCore SigCore SigT1
SigT2

SigT1�T2

SigT1
SigT1

SigT1
SigT1�T2

SigT1�T2

SigT2
SigT2

SigT1�T2
SigT2

SigT1�T2

SigT1�T2
SigT1�T2

SigT1�T2
SigT1�T2

SigT1�T2

other hand, theory T2 does not have a corresponding predicate, so it does

not have similar restrictions on any variable in T2. If this is the case,

Table B.4 illustrates the rule for adjustment. Again, T1:v 's counterpart

T2:v should move accordingly.

Table B.4: Adjustment rule for T1:v based on a non-comparable predicate
imposing constraints on T1:v .

T1:v (before) SigCore SigT1
SigT2

SigT1�T2

T1:v (after) SigT1
SigT1

SigT1�T2
SigT1�T2

However, when T1:v 2 CoreT1
:SigT2

, there is one exception: if the con-

straint is on those models of T1 that do not have corresponding models

in T2, then the status of T1:v does not change.

12. Once a variable v is moved from one characterizing set to another, we

have to reconsider other related variables in the subtheory that have

already been compared, and make the corresponding changes to these

variables by repeatedly applying rule 1 to rule 11. This process of updat-

ing the characterizing sets terminates when no variable needs a further

change.
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B.3 Charactering Sets of OM and IM

The tables in this section illustrate the comparison result. Each table is for

one characterizing set. SigOM is empty.

Table B.5: The variables in characterizing set SigCore
variable in OM constraint variable in IM constraint

role role

multiplicityOfRole multiplicityOfRole

roleDe�nedIn roleDe�nedIn

hasRole hasRole

singularRole single

optionalRole conditionSingle

onemulRole (aux) multiple(2)

optmulRole (aux) conditionMultiple(2)

multipleRole(2)

orderedRole(2)
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Table B.5: The variables in characterizing set SigCore (continued)

variable in OM constraint variable in IM constraint

association relationship

binaryAssociation binaryRelationship

one oneAssoc R11

one onemulAssoc (aux) R1M
(2)

one optmulAssoc (aux) R1Mc
(2)

one mulAssoc(2)

onemul onemulAssoc (aux) RMM
(2)

onemul optmulAssoc (aux) RMMc
(2)

optmul optmulAssoc (aux) RMcMc
(2)

mul mulAssoc(2)

one optAssoc R11c

opt onemulAssoc (aux) R1cM
(2)

opt optmulAssoc (aux) R1cMc
(2)

opt mulAssoc(2)

opt optAssoc R1c1c

quali�edAssociation(2)

qualify (2)

baseAssoc(2) baseRelationship (aux)

derivedAssoc comRelationship

assocDeriving (3) composedBy (3)

groupedAssociation(2)

genAssociation genRelationship

aggAssociation(2)

disjointGen(2) disjointGen (aux)

aggregation(2)

parent (2)

gen parent (aux) superRole

child (2)

gen child (aux) subRole

�xedAgg (2)

variableAgg (2)

recursiveAgg (2)

module(2)
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Table B.6: The variables in characterizing set SigIM
variable in OM constraint variable in IM constraint

entity entity

feature ccPredIM feature ccPredIM

de�nedIn(2) ccPredOM de�nedIn (aux) ccPredIM
ccPredIM

hasFeature ccPredOM hasFeature ccPredIM

class ccPredIM object ccPredIM

baseClass(2) baseObject (aux)

joinClass(2) joinObject (aux)

concreteClass(2) concreteObject (aux)

leafClass(2) leafObject (aux)

formalizer (6)

associationClass associativeObject

attribute ccPredIM attribute ccPredIM
attrDe�nedIn ccPredOM attrDe�nedIn ccPredIM

hasAttribute(1)

descriptiveAttr (aux) descriptiveAttr (2)

namingAttr (aux) namingAttr (2)

baseAttr (2) baseAttr (aux)

valueRange ccPredOM domainSpec ccPredIM

valueOfType(4)

typeOfAttr (4)

restrict (4)

generalRestrict (4)

constraint (4)

key identi�er

hasKeyElement ccPredOM hasIdElement ccPredIM
keyedEntity (2) idedEntity (aux) ccPredIM
isKeyOf isIdOf

theKey (1)

hasPreferredKey (aux) hasPreferredId (2)

playerOfRole playerOfRole

containedIn(2)
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Table B.6: The variables in characterizing set SigIM (continued)

variable in OM constraint variable in IM constraint

grouping (2)

generalization ccPredIM generalization ccPredIM

single(2)

gen single (aux) supertype

group(2)

gen group (aux) subtype

collectedIn(2)

gen collectedIn (aux) collectedIn

isKindOf isKindOf

isDescendentOf inherit

isAncestorOf (1)

extension(2)

isPartOf (2)

Table B.7: The variables in characterizing set SigOM�IM

variable in OM constraint variable in IM constraint

modeledAs ccPredOM formalizedBy ccPredOM

singleOccurrence(2)
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