
Non-intrusive Lightweight Agents for

Information Management

S. Varma D.B. Skillicorn

November 1997
External Technical Report

ISSN-0836-0227-

97-411

Department of Computing and Information Science

Queen's University
Kingston, Ontario, Canada K7L 3N6

Document prepared November 5, 1997
Copyright c1997 S. Varma and D.B. Skillicorn

Abstract

An information management system should reduce the workload of the user. It

should also learn about user's preferences and reduce the e�ort in managing infor-

mation. We propose a non-intrusive approach to building information management

systems, based on software agents. Software agents are programs that carry out

actions on behalf of the user autonomously. We describe the issues involved in

designing such systems. As an example, we design BMA (a Bookmark Manage-

ment Agent). BMA is a non-intrusive, lightweight software agent that manages

bookmarks (web browser pointers to favourite sites).

Tests show that BMA is a useful tool in managing bookmarks. This shows that

software agents are a promising approach to information management systems. It

also demonstrates the feasibility of a non-intrusive agent.

1 Introduction

1.1 Motivation

The Internet is growing [23] and the sea of information brought to our doorstep

is expanding every day. It is estimated that more than 70 million users will

be using the World Wide Web by the end of 1997 [4]. This leads to the issue

of how well the user is prepared to take advantage of this information boom.

Furthermore, new technologies have yielded faster computers and bigger ap-

plications on the desktop. Each application has a number of powerful features.

These features continue to grow in number causing increased interface com-

plexity.

Users would appreciate any help in dealing with this information overload.
However, the question is how and where to o�er this help. To address this
question one needs to identify the areas where a user would require assistance.

Moreover, it should be provided in such a way that it does not increase the
complexity of her desktop environment and is as non-intrusive as possible.

The idea of a software agent has recently gained popularity due to its po-
tential capacity to reduce the user's workload. The main idea behind software
agents is that there are lots of tasks users have to do that can be delegated to

the computer. An agent is a software program that runs autonomously and
reduces the work load for the user by doing certain chores. Also, it tries to

learn the preferences of the user and customises itself accordingly.
The World Wide Web is becoming very popular as indicated by the number

of people using it [4]. However, the sheer amount of information makes things

di�cult. Search engines try to manage this information by indexing documents
on the web. However, there are few tools that operate at the user's end.

Software agents can be used to reduce the work load for the user by manag-

ing her information. However, the idea of employing an agent has a potential

risk of the agent trying to intrude into the user's work space. Many people

don't like the idea of an agent continuously watching over their shoulders.
Moreover, they don't trust the agent enough to hand over the controls.

The aim of this research was to take a non-intrusive approach to designing

information management systems using the concept of software agents. We

believe that such systems will play an important role in managing information

in the future.

In this report, we address as a non-trivial application domain for this idea,

the problems in the management of information already collected from the

World Wide Web. This information usually presents itself as bookmarks,

1

pointers to users' favourite sites. The identi�ed problems in bookmark man-

agement are as follows. The World Wide Web is dynamic in nature and this

leads to several issues. These include

� Change in bookmarked sites/pages: Due to immense size of the

WWW, users cannot easily be noti�ed of any changes in sites. For

example, if the user wants to check if a new edition of a magazine has

been published on the web she has to keep going to the site to check

that.

� Movement of sites: Web pages sometimes move from one server to

another. Again, a user cannot easily be informed that a site has moved.

The user, for example might go to her favourite site and not �nd it at
all. She then has to go through the whole process of searching for it.

� Removal of Web pages: Pages are removed from web servers without

noti�cation and this sometimes leaves the user unprepared. For example,
a student might have bookmarked several research papers and decides to

go to them before an important presentation only to �nd the key paper
missing.

The bookmarks list is one of the most frequently used menu items of a Web

browser. Some of the problems with the bookmarks are:

� As the number of bookmarks increase it gets di�cult to scan the book-

mark �le. For example, a user might have to go several folders in depth
to reach a bookmark.

� There are several bookmarks that the user no longer uses and has for-

gotten. Since the user no longer requires them, they only make things
di�cult by crowding the bookmark �le.

� A user might visit a favourite site on a particular day. For example, the
bi-weekly magazine gets released on the 1st and 15th of every month.

However, a user may not always remember to go to these sites on that

day and miss seeing her favourite site.

The following sections discuss the various issues involved and demonstrate
the construction of a software agent using the non-intrusive approach. Our im-

plementation of the agent is called the Bookmark Management Agent (BMA)
and it addresses the issues discussed earlier.

2

1.2 Contributions

The work presented in this report uses techniques from the �eld of software

agents to solve the problem of information management. The contributions

made by this report are as follows.

� This report proposes a non-intrusive approach to the construction of

information management systems using the concept of software agents.

It also addresses the various issues involved in taking this approach.

� It identi�es a problem in informationmanagement and demonstrates how

it can be addressed using techniques from the �eld of software agents.

� It demonstrates the design and construction of Bookmark Management
Agent (BMA) that can be used to address the issue of managing book-
marks.

� It also validates that software agents are a promising approach to de-
signing non-intrusive information management systems.

1.3 Outline of the Report

The rest of this document is divided into the following sections. Section 2
describes what agents are and gives an overview of the type of agents that are

being researched today. It also discusses the Internet, the World Wide Web
and narrows down to browsers and bookmarks to provide a setting for the
Bookmark Management Agent (BMA). Section 3 describes the non-intrusive

approach for incorporating the various properties of a software agent. It then
discusses the resulting design and architecture of BMA. Section 4 discusses the
technical issues encountered during the construction of the BMA. Section 5

discusses and demonstrates the working of the Bookmark Management Agent.

Section 6 gives the concluding remarks and discusses the observations made

during the course of this work.

2 Background

The intent of this chapter is to give a broad overview of software agents. We

�rst explain what an agent is and review a few de�nitions. We also describe
properties of an agent. Then we provide a panoramic overview of di�erent

agent types that are being developed and researched. Furthermore, we discuss

3

the techniques being explored by various research groups to enhance the func-

tionality of user agents. At the end we discuss how knowledge about user's

behaviour can be extracted from a bookmark �le.

We begin by describing the concept of an agent and its interpretations.

2.1 Agents

The idea of an agent has attracted attention from many �elds such as psychol-

ogy, sociology, and arti�cial intelligence. Research in this �eld has spawned

many names and de�nitions. For example, agents are also known as intelligent

interfaces, adaptive interfaces, knowbots, softbots, userbots, personal agents

and network agents. However, no agreement has been reached on an exact

de�nition of an agent. Most of the de�nitions [9] are based on the techniques
used to build an agent and on the functionality they have to o�er.
For example, according to the IBM [11] de�nition,

Intelligent agents are software entities that carry out some set of

operations on behalf of a user or another program with some de-

gree of independence or autonomy, and in so doing, employ some

knowledge or representation of the user's goals or desires.

The above de�nition sheds some light on the goals being pursued by major
companies like IBM [11, 6] and Microsoft. Essentially, work is being done to
improve existing applications and make them more user-friendly.

Maes [16] de�nes them as:

Autonomous agents are computational systems that inhabit some

complex dynamic environment, sense and act autonomously in this

environment, and by doing so realize a set of goals or tasks for

which they are designed.

Maes has done much work [16, 18, 17] in the �eld of agents that employ AI

techniques to perform tasks for the user. The agents usually learn from users'
behaviour and aim to automate repetitive tasks.

Another de�nition given by researchers at MIT, Stanford and AT&T [3] is:

Agents assist users in a range of daily, mundane activities, such

as setting up meetings, sending out papers, locating information in

multiple databases, tracking the whereabouts of people, and so on.

The above de�nitions highlight the views held by various researchers both in

commercial and educational institutions.

4

2.2 Agent Characteristics

An agent possesses certain properties which di�erentiate it from a user-driven

program. In fact, the notion of an agent is being pursued [17] to break away

from this paradigm. Of course, an agent is a program, but the way it operates

changes.

According to Wooldridge et al. [28] an intelligent agent should exhibit the

following properties.

� Autonomy : Agents operate without the direct intervention of humans,

and have some kind of control over their actions and internal state.

� Social ability: Agents interact with other agents (and possibly humans)
via some kind of agent-communication language.

� Reactivity: Agents perceive their environment, (which may be the phys-

ical world, a user via a graphical user interface, a collection of other
agents, the Internet, or perhaps all of these combined), and respond in

a timely fashion to changes that occur in it.

� Pro-activeness: Agents do not simply act in response to their environ-
ment, they are able to exhibit goal-directed behaviour by taking the

initiative.

Ideally, an agent should strive for all of the above attributes. However, it

is clear that the essence of an agent is to act without direct manipulation on
the part of the user, and to be useful to the user.

2.3 Agent Classi�cation

There are essentially six types of agents being developed. Nwana [22] gives a

good overview of the typology of agents. The following typology tries to cover

the more speci�c categories mentioned in [2, 12].

2.3.1 Collaborative Agents

Goals of collaborative agents are similar to goals of distributed arti�cial intel-

ligence. The aim is to exploit distributed resources and thus make an agent

more useful. Collaborative agents cooperate with other agents autonomously

to carry out tasks for the user. They interact with other agents in a multi-

agent environment and reach a mutually acceptable decision. Collaborative

5

agents can help solve problems too large for a centralized single agent and they

can form an e�ective interface between heterogeneous systems. Other bene�ts

include enhanced modularity, higher speed due to parallelism, reliability, and

exibility and reusability of existing resources.

An example of such a system [22] is the Pleiades project at Carnegie-

Mellon. In this system agents cooperate with each other to carry out a task

speci�ed by the user. The agents communicate using Knowledge Query and

Manipulation Language (KQML) [10] and negotiate to reach agreements.

2.3.2 Interface Agents

The idea of an interface agent is being promoted by the arti�cial intelligence
community. Interface agents are autonomous agents that learn to perform

tasks for the user. An agent monitors and observes the actions taken by the
user and suggests better ways of carrying them out. The agent can also o�er to
automate repetitive tasks for the user. An interface agent learns by observing

and imitating the user, either receiving negative and positive feedback from
the user, receiving explicit instructions from the user, or by communicating

with other agents. According to Maes [16, 18, 17] the goal is to move away
from the paradigm of a user-initiated interaction and to delegate some tasks
to interface agents. There are several functional examples of interface agents.

These include

� Maxims (Electronic Mail Agent) [17]: This agent helps the user with
email. It continuously looks over the shoulder of the user as she deals

with email. It learns to set priorities, delete, forward, sort and archive
mail messages for the user.

� NewT (News Filtering Agent) [24]: It helps the user �lter netnews. The

user either gives the agent instructions as to what are the topics she is
looking for, or the agent tries to keeps track of users' preferences. The

agent learns from the feedback given by the user and also by observing

the user's behaviour. However, detecting a pattern can take a consider-
able amount of time.

� Web Watcher [1]: This tour guide software agent helps the user in brows-
ing the web. It guides the user along an appropriate path through the
collection, based on the knowledge of the user's interests, of the location

and relevance of various items in the collection , and of the way in which

the other users have interacted with the collection in the past.

6

2.3.3 Mobile Agents

Mobile agents can traverse networks to carry out tasks speci�ed by the user.

A mobile agent can gather information or perform tasks by interacting with

the various hosts in the network. Mobile agents help reduce communication

costs, make better use of distributed resources, and carry out tasks in parallel.

There are presently two major platforms compatible with mobile agents.

1. Telescript Development Environment (TDE) [27]: This operating envi-

ronment was invented by General Magic (Mountain View, CA). It con-

sists of a telescript engine which allows multiple agents to execute and

share information among themselves. These agents are developed using
the telescript language. A mobile agent is packed with all its informa-
tion by the host engine and sent o� to another engine across a wide area

network. The receiving host then unpacks the agent, lets it execute, and
sends it back to its originating destination. These agents can carry out

interprocess communication to use services o�ered by other agents.

2. IBM's Aglet Workbench [26] : This environment has been created by
IBM Japan and uses Java to write mobile agents known as aglets. Java's

platform independence, security features, and ability to execute on any
host, made it the language of choice for developing mobile agents. The
Aglet Workbench provides a set of APIs for developing aglets. Aglets

have the ability to maintain their state while traveling across a network.
They can carry out operations on one machine, and then move to another

one to continue the same operation without starting from scratch.

2.3.4 Information Agents

Information agents address the issue of information management and overload.

These agents help the user in information search and retrieval. They typically

issue a request to various search engines and extract the information most
relevant to the user's request.

The Internet Softbot [8] is an example of such a system. It accepts a
high-level request from the user and then is able to carry out the request

by invoking appropriate services provided by the Internet. The agent uses

an automatic planning algorithm. After getting the request from the user,
the agent generates a sequence of steps based on its knowledge of available

information resources, databases, utilities, and software programs. The agent

is intelligent in the sense that the user or the programmer does not have to

7

specify the steps it has to take to attain a goal. Other information agents

like Web Compass [5] and Surfbot [25] have to be initiated by the user and

they go out and look for the information speci�ed. Thus, they are not totally

autonomous.

2.3.5 Reactive Agents

This is a relatively specialized class of agents. Reactive agents do not possess

any symbolic model of their environment and react to the present state of the

environment. This makes the agent adaptable, exible, and more tolerant to

changes in the environment. An example [16] of such a system is the ALIVE

(Arti�cial Life Interactive Video Environment) project developed at MIT. In
this system a user is allowed to enter a virtual world where she interacts with

agents. The agents are in the form of animated characters. They react to
the situation presented to them. For example, an animated character in the

ALIVE system moves in the direction pointed by the user. Another such
example is the Julia Chatterbot [20] project at Carnegie Mellon University.
The project involves developing a chatterbot which can communicate using

human expressions.

2.3.6 Hybrid Agents

All types of agents have their strengths and weaknesses and a hybrid agent

tries to combine two or more agent philosophies to come up with a better
combination.

For example, if an information agent and mobile agent philosophies are

combined, we could have an agent that e�ectively helps the user look for
speci�c information. The agent can travel the network looking for the speci�ed
information and get back to the user after accomplishing its task.

2.3.7 Web Access

The World Wide Web provides the opportunity to access resources all over

the world. However, the number of resources is so huge that it is not easy for

an untrained user to enjoy their bene�ts without the use of a search engine.
Search engines (e.g. WebCrawler, Yahoo, Lycos etc.) [14] play an important

role in locating the information available on the network. A search engine does
this in the following way. It either retrieves the documents from the various

web servers or relies on users providing them. It then processes documents

8

to extract titles, keywords etc. This information is then stored in a database.

The user can now submit a query to this database and retrieve a list of relevant

documents. Search engines are sometimes referred to as internet agents as they

autonomously look for documents and index them for the users.

However, the increase in the number of engines has lead to problems like

network congestion. To keep their indexes up to date these engines traverse

the web looking for HTML documents. Since the number of engines is large,

there is an immense load on the network.

Recently, there has also been an explosion in the number of Web Wander-

ers/Robots [15]. Robots are programs that traverse the Web collecting pages

that might be of some interest to the user.

2.4 Information Management

As more information sources are added to the World Wide Web, there is a

growing need for managing this information. Unfortunately, there are few
software tools available to help. Search engines keep track of information
by indexing documents, but the number of documents available is increasing

rapidly, as is the network tra�c generated by the process of capture and index.
For example, the Lycos engine [19] which went public in July 1994 with an
index of 54,000 documents had 60 million documents by November 1996.

The dynamic nature of the Internet makes it impossible to keep the index
information up to date. Documents are added, moved and deleted every day,

and it is hard to keep up.
Services like search engines address information management globally, but

they are not responsive to the needs of users individually. There is an evident

need for software tools which operate and manage information from the user
perspective. There are some signs of this { for example, some sites allow users

to receive customised information. However, economic pressures tend to favour
`push' technologies over the present user-controlled framework, making tools

for �ner control by users less attractive commercially.

2.5 The User

It is estimated that around 70 million users will be making use of the WWW
by the end of 1997 and this number continues to grow rapidly [4]. The internet

is no longer limited to researchers exchanging technical information. Users can
be divided into two broad categories.

9

� Trained : The trained users are familiar with the Internet and the tools

available to access the services provided by it. They make e�cient use

of the various facilities provided by the Internet.

� Untrained: Users who have just discovered the world of the Internet

and make casual use of facilities like email, or just browse the Web for

entertainment purposes. The number of such users is increasing at a high

rate due to the introduction of services like online magazines, banking,

shopping etc.

2.6 The User, the Agent and the World Wide Web

The basic reason for agent research [17] is to help all types of users take

maximum advantage of the information that is available. However, the main
hurdle [3] is to identify the issues that require agent help and to solve them
e�ectively. A lot of valuable information is available on the Internet and users

spend a lot of time trying to �nd relevant information. Many agents are
focussing on addressing the issues arising due to this information overload.

The main �elds that are being investigated are information �ltering, infor-
mation searching and information management. Information �ltering agents
like Newt [24] �lter the information available through Usenet newsgroups ac-

cording to users' preferences. Agents like Web Compass [5] and Sulla [7] search
for information on the World Wide Web that might be of interest to each user.
However, the user still has to choose relevant articles from the total number of

articles retrieved by the agent. Information management agents include Max-
ims [17] that manages email: sorting messages into priority order, and deleting

and archiving them. Since the idea of agents for the World Wide Web is new
there are very few agents that address these issues.

To create an agent that is of any assistance to the user, one has to gain

knowledge about the user. There are two ways one can do this

1. By observing the user's behaviour.

2. By asking the user what she wants.

One would have a more e�ective agent if both the above ways are incor-

porated into the agent. Let us consider the sequence of steps a user follows if

she wants to view a document, or search for a document on the World Wide

Web.

� The user starts a web browser.

10

� The user accesses the document by typing in a URL (address of the

document) or uses a bookmark (address stored by the browser).

� If she is looking for a new document, she types in keywords in the Search

Engine interface and the engine gives her the documents that match the

query.

� If the user �nds a document she is looking for, she bookmarks it for

future access.

From the above sequence of steps one can deduce that the bookmarks are

an important source for identifying user's preferences. Our survey of the var-

ious agents available on the Internet revealed that only two agents, namely
URLMinder [21] and Surfbot [25], deal with bookmarks. However, they both

require the user to register bookmarks with the agent. Surfbot helps by down-
loading the bookmarked sites on a schedule speci�ed by the user, and URL-

Minder sends the user email if the registered site changes.

2.6.1 Bookmarks

Every time a user adds a bookmark, or goes to a bookmarked site, the browser
makes an entry into the bookmark �le. For Netscape, the bookmark �le is an

HTML �le and stores the following information.

1. The date the bookmark was added.

2. The date the bookmark was last visited.

3. The date the bookmark was modi�ed.

4. The URL for the bookmark.

2.6.2 Knowledge Extraction

To extract knowledge about the user's behaviour one can observe the user and

establish a pattern in her habits. Such an approach is followed by agents like

NewT and Maxims [24, 18]. Agents like URLMinder [21] and Surfbot [25] ask
the user to register the sites that they want observed. A third option is to
extract this knowledge from information that exists already. The bookmark

�le is a good source for extracting knowledge about a user's behaviour. Since

it stores the addresses of all the sites the user visits, one can get a good idea

about user habits.

11

3 Design

This section �rst discusses the attributes that are expected of agents in general.

We then discuss a non-intrusive approach to incorporating these attributes.

We also introduce some additional properties that an agent should posses in

order to be non-intrusive. The various choices that arise while taking a non-

intrusive approach are then described. Later, we discuss the requirements and

architecture of an example system.

3.1 Attributes

As mentioned in Section 2, certain attributes are characteristic of an agent.
The following section discusses the properties [9, 28, 12] that are desirable in

an agent.

� Autonomy: The agent should operate without the direct intervention

of humans and should have some kind of control over its actions. The
user should be able to delegate certain tasks to the agent and it should
carry them out without the user's cooperation.

� Pro-activeness: Agents do not simply act in response to their environ-

ment; they are able to exhibit goal-directed behaviour. The agent should
start spontaneously and work towards its goals. The aim should be to
develop software that functions without direct manipulation on the part

of the user.

� Pattern Recognition: The agent should be able to detect patterns
in the user's actions. Usually, the patterns are indicative of repetitive
behaviour. It should either try to automate repetitive actions or assist

the user in performing the tasks.

� Interaction/Social ability: The user should be able to communicate

her preferences to the agent. The agent, on the other hand, should have
the ability to communicate with its user. The communicated information

could be suggestions relating to a task or messages notifying the user of
accomplished tasks.

3.2 The Non-intrusive Approach

We believe that agents will play an important role in managing information

in the future. However, if a number of agents inhabit the user's environment

12

there is potential risk of agents getting too intrusive. This might lead users to

consider them as a nuisance instead of assistants. We propose a non-intrusive

approach to the construction of agents. For this we need to consider the

attributes expected of an agent from a non-intrusive perspective. Moreover,

we need to aim for some additional properties that promote this approach.

3.2.1 Goals

� Autonomy: The agent needs to be independent. However, it should

operate independently in such a way that it does not bother the user. It

should not perform any intrusive operation without the user's consent.

� Pro-activeness: The agent has the capability to act without the user ini-
tiating the action. However, to maintain non-intrusiveness it should limit

its activities to opportune times so that there is minimum interference
with user actions.

� Pattern Recognition: The agent needs to determine patterns in the user's
behaviour in order to provide assistance. However, detecting patterns
should be done in such a way that it does not change anything in the

user's environment or disturb her in any way.

� Interaction/Social ability: The interaction between the user and the
agent should be non-intrusive. The user should not be forced to inter-

act with the agent, but should be given the option of interacting when
she wants. Moreover, the interaction interface should blend in with the

user's environment so that the user does not have to learn or use special
interface software.

� Con�gurability: The fact that an agent is running in the system and is

watching over the user's shoulders is considered to be intrusion by some

users. Thus, the user should have the power to stop the agent, or to

con�gure it. The user should maintain a sense of control over the agent.

� Privacy: The agent will have access to con�dential information. The

agent should not compromise the user's security. It must ensure that all

the user �les it creates and uses are secure. If the agent uses the World

Wide Web to communicate with the user it should take care that the

messages are only visible to the user and not to the general public.

13

� Ethics: The agent should be a lightweight process. It should not have

unauthorised access to system resources. If it interacts with the World

Wide Web it should not cause unnecessary network tra�c and should

put minimum load on the system and the network.

3.2.2 Issues

To take a non-intrusive approach, the design should consider the user, the

host system and the systems with which the agent interacts. A non-intrusive

system should be designed with the goals mentioned earlier in mind. This

section discusses the choices that arise while designing such a system.

In an environment like Unix where several processes can execute at the
same time, autonomy and non-intrusiveness can be achieved by running the

agent in the background. The choice of executing the agent as a continuously-
running process or as a process that wakes up occasionally depends on the

task in hand for the agent. If one needs to monitor the activities of the system
and the user all the time, then a continuous process is a good idea. However,
if activities during interaction between the user and the system have to be

monitored then something like a process that starts up when the user logs in
(e.g. using a .login or a .xxxrc �le) seems to be a better solution. Nevertheless,
one should avoid adding another continuously-running process to the system

if the work can be done by using an existing process. For example, one can
use the services of the cron clock daemon to carry out scheduled tasks. This

helps to reduce the load on the host system.
If the agent is autonomous and pro-active it starts on its own to carry out

certain chores for the user. It can do it either when the user is using the system

or when the user is not using the system. To be non-intrusive it should try to
run at times when the user is not using the system and/or there is a minimum

load on the system. For example, the agent can be run late at night. One can

do this by programming the agent process to wake up at an opportune time or
use the facilities of cron to execute it. Again, if tasks can be achieved through

cron, one should avoid adding another daemon to the system.

Patterns in the user's behaviour can be recognized by: observing her key
strokes, mouse clicks etc.; asking her questions; or by observing the impact of

her actions on the �le system. Asking questions while the user is working might
not be appreciated as they easily become annoying. Continuously watching

her moves without disturbing her can be used, but requires the agent to run all

the time. Analyzing her impact on the �le system may be the best alternative
as it can be done while the user is not using the system and does not require

14

the agent to run continuously. However, this approach does depend on the

problem at hand. For example, \Open Sesame" from Charles River Associates

Inc. is an agent that monitors the keyboard and mouse watching for repeating

patterns. Such a system would need to operate when the user is on the system.

There are also several options for making the interaction non-intrusive.

The agent could interact with the user by: sending her email messages; start-

ing a new interface application; or by blending the interaction interface into

an application used regularly by the user. Sending email forces the user to

interact with the agent. Moreover, too many email messages might annoy

the user. However, this approach can be useful in transmitting information

that requires immediate attention. Another application interface increases the

complexity of the work space. If the problem addressed by the agent is in-
dependent of other applications then this might be a good idea. However,

if the problem requires collaboration with an existing application then the
third choice seems appropriate, as it preserves the user's work environment

and makes the interaction less novel.
For interaction with the web, the agent can either carry out all the op-

erations at once, or space out its requests to put a minimum burden on the

network and the web servers. The second approach makes the agent non-
intrusive and well behaved. For example, to index the documents on a certain
site, the agent could download all the documents frequently. This will increase

the load on the targeted server and might even choke it if several agents decide
to do so. Taking the non-intrusive approach, designing a system in which tasks

are properly spaced and execute at opportune times is advisable. It should
put a minimum burden on the host system and the systems with which it
interacts.

The agent can either be con�gured from the interaction interface, or through
a set up �le provided with the agent. To reduce user e�ort, using the interac-

tion interface is a better solution.
If the interaction interface is to be made available on the World Wide

Web, there are again two choices: make it available to all web users, or to

individual users. If the results displayed by the agent are not con�dential, they

can be viewed by all users. However if they expose con�dential information,
they should either be password protected or be available only from user's

environment.

15

3.3 An Example System

One of the main challenges in agent research is to identify areas where the

services of an agent can be employed successfully to incorporate the agent in

the identi�ed environment. One such application domain is that of managing

information already collected from the World Wide Web. The collected in-

formation presents itself in the form of bookmarks that are pointers to user's

favourite sites. We design an agent that takes the non-intrusive approach to

the management of bookmarks.

3.3.1 Requirements

The interactions between a user and the Netscape browser were observed and

it was decided that the following functionalities can be delegated to a software
agent. We divided the functionalities in two broad categories.

� Bookmark Management

The agent can be used to manage bookmarks and to detect patterns in

user behaviour. The identi�ed functionalities are

{ Sorting of bookmarks: To reduce the time taken to reach a book-
mark, the bookmarks can be sorted according to the time of last

visit. This way the bookmark visited last will occur �rst. However,
this will cause bookmarks to be rearranged. Some users might not

like the rearrangement of their bookmark �le.

{ Extracting recently-visited bookmarks: The bookmarks that
have been recently visited are likely to be revisited. Presenting
them to the user avoids the sequence of going to the bookmark �le

and �nding the URL

{ Extracting old bookmarks: Many bookmarks are no longer re-

quired by the user. The bookmarks that have not been visited for

a long time can be presented to the user for possible deletion.

{ Detecting patterns in URL access behaviour: Some users like

to visit sites on certain days of the month. For example, they might

check the Top Ten music videos every Sunday, or read the issue of
their favourite magazine on the 1st of every month etc. Detecting

such a pattern in the user's behaviour will be useful in reminding
her to visit a page on a particular day.

16

{ Deleting bookmarks: The user can be given the option of delet-

ing bookmarks from the bookmark �le. The user will not have to

�nd the identi�ed bookmarks individually.

� Page status Monitoring

The World Wide Web is dynamic in nature and it is di�cult, if not

impossible, to keep users informed of changes. It is useful if the pages

bookmarked by the user are monitored for changes.

{ Modi�cation status: The pages bookmarked by the user can be

monitored for changes. For example, if a new article is added to a

list of research papers, a researcher can bene�t from the knowledge

that it has changed.

{ Existence status: The bookmarks can also be monitored for pages

removed from servers. The user can be informed that a particular
bookmarked page no longer exists on a server so she should delete

the bookmark.

{ Relocation: Pages are often moved for reasons like better access

time, more storage capacity etc. The server usually puts a noti�-
cation saying that the page has been moved to a new site. This
noti�cation may be removed later from the original server. If the

user does not �nd the relocation noti�cation, she will have to go
through the whole process of searching for the page again. To pre-

vent this, the bookmark pages be monitored for movement.

3.3.2 Architecture

The Bookmark Management Agent (BMA) was designed using the attributes
mentioned earlier. A conceptual design, shown in Figure 1, was �rst con-

structed. The design demonstrates that the agent interacts with the World
Wide Web and the user to satisfy its goals that are derived from the needs

and interests of the user. The resulting architecture, shown in Figure 2, is

described in the following sections.

The agent consists of four software modules.

� Web Interaction Module

� URL Management Module

� User Interface Module

17

� Common Gateway Interface (CGI) Module

World Wide Web

User

User Interface (GUI)

Agent

Interests/Needs

Goals

Figure 1: Conceptual design

The URL Management module and the Web Interaction module form the core
of the agent. The URL management module consists of several sub-modules

which perform the following tasks:

� Sort bookmarks

� Detect old bookmarks

� Delete bookmarks

� Detect and �x relocations

� Detect patterns

The bookmarks �le is used by the URL management module to extract the

URLs which are frequently visited by the user. These bookmarks are sorted so

that the URL visited most recently appears at the top of the list and is more

easily accessible. Furthermore, a list of URLs visited on the previous day is

also made, to assist the user.

The list of bookmarks is scanned for URLs which have not been visited for

a long time. The length of time can be speci�ed by using the Customise Page.

18

USER INTERFACE
Netscape

USER PROFILE
Bookmarks File

World Wide Web

AGENT

CGI
Module

 Module
User Interface

Web Interaction
 Module

URL Management
 Module

Figure 2: Bookmark Management Agent (BMA): System Architecture

A list of all bookmarks which are older than the speci�ed time is prepared.
Also, the user is presented with the option of deleting old bookmarks.

Periodically, the URL Management module tries to detect sites that have
moved. It does so by scanning the bookmarked pages for relocation messages.

If the module decides that a certain site has moved, it tries to �x the relocation
by extracting the new URL and replacing the old URL with the new one.
However, the decision to let the agent perform the substitution remains with

the user.
The agent scans the bookmarks visited by the user every day and tries to

determine patterns in the user's behaviour. For example, if the user visits a

certain site every Wednesday, the URL management module will detect this.

On the following Wednesday, the agent will present the user with a list of

URLs she usually visits on that particular day.
The URL management module passes the URLs extracted from the book-

marks �le to the Web Interaction module. The Web Interaction module per-

forms two tasks.

1. It checks the modi�cation status of each of the URLs: The server on

which the bookmarked page resides is contacted and the time the page

19

was last modi�ed is retrieved.

2. Retrieves pages: The server for each of the pages is contacted and the

bookmarked page is downloaded.

The downloaded pages are passed on to the URL management module, which

scans them for movement. Furthermore, a list of all the bookmarks which

have changed since the user last visited them is made. The Web Interaction

module also keeps track of URLs which no longer exist on the speci�ed server

and makes a list of such URLs. The user is given the option of deleting such

bookmarks (dead bookmarks).

Once the various lists are prepared by the Web Interaction module and the

URL management module, these lists are given to the User Interface module.
The User Interface module generates the communication interface for the user.
The user communicates with the agent using the forms presented to her. The

various HTML pages and forms that are presented to the user are made by
the User Interface module. These pages can be viewed by the browser. Fur-

thermore, the user can go to the sites using the URLs displayed on the various
pages.

The CGI module is responsible for collecting all the information from the

user and passing it on to the URL management module for processing. It
consists of various cgi-bin scripts which accept the information submitted by
the user. The scripts convert the information into the appropriate format, and

also generate an HTML con�rmation to be returned to the user. This module
is responsible for completing the dialogue between the user and the agent.

The agent is autonomous and runs at an opportune time or at a time
speci�ed by the user. The autonomy is achieved by using the cron clock
daemon. The daemon executes the requisite software modules at a speci�ed

time.
At the time of installation, the agent is con�gured to put minimum load

on the system and the World Wide Web. Thus, the frequency with which it
performs various operations is set to a minimum. However, the user is given

the option of customising the agent according to her needs. The user can

customise the agent by specifying options using the Customise Page. This
page is an HTML form which passes the customising information to the agent
by using a CGI script. The user can specify, for example, the time she wants

the agent to run, the frequency with which she wants the agent to perform

certain operations etc. The script is a part of the CGI module that handles

the information submitted by the user.

20

The customising information is passed to the URL Management module

by the CGI module. This information is then used to recon�gure the agent

according to the user's preferences.

4 Technical Issues

4.1 Introduction

The agent was constructed using Perl (Practical Extraction Report Language),

Java, and HTML (Hyper Text Markup Language). An attempt to use the best

features of each of these languages was made so that the processing is quick
and e�cient. Perl was used for recognizing patterns and text manipulation.

Also, it was used to generate HTML pages on the y. HTML pages were used
to present the results to the user. This made the presentation of results, easily
accessible and convenient. Java was used for interactions with the World Wide

Web. Java's strong networking capabilities made retrieval of documents and
checks for page status easier.

4.2 User Interface Module

It was decided that the User Interface would be completely HTML-based. The
motivation for this was that the user would be able to access the agent pages

through a browser (Netscape). This approach was preferred to running the
agent interface as a separate application as it would increase the complexity
of the user's environment. The HTML-based approach is more in line with

keeping the agent simple and non-intrusive.
The User Interface module is responsible for presenting the user with a

set of HTML pages. All communication between the agent and the user is

through these HTML pages. The agent page consists of frames as shown in
Figure 3. Frames let the main display window be divided into independent

window frames, each simultaneously displaying a di�erent document. One of

the frames, which is static, displays a list of hyperlinks to all the agent pages.
These pages display the status of various goals that the agent is trying to

achieve. When the user clicks on any of these hyperlinks the adjacent frame
displays the appropriate page. Since each of the agent pages presents the user

with a set of URLs, the pages linked by the URLs can be viewed in one of the

frame windows without leaving the agent page.

21

Figure 3: Frames

The other modules work on the URLs and prepare a list of URLs that have,
for example, changed, moved, or are old. Each of the lists is stored in a text �le.

The User Interface module reads these text �les and generates HTML pages

to be presented to the user. These pages are either simple pages displaying the

list of URLs, or are forms that can be submitted by the user. These pages are
generated by Perl scripts. The text �les are read by Perl scripts and converted

into HTML format that can be displayed by the browser. Furthermore, the

User Interface module generates an updated page every time there is a change

in the information to be displayed by the page. To maintain privacy, these

pages are not posted on the World Wide Web, but reside on the user's system.
This makes them accessible only to the user.

22

4.3 URL Management Module

The URL management module was implemented in Perl due to its enhanced

text manipulation features. The module �rst reads the bookmark �le gener-

ated by Netscape, and extracts the bookmarked URLs. It then performs the

following tasks:

� Sorting of Bookmarks

The �le is sorted according to the time of last visit. This makes the

documents that have been accessed recently move above the others in the

list. The user is now able to access the recently-visited site more easily,

as she can reach it faster. However, this approach also has its drawbacks.

For example some users get used to the location of the bookmark on the
list and do not appreciate rearrangement of the bookmarks.

The sorting is carried out in the following way: The bookmark �le gen-
erated by Netscape is a tree structure. The �le is divided into folders.

These folders group the URLs on similar topics together. Each level of
the tree is sorted in sequence until the whole tree of URLs is sorted.
Note that, the original format of the bookmarks �le is preserved.

Another issue was realized while sorting the bookmarks. It was noticed

that if the user has to access a bookmark that is in one of the sub-
subfolders, she has to travel down the whole tree. To reduce this time in
the next access the agent generates a list of URLs visited on the previous

day and displays it on the next day. Since the user is likely to visit the
sites again the next day, she does not have to traverse the whole tree
looking for the bookmark.

� Extracting Old Bookmarks

The agent allows the user to specify the length of time after which book-
marks are considered old. The agent scans the list of bookmarks and

extracts the ones which are older than the time speci�ed by the user. It
does so by comparing the di�erence between the time of last visit and the

present time with the length of time speci�ed by the user. It then pre-

pares a list of such bookmarks in the form of a text �le. This text �le is
read by the User Interface module and a HTML form is generated. The
form presents the user with a list of old bookmarks and check boxes. The

user can select the bookmarks she no longer wishes to keep and submit

to the agent. These bookmarks are deleted later by the agent.

23

� Fixing Relocations

The normal sequence of events, when a document has moved, is that the

user goes to a site, using a bookmark, and �nds a page that informs her

that the site has moved and leads her to the new site. This sequence

of events can be automated by the agent. The way this is done is that

the agent scans the page for relocation information. It uses the following

criteria.

{ Keywords:

The agent reads each line of the page. If the page has keywords like

Moved, or Relocated it guesses that the page has moved.

{ Number of URLs:

To get better results, the number of hyperlinks in the document are
also counted. In a page describing a document that has moved there

are typically at most two hyperlinks. If the number of hyperlinks
is greater than two, the agent does not try to �x the relocation.

Fpr those pages that agent is able to identify as pages that might have
moved, it makes a list of such URLs as a text �le. This �le is used by
the User Interface module to generate the HTML page for displaying the

list to the user. The agent has the capacity to �x the relocations itself,
but it needs permission from the user to do so. If the user wants the

agent to �x relocations, the agent extracts the URL of the new site and
replaces the old URL with the new one automatically.

Presently, the agent can �x a relocation if the site only contains one
hyperlink to the new page. If there is more than one hyperlink on the

page the agent cannot determine which is the new location and thus does
not �x the relocation.

� Pattern Detection

The types of patterns that can be determined are: the sites the user

visits daily, the sites that the user visits on a particular day of the week

(e.g. Monday, Tuesday etc.) and the sites the user visits on a particular
day of the month (e.g. 1st, 15th etc.).

A pattern can be established by storing the URLs visited on each day

and extracting the URLs that display the pattern after a certain number
of days. To explain further, consider the problem of determining if the

user visits a web site daily. The bookmarked URLs accessed on each

24

http://agents.www.media.mit.edu/groups/agents/
http://www.m-w.com/dictionary
http://www.cnn.com/

file:/cis/grad/varma/agent/agent.html
http://agents.www.media.mit.edu/groups/agents/
http://www.cnn.com/
file:/usr/local/java_1.1.1/docs/index.html

file:/cis/grad/varma/agent/agent.html
http://agents.www.media.mit.edu/groups/agents/
http://www.m-w.com/dictionary
http://www.cnn.com/

file:/cis/grad/varma/agent/agent.html
file:/usr/local/java_1.1.1/docs/index.html
http://www.wp.com/75096/
http://agents.www.media.mit.edu/groups/agents/
http://www.m-w.com/dictionary

file:/cis/grad/varma/agent/agent.html
file:/usr/local/java_1.1.1/docs/index.html
http://www.wp.com/75096/
http://agents.www.media.mit.edu/groups/agents/

file:/cis/grad/varma/agent/agent.html
file:/usr/local/java_1.1.1/docs/index.html
http://www.wp.com/75096/
http://agents.www.media.mit.edu/groups/agents/
http://www.m-w.com/dictionary

Figure 4: File for pattern detection

day are stored in a �le shown in Figure 4. The agent adds a delimiter
(*****) at the end of each block of URLs visited. Thus, one block has
the URLs accessed on one day. Every day the agent appends this �le.

Once the number of blocks is six in number the agent calls the pattern

script.

The pattern script extracts the URLs visited four or more times in the

last six days. The assumption here is that if the URL is visited four or

more times it is being visited on a daily basis. This takes into account

the possibility of, for example, a long weekend where the user does not

go to a site for three days. The agent also does not consider days when

the browser was not used at all. It checks this by scanning the bookmark
�le. If no bookmarked URL has been visited on a day it assumes that

the browser was not used on that day. However, just establishing the

pattern does not help the agent adapt to changes in the pattern. To do

this the �rst block from the �le is removed after the call has been made

to the pattern script. Thus, if the user stops visiting the sites the URLs
will eventually be removed from the �le and the agent will adapt to this

25

change.

The way this pattern is established can be extended to determining pat-

terns for weekly and monthly visits. This would require the agent to

store the URLs visited weekly and monthly. The agent can then de-

termine if there is a pattern in the user's behaviour by observing the

frequency. However, unlike the daily visit patterns, the threshold for

establishing a pattern can be reduced. For example, the agent can check

after every three weeks if the user has visited a site regularly for two or

more weeks. If she has, it assumes a pattern. Note that more informa-

tion about the user's behaviour needs to be stored if more patterns are

to be determined.

� Deleting Bookmarks

The agent presents the user with a list of bookmarks such as old book-

marks, dead bookmarks etc. These bookmarks might not be required by
the user anymore. However, the agent does not assume this, but presents

the user with the option of deleting them by presenting the user with a
list of such bookmarks as a HTML form. The user can select the book-
marks she wishes to delete by checking the checkboxes. The CGI module

makes a list of the bookmarks to be deleted. The list is used by the URL
management module to delete the bookmarks no longer required by the
user.

Moreover, the agent keeps a list of bookmarks it has deleted in case the

user changes her mind later. However, these bookmarks are not kept
inde�nitely. The user can specify the time she wants the agent to keep

deleted bookmarks.

To implement this, a time stamp is included with every deleted book-

mark. The age of the deleted bookmark is compared to the time speci�ed

by the user. The deleted bookmark is removed from the list once it is

older than the speci�ed time.

4.4 Web Interaction Module

TheWeb Interaction module is responsible for communication with the WWW.

The Java language was chosen to implement this module due to its strong

networking capabilities. Java provides classes that make it easy to open con-

nections with the host and retrieve documents. The Web Interaction module

performs two main functions

26

� Retrieve Documents:

With the increasing number of robots on the web there is growing con-

cern about the number of automated software agents visiting various

servers. Due to the recursive nature of automatic document retrieval,

these servers get choked by the excessive number of requests. Even

though our agent retrieves only the bookmarked pages from a server,

it takes into account some of the suggestions for good robot behaviour

[15]. These include running the agent at appropriate times, not visiting

any unauthorized spaces, and spacing out requests to other servers. To

reduce network tra�c, the documents are retrieved one by one. Each

downloaded page is scanned before another page is retrieved. This saves

space as all the pages need not be stored. To make the process more
e�cient, the user can direct the agent to work on a chunk of URLs at a
time. For instance, if the user speci�es the chunk size of 10 URLs, the

agent will retrieve 10 documents and then sleep for a 30 seconds before
retrieving the next 10. As a consequence the agent puts less burden on
system resources and allows other processes to run.

Each retrieved document is passed on to the URL management module

which scans it to look for moved or dead sites. While retrieving docu-
ments the agent also notices pages that no longer exist on servers. We
call such URLs dead bookmarks. Usually, if a document is no longer

present on a server, the server returns a HTTP error message such as:

HTTP/1.0 404: Object not found

The Web Interface module prepares a list of such bookmarks and this
list is presented to the user as a HTML form. The user can deleted such
bookmarks by using the form provided. Of course, sometimes, the server

returns a page saying that the document no longer exists. In such cases,
the agent has to scan the page and look for keywords like Not found.

� Check Status of Pages

The agent prepares a list of bookmarks whose pages have changed since

the user last visited them. It does so by contacting the servers and
asking them the date a particular document was last modi�ed. Note

that the agent does not need to retrieve the page in order to check if it
has been modi�ed. It just compares the date of last visit of each of the

document with the date it was last modi�ed. The agent then prepares

a list of documents that have changed since the user last visited them.

27

This method of checking is, however, dependent on the server on which a

particular page resides. Some servers do not serve the date a document

was modi�ed, either for security reasons or because the document gets

modi�ed too frequently. The agent does not include such URLs in the

list for changed bookmarks.

4.5 CGI Module

The CGI module is responsible for processing the user's requests and sending

con�rmation back to the user. It consists of cgi-bin scripts which carry out

various tasks. Since the agent interface is HTML-based, CGI was chosen to

execute the various user requests. The CGI module handles two kinds of
requests.

� Deletion Request

The agent presents the user with the option of deleting certain book-
marks. The user checks the bookmarks she wishes the agent to delete,

and submits the form. The submitted form invokes a perl-cgi script
that is executed on the server. The cgi script records the bookmarks

to be deleted in a �le and sends the user an HTML con�rmation. The
script also includes a time stamp indicating the time the deletion was
requested. This time stamp is used to maintain the list of deleted book-

marks by the URL management module. The con�rmation displays the
list of bookmarks that will be deleted by the agent.

� Customisation Request

To customise the agent, the user is presented with the Customise page.
The page is a HTML form that displays options as drop down lists and

radio buttons. The user selects from the given options and submits

the form. The submitted information is collected by the cgi script and a

con�rmation is returned. The cgi script prepares a crontab �le according

to the submitted options. The crontab �le is used by the cron clock
daemon (described in the next section) to schedule the agent according

to the submitted options.

4.6 Running the Agent

Running the agent sporadically can be implemented by using the cron clock

daemon. A crontab �le specifying when the agent has to execute is generated

28

and submitted to the daemon to execute. The daemon executes the scripts

according to the schedule speci�ed in the crontab �le. However, this approach

does require the cron clock daemon to be executing on the client system.

5 Use and Discussion

The agent was tested by simulating the user and World Wide Web behaviour

over a period of four weeks. The methodology used to test the agent and

the observations made while using the agent are presented in the following

sections.

5.1 The Agent Page

The Agent page, shown in Figure 5, presents the user with the interface to the
agent. The user can either make this page the home page, or visit the agent

page when she wants.
The page frame (frame on the right side) in the agent page starts with a

page downloaded from the WWW. Various options were explored to decide
the default page for the agent. These options were implemented to observe
the behaviour.

� Home Page: The agent page starts with the home page site speci�ed
by the user.

Results: This option was not very useful as the agent page displays the
home page in a smaller frame.

� Reminder Page: The agent page starts with the page the user usually

visits on that particular day. It serves to automate the task of the user

going to that site on that day.

Results: The results seemed favourable and useful, but did not seem

to work well if there are few patterns in the user's behaviour or if the
behaviour frequently changes. The agent will display a blank page if the

agent fails to come up with a site that the user visits on that particular
day.

� Last Visited Page: The agent page starts with the page last visited

by the user.

29

Figure 5: The agent page

Results: This option works on the assumption that the user is likely

to look at the page she visited last. Compared with the Reminder page
option, the agent page never starts with a blank page. However, it does
force the user to go to a particular site and this a�ects the pattern

followed by the user to some extent.

5.2 The Recently Visited Page

This page shown in Figure 6 is the result of clicking on the recently visited

URL in the Menu frame. The page displays the URLs visited on the previous

day.

Test: A set of URLs were visited for a few days and the results on the
recently visited page were checked. A day was skipped in the middle to check

if the agent displays a blank page.

30

Figure 6: The recently visited page

Results: The agent displayed the URLs visited on the previous day. When

a day was skipped the agent displayed the URLs visited on the day before the
skipped day.

5.3 The Dead Bookmarks Page

This page, a snapshot of which is shown in Figure 7, displays URLs for book-

marked pages that no longer exist on servers. It can be visited by clicking on
the dead bookmarks URL on the menu frame. The page is displayed in the

page frame. The user can delete URLs by checking the check boxes provided

next to the URLs and clicking on the Delete button.
Simulation: The dead bookmarks were simulated by bookmarking two

test pages and then removing these pages from the server.
Results: As shown in Figure 7, the agent displays URLs that no longer

31

Figure 7: The dead bookmarks page

exist on servers. The user can con�rm this by clicking on the displayed URLs.
Figure 8 displays an example of this. However, the agent also considers a

bookmark to be dead if the server does not respond. So sites that do not
respond, or are very slow in responding, are also included in the list. These
are not di�erentiated as the agent cannot determine conclusively whether the

server is just slow or has been removed. This is useful, if the user does not

assume that all the URLs listed on this page no longer exist. The delete option
lets the user decide whether the bookmark is to be deleted. This is in line with

the non-intrusive approach followed by the agent.

5.4 Moved Bookmarks Page

This page displays URLs for bookmarked pages that have moved. Figure 9

shows an example of a moved site detected by the agent. The moved book-

marks page can be viewed by clicking on the moved bookmarks URL on the

Menu frame. As shown in Figure 10 the page will display the noti�cation if

32

Figure 8: Dead bookmark con�rmation

the page has indeed moved. The agent has the capacity to �x the relocation.
Simulation: The moved page condition was simulated by creating a page

that had an appropriate noti�cation and then bookmarking it.
Results: The agent was able to successfully detect that the test page had a

noti�cation and �xed the relocation. Note that the decision to let the agent �x

the relocations still rests with the user. During its test run the agent detected

one site that had a moving noti�cation. This was expected considering that
the agent was working with only one bookmark �le. However, the agent does

not �x all the relocations it encounters. It does so only if it is certain, and
the rule for �xing the relocation is satis�ed. Thus the agent only tries to �x

the relocation but does not guarantee it. The heuristics used to detect and

�x the relocations need re�nement. With the present heuristic, the agent gets
confused if there are more than two urls on the noti�cation site and does not

know which one to substitute.

33

Figure 9: The moved bookmarks page

5.5 Daily To-view Page

The page shown in Figure 11 displays a set of URLs that the user usually visits

on that day. This page can be reached by clicking on the daily view list URL

on the menu frame. The page shown in Figure 11 was obtained after running
a simulation on the agent.

Simulation: To check that the agent does detect a pattern, a set of pages

were visited every day. The pattern in the visits was changed after a week to
check that the agent adapts to the change. This was done by not visiting some

sites after a week.
Results: It was noticed that the agent did not display any URLs on the

page for the �rst six days. After six days, it started displaying the URLs

visited more than four times in the last six days. Moreover, as the access
behaviour was changed the agent stopped displaying the URLs that were no

34

Figure 10: Page displaying the moving noti�cation

longer being visited by the user.

5.6 Deleted Bookmarks Page

This page can be viewed by clicking on the deleted bookmarks URL on the
menu frame. It displays the set of URLs that have been deleted by the user

as shown in Figure 12.

Test: To test this, a set of bookmarks were chosen from the old bookmarks
page shown in the Figure 14 and submitted for deletion to the agent.

Results: The agent deleted the requested bookmarks in the night and

displayed them on the deleted bookmarks page the next day.

35

Figure 11: The daily to-view page

5.7 All Bookmarks Page

This page can be viewed by clicking All Bookmarks(sorted) on the Menu frame.
It displays the sorted list of all the bookmarks. Figure 13 shows such an

example. The sorting is done according to the time of last visit. The agent

sorts the bookmarks at a frequency set by the user.

Test: The agent is given a sample bookmark �le with several levels of

bookmark categories. The �le also had bookmarks scattered between the

folders.

Results: The agent could sort the bookmarks in each of the folders. It

also collected the scattered bookmarks and moved them to the top of the �le.

The drop-down menu displaying the bookmarks is also rearranged in sorted

order. This improves the time taken by the user to reach popular bookmarks.

36

Figure 12: The deleted bookmarks page

5.8 Old Bookmarks Page

This page displays the bookmarks that are older than the time speci�ed by
the user. It can be viewed by clicking on the old bookmarks URL in the Menu

frame.

Test: The agent was con�gured to display all the bookmarks that are older

than one week.

Results: Figure 14 displays the resulting HTML page. It presented the

user with a list of old bookmarks with checkboxes adjacent to each URL.

This presentation allowed the user to delete the URLs that are older than the

speci�ed time. The user can do so by clicking on the Delete button.

37

Figure 13: Sorted bookmarks

5.9 Changed bookmarks page

This page shown in Figure 15 can be viewed by clicking on the changed book-

marks URL in the Menu frame. Bookmarked pages that have changed since

the user last visited them are displayed on this page.
Test: The agent was con�gured to check for changed bookmarks every two

weeks. A test page was set up and changed after it had been visited.

Results: Several bookmarks that had changed were detected by the agent.
The agent displayed them on the Changed Bookmarks page shown in Figure 15.

The user can visit these sites by clicking on the appropriate URL. Also, the
agent detected that the test page had changed and included it in the list of

bookmarks that had changed. The result of this test was con�rmed by going

to that page. It is shown in Figure 16.
Experiment: The agent detects that a page has been modi�ed by retriev-

38

Figure 14: Old bookmarks page

ing the last modi�ed date of the page from the server. However, some servers

do not respond to this query. The status of these sites is indeterminate and is
not included in the list by the agent. To estimate the percentage of these sites
an experiment with 100 URLs picked randomly from several search engines

was carried out. The aim was to count the number of hits.
Results: Out of the 100 sites 68 sites responded to the query of the last

modi�ed date for a page. On analysing the sites that did not respond we found

that most of these site changed too frequently. Examples include CNN, Alta
vista, and Yahoo.

5.10 Customise Agent Page

The Customise agent page shown in Figure 17 lets the user schedule the agent
according to her preference. A set of options are presented to the user. The

39

Figure 15: Changed bookmarks page

agent can be customised by selecting options and clicking on the Customise

button. The option to stop the agent is also presented to the user.

Test: The agent was customised and stopped to test if the agent recon�g-

ures itself according to the user's preference. The customisation was checked
by scheduling the agent at a di�erent time with a new set of options.

Results: If the agent is stopped it sends back a con�rmation message. If
the user chooses to customise the agent, a con�rmation like the one displayed

in Figure 18 is returned. The agent could recon�gure itself according to the

user's preferences while running.

40

Figure 16: Con�rmation of change

5.11 Comparison

Lieberman and Maulsby [13] discuss a spectrum of approaches to accomplish-

ing tasks with a computer, comparing them in terms of their e�ectiveness and
ease of use. The following section discusses the Bookmark Management Agent

(BMA) in comparison to other approaches. Among the various approaches, di-

rect manipulation approaches include applications like word processors where,
for example, a user has to click on a button to execute a task. The \English

Butler" is a pre-educated intelligent agent that understands a good deal of
natural language and already knows how to carry out a variety of tasks; the

user needs only give a vague description and the Butler reasons its way to an

executable program. [8] presents one such example.
Intelligence: C++ and direct manipulation interfaces show little intel-

41

Figure 17: Customise page

ligence, other than program optimization and smart modes like automatic
formatting of documents, or correction of words. BMA shows intelligence in
determining patterns and �xing relocations. The approach is based on a set of

rules. The English Butler rates higher on the intelligence scale as it is backed
up by a knowledge base and a greater number of rules.

Run-time Adaptability: This refers to the system's ability to change its

program in response to changing conditions. A C++ program, once compiled,
can no longer adapt to changes. Direct-manipulation user interfaces generally

do not adapt their behaviour except to store default values. BMA is adapt-
able in the sense that it can reschedule/recon�gure itself according to user's

preferences if the user chooses to customise the agent. It also adapts to the

changes in behaviour of the user. For example, if the user stops going to a
site she visits daily the agent will detect this change in the pattern and adapt

eventually. However, the agent fails to adapt if it faces a condition it has not

42

Figure 18: Customise con�rmation

faced before. This is so because the agent decides most of the things based on
certain rules. If the rules are not satis�ed, it does not act. The English Butler

must be highly adaptable to convert a vague idea into an executable program.

Programmability: This scale concerns the degree to which programmers

can determine a system's behaviour. A C++ programming system enables pro-

grammers to describe any computable task and to choose an optimal method
for doing so. Direct-manipulation interfaces are inherently nonprogrammable

except some that o�er macros for automating a sequence of actions. Our

agent and the English Butler are also not truly programmable as they decide
themselves how to accomplish a task.

End-user Control: The issue of end-user control is a controversial one in
the �eld of agents. A C++ program gives the user no control except through

the user interface. A direct manipulation interface, on the other hand, provides

a high degree of control as long as it is easy to understand. However, the direct

43

manipulation interfaces today are too feature-rich. BMA tries to let the control

remain in the user's hand by not doing any intrusive operations without the

user's consent. The English Butler can get out of hand if it misinterprets some

instruction.

E�ort of Instruction: This involves the cognitive and physical operations

needed to transmit knowledge from the user to the computer. Programming

in a formal language requires high-e�ort. Direct manipulation interfaces mini-

mize this e�ort - until the tasks get repetitive. Delegating tasks to the English

Butler is simple in theory. In practice, carefully describing a task in words is

often more di�cult than doing it. BMA, on the other hand, requires minimum

e�ort on part of the user.

E�ort of Learning: Programming a computer is the greatest hurdle that
the users encounter. Direct manipulation interfaces have reduced this e�ort to

a great extent, but with the growing number of features the e�ort in learning
is increasing. BMA requires little e�ort of learning as it is executing most of

the tasks autonomously. The English Butler requires little or no e�ort unless
it has unpredictable limitations of which the user must be aware.

6 Conclusions

An information management system must reduce the workload of the user. It
should help the user deal with the information overload by carrying out certain

tasks autonomously. We used the techniques from the �eld of software agents
to address information management. We have found that software agents are a
useful approach to designing information management systems, as they reduce

the burden on the user. Furthermore, software agents can carry out certain
chores without direct manipulation by the user.

The work presented in this report takes a non-intrusive approach to the

design of software agents. Our search for an example domain to apply this
approach led us to realize that agents can play an important role in managing

information by cooperating with existing applications. We used this approach
to design a prototype system (Bookmark Management Agent) that helps the

user deal with the information available from the World Wide Web by manag-

ing her bookmarks. It also detects patterns in the user's behaviour and tries
to help. Our experience with the construction of BMA led us to draw the
following conclusions:

� Results show that our e�orts to keep the agent non-intrusive were re-

44

warding. The agent gives total control to the user and works for the

user in the background. Sorting of bookmarks is the only intrusive oper-

ation it performs without the user's consent. Since it is aimed at helping

the user, we let the agent have that functionality. However, the real

judges of this will be the users.

� The agent was successful in detecting patterns in the user's behaviour

but it takes some time for the agent to establish a pattern. Another

approach would be to let the user tell the agent what sites she visits on

which days. However, this would be a tedious thing to do and will put

a burden on the user

� The agent was scheduled using the cron daemon. This approach was
preferred to running an agent daemon that would wake up occasionally.
However, we could not establish how the system would behave if several

agents were running. Moreover, while testing the agent it was noticed
that the cron daemon would sometimes miss executing a task when two

tasks were scheduled at the same time.

� To incorporate the agent in the user's environment we wanted to make
the user interface available through the browser. There existed two

choices, a Java applet or a HTML page. Java applets take time to
load and the browser must have the option to execute applets turned

on. HTML provided a much easier and better option. We found that
user interfaces consisting of buttons, drop-down lists, text boxes etc can
easily be constructed using HTML. The communication was carried out

using CGI. However, a potential problem with CGI is that not all users
have access to cgi-bin directories and this would limit the agent in some
cases.

� To decrease the burden on the network and the system we followed some
advice given by [15]. The approach does slow the agent, but creates less

load on systems and networks. Moreover, the slower approach can be
taken here as the user does not expect immediate results.

� Text processing was a major component of implementing the agent. Both

Java and Perl were tried for this purpose. We found that Perl is far better

equipped in dealing with regular expressions and is much faster. Java on

the other hand does not handle regular expressions very well. Moreover,
simple operations like appending a �le required writing of an Append �le

45

class. However, Java is equipped with classes that can make networking

easier.

� While checking for pages that had changed we found that some servers

did not respond to our queries. We realized that most of these sites

changed too frequently. For example, news sites like CNN or search

engines update their pages almost every twenty minutes. We also realized

that a page does not have to be retrieved to check if it has changed. This

led us to separate the functionality of checking for moved pages from

checking of pages that have changed. We feel steps like these help in

reducing the load on networks.

� The functionality to �x relocations automatically is included in the agent.
However, while running the agent we discovered some sites have moving
noti�cations with two or three URLs. This confuses the agent and the

agent does not �x such a relocation. We feel that this limits the agent
and de�nitely leaves room for improvement.

� The agent reminds the user to visit certain sites. This increases the num-
ber of times a particular site is visited. In a way, this proves bene�cial
to the owners of that site by making the site more popular.

� The Bookmark Management Agent is strongly coupled to the Netscape
browser and this limits its capacity to help the users of other browsers.

Nevertheless, this approach enhances the usefulness of an existing appli-
cation like the Netscape browser and helps to keep it simple.

To sum up, agents are a promising approach to designing information man-

agement systems. Moreover, taking a non-intrusive approach to constructing
agents helps us design agents that we believe will be more readily accepted.

References

[1] R. Armstrong, D. Freitag, T. Joachims, and T. Mitchell. Web-

watcher: A learning apprentice for the world wide web. March

1995. Appeared in the 1995 AAAI Spring Symposium on Infor-

mation Gathering from Heterogenous, Distributed Environments.
URL: http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-6/web-

agent/www/project-home.html.

46

[2] A. K. Caglayan and C. G. Harrison. Agent Sourcebook. Wiley Computer

Publishing, 1997.

[3] M. Coen, B. Selman, and H. Kautz. Bottom-up design of software agents.

Communications of the ACM, 37:143{146, July 1995.

[4] International Data Corporation. World Wide Web statistics. A

web page showing research �ndings about the World Wide Web.

URL: http://www.idcresearch.com.

[5] Quarterdeck Corporation. Web compass. The Web

Compass is available for download at this site., 1997.
URL: http://www.quarterdeck.com.

[6] D.Gilbert and P.Janca. IBM intelligent agents. Appeared as
a white paper on the IBM Intelligent agents home page, 1997.
URL: http://www.raleigh.ibm.com/iag.iaghome.html.

[7] David Eichmann and Jun Wu. Sulla - a user agent for the web. WWW,
1996. URL: http://rbse.jsc.nasa.gov/eichmann/home.html.

[8] O. Etzioni and D. Weld. A softbot-based interface to the internet. Com-

munications of the ACM, 37:72{76, 7 1995.

[9] Stan Franklin and Art Graesser. Is it an agent, or just a program?:

A taxonomy for autonomous agents. In Proceedings of the Third In-

ternational Workshop on Agent Theories, Architectures and Languages.

Springer-Verlag, 1996.

[10] M. R. Genesereth and S. P. Ketchpel. Software agents. Communications

of the ACM, 37:48{53, November 1995.

[11] Don Gilbert, Manny Aparicio, Betty Atkinson, Steve Brady, Joe Cic-

carino, Benjamin Grosof, Pat O'Connor, Damian Osisek, Steve Pritko,

Rick Spagna, and Les Wilson. White paper on intelligent agents, 1996.

URL: http://activist.gpl.ibm.com:81/WhitePaper/ptc2.htm.

[12] K. Heilmann, D. Kihanya, A. Light, and P. Musem-

bwa. Intelligent agents: A technology and business appli-

cation analysis. Technical report, Intelligencia Inc., 1995.
URL: http://haas.berkeley.edu/�heilman/agents/.

47

[13] D.Maulsby H.Lieberman. Instructible agents: Software that just keeps

getting better. IBM Systems Journal, 35, 1996.

[14] K. Indermaur. Baby steps. Byte, March 1995.

[15] Martijn Koster. Robots in the web: threat or treat. ConneXions, April

1995.

[16] P. Maes. Agents that reduce work and information overload. Communi-

cations of the ACM, 37:31{40, November 1995.

[17] P. Maes. Arti�cial life meets entertainment: Life like autonomous agents.

Communications of the ACM, 37:108{114, July 1995.

[18] P. Maes. Intelligent software. Scienti�c American, 273:84{86, September

1995.

[19] M. M. Maudlin. Lycos: Design choices in an internet services. IEEE

Expert, pages 8{11, January 1997.

[20] Michael. M. Mauldin. Chatterbots, tinymuds, and the turing test: Enter-
ing the loebner prize competition. In Proceedings of the Twelfth National

Conference on Arti�cial Intelligence. American Association for Arti�cial
Intelligence, August 1994.

[21] Inc NetMind. Url-minder. URL: http://www.netmind.com/URL-

minder/.

[22] Hyacinth S. Nwana. Software agents. Knowledge Engineering Review, 11,

No.3:1{40, 1996.

[23] Tony Rutkowski. Internet trends. A collection of slides

made available by Tony Rutkowski and General Magic.

URL: http://www.genmagic.com/Internet/Trends.

[24] Beerud D. Sheth. A learning approach to personalized informa-

tion �ltering. Master's thesis, MIT Media Lab, January 1994.
ftp://media-lab.media.mit.edu/pub/agents/interface-agents/news-

�lter.ps.Z.

[25] Surogic. Surfbot. The Surfbot agent is available of download at this site.
URL: http://www.surogic.com.

48

[26] B. Venners. Under the hood: The architecture of aglets. Java World, 2,

Issue.4, April 1997.

[27] P. Wayner. Free agents. Byte, March 1995.

[28] M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and prac-

tice. Knowledge Engineering Review, 10, No. 2, June 1995.

49

