
Technical Report No. 97-412

On the Power of Some PRAM Models

Selim G. Akl

Department of Computing and Information Science, Queen's University

Kingston, ON K7L 3N6, Canada

Lin Chen

FRL, P. O. Box 18345, Los Angeles, CA 90018, USA

Abstract

The focus here is the power of some underexplored CRCW PRAMs, which are strictly more

powerful than exclusive write PRAM but strictly less powerful than BSR. We show that some

problems can be solved more e�ciently in time and/or processor bounds on these models. For

example, we show that n linearly-ranged integers can be sorted in O(log n= log log n) time with

optimal linear work on Sum CRCW PRAM. We also show that the maximum gap problem can

be solved within the same resource bounds on Maximum CRCW PRAM. Though some models

can be shown to be more powerful than others, some of them appear to have incomparable

powers.

Keywords: PRAM; BSR; time and processor bounds; simulation; sorting.

Classi�cation Categories: F.1.1, F.1.2, F.2.2

1 Preliminaries

The focus of this work is on some underexplored Concurrent Read Concurrent Write (CRCW)

Parallel Random Access Machine (PRAM) models. These PRAM models di�er only in the way

of resolving write conicts. Some of them can be shown to be strictly more powerful than others,

whereas some of them appear to have incomparable powers. Two related models, namely, Exclusive

Read Exclusive Write (EREW) PRAM and Broadcasting with Selective Reduction (BSR), are also

1



covered here, though to a smaller extent. The powers of the CRCW PRAMs studied in this paper lie

between those of the EREW PRAM and the BSR models, and do not signi�cantly di�er from them.

It can be shown that an algorithm on any of these CRCW PRAM models can be simulated by an

algorithm on EREW PRAM using the same number of processors with a slowdown only logarithmic

in the number of processors. All of these models have shared memory with multiple processors.

Each processor is identi�ed by a unique integer. On each of these models, the usual assumptions

include that any arithmetic or logical operation takes constant sequential time and that there is no

error in computation. These assumptions are also taken in this work.

In designing our PRAM algorithms, we often use the following result, usually attributed to Brent

[10], to obtain the best time and processor bounds.

Theorem 1 If a problem can be solved in O(T ) time with O(W ) work on a PRAM, then the problem

can also be solved in O(T +W=P ) time with P processors in the same PRAM model.

(This theorem is true for a large class of standard problems; however, it does not hold for many

nonconventional computations, as shown in Akl [2].)

There have been already a large volume of publications on Common CRCW PRAM, Arbitrary

CRCW PRAM, and Priority CRCW PRAM. In Common CRCW PRAM, multiple processors are

not allowed to write into a single memory location unless they write an identical value. In Arbitrary

CRCW PRAM, an arbitrary processor succeeds in writing in case of write conict. In Priority

CRCW PRAM, the processor with the highest priority (lowest indexed or highest indexed) succeeds

in writing in case of write conict. It is well known that Common, Arbitrary, and Priority are in

the order of increasing power (see, e.g., [19]).

BSR is a relatively new model of parallel computation. The basic BSR was introduced in Akl

and Guenther [4] and an optimal implementation has been obtained [21]. Already several algorithms

exist for solving various computational problems on this model; see, for example, Akl and Chen [3],

Akl and Guenther [5], Akl and Lyons [6], Chen [12], Gewali and Stojmenovi�c [18], Melter and Stoj-

menovi�c [22], Sem�e and Myoupo [23], Springsteel and Stojmenovi�c [24], Stojmenovi�c [25], and Xiang

and Ushijima [27]. A generalization of BSR to allow for multiple selection criteria is proposed in Akl

and Stojmenovi�c [7]. An implementation of this generalization and several algorithms for solving

problems on it are described in Akl and Stojmenovi�c [8]. Recently, Akl and Chen [3] introduced

advanced BSR that allows multiple simultaneous BROADCAST instructions.

One frequently used procedure in parallel computing is the pre�x computation. The procedure

computes �
j
i=1ai, for 0 < j � n, where a1, a2, : : : , an are an array of n input elements in a domain,

2



and � is an associative operation, which realizes a semigroup on the domain. It is already known

that the procedure can be done optimally on EREW PRAM [20] and Common CRCW PRAM [14].

If there are multiple arrays, we can apply pre�x computation on all the arrays simultaneously. On

BSR model, one BROADCAST instruction on each array su�ces. The resource requirements are

listed in the following theorem.

Theorem 2 Pre�x computation on one or more arrays can be done in O(1) time with a linear

number of processors on BSR, or in O(logn) time with linear work on EREW PRAM, or in

O(logn= log logn) time with linear work on Common CRCW PRAM if each element is represented

by O(logn) bits.

In many parallel computations on arrays, it is often helpful to perform array packing. Given

an array, say a[1 : n], consisting of two types of elements, the array packing problem is to obtain

another array b[1 : k] such that b[j] is the jth element in array a of type 1, for 0 < j � k, where k is

the number of elements in array a of type 1. The problem can be solved by invoking the procedure

for computing the pre�x sums, as shown in Akl [1] and Chen [11]. We list the result in the following

theorem.

Theorem 3 Array packing can be done in O(logn) time with O(n= logn) processors on EREW

PRAM, or in O(log n= log logn) time with O(n log logn= logn) processors on Common CRCW PRAM,

or in O(1) time with O(n) processors on BSR.

2 Powers of various CRCW PRAMs

A CRCW PRAM is called a Maximum (or Minimum) CRCW PRAM if the maximum (or minimum)

of the values processors attempt to write is actually written in case of write conict. It is easy to see

that Maximum CRCW PRAM and Minimum CRCW PRAM have the same computational power,

since maxni=1 ai = �minni=1(�ai) and minni=1 ai = �maxni=1(�ai).

It is already known that a Maximum CRCW PRAM is at least as powerful as a Priority CRCW

PRAM [15]. A possible way of simulating a Priority write on a Maximum CRCW PRAM is described

below. Assume, without loss of generality, that the larger the processor number is, the higher priority

the processor has. Then a statement such as \processor i Priority writes di into mj" is equivalent

to the following statements:

1. Processor i Maximum writes i into mj ;

3



2. If mj = i then processor i Maximum writes di into mj ;

Note that at Line 2, exactly one processor satis�es the condition mj = i and there can be no

write conict.

By de�nition, the maximum of n numbers can be computed in O(1) time with n processors on

a Maximum CRCW PRAM. But on a Priority CRCW PRAM, Fich, Meyer auf der Heide, and

Wigderson [16] showed that the computation requires 
(log logn) time with n processors. We can

now conclude the following.

Theorem 4 A Maximum (or equivalently, Minimum) CRCW PRAM can simulate a Priority CRCW

PRAM within the same time and processor bounds, but not vice versa.

A CRCW PRAM is called an And (or Or, or Exclusive-Or) CRCW PRAM if the And (or Or, or

Exclusive-Or) of the values processors attempt to write is actually written in case of write conict. It

is easy to see that And CRCW PRAM and Or CRCW PRAM have the same computational power,

since ^n
i=1bi = _n

i=1bi and _
n
i=1bi = ^n

i=1bi. Each of these PRAMs is further divided into two kinds.

For example, we have Logical-And CRCW PRAM and Bitwise-And CRCW PRAM. It is easy to see

that a Bitwise-kind CRCW PRAM is at least as powerful as the corresponding Logical-kind CRCW

PRAM. Also observe that any algorithm on Common CRCW PRAM also works on Bitwise-And

(and Bitwise-Or) CRCW PRAM. If each operand represents a set, then Bitwise-And and Bitwise-

Or correspond to Set-Intersection and Set-Union, respectively. Below we will show that Common

CRCW PRAM is at least as powerful as Logical-And CRCW PRAM. Observe that a statement such

as \processor i Logical-And writes di into mj" can be simulated on a Common CRCW PRAM as

follows.

1. Processor i Common writes true into mj .

2. If di = false, then processor i Common writes false into mj .

Thus, we have proved the following theorem.

Theorem 5 Bitwise-And (or equivalently, Bitwise-Or) CRCW PRAM is at least as powerful as

Common CRCW PRAM, which in turn is at least as powerful as Logical-And (or equivalently,

Logical-Or) CRCW PRAM.

Below we study the maximum gap problem on Maximum CRCW PRAM. The input is n numbers,

n > 1. The problem is to compute the maximum gap between two such numbers that are neighbors

when the n numbers are sorted. The procedure works as follows.

4



1. Compute the maximum max and the minimum min of n input numbers.

2. Divide the range [min;max] into (n+1) equal subranges, and associate with each of the (n+1)

subranges a bucket i, for 0 < i � n+ 1.

3. Place n input numbers into the buckets based on the values of the numbers (if a number lies

on the boundary between bucket i and bucket (i+1), then the number is placed into bucket i),

compute the maximum maxi and the minimum mini for each bucket i, and mark all non-empty

buckets. (Note that at least one bucket is empty, and there exist positive integers i and j such

that buckets (i+ 1), : : : , (i+ j) are all empty and the maximum gap is (mini+j+1 �maxi).)

4. Obtain a sequence of k buckets by removing all empty buckets. (Note 1 < k � n.)

5. For 0 < i < k do in parallel, Maximum write (mini+1�maxi) into MaximumGap, where mini

and maxi are, respectively, the minimum and the maximum of the value(s) in the current

bucket i.

All steps except Step 4 can be done in constant time with linear work. Step 4 is the array packing

computation, which takes O(log n= log logn) time and linear work on Common CRCW PRAM by

Theorem 3. Since Maximum CRCW PRAM is more powerful than Priority CRCW PRAM (recall

Theorem 4), which in turn is more powerful than Common CRCW PRAM, we can therefore conclude

the following.

Theorem 6 The maximum gap problem can be solved in O(logn= log logn) time with optimal linear

work on a Maximum CRCW PRAM.

On the powerful BSR model, Akl and Stojmenovi�c [8] have shown that the maximum gap problem

can be solved in constant time with a linear number of processors.

A related problem called the uniform gap problem can be solved faster on a weaker computational

model. The problem asks, given n input numbers, for an n > 2, if the gap between any two

neighboring numbers in the sorted order is always the same. Suppose n input numbers are a0, a1,

: : : , an�1. Below is the procedure.

1. Compute the maximum max and the minimum min of n input numbers.

2. Initialize bi as 0, for 0 � i < n.

3. For 0 � i < n, do the following in parallel: compute li := (n� 1)(ai �min)=(max�min); if li

is an integer, then set bli to 1.

5



4. Compute d := ^
n�1
i=0 bi.

5. Answer \yes" if and only if d = 1.

Suppose the gap between any two neighboring numbers after sorting is the same. Then the gap

is (max�min)=(n � 1), and the numbers in sorted order are a0i = min+i(max�min)=(n � 1), for

0 � i < n. If ai = a0j , then j = (n � 1)(ai � min)=(max�min) and is an integer. Conversely, if

j = (n� 1)(ai �min)=(max�min) and is an integer, then a0j equals ai, one of the input numbers.

We have a uniform gap for the n numbers if and only if each a0i , 0 � i < n, appears in the input.

We can now see easily that the above procedure works correctly.

Step 1 can be done by invoking the procedure for �nding the maximum in Shiloach and Vishkin

[26]. The procedure runs in O(log logn) time with linear work. In case of concurrent write, the

contending processors write the same bit. So the procedure works on a Logical-And (or equivalently,

Logical-Or) CRCW PRAM. All other steps can be done in constant time with optimal work. It

follows that the uniform gap problem can be solved in O(log logn) time with linear work on a

Logical-And CRCW PRAM. If the input is n polynomially bounded integers, then the maximum

and the minimum can also be computed in O(1) time with O(n) work on a Logical-And CRCW

PRAM [15] [17]. So, in this case, the uniform gap problem can be solved in O(1) time with O(n)

work on a Logical-And CRCW PRAM. The procedure is obviously time-optimal and work-optimal.

Note that �nding the maximum in an array of numbers can be accomplished in O(1) time with

optimal work on a Maximum CRCW PRAM. Thus, we have the following theorem.

Theorem 7 The uniform gap problem can be solved in O(log logn) time with optimal linear work

on Logical-And (or equivalently, Logical-Or) CRCW PRAM, or in O(1) time with a linear number

of processors on Maximum CRCW PRAM. If the input is n polynomially bounded integers, then

the problem can be solved in O(1) time with O(n) work on Logical-And (or equivalently, Logical-Or)

CRCW PRAM.

Next, we consider Sum CRCW PRAM. A CRCW PRAM is called a Sum CRCW PRAM if the

Sum of the values processors attempt to write is actually written in case of write conict. The �rst

result we will show involving Sum CRCW PRAM is the following: if a problem can be solved in O(T )

time with O(P ) processors on a Common CRCW PRAM, then the problem can also be solved on a

Sum CRCW PRAM within the same time and processor bounds. This is true because a statement

such as \processor i Common writes di into mj" can be replaced by the following statements on a

Sum CRCW PRAM.

6



1. Processor i Sum writes 1 into mj .

2. Processor i Sum writes di=mj into mj .

Right after Step 1, the value of mj equals the number of processors that write into mj simulta-

neously. When Step 2 is done, the value of mj is di. Therefore, if a problem can be solved in O(T )

time with O(P ) processors on a Common CRCW PRAM, so can it on a Sum CRCW PRAM. Nev-

ertheless, if a problem can be solved in O(T ) time with O(P ) processors on a Sum CRCW PRAM,

the problem may not be solved on a Common CRCW PRAM within the same time and processor

bounds. For example, with O(nO(1)) processors, the computation of Exclusive-Or of n bits requires


(logn= log logn) time on a Common CRCW PRAM and even on a Priority CRCW PRAM [9];

however, on a Sum CRCW PRAM, the Exclusive-Or of n bits b1, b2, : : : , bn can be computed in

constant time with linear work as follows.

1. For 0 < i � n do in parallel, Sum write bi into c.

2. Set ExclusiveOr to c mod 2.

We can therefore conclude the following.

Theorem 8 A Sum CRCW PRAM can simulate a Common CRCW PRAM within the same time

and processor bounds, but not vice versa.

Below we will show that n integers in a linear range can be sorted in O(logn= log logn) time

with linear work on a Sum CRCW PRAM. For simplicity, assume, without loss of generality, that

the range of n input integers a1, a2, : : : , an is [1; n].

1. Set bi to 0, for 0 � i � n.

2. Sum write 1 into bai , for 0 < i � n. (Now bj gives the number of j's in array a.)

3. Apply pre�x sum computation on array b and store the result in array c.

4. For 0 < i � n, do the following in parallel: if ci�1 < ci, then write i into dci , : : : , dci�bi+1.

(Now array d is sorted.)

Below is a partial trace on a sample input.

7



i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ai - 7 2 11 6 2 7 5 4 7 5 11 6 6 7 7 5

bi 0 0 2 0 1 3 3 5 0 0 0 2 0 0 0 0 0

ci 0 0 2 2 3 6 9 14 14 14 14 16 16 16 16 16 16

di - 2 2 4 5 5 5 6 6 6 7 7 7 7 7 11 11

In the above procedure, O(1) time and O(n) work su�ce for all steps except Step 3, which can

be done in O(log n= log log n) time with O(n) work. Thus, we can conclude the following.

Theorem 9 Linearly-ranged integers can be sorted in O(logn= log logn) time with O(n) work on a

Sum CRCW PRAM.

No known work-optimal PRAM algorithms for integer sorting are faster. The preceding procedure

is the �rst deterministic work-optimal NC algorithm for sorting integers in a linear range, though

Chen [12] has shown before that linearly-ranged integers can be optimally sorted in parallel for

several special cases such as the case where each integer has a constant upper bounded multiplicity.

Below we will show that with O(n2) processors on a Sum CRCW PRAM, we can perform

sorting faster, in only O(1) time, even if the input is not an array of integers in a linear range. For

convenience in describing the algorithm, we assume that the n input numbers are a0, a1, : : : , an�1.

1. Set bi to 0, for 0 � i < n.

2. For 0 � i; j < n, do the following in parallel: if ai < aj or ai = aj ^ i < j, then Sum write 1

into bj . (Now bj gives the number of elements that precede aj in the sorted array.)

3. Set cbi to ai, for 0 � i < n. (Now array c is sorted.)

The following trace on a sample input shows the behavior of the procedure.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ai 7 2 11 6 2 7 5 4 7 5 11 6 6 7 7 5

bi 9 0 14 6 1 10 3 2 11 4 15 7 8 12 13 5

ci 2 2 4 5 5 5 6 6 6 7 7 7 7 7 11 11

Note that the identical numbers preserve their relative order in the resulting array, so the sort is

stable. It is now easy to conclude the following.

Theorem 10 An array of n numbers can be stably sorted in O(1) time with O(n2) processors on a

Sum CRCW PRAM.

8



On a Sum CRCW PRAM, we can also perform matrix multiplication, another important opera-

tion, in constant time. Suppose two input matrices A and B are of sizes p�q and q�r, respectively.

Below is the procedure for computing C = AB.

1. For 0 < i � p, 0 < j � r and 0 < k � q, do the following in parallel: Sum write ai;kbk;j into

ci;j .

We summarize the result in the following theorem.

Theorem 11 Computation of AB, where A and B are matrices of sizes p�q and q�r, respectively,

can be done in O(1) time with O(pqr) processors on a Sum CRCW PRAM.

A CRCW PRAM is called a Product CRCW PRAM if the product of the values processors

attempt to write is actually written in case of write conict. We can use Product CRCW PRAM to

simulate a statement such as \processor i Common writes di into mj" as follows.

1. Processor i Product writes 2 into mj .

2. Processor i Product writes d
logmj

2

i into mj .

Right after Step 1, the value of mj is 2
k, where k is the number of processors that write into mj .

So k = log2mj . When Step 2 is done, the value of mj is di.

Therefore, if a problem can be solved in O(T ) time with O(P ) processors on a Common CRCW

PRAM, so can it on a Product CRCW PRAM. However, the converse statement is not true, because

with O(nO(1)) processors, the computation of Exclusive-Or of n bits b1, b2, : : : , bn on Common

CRCW PRAM requires 
(logn= log logn) time whereas on Product CRCW PRAM the computation

can be done in constant time with linear work as follows.

1. Set p to 1.

2. For 0 < i � n do in parallel, if bi = 1 then Product write (�1) into p.

3. Set ExclusiveOr to 0 or 1 depending on whether p = 1 or not.

We can now conclude the following.

Theorem 12 A Product CRCW PRAM can simulate a Common CRCW PRAM within the same

time and processor bounds, but not vice versa.

9



There can be some other ways of resolving write conict. Note that each logical function can

be de�ned by a truth table. It is now easy to see that there are 16 distinct binary logical (or bit)

functions in all. And, Or, and Exclusive-Or are only 3 of them. Though not all of the 16 binary

logical functions are associative, some others such as the operation of checking whether the number

of 0's is even also realize semigroups. Note that the operation of Exclusive-Or is equivalent to

checking whether the number of 1's is odd. The remaining 4 semigroup operations on f0, 1g are

de�ned as follows.

1. a� b = 0.

2. a� b = 1.

3. a� b = a.

4. a� b = b.

A CRCW PRAM that resolves write conict with one of the last 2 operations is regarded as a

Priority CRCW PRAM.

There is exactly one �xed way of resolving write conict in each of the CRCW PRAM models

we have covered so far. Those PRAMs are called static PRAMs. In fact, we can also have a CRCW

PRAM with multiple policies for resolving write conict. For a PRAM of such kind, we specify a

resolution policy at each point where concurrent write occurs. These PRAMs are called dynamic

PRAMs. We can even have a CRCW PRAM that supports all the resolution policies mentioned

above. Such a CRCW PRAM is probably more powerful than a CRCW PRAM that is equipped

with only one of the mechanisms for resolving write conict. We note here that this is precisely the

de�nition given for the PRAM in Akl [2], where the PRAM is viewed as a single model with di�erent

forms of memory access, all of which can be used at will according to the needs of the algorithms.

This model is justi�ed by noting that if a combinational circuit is used to connect processors to

memory locations then all forms of memory access (namely, exclusive read and write, as well as

concurrent read and write) have the same depth and size bounds. Algorithms on any PRAM we

have mentioned in this paper work on this single dynamic PRAM. By limiting certain forms of

memory access on this single platform, we can also design algorithms that work on some static, less

powerful PRAMs.

10



3 Relation between CRCW PRAM and some other models

In this section, we will investigate the relation between CRCW PRAM and some other models of

parallel computation, namely EREW PRAM and BSR. Though some CRCW PRAMs are more

powerful than some others, below we will see that their powers do not di�er signi�cantly. Even

the strongest CRCW PRAM can be simulated on an EREW PRAM using the same number of

processors with a slowdown only logarithmic in the number of processors. Simulating a Priority

CRCW PRAM on an EREW PRAM is already well known (see, e.g., [19]). So we only need to

consider how to simulate a write access when the conict resolution policy is Maximum, Sum, or

another semigroup operation. Suppose processor i writes di into memory location mj on a CRCW

PRAM, for 0 < i � P . Then on EREW PRAM, we write the triple (j; i; di) into m
0

i, for 0 < i � P .

We then sort all the triples in lexicographically increasing order, which can be done in O(logP ) time

with P processors [13] (note that (j; i; di) precedes (j
0; i0; di0 ) if and only if j < j0 or j = j0 ^ i < i0

in this case, so the comparison between two triples can be done in O(1) sequential time). For each

maximal subarray of triples with the same �rst element j, apply parallel pre�x computation, with

the speci�ed conict resolution policy as the semigroup operation, on the last element of the triples.

This can be done in O(logP ) time with O(P ) work without access conict (recall Theorem 2). We

then write the result corresponding to j into mj , for all j. We can now conclude the following.

Theorem 13 A problem can be solved in O(T logP ) time with O(P ) processors on an EREW

PRAM if the problem can be solved in O(T ) time with O(P ) processors on a dynamic PRAM.

Note that sorting and pre�x computation in the above simulation can both be done in constant

time with P processors on BSR (see, e.g., [3]). We can now conclude the following easily.

Theorem 14 A BSR can simulate any CRCW PRAM within the same time and processor bounds,

but not vice versa.

4 Conclusion

We have investigated several models of parallel computation. While parallel algorithms developed

for a weaker model often have the advantage of being easier to implement on real machines, parallel

algorithms for a stronger model may also o�er some bene�ts in practice since they are usually more

e�cient in terms of resource bounds. We note that the best known EREW PRAM algorithms for

certain problems are sometimes no better than the ones obtained by simulating CRCW PRAM

11



algorithms. So in such cases, a more e�cient CRCW PRAM algorithm will imply a more e�cient

EREW PRAM algorithm. Additionally, the research on parallel models can also help decide which

software and/or hardware mechanisms should be implemented in parallel systems to best satisfy our

needs within the budgetary constraint. Often a good way to compare and evaluate the performance

of various computers is to run sample programs on these machines, in which case e�cient parallel

algorithms on these types of machines are needed.

Though we have shown that some CRCW PRAMs are more powerful than some others, a number

of questions are obviously open. For example, is Sum CRCW PRAM more powerful than Maximum

CRCW PRAM? Are there any problems that require more time and/or processors on Product

CRCW PRAM than on Priority CRCW PRAM? It will be interesting to search for the answers.

References

[1] S. G. Akl. An optimal algorithm for parallel selection. Information Processing Letters, 19:47{50,

1984.

[2] S. G. Akl. Parallel Computation: Models and Methods. Prentice-Hall, 1997.

[3] S. G. Akl and L. Chen. E�cient parallel algorithms on proper circular arc graphs. IEICE

Transactions on Information and Systems, E79-D(8):1015{1020, August 1996.

[4] S. G. Akl and G. R. Guenther. Broadcasting with selective reduction. In G. X. Ritter, editor,

Proceedings, 11th IFIP World Computer Congress, pages 515{520, New York, 1989. North-

Holland.

[5] S. G. Akl and G. R. Guenther. Applications of broadcasting with selective reduction to the

maximal sum subsegment problem. International Journal of High Speed Computing, 3:107{119,

1991.

[6] S. G. Akl and K. A. Lyons. Parallel Computational Geometry. Prentice-Hall, 1993.

[7] S. G. Akl and I. Stojmenovi�c. Multiple criteria BSR: An implementation and applications

to computational geometry problems. Proceedings of the Hawaii International Conference on

System Sciences, 2: pages 159{168, 1994.

[8] S. G. Akl and I. Stojmenovi�c. Broadcasting with selective reduction: A powerful model of

parallel computation. In A. Y. Zomaya, editor, Parallel and Distributed Computing Handbook,

pages 192{222. McGraw-Hill, New York, 1996.

12



[9] P. W. Beame and J. Hastad. Optimal bounds for decision problems on the CRCW PRAM.

Journal of the ACM, 36(3):643{670, July 1989.

[10] R. P. Brent. The parallel evaluation of general arithmetic expressions. Journal of the ACM,

21:201{208, 1974.

[11] L. Chen. Optimal parallel time bounds for the maximum clique problem on intervals. Infor-

mation Processing Letters, 42(4):197{201, June 1992.

[12] L. Chen. Optimal bucket sorting and overlap representations. Parallel Algorithms and Appli-

cations, 10:249{269, 1997.

[13] R. Cole. Parallel merge sort. SIAM Journal on Computing, 17(4):770{785, August 1988.

Correction. ibid. 22(6):1349, December 1993.

[14] R. Cole and U. Vishkin. Faster optimal parallel pre�x sums and list ranking. Information and

Computation, 81(3):334{352, June 1989.

[15] D. Eppstein and Z. Galil. Parallel algorithmic techniques for combinatorial computation. Ann.

Rev. Comput. Sci., 3:233{283, 1988.

[16] F. Fich, F. Meyer auf der Heide, and A. Wigderson. Lower bounds for parallel random access

machines with unbounded shared memory. In F. Preparata, editor, Advances in Computing

Research, volume 4, pages 1{15. JAI Press, 1987.

[17] F. E. Fich, P. L. Ragde, and A. Wigderson. Simulations among concurrent-write PRAMs.

Algorithmica, 3(1):43{51, 1988.

[18] L. P. Gewali and I. Stojmenovi�c. Computing external watchman routes on PRAM, BSR, and

interconnection models of parallel computation. Parallel Processing Letters, 4:83{93, 1994.

[19] R. M. Karp and V. Ramachandran. Parallel algorithms for shared-memory machines. In J. van

Leeuwen, editor, Handbook of Theoretical Computer Science, Vol. A, pages 869{941. North

Holland, Amsterdam, 1990.

[20] R. E. Ladner and M. J. Fischer. Parallel pre�x computation. Journal of the ACM, 27(4):831{

838, October 1980.

[21] L. F. Lindon and S. G. Akl. An optimal implementation of broadcasting with selective reduction.

IEEE Transactions on Parallel and Distributed Systems, 4(3):256{269, March 1993.

13



[22] R. A. Melter and I. Stojmenovi�c. Solving city block metric and digital geometry problems on the

BSR model of parallel computation. Journal of Mathematical Imaging and Vision, 5:119{127,

1995.

[23] D. Sem�e and J.-F. Myoupo. A parallel solution of the sequence alignment problem using BSR

model. Proceedings of the International Conference on Parallel and Distributed Computing,

pages 357{362, 1997.

[24] F. Springsteel and I. Stojmenovi�c. Parallel general pre�x computations with geometric, algebraic

and other applications. International Journal of Parallel Programming, 18:485{503, 1989.

[25] I. Stojmenovi�c. Constant time BSR solutions to parenthesis matching, tree decoding, and tree

reconstruction from its traversals. IEEE Transactions on Parallel and Distributed Systems,

7:218{224, 1996.

[26] Y. Shiloach and U. Vishkin. Finding the maximum, merging, and sorting in a parallel compu-

tation model. J. Algorithms, 2:88{102, 1981.

[27] L. Xiang and K. Ushijima. Decoding and drawing on BSR for a binary tree from its i � p

sequence. To appear in Parallel Processing Letters.

14


