
A framework for parallel data mining using

neural networks

R. Owen Rogers

rogers@qucis.queensu.ca

November 1997
External Technical Report

ISSN-0836-0227-
97-413

Department of Computing and Information Science
Queen's University

Kingston, Ontario, Canada K7L 3N6

Document prepared December 5, 1997
Copyright c
1997 R.O. Rogers

Abstract

Data mining applications de�ne a class of data analysis problems which require

powerful computational tools with reasonable execution times. Parallel neural net-

works present a logical approach to solving these problems. The two most com-

mon data mining tasks, classi�cation and clustering, can be handled respectively

by an appropriate selection of supervised and unsupervised neural network tech-

niques. The neural network techniques that will be presented in this report are

cross-entropy multi-layer perceptrons and Gaussian mixture model networks. Bulk

Synchronous Parallelism (BSP) is chosen as an e�ective model for parallelization.

Several di�erent strategies for parallelizing neural networks are considered using

BSP cost analysis. From these analyses, it is shown that concurrently training a

0

neural network on subsets of a data set, a strategy called exemplar parallelism,

yields minimal parallel execution costs. One constraint of these analyses, how-

ever, is that the BSP cost model can only demonstrate the optimality of exemplar

parallelism on an epoch-by-epoch basis. Thus, batch learning is used to show

that exemplar parallelism can attain an optimal convergence speed. A theoretical

justi�cation of batch learning is presented from the perspective of deterministic

gradient estimation. These theoretical results are veri�ed empirically by examin-

ing the parallel execution costs of supervised and unsupervised neural networks on

three data mining databases.

Keywords: Data mining, neural networks, parallelism, bulk synchronous
parallelism, BSP, cost analysis, supervised learning, unsupervised learning,
batch learning, deterministic learning, stochastic learning

1 Introduction

The rapid development of data storage technology in combination with the
computerization of business, science and industrial sectors has made it possi-
ble and inexpensive for organizations to amass large amounts of information.
Researchers have estimated that, with the automation of data collection, the
world's data supply is in the process of doubling every 20 months [19]. Given
the size and breadth of these data repositories, there is likely to be potentially
valuable information buried beneath the raw data. For example, a database
of client information may be able to provide insight into future customers; a
medical database of previous patients may be able to help diagnose new pa-
tients; and a database of market price histories may be used to predict future
price levels. With all of this data collated and accessible, there is a growing
interest in methods that can be used to `mine' these databases to extract their
pro�table information.

Traditional manual statistical techniques and simple database queries are
often inadequate for this discovery process. The size of the databases makes
exhaustive search prohibitively expensive. In addition, databases are likely to
contain corrupt, missing and noisy data causing exact matching to be di�cult
and unreliable. Thus, new intelligent and automated techniques are required
to e�ciently, robustly, and thoroughly analyze these databases within a rea-
sonable amount of time. The emerging �eld of data mining is concerned with
providing a framework for the process of applying these techniques to large
databases [17].

1

The techniques that are used in the data mining process are generally
drawn from diverse areas of research [26][21]. Thus, it is necessary to present
a principled and theoretically-sound approach to dealing with data mining ap-
plications. In this report, a statistical perspective will be used to characterize
the process of data analysis [30]. From this perspective, data mining tech-
niques can be interpreted as models for discovering interesting, informative,
and potentially pro�table patterns in a database.

A technique that is commonly applied to solving data mining problems is
the arti�cial neural network (ANN). Originally inspired by biological models of
mammalian brains, arti�cial neural networks have emerged as a powerful tech-
nique for data analysis [4][22]. Neural networks consist of compositions of sim-
ple, nonlinear processing units that are organized in a densely-interconnected
graph. A set of parameters, called weights, are assigned to each of the edges
of the graph. These parameters are adapted through the local interactions of
processing units in the network. By repeatedly adjusting these parameters,
the neural network is able to construct a representation of a given data set.
This adaptation process is known as training.

A neural network is able to solve highly complex problems due to the non-
linear processing capabilities of its neurons. In addition, the inherent mod-
ularity of the neural network structure makes it adaptable to a wide range
of applications. In this report, neural networks will be treated as statistical
models for data mining. From this perspective, the goal of the neural network
is to adjust its parameters to accurately model the distribution of a provided
data set.

One of the main limitations of applying neural networks to analyze mas-
sive data mining databases is the excessive processing that is required. It is
not uncommon for a data mining neural network to take weeks or months to
complete its task. This time constraint is infeasible for most real-world appli-
cations. However, processing time can be substantially reduced by distributing
the load of computation among multiple processors. Thus, parallelism presents
a logical approach to managing the computation costs of data mining appli-
cations.

This report will consider a particular model for parallel programming known
as Bulk Synchronous Parallelism (BSP). BSP is a general-purpose model of
parallel computing that allows the development of robust, e�cient and portable
software. Most importantly, BSP has a cost model that produces accurate es-
timates of parallel execution times for a wide variety of parallel machines. BSP
speci�es a structure for developing parallel software which is designed speci�-

2

cally to handle communication-intensive applications. Given these properties,
the BSP model is well-suited to the development of parallel data mining soft-
ware.

This report considers two approaches for reducing the computation time
required to train neural networks on data mining data sets.

� The �rst approach examines di�erent strategies for parallelizing neural
networks. The cost of each of these strategies is compared using the BSP
cost model. From this cost analysis, it is asserted that the best parallel
speedup can be attained by distributing the data set among the parallel
processors and concurrently training a neural network on each subset of
the data. This strategy is known as exemplar parallelism.

� The second approach for accelerating neural network training is called
batch learning. This technique examines the tradeo� between the fre-
quency and accuracy of neural network weight adaptations and attempts
to �nd the best compromise which minimizes the cost of training.

The organization of this report is as follows. Section 2 presents an overview
of the major areas of research which will be dealt with in this document {
namely, data mining, arti�cial neural networks, and general-purpose paral-
lelism. In Section 3, several di�erent methods of partitioning a neural network
for parallelization will be analyzed. The BSP cost model will be used to
demonstrate the optimality of exemplar parallelism. Section 4 considers batch
learning as a method for further accelerating neural network training. The
potential speedup of batch learning is demonstrated by conducting several
experiments on three data mining databases. Section 5 summarizes the im-
plications of applying batch learning and exemplar parallelism to data mining
neural networks.

2 Data Mining, Arti�cial Neural Networks and

Parallelism

2.1 Introduction

The objective of this section is to provide a survey of recent work in the �elds of
data mining, arti�cial neural networks, and general-purpose parallelism. The
speci�c techniques dealt with in this paper will be highlighted to show their
place within the wider research context.

3

This section begins with an explication of the �eld of data mining. The data
mining process will be de�ned from the perspective of statistical parameter
estimation. This statistical perspective creates a framework for describing
the two most common data mining tasks: classi�cation and clustering. The
general similarities and di�erences between the data mining algorithms used
to solve these tasks will be discussed. The material that is discussed in this
subsection is a synthesis of the general description of the data mining process
presented in [16], and the statistical approach to pattern recognition presented
in [30].

Next, arti�cial neural networks will be described with respect to the data
mining tasks of classi�cation and clustering. Two speci�c neural network algo-
rithms, cross-entropy multi-layer perceptrons and Gaussian mixture models,
will be given as e�ective techniques for solving these data mining problems.
Both of these algorithms will be derived and their general properties and ca-
pabilities will be summarized. In addition, the distinction between determin-
istic and stochastic methods will be expressed. The presentation of the cross-
entropy multi-layer perceptron represents a synthesis of the work in [22, pp.
138{192], and in [4, pp. 230{240]. The derivations of the Gaussian mixture
model follow the material in [42] and [4, pp. 59{73].

The last subsection of this section will assert the need for parallelism in
data mining applications. The di�culties of parallel software development will
be listed and a set of criteria will be established to facilitate the choice of an
appropriate parallel programming model. Bulk Synchronous Parallelism will
be introduced as a model which is suitable for designing and implementing
parallel neural networks that are applicable to data mining tasks.

2.2 Data Mining

Before the techniques used in data mining can be analyzed in any detail,
a formal de�nition of the data mining process should be stated. The ac-
cepted de�nition of data mining, formulated by Fayyad, Piaetsky-Shapiro and
Smyth [16][15], is:

Data mining is the non-trivial process of identifying valid, novel,
potentially useful, and ultimately understandable patterns in data.

Restated more formally, for a database D, the goal of the data mining process
is to identify the patterns P which satisfy the discovery criteria I.

A discovered pattern is an expression which provides some information
about a subset of the database. The information expressed by a discovered

4

pattern permits a generalized description of the data which is simpler than
the data itself. For example, for some supermarket database of customers,
a pattern P1(D1) may describe the fact that all customers in subset D1 pur-
chased tofu and lettuce on their last shopping trip. Obviously, this example
of a discovered pattern is very simple; however, it still enables one to reason
about the subset of customers D1 by virtue of the fact that they all share
the common feature P1. More complicated patterns may make probabilistic
statements about subsets of the database, or may be characterized by arbi-
trarily complex expressions. Commonly, patterns are expressed in the form
of rules, associations, clusters, functions or graphs. Patterns can normally be
transformed from one form to another; however, some loss of information may
result.

It is not su�cient to simply search a database for any arbitrary pattern;
some criteria (I) must be speci�ed to assess the pattern's desirability. The
de�nition of the data mining process provides several conditions to judge if
an acceptable pattern has been discovered. These conditions will be de�ned
within the context of data mining:

� Valid : the discovered pattern P (D) must be descriptive of least some
proportion of the subset D. The level of this validity threshold is con-
tingent on the data mining process; some applications may only accept
absolute membership, whereas other applications may be able to handle
probabilistic measures. Thus, V (P;D) � v for some validity threshold
v.

� Novel : with many large databases, there is a signi�cant amount of do-
main knowledge that has already been accumulated; for a discovered
pattern to be interesting, it should di�er from existing knowledge. Nov-
elty, can thereby be characterized by the metricN(P;K) which compares
the new pattern P with the set of existing patterns K.

� Useful : to be valuable, the knowledge gained through the discovery of
the pattern P should enable the data analyst to perform some set of
actions A which were not previously available. Thus, the discovery of
the pattern should entail some bene�t G(P;A) for the data analyst.

� Understandable: because data mining is a human-guided process, it is
often important that the data mining operator is capable of understand-
ing the meaning of the discovered pattern. The understandability of
the pattern can be measured by the function U(P). The measure is of

5

course quite subjective and is contingent on the interpretation of the
data analyst.

The desirability of the pattern can be characterized by the combination of
these conditions I(P;D;N; V;G; U) exceeding some threshold. Generally, only
validity and novelty can be measured by the data mining algorithm. The latter
two conditions are often subject to evaluation by the data analyst. In addition,
it is likely that di�erent data mining processes will weigh the importance of
these conditions di�erently.

2.2.1 Data Mining Models and Statistics

In the previous subsection, data mining was de�ned as the search for desir-
able patterns in large databases; however, it still remains to be shown how

these patterns will be discovered. This subsection will outline a framework for
analyzing the way in which data mining algorithms locate patterns.

Before proceeding, it is important to consider the distinction between a
pattern and a model. A pattern is an instantiation of a model. Inversely,
a model serves as a template for the generation of all possible patterns that
can be discovered by a data mining algorithm. Thereby, the structure of the
model determines the type and quality of the patterns that can be extracted
from a 0database. If one considers the example pattern of tofu and lettuce
consumers (P1) given above, a model M could, for instance, represent any
possible combination of items that could be purchased from the supermarket
by all of the customers in D1. The goal of a data mining algorithm would be
to search through the model space M to �nd P1 or any other such pattern
which satis�es the search criteria I.

However, it is generally infeasible and unnecessary to search the entire
space of possible patterns. Due to the curse of dimensionality, the number
of instances of a model grows exponentially with the number of items consid-
ered [4, pp. 7{8]. For example, assume a supermarket sold i items, and the
data mining process was to consider every possible combination of d items that
were purchased together on the same shopping receipt. To search this space
exhaustively, the model space must have size id [4, p. 7]. For a reasonable
number of items, searching a model space of this size is clearly prohibitive.
However, data mining algorithms incorporate techniques to intelligently re-
strict the search to a subset of the possible model instances. In addition,
domain knowledge is often used to limit the search space to a set of relevant
patterns. Thus, the model space M is generally subset of range of possible

6

patterns P.
A particular instance of a model can be characterized by a set of parame-

ters w which, for this example, represent a list of items that may have been
purchased by all of the customers in D1 during their last shopping visit. If one
considers the model instance M1 which describes P1, M1 can be represented
by the parameters w=ftofu, lettuceg. Due to the fact that P1 holds for all
of the shoppers in D1, the model instance M1 can be assumed to meet the
search criteria I and provide one of the possible solutions for this data mining
application. To summarize, data mining represents the search for the model
parameters w which describe a set of patterns P which satisfy the search
criteria I.

It is useful to re-examine this search process from the perspective of sta-
tistical pattern recognition and parametric statistics. Each model instance in
M can be represented in terms of the probability that it describes a pattern
which satis�es the search criterion. The model search space can be presented
as a conditional probability density function p(wjD) given the database D.
This conditional density is referred to as the posterior distribution. The pos-
terior distribution measures the quality of a model instance's representation
of the data set. M1, which describes the solution P1, would have a peak prob-
ability in this density function. Thus, the posterior distribution can be used
to select a model instance with parameters which accurately identify patterns
in the database. The process of selecting the set of model parameters which
maximize the posterior distribution is known as maximum a posteriori (MAP)

estimation.
In order to calculate the posterior probabilities for a particular model in-

stance, the likelihood that the data was generated by the instance must be
�rst determined. For the supermarket example, this would entail examining
the items purchased by each customer in D1 and determining whether they
bought the items de�ned by the model parameters w (in this case, tofu and
lettuce). By calculating the percentage of customers who purchased these
items, the likelihood of the model instance can be evaluated. This likelihood
measure can be represented by the distribution p(Djw). The method of evalu-
ating each data example using the model parameters is known as the likelihood
function. For this example, the likelihood function was a simple comparison
of the model parameters with each example in D1; however, for most data
mining algorithms the likelihood function is quite complex. The likelihood
function is generally a probabilistic interpretation of the output of a particu-
lar data mining algorithm evaluated on the data set. Due to the application of

7

this statistical framework to data mining algorithms, the outputs of di�erent
algorithms can be compared

Bayes' rule can be used to transform the model likelihood into the posterior
probabilities. Thus, the MAP model parameters can be selected based on the
outputs of the likelihood function applied to the data set.

p(wjD) = p(Djw)p(w)
p(D) (1)

From this equation, the posterior distribution is expressed as a product of
the model likelihood p(Djw), the prior distribution of the model parameters
p(w), and the data distribution p(D). The data distribution is independent
of the model parameters and is thus a constant factor in this equation. This
distribution serves to normalize the probabilities in the numerator. The prior
distribution represents the a priori assumptions about the model parameter
values in the absence of the data. Because it can be assumed that relatively
little is known about the distribution of the data, this density is very broad.
Thus, the initial model parameters are drawn from a distribution which will
enable the model to be as
exible as possible in response to the data mining
application.

In order to determine the model instance with parameters that maximize
the posterior distribution, the terms in the numerator of Bayes' rule must be
maximized (the denominator can be ignored because it is a constant factor).
Equivalently, the negative logarithm of the numerator can be minimized to
yield the cost function J(w):

J(w) = � ln p(Djw)� ln p(w) (2)

The �rst term in this equation is the log-likelihood. Most common error
functions (such as the sum squared error term, cross-entropy error or Euclidean
distance) can be expressed in terms of log-likelihood minimization. Thus, this
statistical framework is applicable to a wide range of data mining applications.
In the next subsection, the log-likelihood estimate is applied to two of the most
common data mining tasks.

The second term in the cost function is the log-prior distribution of the
model parameters. This distribution is often used as a measure of model
complexity [30]. From the cost function (2), the complexity of the model must
be balanced against the likelihood performance improvement gained from the
additional complexity. However, it is often assumed that this prior distribution
is essentially uniform across the range of possible parameter values. Thus,

8

the complexity of a model can be ignored, focusing simply on the estimated
likelihood of the model. In this context, the goal of the data mining process
is to select a model with parameters wML which maximize ln p(Djw). This
process is known as maximum likelihood estimation.

Although the log-prior distribution may be removed from the cost function,
it is still important to consider the complexity of a model. Intuitively, when
choosing a data mining model, it is important that the model is su�ciently
powerful to locate patterns which satisfy the search criteria. However, it is
also important that the model is not overly complex. Models with many
adjustable parameters may be slow to optimize, may over�t the data (leading
to poor generalization), and may be more di�cult to interpret. This tradeo�
between model performance and model complexity is captured by Occam's

razor ; this principle states that the preferred model is the simplest one which
is still capable of �nding an adequate solution [4, pp. 14{15]. Thus, the
data mining process represents not only a search to discover patterns in the
database, but also a search to �nd an appropriate model to represent those
patterns. The Bayesian cost function (2) permits both the model complexity
and the model parameters to be optimized simultaneously.

The weighting of the tradeo� between performance and complexity is par-
tially contingent on the data mining application. There are two main purposes
in data mining: description and prediction. Descriptive models attempt to pro-
duce an understandable representation of the results. Understandability often
implies simplicity, and thus, may only be obtained at the expense of the accu-
racy of the results. Therefore, a simple model with few parameters and good
generalization properties may be desirable for a descriptive task. Predictive
models, on the other hand, strive to achieve optimal predictive accuracy even
though they may be generated by highly complex models. Therefore, when
minimizing the cost function (2), descriptive models are likely to penalize com-
plexity more severely than predictive models.

2.2.2 Common Data Mining Tasks

The statistical �eld of parameter estimation presents a solid framework for
characterizing the data mining process. In this section, the log-likelihood cost
function (2) will be examined as an approach to solving two of the most com-
mon data mining tasks: classi�cation and clustering. Examples of applications
for each of these tasks will be given. For a more thorough review of how these
tasks relate to speci�c data mining applications, see [13].

Classi�cation

9

The goal of classi�cation is to accurately map database examples into one
of several prede�ned classes. For a classi�cation application, a data mining
algorithm is provided with a set of database examples x and corresponding
class labels t. The class labels identify each example as belonging to one of C
classes fC1; : : : ; CCg. By examining the common features of the examples for
each class, the data mining algorithm constructs a representation or class de-
scription for each class. These class descriptions are encoded in the parameters
w of the data mining model.

The class descriptions are formed by presenting the examples and their
corresponding class labels (repeatedly) to the model. Each example in the data
set is compared with the class descriptions encoded in the model parameters.
The example is then mapped to the class by which it is best described. If the
assigned classi�cation matches the class label for the example, then the model
has been classi�ed correctly. However, if the model has incorrectly labeled
the example, then an error results. An error function is used to adjust the
model parameters w so that the model will be better able to correctly classify
the input example in the future. The goal of the classi�cation process is,
therefore, to optimize the set of model parameters such that the number of
examples which are mislabeled by the model is minimized.

This minimization process can be formulated in terms of a likelihood cost
function. For a data set of N examples, where D = fxn; tngNn=1, it can be
assumed that the class labels have been assigned to each input example ac-
cording to some unknown conditional probability density function p(tjx). This
density function represents the probability P (tn = kjxn) that a given input
example xn belongs to class Ck (where k = 1 : : : C). If the label tn identi�es xn
as a member of class Ck (tn = k), then the probability Pn will be maximized.
Inversely, for the classes Cj which do not match the class label of the input
example (tn 6= j), the probability Pn is likely to be very small. Because the
conditional data distribution p(tjx) correctly matches the class labels to each
example, the probability Pn will be maximized for every example in the data
set.

By modeling the data distribution p(tjx), a data mining process can max-
imize the probability of correctly identifying the class labels for each of the
input examples. The parameters w can be used to determine the probability
that a model is capable of generating the data distribution, according to the
posterior density p(w; tjx). By adjusting the model parameters to maximize
the posterior distribution, the model can be adapted to �t the data distribu-
tion as closely as possible. The �t of a model can be evaluated by determining

10

the probability of correct classi�cation for each example in the data set. This
�t is calculated by the likelihood of the model. If it is assumed that the ele-
ments of the data set D are conditionally independent, then the likelihood can
be expressed as the product of the probability estimates for each example:

p(Djw) =
NY
n=1

P (tnjxn;w) (3)

By maximizing each probability estimate P (tnjxn;w), the model will come
closer to resembling the data distribution p(tjx). If the prior distribution
p(w) of the model parameters is ignored, the likelihood can be expressed in
the form of a cost function J(w).

J(w) = � ln p(Djw) = �
NX
n=1

ln p(tnjxn;w) (4)

Because the likelihood (3) represents the probability that the model correctly
classi�es the data set, its negative logarithm can be used to minimize the
probability of classi�cation error. Thus, by minimizing the cost function J(w),
the model is �tted to the data distribution. The goal of the classi�cation
process is therefore to derive a model with an optimal set of parameters wML

which minimizes the probability of classi�cation error.
At this stage, the method for optimizing the model parameters by using

the cost function to �t the conditional data distribution has not been stip-
ulated. Di�erent data mining algorithms will have di�erent approaches to
solving this �tting problem. One common approach is to use some form of
gradient optimization. Later in this report (Subsections 2.3.2 and 2.3.3), the
process of selecting the optimal model parameters will be explored within the
context of arti�cial neural networks. However, regardless of the speci�c data
mining approach, it is important to consider the properties of the distribu-
tion of the data p(tjx). For classi�cation applications, every input example
is generally assigned to only one class. Therefore, each class label tn is a dis-
crete variable. In order to accurately model the conditional data distribution,
the model should use a discrete probability density, such as the Bernoulli or
multinomial distribution to calculate the likelihood. The consideration of the
distribution of data variables is an important step that is often neglected in
data mining applications.

Once a classi�cation algorithm has completed the process of optimizing
its parameters to �t the distribution of the data, the model should be put

11

into use for the data mining application. If the purpose of the data mining
operation is descriptive, the class descriptions can be extracted from the model
parameters wML. These class descriptions detail the common properties of
the examples belonging to each class. They should be processed to be as
succinct and understandable as possible. If the purpose of the data mining
operation is predictive, then new, unlabeled data can be applied to the model
for classi�cation. If it is assumed that the new data is generated by the same
general distribution which created the training data set, then the classi�cation
results should be accurate.

Classi�cation is applicable to a wide range of data mining problems. Here
are just a few of the potential applications:

insurance fraud detection: the data mining algorithm can construct a rep-
resentation to distinguish a class consisting of fraudulent claims from a
class of legitimate claims.

credit rating prediction: the data mining system could be used to predict
the credit rating of a client by assigning each rate to a separate class.

medical diagnosis: the data mining system may be trained to identify the
presence (class 1) or absence (class 2) of tumors in X-ray mammogram
data.

Clustering

For some data mining applications, prede�ned classes may not exist and
there may be little domain knowledge about the contents and structure of the
database. In this case, the function of the data mining algorithm is purely
exploratory. Because there is no external guidance to direct the analysis, the
data mining algorithm must proceed by examining the structure of the data
itself. Structure in the database is distinguished by a consistent set of features
that are shared by a group of examples. To identify this structure, the data
mining algorithm attempts to group examples by using some similarity or
proximity metric. Common metrics include Euclidean distance and nearest-
neighbour methods. The set of examples that are grouped together by the
algorithm are known as a cluster.

From the perspective of statistical parameter estimation, it can be assumed
that a data set of N examples, D = fxngNn=1, has been generated by some
unknown, unconditional probability density function p(x). The goal of the
data mining process is to estimate this density function as closely as possible {
a problem known as density estimation. However, it is generally too di�cult to

12

accurately estimate p(x) using a single parametric model. Thus, the problem
of estimating p(x) can be simpli�ed by assuming that the data set has been
generated by a �nite number M of independent distributions or components:

p(x) =
MX
i=1

�ip(xji) (5)

where �i is known as the mixing proportion, and p(xji) is the density function
for each component i. The mixing proportions specify the prior probability
P (i) of choosing a component density i to generate a data example.

Because the number of component distributions, M , is �nite and is gen-
erally considerably smaller than the number of database examples, N , every
component density function is likely to represent a number of database exam-
ples. An input example xn can be evaluated to assess the probability that it
was generated by each component density. The component density i with the
greatest likelihood can be used to represent the input example. Every exam-
ple represented by component i is similar in virtue of the fact that it is likely
to have been generated by p(xji). Thus, each component distribution can be
interpreted as describing a cluster in the data set D.

The goal of the clustering process is to construct a model with parameters
w which accurately describe the density function p(x). By decomposing this
unconditional distribution into several component densities (5), a set of model
parameters wi can be used to estimate each component density i. Therefore,
the focus of the clustering process is to determine the parameters for each
component i that maximize the posterior probability p(wi; ijx). The �t of a
model to the data distribution can be judged by the calculating the cumulative
probability of each component generating each point xn. By combining each of
the component probabilities for every example in the data set, the likelihood
of a model p(xjw) can be determined. If it is assumed that the elements of
the data set D are conditionally independent, then the likelihood of a model
can be expressed as:

p(Djw) =
NY
n=1

p(xnjw) =
NY
n=1

MX
i=1

�ip(xnji;wi) (6)

Once again, it is straightforward to transform this likelihood equation to the
cost function of 2. The maximization of the likelihood equation creates a
model which produces the greatest probability of generating each data exam-
ple. Inversely, this minimizes the probability that an example is poorly �t by

13

a component distribution. The log-likelihood cost function can be expressed
as:

J(w) = � ln p(Djw) = �
NX
n=1

ln
MX
i=1

�ip(xnji;wi) (7)

Clustering problems can be considered as a generalization of classi�cation
problems. The complete data set for a classi�cation application (both exam-
ples and class labels) can be modeled by the joint probability density function
p(x; t). This joint distribution can be decomposed to yield:

p(x; t) = p(tjx)p(x) (8)

The �rst term of this equation is the conditional data distribution p(tjx) which
is commonly modeled in classi�cation applications. The second term corre-
sponds with the unconditional distribution of the data p(x) which is modeled
in clustering applications. Thus, the clustering process is often performed as
a precursor to further data mining analysis. Commonly, clustering is used to
preprocess the input for a classi�cation application. Because component den-
sities provide an accurate description of a cluster of data examples, they can
be used to:

� summarize the data set with the set of component distribution parame-
ters w,

� detect and eliminate noise from the data which occur as outliers to a
component distribution, and

� extract the common features of each cluster to provide more meaningful,
dimension-reduced data to a classi�er.

Alternately, component densities may be used to (automatically) create classes
for data sets where no prede�ned class labels exist [9]. By assuming that each
component represents a separate class, the component density function can be
used as a class description for each class, and class labels can be created for
every data example. The following are two real-world examples of data mining
clustering applications:

image compression : a clustering algorithm can be used to compress a
database with minimal loss of detail by using cluster prototypes to rep-
resent blocks of similar pixels.

14

signal �ltering : a telecommunications database generated by a �nite num-
ber of noisy components can be �ltered using a clustering algorithm to
identify the properties of each component and to eliminate signal noise
from each example.

2.2.3 Data Mining Algorithms

A wide variety of algorithms exist that have been used to solve data mining
applications. Commonly used examples are: decision trees and rules, arti-
�cial neural networks, genetic algorithms, association rules, inductive logic
programs and mixture modeling [16]. The algorithms for data mining are gen-
erally drawn from the �elds of machine learning, databases, and statistics [38].
However, the size of the databases and the complexity of the analysis makes
data mining distinct from each of these �elds. It is important to emphasize
that data mining is a process consisting of steps which will often represent a
synthesis of techniques from each of these �elds.

Despite the di�erences between data mining algorithms, there are a number
of commonalities which unite these algorithms under the data mining frame-
work. The most apparent common feature between data mining algorithms
is inductive search { data mining algorithms inherently reason from speci�c
data examples to generalizations about the structure of larger subsets of the
database. To form these generalizations, data mining algorithms invariably
develop some sort of model. These models, in turn, consist of parameters
to be optimized by the inductive search. If conditional independence is as-
sumed among the examples in a database, then this optimization process can
be characterized as modeling some conditional or unconditional distribution
of the database. Thus, data mining algorithms can generally be interpreted
from the perspective of statistical parameter estimation.

In addition to the overarching commonalities, the di�erences between algo-
rithms can also be characterized in general terms. When a data mining model
constructs a generalization about some subset of the database, it, in e�ect, cre-
ates criteria for the membership of that subset. For example, a data example
belongs to a class if it is described by the class description, or belongs to a clus-
ter if it is likely to have been generated by the component density. Thus, these
membership criteria partition the data set into subsets. Depending on the data
mining algorithm, these partitions can either be distinct or overlapping. For
example, the k-means algorithm constructs independent tessellations to clus-
ter the data; whereas mixture models generate overlapping distributions. In
addition, the boundaries of these partitions may be linear or nonlinear, open or

15

closed. For example, a decision tree recursively splits a data set into linearly-
separable regions; whereas the decision boundaries created by arti�cial neural
networks are nonlinear in nature. These simple characteristics of the parti-
tioning process distinguish seemingly unrelated data mining algorithms. For
example, decision trees can be shown to be a variant of hierarchical mixture
models [30]. Another important distinction between data mining algorithms
is the way that a model represents discovered patterns: genetic algorithms en-
code results in a genome structure, neural networks represent patterns in their
interconnection weights, and decision trees partition the data space using their
generated tree structure. Although the results of each of the aforementioned
algorithms may appear quite di�erent (even when applied to the same data
set), they can generally be transformed into a rule-based format, and by doing
so, compared.

2.3 Arti�cial Neural Networks

The arti�cial neural network (ANN) is a technique that is commonly applied
to solving data mining applications. The aim of this subsection is to pro-
vide a general background for neural networks and relate it to the statistical
framework for data mining given in the previous subsection. The details of
the neural network algorithms that will be used in the report experiments will
be given.

2.3.1 What are Arti�cial Neural Networks?

Although they derive their names from, and are loosely modeled after, mam-
malian brains, neural networks are, in essence, graph-based parametric mod-
els. Arti�cial neural networks are densely-interconnected graphs of simple
processing elements called neurons. These graphs can be arranged in an arbi-
trary structure; however, neural network connections are commonly organized
into layers, such that each processing element is only connected to neurons
in adjacent layers. The neural network model parameters, called weights, are
represented by numerical values attached to each of the edges in the graph.
Due to the graphical structure of the model, information passing through the
network must form a path through the weighted interconnections. The result
of this graph traversal produces some network output y which is a function of
the input vectors x and the network weights w:

y = f(x;w) (9)

16

Considering the statistical framework presented in the previous subsection, it
is important to be able to interpret the network output as a probabilistic likeli-
hood. The neural network algorithms that will be discussed in this subsection
are designed to accommodate this perspective.

An arti�cial neural network attempts to construct an internal represen-
tation of its environment through the modi�cation of its weight values. This
process of weight adjustment is called training. During training, data is repeat-
edly presented to the network and the network attempts to alter its parameters
to model features, patterns and regularities in the data. An iteration through
every example xn in the data set is known as an epoch which is a basic unit
of network computation time. The quality of the network representation can
be expressed by some cost function J(w) which the network algorithm at-
tempts to minimize. From the perspective of parametric statistics, this search
for network parameters to represent patterns in the data can be expressed as
modeling the underlying probability distribution of the data1. In this context,
neural networks can be perceived as algorithms for statistical modeling. Thus,
neural networks are applicable to data mining problems using the statistical
framework established in the previous subsection.

The two common data mining tasks, classi�cation and clustering, are solved
by two di�erent classes of neural network algorithms. For classi�cation ap-
plications, the aim of the data mining process is to model the conditional
distribution p(tjx) of a data set consisting of input example vectors x and
corresponding class labels t. Neural networks which are capable of modeling
this conditional distribution are called supervised networks because they are
guided (or supervised) by the class labels in deciding how to classify the inputs.
For clustering applications, on the other hand, no prede�ned classes exist to
guide the data analysis process. Thus, clustering algorithms attempt to model
the unconditional distribution p(x) to detect underlying structure in the data.
The class of neural network algorithms that can be used to model this type of
distribution are known as unsupervised networks.

The following subsections will present examples of the supervised and un-
supervised neural networks that will be used in this report. The network
function f(x;w) and the cost function J(w) will be derived for each neural
network algorithm and will be related to the tasks of classi�cation and cluster-
ing. The supervised neural network that will be presented is the cross-entropy

1Once again, it is important to assume that the data is conditionally independent

and time invariant in order to validate the statistical perspective. Neural networks

which are applicable to time-series analysis will not be considered.

17

multi-layer perceptron. The presentation of this algorithm represents a syn-
thesis of the adaptive signal-
ow approach to multi-layer perceptrons in [22,
pp. 138{192], and the derivations of cross-entropy error in [4, pp. 230{240].
The unsupervised neural network that will be presented is the Gaussian mix-
ture model. The derivations for this network follow the material in [42] and [4,
pp. 59{73].

2.3.2 Supervised Neural Networks

Figure 1 depicts the prototypical supervised neural network model: the multi-
layer perceptron. The multi-layer perceptron (MLP) neural network commonly
consists of two or three fully-interconnected layers of neurons. The input to
the network is propagated from the input layer through the weighted intercon-
nections to the output layer. Conversely, error signals are transmitted through
the network in a reverse direction. From the �gure, it can be observed that
there is a layer of neurons which has no direct connection to the input or the
output. This layer is known as the hidden layer and is responsible for provid-
ing the network with its nonlinearity and its ability to construct an internal
representation of its input environment.

Input Layer

bias bias

x1

y1

y2

yC

x2

x3

xd

Hidden Layer

Output Layer

Figure 1: Architecture of a fully connected multi-layer perceptron with a single
hidden layer.

The Supervised Network Function

The computations performed by the neurons in a neural network are more
or less uniform across the network. Thus, the network function f(x;w) can be
deconstructed in terms of the operations of individual neurons. Each neuron

18

i in the network generates its output yi by performing a weighted sum on
the input that it receives through its interconnections. This weighted sum is
then fed through an activation or basis function 'i(v) which can be used to
transform the range of the output and introduce nonlinearity into the network.

yi(x) = 'i(
X
j

wijxj + wi0); (10)

where the variable j is used to indicate the indexes of all neurons connected
to yi. The parameter wi0 is called a bias which serves to position the basis
function in the weight space, and enables the basis function to adapt during
training. A basis function can be any piecewise-di�erentiable function. The
most common basis function is the logistic sigmoid :

'(v) =
1

1 + e�v
(11)

The choice of the logistic sigmoid has important implications for classi�cation

x1 wi0

vi yi

ϕi(vi)

wi1

wi2

wi3

wid

x2

x3

xd

Figure 2: Signal-
ow graph for the feed-forward computation performed by
neuron i using (10).

applications. By using Bayes' theorem, it can be demonstrated that the logistic
sigmoid can be derived from the conditional distribution p(tjx) for a generic
problem with two classes [30]. For classi�cation problems with more than two
classes, a generalization of the sigmoid, called the softmax activation function
can be derived. These derivations yield the important result that the use of
logistic sigmoid activation functions allows the output of each neuron to be
treated as likelihood probabilities. Thus, the network function f(x;w) can be
used to model the classi�cation data distribution p(tjx), such that:

y � p(tjx;w) (12)

19

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sigmoid input

Si
gm

oi
d

ou
tp

ut

Figure 3: Plot of the logistic sigmoid activation function from (11).

In addition to its importance in statistical modeling, the sigmoidal basis
function performs a nonlinear scaling of the output to the range (0; 1). Without
this nonlinearity introduced by the basis functions, a multiple layer network
could be compressed into the weights of a single layer [22, p. 139]. Another
important feature of the sigmoid is its shape. For large and small activations
v, the sigmoid asymptotically approaches 0 and 1. At this stage, the sigmoid is
saturated because changes in the activation value will constitute insigni�cant
changes in the sigmoid output. However, if jvj is small, then the sigmoid
is approximately linear and the basis function leaves the activation value v

relatively untouched.
The following equation demonstrates the output for a network with a single

hidden layer. In this case, the output for all of the neurons j in the hidden
layer are used as the input to the neurons in the output layer. Thus, input is
generally propagated through the network on a layer-by-layer basis.

yk(x) = 'k(
X
i

wki'i(
X
j

wijxj + wi0) + wk0) (13)

Classi�cation Cost Functions For Supervised Networks

Now that the network function has been de�ned for the multi-layer per-
ceptron, the choice of an appropriate error function must be considered. Due
to the fact that, for classi�cation applications, the neural network is attempt-
ing to model the conditional data distribution p(tjx), the error function must

20

re
ect the �t of the network to this distribution. As was discussed earlier (in
Subsection 2.2.2), the distribution of the class labels t is discrete because every
example is assigned to only one class, and every class is mutually exclusive.
For neural networks, class labels are usually presented using a 1-of-C encod-
ing. With this encoding scheme, if the input example xn is assigned to class
i, then the ith element of tn is set to one, and all of the other elements of tn
are set to zero.

From (12), the network outputs yn can be treated as the probabilistic
likelihood of the network assigning class label tn to xn. Assuming the existence
of multiple classes, the multinomial probability density function presents a
natural approach to modeling this distribution. Thus, the likelihood of the
model correctly classifying xn can be expressed as:

p(tnjxn;w) =
CY
k=1

(yk;n)
tk;n (14)

By taking the negative logarithm of the likelihood estimate for every example
in the data set, the cost function J(w) can be constructed:

J(w) = �
NX
n=1

ln p(tnjxn;w) = �
NX
n=1

CX
k=1

tk;n ln yk;n (15)

which is known as the cross-entropy error function
In order to minimize the cost function, the estimated gradient of the error

surface is used to modify the network weights. This gradient is generally
expressed as the direction of steepest descent in the error surface. Thus, the
gradient can be calculated using the derivative of the cost function with respect
to the weights of the network:

rJ(w) = @J

@w
=

1

N

NX
n=1

@Jn

@w
(16)

The gradient can be calculated by averaging the derivative to the cost function
for each example in the data set. The derivative of the cost function for
each example can be computed by using the derivative chain rule to reverse
the computation of the network outputs. The partial derivative of the cost
function with respect to the weights in the output layer yields the appealing
result:

@Jn

@wjk

=
@Jn

@yk;n

@yk;n

@vk;n

@vk;n

@wjk

(17)

21

= �(tk;n � yk;n)
@vk;n

@wjk

(18)

= �yj;n(tk;n � yk;n) (19)

Intuitively, the error gradient is equivalent to the di�erence between the desired
response and the network output, multiplied by the input to the weight from
the neuron j in the previous layer. For a more thorough derivation of the
cross-entropy error gradient, see [29][4, pp. 230{240].

For the neurons in the hidden layers, no explicit output response exists
to guide the weight adjustments. Instead, the error gradient is propagated
backwards through the network to adjust the network weights in proportion
to the in
uence that they have in determining the network output.

@Jn

@wij

=
@Jn

@yj;n

@yj;n

@vj;n

@vj;n

@wij

(20)

= �
CX
k=1

f(tk;n � yk;n)wjkg
@yj;n

@vj;n

@vj;n

@wij

(21)

= �xiyj(1� yj)
CX
k=1

f(tk;n � yk;n)wjkg (22)

t1-y1

t2-y2

t3-y3

tC-yC

yj(1-yj)

wj1

xi

wj2

wj3

wjC

∂J
∂yj

∂J
∂wij

∂J
∂yj

∂yj
∂vj

Figure 4: Signal-
ow graph for the backward propagation of the gradient
estimate to neuron i.

Because the gradient computes the steepest slope of the error surface with
respect to each weight, it provides the network with the direction in which
each weight should be adjusted to reach a minimum. Thus, the gradient can
be used to move the network weights some distance in the direction of the
greatest decrease in error. However, the error gradient does not provide a
measure of how far the network state is from a minimum. If the network is

22

moved too far in the direction of the gradient, it may overshoot the minimum,
potentially leading to an increase in the cost function. Conversely, if the
distance that the network is moved is too small, then the network may require
many iterations to locate the minimum.

Several algorithms exist to estimate how large a step size is required to
reach a minimum. The most common approach is to use a �xed learning
rate parameter � that will make the step size proportional to the size of the
gradient. The computed adjustment to the network weights is called the delta
weight (�w) and is given by:

wij = wij +�wij = wij + �
1

N

NX
n=1

@Jn

@wij

(23)

A variety of alternate approaches exist to determine the size of the delta
weight vectors. The simplest variation includes a momentum term to ac-
celerate gradient descent when the slope of the gradient is consistent, and to
help stabilize the weight adjustments when the slope is oscillating [22, pp.
149{151]. Some approaches use an adaptable learning rate schedule (similar
to simulated annealing) to gradually decrease the step size as a minimum is
approached [10][11]. Other techniques exploit second-order information about
the error surface and use line search to determine an optimal learning rate
� [33][14][35]. [47] presents an overview and empirical comparison of most of
these techniques.

Through the repeated process of exposing the network to the data set and
adjusting the network weights, the neural network will eventually converge to
a minimum in the cost function J(w). If the network has converged success-
fully, its weights wconv should enable the neural network to approximate the
distribution of the data set p(tjx). Additional issues relating to the speed of
network convergence and the quality of the minimum attained will be discussed
later in this report.

2.3.3 Unsupervised Neural Networks

Unsupervised neural networks are generally similar to supervised networks
in terms of their structure and properties. Both types of networks tend to
use regularly structured graphs organized into layers with parameter values
attached to each edge. Also, both types of algorithms are iterative and use
gradient descent techniques to minimize an error function. However, unlike
supervised networks, unsupervised networks are capable of modeling a data set

23

without the guidance of class information. Thus, unsupervised networks are
generally applicable to a wider range of data sets which may be underanalyzed
and may have relatively little domain knowledge available. The implication
of the independence of class information is that there is no explicit target
value for the output of an unsupervised network function to model. Thus, the
network error function must be de�ned relative to the input data. Statistically,
this distinction can be summarized by the di�erence between modeling the
conditional distribution p(tjx) and the unconditional probability distribution
p(x).

The unsupervised neural network technique that will be dealt with in this
report is the general mixture model. In addition to being one of the more
powerful unsupervised neural network techniques, the general mixture model
is well suited to the statistical framework established in this report. The intro-
duction to the data mining task of clustering in Subsection 2.2.2 describes the
general mixture model approach. This subsection will introduce the algorithm
and will present its position within the area of unsupervised neural networks.

Mixture Model Networks

The goal of a general mixture model is to estimate the underlying data
distribution p(x). As stated previously, for most data sets, this problem is too
di�cult to be solved with a single parametric model. However, any density
function can be approximated to an arbitrary degree of accuracy by a set
of simpler distributions (as long as the number of distributions is su�ciently
large) [4, p. 61]. By choosing a �nite number of simple distributions, p(xji)Mi=1,
mixture models attempt to optimize the parameters of each distribution to
�t the unconditional data distribution p(x) as closely as possible. Because
mixture models combine the probability estimates of multiple distributions,
they are known as semi-parametric techniques.

In a mixture model network, every neuron i represents a simple parametric
distribution known as a component. The choice of which type of distribution
to use in a mixture model depends on the nature of the application and the
structure of the data. For example, if the data set consists of real-valued sam-
ples, it is advisable to use a continuous density function, such as a Gaussian
or log-Gaussian distribution, to model the data. Alternately, if the data is
nominal or count-valued, a multinomial or Poisson distribution may be more
applicable. Statistical literature details a variety of di�erent types of density
functions to suit di�erent data distributions { most of which are applicable
to a general mixture model framework [9]. Frequently (especially for data
mining databases), a data set will contain a combination of di�erent data

24

types. To model this heterogeneous data, the mixture model may have to
apply di�erent distributions to di�erent input dimensions. For simplicity, this
report will only focus on mixture models employing a single type of compo-
nent: Gaussian distributions. Networks containing Gaussian components will
be examined because they are the most common and best understood type
of mixture models. In addition, although they are continuous distributions,
Gaussian densities can be used to approximate discrete data. Thus, mixture
models with only Gaussian components can adequately model heterogeneous
data sets.

In a mixture model network, the weights wi encode the parameters for the
ith component in the network. For Gaussian components, each set of weights
speci�es the mean, variance, and mixture proportions for a component distri-
bution: wi = f�i;�i; �ig. To simplify the derivations of the mixture model,
it will be assumed that the covariance matrix of the distribution will be con-
strained to a scalar, such that �i = �2I, where I is the identity matrix. Thus,
the Gaussian distribution is radially symmetric in the input space. Derivations
of a Gaussian mixture model using a full covariance matrix can be referenced
in [7]. In addition, the mixing proportions �i satisfy the following constraints:

0 � �i � 1 (24)
MX
i=1

�i = 1 (25)

x1 P(x|1)

P(x)

π1

π2

π3

πM

P(x|M)

x2

x3

xd

Figure 5: Network representation of a general mixture model.

Figure 5 displays the network representation of a general mixture model.
This network consists of two fully interconnected layers of weights. The �rst
layer encodes the parameters for each of the M component distributions. The

25

output of each neuron in this layer is the probability estimate P (xnji;wi) that
each component density i generated the input example xn. The second layer
combines the probability estimates for each component with the set of prior
probabilities �i. The resultant output is the cumulative likelihood that input
example xn was generated by the mixture model. In other words, the network
outputs how well the model �ts the data distribution p(x). Thus, the network
function for a general mixture model can be expressed as:

y(xn) = p(xnjw) =
MX
i=1

�ip(xnji;wi) (26)

This equation outlines the network function for a general mixture model;
however, it does not describe how the component density function p(xji;w)
is to be evaluated. The evaluation of the component density function is con-
tingent on the type of parametric distribution used by the network. With the
assumption that the mixture model network consists of Gaussian components,
the component distributions can be speci�ed using the normal density func-
tion. By supplying an input vector xn to the network, the likelihood function
of each component can be evaluated using the component density function and
distribution parameters wi:

yi(xn) = P (xnji;wi) =
1

(2��2i)
d=2

exp

(
�kxn � �ik2

2�2i

)
(27)

The probabilities of each component can be combined with the mixture proba-
bilities using (26) to produce the output of the network function. By combining
the network output probabilities for each of the examples in the data set, the
likelihood of the model can be estimated (6). Once again, it is straightfor-
ward to transform this likelihood estimate into a cost function by taking the
negative logarithm:

J(w) = �
NX
n=1

ln p(xnjw) = �
NX
n=1

ln

(
MX
i=1

�ip(xnji;wi)

)
(28)

Like supervised neural networks, the error function for mixture models can
be minimized by calculating the derivative of the cost function with respect to
the network parameters. For mixture models, component distributions often
have several di�erent types of parameters which serve di�erent functions in
the estimation of the data distribution p(x). The derivative for each type of

26

parameter must be calculated separately. Below are listed the derivatives for
the parameters of a Gaussian mixture model:

@J

@�i

=
NX
n=1

P (wi; ijxn)
(�i � xn)

�2i
(29)

@J

@�i
=

NX
n=1

P (wi; ijxn)
(
d

�i
� kxn � �ik2

�3i

)
(30)

@J

@�i
= �

NX
n=1

fP (wi; ijxn)� �ig (31)

The density p(wi; ijx) is the posterior probability distribution of the general
mixture model. The posterior probabilities can be computed from the model
likelihoods by using Bayes' theorem and (26):

p(wi; ijx) =
p(xji;wi)P (i)

p(x)
=

p(xji;wi)P (i)PM
j=1 p(xjj;wj)P (i)

(32)

where P (i) is the prior probability of component i which is equivalent to �i.
From the equation, it is clear that the posterior probability is simply the
normalized version of the likelihood probabilities for each component. Thus,
it is ensured that

PM
i=1 �ip(xji;wi) = 1.

To minimize the error function with respect to the parameters, the deriva-
tives can be set to zero. Unlike the gradient estimates for supervised networks
(19, 22), the derivatives for mixture model networks can be solved directly in
terms of the model parameters. Thus, it is possible to determine from the
derivatives the parameter values which minimize the cost function J(w). The
following set of equations show the estimated optimal values solved for each
of the model parameters:

�̂i =

PN
n=1 p(wi; ijxn)xnPN
n=1 p(wi; ijxn)

(33)

�̂2i =
1

d

PN
n=1 p(wi; ijxn)kxn � �̂ik2)PN

n=1 p(wi; ijxn)
(34)

�̂i =
1

N

NX
n=1

p(wi; ijxn) (35)

In the �rst equation, the estimated mean �̂i is equal to the average of the data
vectors in D weighted by the posterior probabilities that each example was

27

generated by component i. Similarly, the estimated variance �̂2i is equivalent
to the variance from the component mean to every data vector weighted by
the posterior probabilities. Finally, the estimated prior probability �̂i can be
determined by averaging the posterior probabilities for every data vector in
the data set. Clearly, the derived estimates for the parameters of a Gaussian
mixture model present an intuitively satisfying result.

Unlike the gradient calculations for supervised learning, the cost function
derivatives for Gaussian mixture models can be solved exactly for each of the
network parameters. The implications of this solution is that the direction and
the distance from the current parameter value to the value which minimizes the
derivative @J

@w
can be determined directly. Thus, there is no need to estimate

the distance to the minimum using a learning rate parameter �. However, it
is often still useful to transform these equations into the format of the delta
weight update equation for supervised networks from (23).

�i = �i + �(�̂i � �i) (36)

�2i = �2i + �(�̂2i � �2i) (37)

�i = �i + �(�̂i � �i) (38)

In these equations, the delta weight value (�wi) is equivalent to the distance
from the old weight value to the new estimated value multiplied by the learning
rate �. It can be easily observed that if � = 1, these weight update equations
will reduce to (33). The importance of these weight update equations will
become apparent later in this report when batch learning is used to calculate
new parameter values based on subsets or batches of the data set.

A Brief History of Unsupervised Networks

The general mixture model represents the culmination in the evolution
of a variety of unsupervised neural networks. Unsupervised neural networks
trace their roots to the humble competitive layer network. The determin-
istic version of this network is equivalent to the well-known k-means algo-
rithm [39][12][2][54]. In a competitive layer network, each neuron competes to
represent an input example based on some proximity metric. Using a winner-
take-all approach, only the weights of the closest neuron are updated to move
that neuron proportionally nearer to the input example. At the completion of
network training, the weights of each neuron represent the mean of the data
examples that are closest to it. The main two di�culties with this network
are:

1. the winner-take-all approach permits only a single neuron to respond to
each input. This form of update is ine�cient and it creates the possibility

28

that some network neurons may never be updated because they never
win the competition (a phenomenon called neuron starvation). Thus,
it is di�cult to choose a good distribution for the initial weight values
to ensure that each neuron will be capable of representing an adequate
proportion of the input data (this is further complicated by the curse of
dimensionality).

2. the network weights provide relatively little information about the ex-
amples that belong to each cluster and the boundaries between clusters
are not well de�ned.

Kohonen's self-organizing feature map (SOFM) presents several improve-
ments to the simple competitive network that attempt to solve these di�cul-
ties [22, pp. 397{434][45][31][37]. In a self-organizing feature map, some form
of a topological ordering is imposed upon the neurons in the network. This
ordering is generally in the form of a two-dimensional mesh or a line. The
implications of this ordering is that the neurons topologically adjacent to the
winner will be updated in response to each input. Topological adjacency is
determined by a neighbourhood function which initially speci�es a very large
neighbourhood of neurons to be updated, and which gradually shrinks during
network training. This improvement of the SOFM overcomes the �rst di�culty
of competitive layer networks; it is likely that every neuron in the network will
be updated in response to some proportion of the inputs. In addition, due to
the ordering imposed by the topological structure, adjacent clusters in the net-
work correspond to adjacent locations in the input data. Thus, the examples
described by neighbouring clusters are likely to have similar properties. This
topological adjacency provides more information about the data than simply
the cluster location.

However, as the dimensionality of the data increases, the notion of ad-
jacency among neurons becomes less clear. Adjacency is imposed by some
topological structure which, in general, is unlikely to �t the data. Often,
the topological structure will become considerably warped as the network is
trained to �t the data. For example, if the neurons are organized in a two-
dimensional mesh and the data set consists of points uniformly distributed
in three dimensions, the mesh will become quite distorted as the network
stretches to �ll the data space. This distortion e�ect becomes considerably
worse in higher dimensional data sets. Thus, adjacency in high dimensions
may no longer correspond to the closest Euclidean distance between neurons.
Another e�ect of this warping is that neurons will often be left in empty space

29

straddling two separate clusters that are being represented by their topological
neighbours. For example, consider a data set with two distinct clusters which
is being modeled by a three neuron linear map. It is clear that the topological
structure of the map will cause the middle neuron to be mapped to the empty
space between the two distributions. This middle neuron is e�ectively inactive.
For high dimensional data sets which are more sparsely distributed, the num-
ber of wasted neurons increases considerably. In addition, the self-organizing
feature map provides relatively little information regarding the boundaries be-
tween clusters or about the generation of the examples in each cluster. Thus,
the self-organizing feature map, when applied to high dimensional data, gen-
erally provides insu�cient information to overcome the second di�culty of
competitive learning.

Recently, neural network researchers have begun recognizing the value of
the general mixture model approach and its applicability to unsupervised neu-
ral network learning [4, pp. 59{73] [42]. General mixture models present
a theoretically-sound solution to the two problems of competitive learning
mentioned above. As opposed to the winner-take-all approach of competi-
tive networks, mixture models apply what is known as soft competitive learn-
ing [42][41][40]. With this approach, every neuron in the network is updated
in proportion to the probability of having generated the input example. Thus,
neurons in the neural network can be interpreted as probability density func-
tions that are compared in terms of their likelihood of having generated the
input data. The advantage of the proportional updating of every weight in
the network due to soft competition is that the problem of neuron starvation
is thwarted. Every neuron in the network is likely to eventually describe some
proportion of the data set. In addition, the problem of stranded neurons has
been avoided because there is no a priori topological structure imposed on the
networks.

The problem of the understandability of cluster representations is also
neatly solved by mixture models. Because each neuron outputs a likelihood
probability estimate, clusters of data examples can be described by a prob-
ability density function. Due to the fact that probability distributions are
well supported in statistical literature, the results of mixture model training
are easily understandable. The parameters of a probability distribution pro-
vide considerably more information about the data than the cluster mean and
the adjacency information determined by the previous two techniques. Impor-
tantly, the type of distribution can be chosen to suit the underlying probability
distribution of the data; for example, discrete distributions can be used to �t

30

nominal data, and continuous distributions can be used to �t real{valued data.
Characterizing a data set in terms of a set of probability distributions is also
easily comparable with the output of other statistical methods { unlike the
results of other unsupervised networks. In addition, the probabilistic likeli-
hood estimate of each neuron is much easier to interpret than distance metrics
employed by competitive networks. Lastly, by simplifying a Gaussian mixture
model so that every neuron has equal prior probabilities and in�nite variances,
the mixture model would be theoretically equivalent to a competitive layer net-
work or a self-organizing feature map where the neighbourhood includes just
the winning neuron. Thus, there is a natural progression in the evolution of
unsupervised neural network techniques to the general mixture model.

2.3.4 Deterministic, Batch and Stochastic Learning

All of the neural network algorithms presented thus far in this report are
deterministic. During training, they compute each weight update (�w) by
using all of the available information in the data set in order to calculate the
gradient of the error surface (@J

@w
).

rJdet(w) = 1

N

NX
n=1

@Jn

@w
(39)

By using the entire data set, the network attempts to come as close as possible
to the true gradient to the probability distribution underlying the data. This
true gradient is estimated by averaging the instantaneous gradient calculated
for each example. Thus, the estimate calculated by the network algorithm
will be a noisy but unbiased approximation of the true gradient. Because
averaging is a commutative operation, the order that the data examples are
presented to the network is irrelevant. Therefore, neural network algorithms
which use the entire data set to estimate the gradient for each weight update
are deterministic.

The main drawback of deterministic algorithms is that they are ine�cient
for large databases containing redundancies. Generally, a good estimate of
the gradient can be calculated using some subset of the entire data set. Thus,
deterministic networks may perform many unnecessary calculations before the
network weights will be updated. By relaxing the conditions of deterministic
learning, the network algorithm can be made more e�cient by allowing more
weight updates to occur during an iteration through the data set. Thus, the
data set can be partitioned into several subsets or batches, and the network

31

weights can be updated after calculating the gradient for each batch. The
gradient for batch b can be calculated from the average of the instantaneous
gradients for each of the examples in the batch:

rJbatb (w) =
1

B

BX
n=1

@Jn

@w
; (40)

where B is the batch size and B � N . For a single epoch, the batch gradient
would be evaluated sequentially for each batch b. It is important to note,
however, that the training algorithm is no longer deterministic because the
order of the presentation of each batch will a�ect the state of the network.

If the number of batches is equal to the number of examples in the data
base, then the network learning algorithm is considered to be stochastic. For
stochastic learning, the gradient of the error surface is estimated from a single
example. Thus, the stochastic gradient for each example n can be expressed
as:

rJston (w) =
@Jn

@w
(41)

The stochastic gradient is calculated to update the network weights after the
presentation of each example n in the data set. Thus, a stochastic learning
network will update its weights N times during a single epoch. Because the
gradient, in this approach, is calculated from a single example, it is a very
noisy approximation to the deterministic gradient. However, as long as the
step size � is chosen appropriately, the noise term of the stochastic gradient is
bounded, and the network will be adjusted, on average, in the direction of the
deterministic gradient. Unless the learning rate is very small or is decreased
using a dynamic learning rate schedule, the noise term in the gradient estimates
will prevent the network from settling into a minimum2. However, for most
applications, the network need not converge to a minimum to provide a good
solution.

Despite the di�culty in reaching minimum, there are many advantages to
stochastic learning over deterministic learning. First and foremost, stochastic
algorithms are likely to be orders of magnitude faster at attaining good results
for large, redundant data sets [22, p. 162]. Stochastic algorithms also tend
to be better at evading local minima and locating the global minimum in the
search space. In addition, stochastic algorithms do not require the storage of
the gradient estimates for the entire data set. For applications where data is

2The Robbins-Munro formula demonstrates the convergence properties of a

stochastic algorithm if limn!1 �n = 0 [4, pp. 46{47].

32

continuously arriving and requiring processing, stochastic neural networks can
handle this data in real-time.

It is important to note that, because the network weights are updated
after the presentation of each example, the solution attained by the network is
partially contingent on the order that examples are presented to the network.
Stochastic learning network tend to be biased in their representation towards
the initial examples that are presented to the network. To limit the e�ects
of presentation order, it is often assumed that data examples are selected
randomly from the data set or the data set is permuted after every iteration.

This report examines the continuum between the extremes of deterministic
and stochastic learning. As will be shown in the next subsection, deterministic
learning networks are more amenable to parallel implementation than stochas-
tic networks. A batch learning compromise between these two extremes can
harness the parallelization advantages of deterministic learning and the im-
proved convergence speed of stochastic learning.

2.4 Parallelism

Parallelism presents an e�ective solution for dealing with the computational
overhead incurred by data mining applications. However, the development
of parallel software is not as simple as executing a sequential algorithm on a
multi-processor system. The scarcity of available, widely-used parallel software
attests to the fact that the process of parallelization is substantially more
complex. Migrating any application to a parallel system requires the ful�llment
of several design criteria. In order to successfully meet these guidelines, an
appropriate parallel model and parallel platform must be selected. Correctly
choosing these will help evade the pitfalls that have caused much parallel
software to fall into obscurity.

This subsection will outline some of the properties and challenges of par-
allel hardware and software. Several design criteria to assist the selection of
an appropriate parallel model will be posited. Bulk Synchronous Parallelism
(BSP) will be presented as a parallel model for software development which
meets these criteria.

2.4.1 Parallel Software Models

The initial step in parallelization entails selecting a parallel model for soft-
ware development. Skillicorn and Talia outline six characteristics of an ideal
model [50]:

33

� it should be easy to program;

� it should have a well-de�ned software methodology;

� it should be architecture-independent;

� it should be easy to understand;

� it should be e�ciently implementable; and

� it should provide accurate cost analysis.

The selection of a parallel model is assisted by determining how successfully a
speci�c model meets these criteria.

Existing parallel models can be positioned on a range from abstract to
low-level. Abstract models conceal the details of parallelization from the de-
veloper. Thus, parallel code is easy to develop, analyze and debug (appearing
much like a sequential program). In addition, it is also easy to migrate be-
tween parallel platforms because the compiler is responsible for handling all
of architecture-speci�c details. However, as a result, it is hard to implement
e�cient parallel code because the methods of specifying parallelism are quite
general. Abstract models are often implemented in high-level languages which
have been customized for parallel development and are not widely supported
for development in industry.

Low-level models, on the other hand, enable e�cient implementation be-
cause the developer can customize the code to meet the characteristics of a
speci�c parallel machine. However, the tradeo� of gaining this e�ciency is
that the developer must specify all of the details of parallelism. Thus, the
parallel software becomes di�cult to understand, tedious to debug and highly
machine-speci�c. The resulting code is incapable of attaining widespread use
because it is too di�cult to migrate the software between di�erent parallel
machines. Most early parallel software attempts fall into this category.

Clearly, the models at the extremes of this spectrum fail to meet all of
the characteristics of an acceptable environment for parallel software develop-
ment. A mid-range compromise which minimizes the tradeo� between porta-
bility and e�ciency is desirable. Most contemporary parallel models operate
at this medium level of abstraction and di�er mainly in terms of their language
of implementation and what they choose to make explicit versus what they
choose to conceal. For example, a parallel model, such as BSP [24][23][49], re-
quires the software developer to specify which parts of the program should be
implemented in parallel; however, it hides the details of how this parallelism

34

is actually implemented. A parallel model, such as NESL [5][6] which occurs
at a higher level of abstraction conceals even the parallel speci�cation of the
software from the developer. Linda [8] and Mentat [20], on the other hand,
exist at a lower level of abstraction that requires the software developer to ex-
plicitly stipulate almost all of the details of parallel implementation. Despite
the di�erent levels of abstraction, these models manage to satisfy most of the
established criteria to some degree { they are abstract enough to be under-
standable, portable, cost predictable and easy to program, and yet su�ciently
low-level to enable e�cient implementation. In addition, most contemporary
parallel models are developed as extensions to or libraries for sequential lan-
guages commonly used in software development. In fact, some parallel models
o�er extensions to several standard programming languages. Often these se-
quential languages will already have a software methodology to complement
parallel software development.

2.4.2 Parallel Hardware

Parallel software development also entails the selection of an appropriate par-
allel architecture on which to execute and evaluate parallel code. However,
unlike sequential machines which exhibit more or less homogeneous properties
across a variety of applications, di�erent parallel machines may have markedly
di�erent performance results on di�erent applications. The performance of a
parallel machine on a particular application is a product of the interrelation
of its components. By examining the di�erent components and di�erent types
of parallel machines, the task of choosing the right parallel architecture can
be simpli�ed.

Parallel computers consist of three main components: processors, memory
modules and an interconnection network [50]. The choice of each of these
components and the way that they are combined determines the type of the
parallel machine. There are two major distinctions to be made based on these
combinations [18]. The �rst distinction is contingent on the placement of mem-
ory modules within the machine. If each processor has its own local memory,
the parallel computer is a distributed-memory system. If the memory modules
are detached from an individual processor and are globally accessible by all
processors, the machine is a shared-memory system. The second distinction
deals with the way in which the processors operate. If each processor exe-
cutes independently operating on potentially di�erent programs, the parallel
machine is multiple instruction, multiple data (MIMD). Alternately, if a single
processor executes a program thread and distributes operations to the other

35

processors in the system (such as in a master-slave paradigm), the machine is
considered to be single instruction, multiple data (SIMD).

For a particular algorithm, there may be an optimal number of processors
that will ensure that each subtask of a program will be executed concurrently.
However, it is expensive and ine�cient to choose a parallel architecture that
optimally handles the processing for a speci�c task, and, for most applica-
tions, the desired amount of parallelism will far exceed a feasible number of
processors. Also, most parallel systems will be used for multiple applications
for which the optimal number of processors may not be known a priori. To
overcome this restriction, contemporary parallel models support virtual paral-
lelism. This technique decomposes an application into independent processes
which can be appropriately distributed among the number of actual proces-
sors in the system. Thus, an optimal parallel system can be simulated, though
without the full bene�t of parallel speedup. It is important to distinguish pro-
cesses from processors: processes are logically independent tasks that can be
executed concurrently on a parallel machine, and processors are the physical
processing units in a parallel machine.

Communication is at the core of any parallel system. Because inter-processor
communication is extraneous to the work done solving a particular problem,
it is essential to minimize the cost of communication in relation to the cost of
computation. Parallel systems that spend more time in communication than
they do in computation largely defeat the purpose of parallelization. The
amount of communication to computation required for a particular applica-
tion will re
ect the type of parallel architecture chosen. Applications which
are communication-intensive require selecting a system which has low com-
munication costs. Applications which require infrequent communications are
less restrictive. Alternately, the parallel encoding of a particular application
can be performed so as to meet the communication capabilities of a given
parallel machine. For parallel machines with slow communication times, an
algorithm can be decomposed so as to maximize the amount of computation
performed prior to communication. Inversely, algorithms can use frequent
communications to ensure full processor utilization for architectures with low
communication costs. Clearly, a parallel model with accurate cost analysis
would assist with this process.

The cost of communication for a particular parallel architecture is largely
contingent on the type of interconnection network that it employs. An ideal
parallel machine would utilize a fully-connected network to establish unique
links between every processor. However, in reality, this type of network is in-

36

feasible because the number of interconnections scales quadratically with the
number of processors. Even for a system with a modest number of proces-
sors, the required number of interconnections is huge. In addition, there is
also the consideration that a processor must be capable of handling messages
from all processors simultaneously which is impossible for a large number of
processors. Because fully-connected networks are unattainable, a given com-
munication may have to be routed through multiple processors in order to
reach its destination. Thus, communication time is largely contingent on the
length of time required for a particular message to traverse the interconnection
network. Common types of interconnection networks are meshes, hypercubes
and arrays. Each of these interconnection networks have di�erent properties.
For example, a mesh interconnect requires O(

p
p) to traverse a network of p

processors; however, because each processor requires a �xed number of con-
nections, p can grow arbitrarily large. A hypercube interconnect, on the other
hand, only requires O(logp) steps to traverse the network; however, it is less
scalable because the number of connections increases with log p. Thus, the
choice of the interconnection network will a�ect the properties of the parallel
machine.

The interconnection networks speci�ed above are not the only types of
communication topologies that can be used in a parallel system; in fact, any
communications network can provide general-purpose parallelism. Currently,
anything from a Token-ring or Ethernet network of workstations to the Internet
can be used to perform parallel computation. For these networks, communica-
tion is considerably slower than within a parallel machine, due to the distance
between connected processors and the communications protocol. However, the
processing power is certainly present. These networks can generally only be
employed for applications that require minimal communication. These com-
munication networks, however, have the great advantage of being a�ordable
and widely available. Most companies already have an established communi-
cations network, and thus would not have to buy any speci�c parallel hardware
in order to gain parallel speedup. Because network computers are widely used,
they are inexpensive to purchase and can be used for any personal comput-
ing task. Thus, these communication networks present a compromise between
parallel speedup and cost.

2.4.3 Bulk Synchronous Parallelism

Bulk Synchronous Parallelism (BSP) is a relatively new parallel computa-
tion model which has been designed at a medium level of abstraction that

37

greatly facilitates the development and analysis of general-purpose parallel
software [49][24][23]. Using BSP, a software developer is only responsible for
explicitly specifying what parts of a program should be implemented in par-
allel. At run-time, the parallel model will implicitly distribute the program's
processes among the processors in the parallel machine and will handle the im-
plementation details of communication and synchronization. Thus, the BSP
model enables the software developer to write e�cient parallel code without
getting bogged down in low-level implementation.

The BSP abstract machine assumes that the parallel system contains a
series processor-memory pairs linked by some interconnection network. This
speci�cation is su�ciently general so that a BSP program can be implemented
on any MIMD machine [50]. The generality of the BSP abstract machine
enables BSP software to be architecture-independent. Parallelism is speci�ed
in a BSP program through a set of generic function calls to the BSP library. At
compile time, the compiler will insert the appropriate parallelization code for
the target parallel architecture into the developed software. The use of generic
functions to specify parallelism enables BSP programs to be portable between
di�erent parallel architectures without having to alter their code. The BSP
libraries support several of the major software development languages, such
as C, C++ and Fortran. Thus, BSP can exploit the software development
methodologies of these languages when composing parallel code. Because the
speci�c details of parallel implementation are handled by the BSP library, BSP
software also tends to be easy to develop and easy to understand. Other than
the references to functions in the BSP libraries, BSP development is quite
similar to writing sequential code.

BSP programs are further simpli�ed by enforcing the division of a parallel
program into a sequential composition of supersteps. A superstep is a parallel
construct in which each processor executes the same code concurrently [49].
Every superstep consists of three distinct phases:

1. local computation,

2. global communication,

3. barrier synchronization.

During the local computation phase, all computational operations in the
superstep are performed. Computations are speci�ed as being local because
each process can only access and operate on the variables that are stored
in its memory space at the beginning of the superstep. Any communication

38

operation which occurs during this phase of the superstep is bu�ered until the
communication phase. The cost of the local computation phase is determined
by the computational overhead of the largest process. Thus, it makes sense
to balance the amount of computation among each processor in the parallel
machine.

All communication between processors is performed en masse during the
communication phase. BSP treats communication as global, instead of as a
series of point-to-point communications. As a result, message routing can be
optimized, congestion e�ects can be minimized and communication perfor-
mance can be accurately predicted. The global treatment of communication
makes BSP well suited to communication-intensive applications. As with the
computation phase, the cost of communications is bounded by the process
which transmits or receives the largest amount of data; thus, the communica-
tion requirements should also be balanced.

The barrier of synchronization phase separates communication from com-
putation. Only after synchronization is complete do the recently communi-
cated values become accessible in the local memories of each process. By
ensuring that all communication operations are complete before computation
proceeds, there is no concerns of blocking processes, and deadlock is com-
pletely avoided. The use of barrier synchronization substantially reduces the
complexity of parallel software, making it easier to develop and debug. How-
ever, on contemporary parallel architectures, barrier synchronizations are still
quite expensive and should be used as sparingly as possible. The cost of the
synchronization step can be reduced by ensuring the two previous phases are
properly balanced. Regardless, a maxim of BSP software design is to attempt
to minimize the number of supersteps in a parallel program.

As a result of the structure and properties of the BSP superstep, the ex-
ecution performance of a BSP program is highly predictable. Because a BSP
program is a sequential composition of supersteps, the cost of the program is
simply the sum of the cost of each superstep. The cost of a BSP superstep can
be straightforwardly computed from the program text and two architecture-
speci�c parameters.

The �rst of these parameters, g, measures the permeability of the parallel
machine to uniformly-random tra�c [49]. In other words, g is a measure of the
average communication cost for a �xed length message (one 32-bit word) to
traverse the interconnection network under continuous network tra�c. This
parameter is an attempt to accurately estimate the average cost of communi-
cation for a speci�c parallel machine under normal operating conditions. g is

39

Computer Processors Exec Rate g l

(M
ops) (
ops/word) (
ops)
SGI PowerChallenge 4 74 0.5 1902

Cray T3D 4 12 0.8 168
16 12 1.0 181
64 12 1.7 148
256 12 2.4 387

Cray T3E 4 46.7 1.8 357
16 46.7 1.7 751

IBM SP2 4 26 8.0 3583
8 26 11.4 5412

Sun 4 10.1 4.1 118

Table 1: BSP parameters for typical parallel computers.

expressed in terms of the number of
oating point operations (known as
ops)
that could be executed in the time that it takes for a communicated message
to traverse the interconnection network. The second parameter, l, measures
the average time required for the parallel machine to complete a barrier syn-
chronization. l is also expressed in terms of
oating point operations. Table 1
displays values for g and l on several typical parallel computers [49].

Because each of the three phases of a superstep are independent, the cost
of a BSP superstep is simply the sum of cost of each phase. The BSP cost
calculations can be expressed formally as:

MAX
processes

ci + MAX
processes

hi g + l (42)

where, for processor i, ci is the number of
oating point instructions performed
during the local computation phase, and hi is the number of words sent or
received by the processor. The cost of a parallel program computed using
the BSP cost equation will yield a result in
oating point operations; this
result can be easily translated into a measure of time by using the parallel
computer's execution rate (generally computed in mega
ops per second). To
simplify BSP cost analysis, it will be assumed that every basic mathematical
operation, such as addition, subtraction, multiplication and division, can be
computed in a single
op.

40

The BSP cost equation has been shown to be highly accurate for estimating
the execution times of real-world parallel applications { typically within a few
percent of the actual value [23]. Thus, the BSP cost model can be used to ana-
lyze the performance of a parallel program comparing di�erent parallelization
strategies on di�erent parallel machines without laborious implementation and
testing.

In summary, bulk synchronous parallelism satis�es the criteria for a general-
purpose parallel computation model. It is su�ciently abstract so as to require
minimal parallel speci�cation, yet low-level enough to enable e�cient imple-
mentation. Its superstep structure allows the development of software that
is easy to understand and straightforward to implement and debug. BSP is
incorporated into conventional programming languages, and thus, allows the
adoption of standard programming methodologies with a minimal learning
curve. The BSP abstract machine ensures that BSP software is independent
of any speci�c parallel machine, and is highly portable among di�erent plat-
forms. Lastly, the BSP cost model is highly accurate across a diverse range of
parallel architectures and applications.

3 BSP Cost Analysis of Arti�cial Neural Net-

works

The training of arti�cial neural networks is computationally-intensive and
time-consuming { especially when neural networks are applied to data mining
problems where databases can contain megabytes to terabytes of information.
Parallelism is a sensible way to reduce the cost of network training. Two main
approaches of neural network parallelization have been attempted.

The �rst approach entails the construction of special-purpose VLSI hard-
ware (so-called neurocomputers) to implement a parallel neural network [22][25].
These neurocomputers may be programmable co-processors for accelerating
standard neural operations, or they may implement a particular network model
directly in silicon.

The second approach to neural parallelism is to develop neural network
software for parallel computers. There have been a variety of neural network
algorithms designed to operate on speci�c parallel machines [51][44]; however,
there have been very few attempts to develop parallel neural network software
using a general-purpose parallel programming model [3]. Therefore, the exist-
ing implementations tend to be architecture-speci�c, proprietarily-structured,

41

and unwieldy for comparison. Clearly, parallel neural network software could
be improved if it was designed using an appropriate parallel programming
model.

The BSP model is well-suited to general-purpose neural processing for sev-
eral reasons. The �rst reason is that BSP is an excellent model for parallel
software development that enables the creation of code which is easy to under-
stand, e�cient and architecture-independent. The second reason is that BSP
is designed speci�cally to handle communication-intensive applications due to
the global treatment of all communication actions. Considering the densely-
interconnected structure of a neural network, any applicable parallel model
must be capable of e�ectively handling broadcast messaging. The third and
most important reason for the selection of BSP as parallel computation model
for implementing neural networks is the accuracy of the BSP cost model. Neu-
ral networks are inherently modular; thus, there are a multitude of ways that a
neural network can be divided into concurrently-executable pieces for parallel
execution. As yet, there has been little consensus within the neural network
community as to the best method of parallelization. Instead, researchers have
generally chosen a parallelization strategy which best exploits the capabili-
ties of their favorite (or available) parallel computer [48]. With the BSP cost
model, however, di�erent neural network parallelization strategies can be con-
sidered across a range of possible parallel computers without requiring tedious
implementation and testing. Thus, an optimal method of parallelization can
be chosen to suit a particular parallel computer or application. In addition to
the bene�ts of the BSP cost model, the superstep structure of BSP programs
e�ectively limits the range of parallelization possibilities to a manageable num-
ber.

It is the focus of this section to analyze several strategies for supervised and
unsupervised neural network parallelization using the BSP cost model. The
cost of these strategies will be examined theoretically and with application to
speci�c parallel computers. The cost-minimal strategy will be advocated as
the best way to implement parallel neural networks.

3.1 Neural Network Parallelization Strategies

There are a variety of di�erent parallelization strategies which have been con-
sidered for arti�cial neural networks [53][46]. These strategies can be consid-
ered in terms of their granularity of network decomposition. Due to the mod-
ularity of the neural network structure, there are several levels at which neural

42

network processing can be divided into concurrently-executable components.
This report will consider three main levels of neural network parallelism:

1. Exemplar parallelism (EP): this approach uses the existence of a large
number of data examples as the source of parallelism; it does not at-
tempt to exploit any of the parallelism present in the neural network
itself. For exemplar parallelism, the work of neural network training is
reduced by distributing an equal-size partition of the data set to each
processor. Every processor trains an identical network on its local set of
data examples.

2. Block parallelism (BP): this approach partitions the network into blocks
of adjacent neurons that are distributed among the processors.

3. Neuron parallelism (NP): for this approach, each individual neuron is
treated as a concurrent process and is randomly distributed among the
processors in a parallel machine.

There are two other levels of neural parallelism that are worth mention-
ing. The �rst of these is training-session parallelism. This approach entails
the simultaneous training of independent neural networks on di�erent proces-
sors. For example, every processor in a parallel machine could be used to
train a di�erent type of network on a di�erent data set. It is unclear what
communication, if any, occurs between the processors in this approach. Thus,
training-session parallelism represents a trivial level of parallelism that could
be just as easily executed on several di�erent sequential machines. The other
approach worth mentioning is known as weight parallelism. Weight parallelism
is a simple expansion of neuron parallelism where the weights connected to ev-
ery neuron in the network are distributed among several processors; in essence,
this approach parallelizes the weighted sum computation for each neuron. In
contrast to training-session parallelism, the granularity of weight parallelism
tends to be too �ne for general-purpose parallelism. With this approach, it is
unlikely that the computation performed by each processor will outweigh the
communication required. Thus, this level of parallelism is rarely e�cient for
general-purpose parallelism.

3.1.1 Exemplar Parallelism

Figure 6 illustrates the steps of training a parallel neural network using ex-
emplar parallelism. Initially, the data set is distributed among each of the

43

processors in the parallel computer. In addition, each processor receives an
identical copy of the initial neural network. Training begins when each pro-
cessor iterates through every example in its local data set calculating the error
gradients (in the standard sequential fashion). Once a processor has completed
its computation, it broadcasts its gradient estimates to every other processor.
Thus, there is a total exchange of the complete gradient information from each
processor's data subset. After each processor receives the gradient information
from every other processor, it updates the weights of its neural network. Thus,
once an iteration (or epoch) is complete, every processor will have an identical
copy of the network with weights that have been trained on entire data set. In
e�ect, each network will be in the same state that it would have been in if it
trained on the entire data set. At this point, each processor can begin another
iteration through its local data set and training can continue.

1. Distribute
examples

2. Compute local
gradients

3. Globally exchange
weight updates

4. Update network
weights

Figure 6: Diagram of the steps in exemplar parallelism. Each processor con-
tains an identical copy of the neural network.

Due to the fact that network weights are only updated after every example
has been processed, the neural networks used for exemplar parallelism are nec-
essarily deterministic. For deterministic neural networks, weight adjustments
are computed from the average gradient of every example in the data set (see
Subsection 2.3.4). Due to the commutativity of the gradient averaging process,
the order in which examples are processed is irrelevant. Thus, the gradient
for each example can be computed independently and then combined to form

44

the network weight adjustment. The independence of the computation for
each example, means that the processing of each example can be performed in
parallel.

For the vast majority of real-world neural network applications, the num-
ber of training examples will exceed the number of available processors; thus,
exemplar parallelism will be able to fully exploit the capabilities of a parallel
machine. An additional advantage of exemplar parallelism is that, because
each processor performs the same tasks, it is easy to balance the computation
and communication load for each processor. Thus, neural networks imple-
menting exemplar parallelism tend to be quite e�cient. A potential limitation
of exemplar parallelism is that it requires that the entire set of network weights
must be stored in the local memory of each processor. For certain applications
which require very large networks, a �ner granularity of parallelism may be
necessary. However, this possibility is quite unlikely for most parallel machines
and neural network applications.

3.1.2 Block Parallelism

An alternate approach to parallelizing arti�cial neural networks is to exploit
the parallelism inherent in the neural network itself. By distributing the task
of neural computation among multiple processors, network training can be
accelerated. It is the goal of an e�cient parallelization strategy to partition
the neural network topology in such a way so that every processor is fully
utilized and the amount of communication between processors is minimized.

The block parallelism approach divides the neural network into several
blocks of adjacent neurons. For simplicity, it will be assumed that these blocks
are non-overlapping, and approximately rectangular with depth x and width
y. Each block of neurons is distributed among the processors in the parallel
computer. The processors containing neurons from the input layer of the net-
work will begin by evaluating the input data. Their resultant output will be
propagated to processors containing neurons in subsequent layers. Once the
output layer is reached, the
ow of computation will be reversed, propagat-
ing the error signals back through processors containing neurons in previous
network layers.

This approach to parallelization attempts to take advantage of the limited
locality that exists between adjacent neurons. This locality can be maximized
by storing all of the neurons from a particular layer in a single processor; this
approach to block parallelism, known as layer parallelism, is displayed in Fig-
ure 7. With this approach, each block of neurons only receives M values from

45

Figure 7: Partitioning of a neural network using layer parallelism (x = 1 and
y = M). Every block corresponds to a processor containing a single network
layer.

each adjacent layer (where M is the number of neurons in a network layer).
Instead, if each layer is partitioned into several blocks distributed among dif-
ferent processors, then each processor has to receive the sameM values. Thus,
the number of redundant communications increases proportionally to the num-
ber of processors handling each layer. The drawback of layer parallelism is that
there are rarely many layers in a neural network. Theoretically, a supervised
neural network with a single hidden layer is capable of approximating any con-
tinuous multivariate function to any degree of accuracy as long as a su�cient
number of hidden neurons are used (a property known as universal approx-
imation) [22, p. 182][27]. Therefore, it is theoretically unnecessary to have
many hidden layers of neurons. However, there are certain applications, such
as pattern recognition [34] and modular neural networks [28], where more net-
work layers are commonly employed. Nonetheless, it is likely that the number
of processors in the parallel machine will exceed the number of layers in the
neural network; thus, it will often be necessary to partition layers into blocks
in order to fully exploit the parallelism of the system.

Due to the
ow of computation in a neural network, processing is performed
on a layer-by-layer basis. Thus, only processors containing neurons from the
active layer will be occupied. By increasing the depth x of each block, so that
each processor contains at least one neuron from each layer of the network,
every processor will be active during each computation step. However, this
approach generally entails multiple partitions for each layer, leading to the
redundant inter-processor communications mentioned above. Thus, increasing
processor utilization, increases the amount of communications.

There is an alternate approach to block parallelism which avoids this trade-

46

o� between processor utilization and extra communication. The previous ap-
proach assumes that only a single example is processed by the network at
any time. However, by continuously pipelining data through the network, full
processor utilization can be ensured without having to increase the number of
partitions for each layer. With pipelining, there is an initial cost associated
with feeding an input through the network. Inversely, at the completion of an
epoch, there is also the cost of emptying the network of the error gradients
of the last example. Thus, pipelining incurs the additional cost of �lling and
emptying the pipeline; this cost is equivalent to propagating a single example
forward through the network and propagating its error gradient backwards
again.

One constraint of pipelining is that, as with exemplar parallelism, deter-
ministic learning must be used. If stochastic learning is employed, then by the
time an error signal is propagated back to a particular processor, its weights
may have already changed. Thus, to ensure that the network is updated
consistently, it is essential that the weights should not change between the
computation of the error gradient and the updating of the weights in that
layer. An additional constraint of pipelining is that every neuron output must
be retained in processor memory until the calculated error gradient is received
to perform the weight update. If the pipeline is quite long, a potentially large
number of waiting neuron outputs must be stored.

3.1.3 Neuron Parallelism

The basic unit of modularity in a neural network is the neuron. Every neu-
ron operates independently, processing the input that it receives, adjusting its
weights, and propagating its computed output. Thus, the neuron is a natu-
ral level of parallelization for neural networks. For neuron parallelism, every
neuron is treated as a parallel process. Each process is distributed among the
processors of the parallel computer. Unlike block parallelism, neuron paral-
lelism make no attempt to exploit the locality between neurons in the network.
It can be assumed that neurons are randomly allocated to each processor.

Figure 8 shows a simple three-layer network of three neurons per layer,
where each neuron is treated as a separate parallel process. Each of these
processes may be stored in a single processor; however, for general-purpose
parallel computers, it is likely that the number of neurons will exceed the
number of processors, and thus, each processor will be assigned many neurons.
The
ow of computation is similar to block parallelism: processors contain-
ing neurons from the �rst network layer will begin by processing the input,

47

and then will propagate their output to processors maintaining neurons from
subsequent layers. However, unlike block parallelism, there is no geometric re-
lationship between the neurons in each processor. Instead, processors operate
on a data-driven basis, such that they are active when they receive information
for processing.

Figure 8: Partitioning of a neural network using neuron parallelism.

Like block parallelism, pipelining is used to ensure full processor utilization.
The costs and constraints of pipelining are the same as for block parallelism.

3.2 Neural Network Cost Analysis using BSP

The three parallelization strategies described in the previous subsection spec-
ify di�erent ways of distributing the task of neural computation among the
processors of a parallel computer. However, none of these strategies alter the
actual computations involved. Therefore, the sequential cost of executing the
neural network algorithm can be used as a basis for assessing the parallel cost.
From the equation of the BSP cost model (42), it is clear that cost of the com-
putation, communication and synchronization phase can each be estimated
independently. Therefore, the sequential computation costs of the neural net-
work can be estimated, and then applied to the BSP cost of each of the three
network parallelization strategies.

When determining the theoretical cost of an algorithm, the accuracy of
the cost estimate is clearly important. However, this estimate should not be

48

determined at the expense of the clarity and simplicity of the solution. Thus,
it is often important to suppress tedious detail and express the algorithm in
terms of its most signi�cant components. The terms that are ignored from
the cost estimate can generally be modeled by a constant which can then be
calculated empirically for a given implementation.

There are two main factors which determine the computational cost for a
neural network: the number of examples N in the data set D, and the number
of adjustable weights in the networkW . The importance of these two factors is
clearly expressed by their presence in the network function f(x;w). Because
the cost of neural network computation grows as a factor of the size of the
data and the number of weights in the network, it is common to express the
estimated cost as a function of N and W 3.

In the following subsections, the theoretical computational costs of super-
vised and unsupervised neural networks will be calculated. These estimated
costs will then be applied to the BSP cost model in order to compare the
e�ciency of exemplar, block and neuron parallelism.

3.2.1 BSP Cost Analysis of Supervised Neural Networks

The supervised neural network that will be considered in these cost analyses is
the cross-entropy multi-layer perceptron. The equations used for implementing
this type of neural network are given in Subsection 2.3.2. From these equations,
it is possible to obtain the theoretical cost of this supervised neural network. It
is important to note, however, that the equations for the cross-entropy multi-
layer perceptron are simply used to guide the process of cost analysis; these
analyses will be quite general and are applicable to a wide range of supervised
neural network algorithms.

For simplicity and generality, the supervised network considered in these
analyses will be assumed to consist of L layers withM neurons per layer, where
each layer is fully-connected to the neurons in the preceding and succeeding
layers. The total number of neurons V is, therefore, LM , and the total number
of weights is W = LM2. Although it is unlikely that an actual neural network

3As an aside, the number of neurons V in a network also makes a considerable

contribution to the computational cost of the network. However, because neurons

in a neural network are necessarily interconnected, the number of weights in the

network W will increase directly in relation to the number of neurons. On average,

the rate of growth of the number of weights is on the order of the square of the

number of neurons: W = �(V 2). Therefore, the number of operations for each

neuron can be ignored as a lower order term of the number of weights.

49

will have the same number of neurons in each layer, this assumption will
greatly simplify the cost analysis of neural networks using block parallelism. In
addition, the rectangular structure of this hypothetical network is a superset
of all other network topologies; thus, this structure generalizes any speci�c
network connectivity. It will also be assumed that the data set D consists of
N examples.

To begin, it is necessary to decompose the cost of training a supervised
neural network into a series of analyzable steps. On the most abstract level,
training consists of iterating a neural network through a data set for a number
of epochs. As long as the size of the data set and the structure of the network
remain �xed during the course of training, the cost of training for each epoch
is constant. Thus, the cost of training can be speci�ed by the product of the
number of epochs and the cost of network computation for each epoch. The
next section will examine the number of epochs required for network training;
this section will strictly focus on the cost of network computation for each
epoch.

The computations performed by the neural network during each epoch can
be decomposed into three distinct phases:

1. the evaluation of the network function for each input example

2. the calculation of the error gradient with respect to each weight in the
network

3. the update of every weight in the network

Each of these phases are executed sequentially; so the cost of training the
network for each epoch is the sum of each of these phases. The �rst two
phases are executed for every example in the data set. The third phase will be
executed only once for each epoch because all three parallelization strategies
are deterministic methods.

The cost of the network function can be determined by considering the
processing performed by each neuron. From (10), the output of every neuron
is determined by the weighted sum of its inputs followed by the application of
a nonlinear activation function (such as the sigmoid function (2.3.2)).

yi(xn) = 'i(
X
j

wijxj + wi0) (43)

cost('i(
X
j

wijxj + wi0)) = a1 + 2M (44)

50

By decomposing the weighted sum into a multiplication and an addition op-
eration, 2
ops are required for each weight. Every neuron in the network has
M interconnection weights to the neuron in the previous layer. Therefore, the
total cost of the weighted sum is 2M . For simplicity, it will be assumed that
the cost of computing the activation function can be expressed by the constant
a1 for each neuron. By generalizing the computations of each neuron to the
entire network, the cost of evaluating the network function can be speci�ed as:

y(xn) = f(xn;w) (45)

cost(f(xn;w)) = (a1 + 2M)ML (46)

= 2W + a1ML (47)

= aFW; (48)

using the equality W = LM2. The term 2a1ML can be dropped from the
cost equation because it is a lower-order term of the number of weights W .
The order of growth of this equation (�(W)) is an asymptotically tight bound
because the product of the number of weights and some constant aF can be
used to delimit the range of possible costs.

The process of calculating the error gradient is slightly di�erent for neurons
in the hidden layer than for neurons in the output layer. Thus, the cost for
neurons in each layer should be examined individually. Using (19), the cost
for output layer neurons can be determined:

@Jn

@wjk

= �yj;n(tk;n � yk;n) (49)

cost(�yj;n(tk;n � yk;n)) = M + a3 (50)

The constant a3 is used to specify the cost of evaluating the error function for
each output. For the cross-entropy error function, this computation involves
a single subtraction. Other error functions may be more complex. Next, this
computed error is multiplied by the outputs from each of the M neurons in
the previous layer yj;n to get the gradient with respect to each weight.

The computation of the hidden layer gradients is only slightly more com-
plicated and increases the cost by a constant factor (22). Because the hidden
layer cannot calculate its error directly from the target class labels, it is nec-
essary for the output layer errors to be propagated backwards to the hidden
layer. Thus, this step involves the weighted sum of the M errors from the
output layer. The constant term a4 represents the cost of evaluating the in-
verse of the hidden layer activation function (in this case it is a sigmoid). The

51

computed error for each hidden layer neuron is then multiplied by each of its
M inputs to calculate the error with respect to each weight.

@Jn

@wij

= �xiyj(1� yj)
CX
k=1

f(tk;n � yk;n)wjkg(51)

cost(�xiyj(1� yj)
CX
k=1

f(tk;n � yk;n)wjkg) = M + a4 + a5M (52)

By collating the cost of these two equations for every neuron in the hid-
den and output layers, the total cost of calculating the error gradient can be
expressed:

cost(
@Jn

@wij

) = M(L� 1)(M + a4 + a5M) +M(M + a3) (53)

= W (1 + a5) +M(a4L� a4 � a5M + a3) (54)

= aBW (55)

As with the cost of network function, the order of growth of this equation is
�(W). aB is some constant that can be used to asymptotically bound the
actual execution cost of this operation.

The �nal cost to be computed is the cost of updating each network weight.
From (23), new values for each weight can be computed from a single addition:

wij = wij +�wij (56)

cost(wij +�wij) = W (57)

Thus, this cost is M for each neuron, and W for the entire network.
Now that the the cost estimates of these three phases have been calculated,

they can be combined to determine the total cost of network computation for
each epoch. Therefore, by calculating (48) and (55) for each example in the
data set, and then updating network weights (57), the cost of computation for
each epoch is:

CE = (aFW + aBW)N +W = ANW (58)

The constant A represents the average cost required to perform all of the
computations necessary to update a single weight in the network for each ex-
ample. Because each weight is only updated once for each epoch, the constant
A can be expressed, instead, as the cost of evaluating the network function
and computing the gradient for each weight in the network for each example.

52

It is straightforward to determine A empirically from the execution time of
a particular neural network implementation. As a lower bound, A � 5 can
be estimated from the cost equations for the network function (48) and the
gradient calculation (55). It can be observed that the only parameter express-
ing the network topology in the cost equation (58) is the number of weights
W in the network. Thus, this cost equation is independent of the rectangular
network assumption posited above.

Exemplar Parallelism Cost Analysis

For exemplar parallelism, the task of network training is reduced by dis-
tributing the data set D among several processors so that each processor is
only responsible for performing computations on its local subset of the data.
Assuming that every processor has equal capabilities, each processor should
receive N

p
examples to compute, where p is the total number of processors in

the parallel system.
From the perspective of BSP, neural network training using exemplar par-

allelism can be divided into two supersteps. The �rst superstep computes
the weight adjustments for each processor and distributes them globally. The
second superstep combines the adjustments received from each processor and
updates the network weights4. The complete cost of BSP training can be com-
puted by multiplying the sum of both supersteps by the number of network
training epochs. It can be assumed that the startup costs of distributing the
examples to each processor is negligible in comparison with the cost of network
training.

The computational cost of the �rst superstep is equivalent to the cost of
evaluating the network function and computing the error gradient for each
example in the local data set. The cost of these two operations is expressed
in (48) and (55). By combining these costs computed for each example in the
local data set, the computation cost of the �rst superstep is N

p
(aFW + aBW).

Once each processor has derived the error gradients using its local data set,
these results are communicated globally. Due to the fact that every weight
in the network is to be updated by the gradient calculations, the size of the
message to be communicated is W . Every processor must broadcast its mes-
sage to each of the (p � 1) other processors in the parallel computer. Thus,
the total cost of the communication phase of this superstep is (p�1)Wg (tak-

4Technically, this process can be reduced to a single superstep because there is

no need for every processor to synchronize after the weight updates. However, for

clarity, two separate supersteps will be stipulated; the additional BSP cost incurred

by this approach is minimal

53

ing the BSP communication parameter g into account for a particular parallel
machine).

The second superstep involves combining the gradient estimates received
from each processor to update the network weights. Each processor receivesW
gradient values from each processor; thus, the computational cost of combining
these estimates is simply (p� 1)W . No communications need to be performed
during this superstep. It is important to note that at the end of this superstep,
the neural network stored in each processor will be equivalent.

The total cost of exemplar parallelism for each epoch can be computed
using the BSP cost function (42):

CEP =

"
ANW

p
+ (p� 1)W

#
+ [(p� 1)W] g + 2l (59)

The cost of the �rst superstep is simpli�ed by using (58).

Block Parallelism Cost Analysis

For block parallelism, the neural network is partitioned into non-overlapping
rectangular blocks of neurons which are distributed among the processors of
the parallel computer. The initial assumption that the neural network has
a rectangular structure will facilitate dividing the network into equally-sized
blocks of neurons. It will be assumed that each block has depth x and width
y. The depth of the block x corresponds to the number of layers which are
spanned by the block. The width of the block y corresponds to the number of
neurons in each layer which are part of the same block. Because every block
is non-overlapping, equally-sized, and partitions the entire network, it can be
assumed that xyp = LM (where LM is the total number of neurons in the
network).

The division of a block parallelism neural network into supersteps is some-
what complicated. The propagation of information through a neural network
proceeds on a layer-by-layer basis. Thus, a neuron cannot complete its process-
ing until it has received the output from each of the neurons in the connected
layer. Consider a block partitioning of a neural network where each processor
is assigned only neurons from the same layer (x = 1). These processors can be
arranged in columns, such that each column contains neurons from the same
layer. These processor columns pass information horizontally to processors in
adjacent columns. If pipelining is not used, only a single column of processors
will be active at any given time. Thus, it would require L

x
steps to propagate

an input through the network, and the same number of steps to propagate the
error gradient back again. With pipelining, information can be continuously

54

streamed through the network so that each processor is always utilized. Thus,
a data set of N examples can be evaluated in (N � 1) steps plus the time
required to �ll and empty the pipeline. The total number of steps required to
process a data set of N exemplars is (N � 1)+2L

x
. Each of these steps will be

called a big superstep.
A big superstep consists of the computation and communication performed

by each processor in a column. The cost of the computation phase is simply
the forward and backward propagation costs for each of the xy neurons in
block. Thus, the cost of computation is NAxy, which can be rearranged using
the equality xyp = W to equal WA

p
. The cost of communication is equivalent

to sending the outputs of the �rst and last layer in the block to the processors
containing adjacent layers. Thus, 2y values are sent to the M

y
processors in

the two adjacent columns. The cost of the communication phase for each big
superstep is therefore 2yM

y
.

However, if each block spans multiple network layers (x > 1), then the com-
munication cost of each big superstep becomes more complicated. In this case,
additional communication is needed between the processors in the same col-
umn containing neurons in each of the x layers. The reason for the additional
communication is that each of the x layers in a block requires the complete set
of inputs from an adjacent layer in order to compute its output. Because each
processor only contains y neurons from each layer, the other M � y values are
required to complete the computation for each neuron. This additional set of
communications between processors in the same column will be called a small
superstep. Because there are x layers in each block, (x � 1) small supersteps
will be required for each big superstep. The communication cost of each small
superstep is therefore (M � y)(x� 1). It is important to recognize that every
process must be synchronized after each small superstep. The number of small
supersteps does not, however, change the amount of computation performed
by the neural network.

By combining the number of big and small supersteps with the costs of the
computation, communication and synchronization phases, the complete BSP
cost for block parallelism can be determined:

CBP = (N � 1) + 2(
L

x
� 1)

"
AW

p
+ (2M + (M � y)(x� 1))g + xl

#
(60)

Clearly, block parallelism could be made more e�cient by reducing the
number of small supersteps. If the width of each block y is set to M and
the depth x is set to 1 so that each processor is assigned an entire layer, the

55

number of small supersteps can be eliminated. This version of block parallelism
is known as layer parallelism (mentioned previously in Subsection 3.1.2). By
making the assumption about the dimension of each block that (x = 1 and
y =M), the BSP block parallelism cost equation can be reduced to:

CBP = (N � 1) + 2(L� 1)

"
AW

p
+ 2Mg + l

#
(61)

Neuron Parallelism Cost Analysis

For neuron parallelism, there is no attempt to exploit locality in the net-
work topology. The work of neural network training is reduced by randomly
distributing the neurons of the network among the processors in a parallel
computer. Due to the modularity of the network structure, the cost of the
computations and communications performed by each neuron are equivalent.
Assuming that each processor in the neural network is equally powerful, an
equal number of neurons (ML

p
) can be assigned to each processor.

Because there is no attempt to exploit locality, neuron parallelism repre-
sents an extreme form of block parallelism where each block contains a single
neuron (x = 1 and y = 1). Without locality, there are no big supersteps to be
performed. Thus, each superstep is equivalent to one small superstep. Each
neuron must send and receive activation from every neuron in the adjacent lay-
ers. In order to ensure full processor utilization, pipelining is used. The cost
of pipelining from block parallelism can be used by setting x = 1. Therefore,
neuron parallelism performs (N � 1) + 2(L� 1) supersteps per epoch.

Because each neuron operates independently and performs the same com-
putational operations, the computation cost of neuron parallelism can be de-
rived from (58) for each example. This cost is distributed among each of the

processors in the parallel machine so that each processor performs ML
p

th
of the

total computations. Therefore, the total cost of the local computation phase
for each superstep is AW

p
. It can be observed that this cost is identical to

the cost of the computation phase for block parallelism because both strate-
gies assume that each processor receives an equal proportion of the number of
neurons in the network.

The cost of the communication phase is more expensive for neuron paral-
lelism than for block parallelism due to the absence of locality. Because of the
random allocation of neurons to processors, the parallel implementation can
make no assumptions about which neurons reside on which processors. In the
worst case, each layer of neurons may be partitioned among every processor
in the parallel machine. Thus, for a neuron to transmit its output to an ad-

56

jacent layer may require communicating with all p processors. Assuming that
each neuron must propagate its output and computed error gradients to M

neurons in the preceding and succeeding layers, the cost of communication for
each neuron is 2M . Because this cost is shared by all of the ML

p
neurons in

each processor, the total communication cost for each superstep is 2M2L
p

.
The costs of the computation and communication phases can be combined

with the number of supersteps to yield the BSP cost for neuron parallelism:

CNP = (N � 1) + 2(L� 1)

"
AW

p
+
2WL

p
g + l

#
(62)

The cost of the communication is simpli�ed by using W = LM2.

Comparison of Network Parallelization Strategies

Now that the BSP cost equations have been determined for each of the three
network parallelization strategies, the cost of their parallel implementations
can be compared. The actual execution times can be predicted using the BSP
parameters g and l for a variety of parallel computers (such as those given in
Table 1).

To facilitate the comparison of these methods of parallelization, it is helpful
to consider certain practical guidelines and limitations. For example, because
processors are a �nite and expensive resource, the number of processors is likely
to be small relative to the size of the network. As a limit, the largest number
of processors that can be considered using these parallelization strategies is
the number of neurons in the network (p � ML). In this case, block and
neuron parallelism are equivalent because every processor is assigned a single
neuron. An additional constraint is the size of the network in relation to the
number of data examples. As a rule of thumb, the size of the data set should
be proportionally greater than the number of weights by some constant factor
� [22, p. 179].

N � W

�
(63)

The factor � is inversely proportional to desired accuracy of the network.
Therefore, the number of examples N is likely to be considerably larger than
the number of weights for network training applications. This is especially
true for data mining applications.

Using these practical constraints, there are several ways that the BSP cost
equations for each method of parallelization can be simpli�ed. Due to the fact
that the size of the data set is likely to be quite large, the cost of �lling and
empty the pipeline for block and neuron parallelism is generally insigni�cant.

57

EP LP NP

total computation N
p
AW N AW

p
N AW

p

total communication W (p� 1)g N2Mg N 2W
p
g

total synchronization 2l Nl Nl

Table 2: Parallel implementation costs for supervised neural networks.

Therefore, the number of supersteps for these two methods is roughly N . By
making this simpli�cation, it can be observed that the cost of computation for
block and neuron parallelism are equivalent. Similarly, by ignoring the compu-
tation term for the second superstep in the exemplar parallelism cost equation,
the cost of computation becomes equal for each parallelization strategy. The
results of these simpli�cations are intuitively appealing because the process of
parallelization does not change the actual neural network algorithm, it simply
distributes the work of computation among several processors. For these cost
comparisons, layer parallelism will be considered instead of general block par-
allelism because layer parallelism is the most e�cient method of partitioning
a neural network into blocks (as long as the number of processors is less than
the number of layers). The results of these simpli�cations are summarized in
Table 2.

It is clear that the main distinctions between the three parallelization
strategies is the amount of communication required and the number of bar-
rier synchronizations performed. From the simpli�ed equations in the table,
the superiority of layer parallelism over neuron parallelism becomes apparent.
Both techniques require an equal number of barrier synchronizations. How-
ever, neuron parallelism requires ML more communications per epoch. This
reduction in communication overhead is created by the locality exploited by
layer parallelism. Comparing layer and exemplar parallelism, it is not so ap-

58

parent as to which technique is superior. Layer parallelism de�nitely requires
more barrier synchronizations. From the BSP cost equations it can be observed
that exemplar parallelism performs less communication than layer parallelism
if N > 1

2
ML(p � 1). By applying the rule of thumb 63 that the number of

examples generally exceeds the number of weights in a neural network by a
constant factor, it can be inferred that the cost of communication is more
expensive for layer parallelism. This is especially true for data mining appli-
cations where N is huge. Therefore, from this reductionist analysis, exemplar
parallelism is the best technique for parallelizing supervised neural networks.

It is helpful to generate some predictions of training costs for real parallel
computers in order to demonstrate the superiority of exemplar parallelism.
Figure 9 shows the predicted parallel implementation costs of a supervised
neural network using the three methods of parallelization. These predictions
are generated for data sets with a varying number of examples. It is assumed
that the neural network has 16 layers of 32 neurons and is implemented on a 16
processor Cray T3E parallel computer with g = 1:7 and l = 751. The neural
computation constant A is assumed to be 6. For the purpose of comparison,
an unrealistically large number of layers is used in this example. Even in
this case, exemplar parallelism is better than layer parallelism for modest
numbers of examples. Figure 10 compares the communication costs of the
three parallelization strategies. From this �gure it is clear that even for a
very small number of examples (much smaller than the required number of
examples speci�ed by the rule of thumb) and a very large network, the cost
of communication for layer parallelism quickly outgrows the communication
required by exemplar parallelism.

3.2.2 BSP Cost Analysis of Unsupervised Neural Networks

The BSP cost analysis of unsupervised neural networks will proceed in a similar
fashion to the previous subsection: the sequential computational cost of the
unsupervised network will be calculated, and then this cost will be applied to
the strategies for network parallelization. The BSP cost of each strategy will
be compared to show which method is best suited to parallelizing unsupervised
neural networks.

The unsupervised neural network that will be considered in this cost analy-
sis is the Gaussian mixture model. The equations for this type of unsupervised
neural network are given in Subsection 2.3.3 and will be used to guide the cost
analysis. Although a speci�c type of unsupervised neural network will be an-
alyzed, the results of this cost analysis are su�ciently general that they can

59

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3
x 10

7

Number of examples

BS
P

Co
st

of
 E

xe
cu

tio
n

(fl
op

s)

Figure 9: Comparison of the predicted parallel execution costs of exemplar,
layer and neuron parallelism using a supervised neural network. The solid
line represents the cost of exemplar parallelism, the dashed line represents the
cost of layer parallelism, and the dotted line represents the cost of neuron
parallelism.

be applied to a wide range of unsupervised neural network algorithms.
It is important to note that the mixture model that has been presented

in this report consists of a single layer of components. Because there is no
locality that can be exploited in a single-layer network, block parallelism will
not be considered as an option for parallelizing unsupervised neural networks.

Once again, for simplicity and generality, it will be assumed the network
has a rectangular topology. The mixture model will consist of M components,
each connected to M inputs. There are three types of weights in a mixture
model corresponding to the mean, variance, and mixture proportions of each
component distribution i: wi = f�i; �2i ; �ig. Every component mean �i has
dimensionM because it positions the mixture distribution in relation to theM -
dimensional input vectors. In continuity with the description of the Gaussian
mixture model presented in Section 2, it will be assumed that the variance
for each component is speci�ed by a single parameter rather than by the
full covariance matrix. The mixture proportion is also speci�ed by a single
parameter value for each component. Thus, each component hasM+2 weights.
Considering all of the parameters for each component, the total number of
weights in the network is W =M2 + 2M .

60

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2

3

4

5

6

7

8

9
x 10

6

Number of examples

BS
P

Co
st

of
 C

om
m

un
ica

tio
n

(fl
op

s)

Figure 10: Comparison of the predicted communication costs of exemplar,
layer and neuron parallelism using a supervised neural network. The solid
line represents the cost of exemplar parallelism, the dashed line represents the
cost of layer parallelism, and the dotted line represents the cost of neuron
parallelism.

The presence of di�erent types of weights in the network will complicate
the cost analysis somewhat. For supervised networks, the cost of network
operations could be expressed as a product of the number of network weights
because every weight operation could be treated equivalently. For the cost
analysis of unsupervised networks, if an operation incurs a cost that is bounded
by �(M2), then it will be assumed the cost can be expressed as AW , where
A is some constant factor5.

To proceed with the cost analysis of the Gaussian mixture model, it is
necessary to divide the process of training into a series of analyzable steps.
As stated in the previous subsection, on the most abstract level, training
consists of a number of epochs. Because the operations performed by the
neural network remain unchanged for each epoch, it can be assumed that the
cost of each epoch is constant. By further decomposing the training process,
each epoch consists of iterating the neural network through every example in a
data set. Again, because the neural network performs the same operations on

5It is important to note that this constant A will be di�erent for an unsupervised

neural network than for a supervised neural network. The same variable is used to

show similarity between the parallel implementations for both types of networks.

61

each example, the cost of computation for each example is �xed. These cost
analyses will trace the computations for a single example xn as it is processed
by the neural network.

For a Gaussian mixture model, there are four main stages to processing
each input example:

1. calculating the likelihood for each example by evaluating the network
function,

2. determining the posterior probabilities for each example by normalizing
the likelihoods,

3. deriving the gradient of the posterior probability for each parameter, and

4. updating each parameter to maximize the a posteriori probability of the
network.

The cost of each of these stages is uniform for each mixture component in the
model. To simplify this analysis and to facilitate the parallel cost analysis, each
component will be examined individually. It is straightforward to compute the
cost for the entire network by summing the cost of each of these stages and
multiplying by the number of components M in the network.

A mixture model begins processing an example by evaluating the network
function. Considering that the components of the model are Gaussian dis-
tributions, the normal probability density function is used to compute each
likelihood. From (27), the cost of determining the likelihood for each compo-
nent can be analyzed:

yi(xn) = P (xnji;wi) (64)

=
1

(2��2i)
d=2

exp

(
�kxn � �ik

2

2�2i

)
(65)

cost(yi(xn)) = a1 + a2 + fa3M + a4g (66)

= aFM (67)

where ai is some constant cost incurred by performing operation i. For this
analysis, it will be assumed that the cost of an exponentiation function is con-
stant if its arguments are constant. Because the variance of the component
distribution is a single parameter, the normalizing constant (the �rst term in
the equation) has constant cost a1. Similarly, the denominator of the exponen-
tial (2�2i) has constant cost a4. The cost of performing the Euclidean distance

62

calculation (kxn � �ik2) has cost a3M because the component mean and the
input example are both M -dimensional vectors (where a3 is the cost of each
distance calculation). Because the output of the Euclidean distance calcula-
tion is a single value, the cost of the exponential is constant. By bounding the
growth of (67), the cost of calculating the likelihood for each component can
be expressed as the product of M and a constant aF .

Once the network function has been evaluated for an input example, the
posterior probability can be calculated by normalizing the output probabilities
of each component. The computation of the component-conditional probabil-
ities is given in (32). Using this equation, its cost can be determined:

p(wi; ijxn) =
p(xnji;wi)�iPM
j=1 p(xnjj;wj)�i

(68)

cost(p(wi; ijxn)) = a5 + a5M (69)

= aNM (70)

The posterior probability p(xnji;wi) for component i is normalized by dividing
its value by the sum of the posterior probabilities for every component in the
network. The numerator performs a single multiply, and thus has a constant
cost a5. The sum on the denominator combines the posterior probabilities for
each of the M components. Therefore, this sum incurs cost a5M .

Having determined the posterior probabilities, the gradient calculation for
each component parameter can be computed. The calculation of the gradient
is di�erent for the mean, variance and prior probability of the distribution.
Thus, the cost of each of these calculations will be examined individually. The
equations that will be used for these gradient calculations are expressed in
(33), (34) and (35). It is important to note that these equations calculate
the gradient by performing a weighted sum of the posterior probabilities for
every input example in the data set. It is straightforward to re-express these
equations by using a moving average to combine each posterior probability in-
dividually [40]. This moving average equation will not be given here; however,
the important consideration is that the gradient can be evaluated for each in-
put example in turn. Therefore, the cost of this calculation can be expressed
for each input example.

The cost of the gradient calculation for �i is:

�̂i =

PN
n=1 p(wi; ijxn)xnPN
n=1 p(wi; ijxn)

(71)

cost(�̂i) = N(a6M) +NM (72)

63

= N(a6M +M) (73)

Because this cost is equal for each input example, the cost of evaluating the
gradient for a single example is (a6 + 1)M . Intuitively, the cost of calculating
the gradient requires a constant number of operations for each of theM weights
of the parameter �i.

The cost of the gradient calculation for �2i is:

�̂2i =
1

d

PN
n=1 p(wi; ijxn)kxn � �̂ik2)PN

n=1 p(wi; ijxn)
(74)

cost(�̂2i) = N(a7) +N (75)

= N(1 + a7) (76)

For this computation to have constant cost for each input example, it is as-
sumed that the Euclidean distance calculation (kxn� �̂ik2) has been retained
from the computation of the component probabilities (65).

The cost of the gradient calculation for the mixture prior probabilities is:

�̂i =
1

N

NX
n=1

p(wi; ijxn) (77)

cost(�̂i) = N(a8) (78)

It is clear from this equation that the cost for each input example is constant.
The cost of the gradient calculation for each type of parameter can be

combined to express the total cost of this stage:

a6M +M + a7 + a8 = aBM; (79)

for some constant cost aB.
The �nal stage to be analyzed is the update calculation for each weight

in the network. The equations from (36), (37), and (38) detail this updating
procedure. The update of each parameter may be performed immediately (as
is the case for stochastic learning) or may be deferred for several examples
(as in deterministic or batch learning). As would be expected, the cost of
updating each parameter is simply some constant times the number of weights
to be adjusted. Thus, the cost for the mean of the component distribution is
�(M), and the cost for the other two parameters is �(1).

�i = �i + �(�̂i � �i) (80)

64

cost(�i + �(�̂i � �i)) = a9M (81)

�2i = �2i + �(�̂2i � �2i) (82)

cost(�2i + �(�̂2i � �2i)) = a10 (83)

�i = �i + �(�̂i � �i) (84)

cost(�i + �(�̂i � �i)) = a11 (85)

The total cost of the weight updating procedure can be determined by com-
bining the individual costs for updating each type of parameter.

a9M + a10 + a11 = aUM; (86)

for some constant aU .
The cost of each of the stages that have been analyzed are given in terms

of a single component. Because the operations performed by each component
is identical, this cost can be generalized to the cost of the entire network
by multiplying by the number of components M . The cost of each of these
stages can be collated by totaling the computation cost for an entire epoch.
It will be assumed that the parallel neural networks to be analyzed have been
implemented using deterministic learning. Therefore, they only perform a
single weight update per epoch. This is why the cost of weight updating is not
multiplied by the number of examples in the data set for this cost equation.
The total cost of executing a Gaussian mixture model for each epoch is:

N(aFM
2 + aNM

2 + aBM
2) + aUM

2 = N�(M2) � NAW (87)

Considering that the total cost of each phase of computation is determined by
the product of M2 and some constant, its order of growth is bound by �(M2).
In order to express the total cost of computation in terms of the number of
weights W , it has been assumed that �(M2) can be expressed as AW , for
some constant A. A represents the cost of the computations performed by
each weight in the mixture model network.

Exemplar Parallelism Cost Analysis

Exemplar parallelism exploits the presence of a large number of data ex-
amples in the data set as the source of parallelism. Thus, the cost of training
a neural network is reduced by decomposing the data set into several subsets,
and distributing these subsets among the processors in a parallel computer.
Exemplar parallelism does not attempt to partition the network, itself, among
the processors { each processor trains a complete network. Therefore, the
process of developing a parallel implementation using exemplar parallelism is

65

independent of the speci�c neural network algorithm being used. The only
constraint is that the neural network algorithm must be capable of determin-
istic or batch learning.

In virtue of the algorithm independence of exemplar parallelism, the anal-
ysis of a parallel unsupervised neural network using this method will be the
same as for a supervised network. Thus, the superstep structure, and the com-
munication and synchronization requirements will be equivalent for a parallel
unsupervised network implementation. By using this information and simply
substituting the computation costs for the unsupervised neural network into
the BSP cost equation, the cost of a parallel unsupervised network can be
computed.

The results from the supervised exemplar parallelism cost analysis will be
summarized brie
y. For exemplar parallelism, only two supersteps are needed:
the �rst evaluates the network function and computes the gradient for each
example in the processor's local subset, and the second updates the weights of
the network using the calculated gradient information.

From (87), the total cost required to update every network weight for each
example is AW . Each processor operates on its local subset of N

p
examples.

Therefore the cost of the computation for the �rst superstep is N
p
AW . It can

be noted, that this cost is identical to the computation cost of a supervised
network during the �rst superstep (only with di�erent values of W and A).

At the end of the �rst superstep, each processor broadcasts its calculated
weight adjustment to every other processor. Thus, the communication volume
handled by each processor is (p�1)W . Upon receiving this weight adjustment
information, each processor must merge these updates. This merging operation
requires constant cost for each weight adjustment, and thus, incurs the cost
(p � 1)W . Once these values have been merged, the weights of the neural
network local to each processor can be updated.

Totaling each of these costs using the BSP cost equation yields:

CEP =

"
ANW

p
+ (p� 1)W

#
+ [(p� 1)W] g + 2l (88)

which is equivalent to the cost of exemplar parallelism for supervised neural
networks (59).

Neuron Parallelism Cost Analysis

For neuron parallelism, the neurons (components) of the unsupervised neu-
ral network are randomly distributed among the processors of a parallel com-
puter. Assuming that the neurons are distributed equally, each processor is

66

assigned M
p
neurons.

Each neuron operates independently, processing the information that it re-
ceives through its interconnections. Because it is assumed that the mixture
model consists of a single layer of components, there is no concern of propa-
gating information through the network. Each neuron operates directly on the
input vectors. Because each processor receives an equal number of neurons,
the cost of computation can be shared among each of the processors. Thus,
the cost of computation is AW

p
.

The need for inter-neuron communication is created by the calculation of
the posterior probabilities. This probability is determined by normalizing the
component probabilities for each example (32). To perform this normalization
operation, the output probability from every component is needed. Because
di�erent components reside on di�erent processors, the component probabil-
ities must be exchanged between each processor. Thus, each processor must
broadcast M

p
probabilities to the other (p � 1) processors. The total volume

of communication is M
p
(p � 1). Once component probabilities have been ex-

changed and the posterior probabilities have been calculated, the gradient and
weight adjustments can be evaluated for each component.

Thus, the task of training can be divided into two supersteps for each
example: the �rst is to calculate and exchange the posterior probabilities, and
the second is to update the parameter weights accordingly. By combining the
calculated computation and communication costs for each example, the BSP
cost equation can be expressed.

N
AW

p
+N

M

p
(p� 1)g + 2Nl (89)

Comparison of Network Parallelization Strategies

The cost equations for exemplar and neuron parallelism applied to unsu-
pervised neural networks are illustrated in Table 3. These cost equations can
be used to predict the actual execution times of parallel unsupervised neural
networks for a variety of parallel computers by using the BSP cost model.
Thus, the cost of parallel implementations of exemplar and neuron parallelism
can be compared both theoretically and empirically using the BSP cost model.

The comparison of the cost of these two implementation strategies is facil-
itated by simplifying their cost equations. By eliminating the post-processing
computation term in the exemplar parallelism cost equation, the computa-
tional cost of the two parallelization strategies are made equivalent. It is
acceptable to ignore this term because it is insigni�cant in comparison with
the cost of evaluating the network function.

67

EP NP

total computation N
p
AW + (p� 1)W N AW

p

total communication (p� 1)Wg NM
p
(p� 1)g

total synchronization 2l 2Nl

Table 3: Parallel implementation costs for unsupervised neural networks.

By making the computation terms equivalent for the two parallelization
methods, only their communication and synchronization costs need to be com-
pared. The synchronization cost of neuron parallelism is clearly larger than
for exemplar parallelism. The communication costs of the two strategies can
be more simply compared by factoring out the terms g, p � 1, and M (using
the equality W �M2). The remaining factors are M for exemplar parallelism
and N

p
for neuron parallelism. For a clustering application, the number of data

examples is necessarily much larger than the number of mixture components.
Therefore, the communication cost of neuron parallelism exceeds the cost for
exemplar parallelism. In summary, exemplar parallelism is a less expensive
parallelization strategy than neuron parallelism because it requires less com-
munication and synchronization.

The superiority of exemplar parallelism is illustrated using the predicted
execution cost of an unsupervised neural network on an actual parallel com-
puter. Figure 11 displays a comparison of the running times for a 32 compo-
nent Gaussian mixture model network on a 16 processor Cray T3E parallel
computer (g = 1:7; l = 751). In Figure 12, only the communication costs of
these methods are compared. From these �gures, the superiority of exemplar
parallelism is readily apparent.

68

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2

3

4

5

6

7

8

9

10
x 10

6

Number of examples

BS
P

Co
st

of
 E

xe
cu

tio
n

(fl
op

s)

Figure 11: Comparison of the predicted parallel execution costs of exemplar
and neuron parallelism using an unsupervised neural network. The solid line
represents the cost of exemplar parallelism, and the dashed line represents the
cost of neuron parallelism.

4 Batch Learning: In theory and practice

In the previous section, exemplar parallelism was established as the cost-
minimal strategy for supervised and unsupervised neural network paralleliza-
tion. The superiority of exemplar parallelism stems from the fact that it
minimizes the BSP cost, and hence, the execution time of a parallel neural
network for every epoch. In other words, exemplar parallelism is faster on an
epoch-by-epoch basis than any of the other parallelization techniques consid-
ered.

However, this epoch-by-epoch cost analysis does not consider the speed
of network convergence. If there exists an alternate parallelization strategy
which is more expensive for each epoch, but has a faster speed of convergence,
it may exhibit a lower overall cost than exemplar parallelism. Thus, the speed
of convergence of neural networks must be examined.

One of the constraints of the exemplar parallelism strategy is that it re-
quires deterministic updating of neural network weights. It has been noted
previously in Subsection 2.3.4 that deterministic learning is generally much
slower than stochastic learning schemes which perform multiple weight up-
dates for each iteration through the data set.

Batch learning represents a compromise between the accelerated speed of

69

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3
x 10

5

Number of examples

BS
P

Co
st

of
 C

om
m

un
ica

tio
n

(fl
op

s)

Figure 12: Comparison of the predicted communication costs of exemplar
and neuron parallelism using an unsupervised neural network. The solid line
represents the cost of exemplar parallelism, and the dashed line represents the
cost of neuron parallelism.

convergence of stochastic learning and the postponed updating of deterministic
learning. By combining exemplar parallelism with batch learning, there will
be an increase in the per-epoch cost of EP; however, the increased speed of
convergence will lower the overall BSP cost.

The goal of this subsection is to demonstrate the optimality of exemplar
parallelism using batch learning, both in theory and in practice. This subsec-
tion begins by examining the reasons for the slow convergence speed of de-
terministic learning schemes. Batch learning is then established as a method
which overcomes the convergence limitations of deterministic learning, and
yet is still amenable to exemplar parallelism. The results of these theoretical
analyses will then be veri�ed empirically using three data mining databases.

4.1 Batch Learning in Theory

To recapitulate, the goal of an arti�cial neural network is to model some un-
known, underlying probability distribution of the data { p(tjx) for supervised
networks, and p(x) for unsupervised networks. At every iteration, the neu-
ral network evaluates its cost function J(w) to determine how close it is to
simulating the data distribution. The network then attempts to improve its
representation of the distribution by estimating the gradient rJ(w) of the

70

cost function to update its parameters. By repeatedly re-evaluating the error
gradient and updating the network weights, the network will eventually come
to represent the data distribution to some designated degree of accuracy.

There are two obstacles which a�ect the quality of the network's ability
to represent the underlying distribution. The �rst obstacle, which has been
mentioned earlier, is the capabilities of the neural network model. If the net-
work is insu�ciently powerful (too few hidden units or mixture components)
or if it is poorly suited to the application (using a Gaussian density to model a
discrete distribution), then the network is unlikely to be capable of accurately
modeling the data distribution. The other obstacle to training accuracy is the
size of the data set. It is important to recognize that a data set is only a
sample of the possible observations from an underlying data distribution. For
most distributions, it is impossible to enumerate every possible value in the
population; thus, a �xed-size sample must be generated. The representative
quality of the sample (assuming an unbiased sampling process) is generally
contingent on its size. If this sample is too small, it may be impossible for
the network to gain a good representation of the data distribution and the
network may be prone to over�t the sample. In general, the larger the sample,
the more likely the neural network will be able to accurately model the data
distribution.

Assume that it is possible to attain some estimate, rG(w), which measures
the true gradient of the di�erence between the underlying data distribution
and the network's approximation. rG(w) can be determined by evaluating
the gradients for the entire population of observations that can be drawn from
the data distribution. This estimate represents the best attainable weight
adjustment to the network using the gradient information. When training
a neural network, clearly it is desirable to have the computed error gradient
rJ(w) approximate the true gradient rG(w) as closely as possible. Although
the true gradient cannot be calculated directly, it can generally be estimated
by allowing the network to train on the largest available data set:

rG(w) = lim
N!1

1

N

X
n=1

rJn(w) (90)

Due to the fact that the data set is generally a �xed size, a neural network
algorithm which uses every example to compute the gradient attains the best
available approximation of the true error gradient. The class of neural network
algorithms which meet this requirement are called deterministic networks (de-
terministic networks have already been described brie
y in Subsection 2.3.4).

71

For deterministic neural networks, weight adjustments are computed from the
gradient of every example in the data set.

rG(w) � rJdet(w) = 1

N

X
n=1

rJn(w) (91)

Therefore, deterministic neural networks are capable of making the most accu-
rate weight adjustments at each iteration to model the given data distribution.

Batch learning and stochastic learning are two alternate approaches which
compromise the accuracy of their gradient estimate in favour of greater speed of
convergence. The batch learning approach partitions the data set into several
batches on which the network trains sequentially. Thus, the network updates

its weights after evaluating the gradient rJbatb (w) for each batch b (40). The
goal of batch learning is to sample these batches so that the computed gradient
for each batch still approximates the deterministic gradient.

rJdet(w) � rJbatb (w) = rJbatb (w) + " (92)

wdet = w +�wdet (93)

� w +�wbat (94)

The gradient of each batch can be interpreted as a noisy estimate of the de-
terministic gradient, with the magnitude of the noise indicated by some noise
term ". If the magnitude of " is su�ciently small, then the batch delta weights

�wbat will be approximately equal to the deterministic delta weights �wdet.
Therefore, the network will be in the same state after iterating through a batch
as when iterating through the entire data set. For example, if a data set was
divided into two equal-sized batches, and " � 0 for each batch gradient, then a
batch network after one epoch would have the same weights as a deterministic
network after two epochs. Thus, for this example, the batch network would
converge twice as fast as the deterministic one. As long as the batch gradient
continues to approximate the deterministic gradient, the data set can be par-
titioned into smaller and smaller batches further speeding the convergence of
the batch network.

Stochastic learning represents the limit of batch size reduction such that
each batch contains a single example. A stochastic learning network updates
its weights after estimating the error gradient for each example (41). Thus,
a stochastic learning network performs N weight updates per epoch to the
single weight update of the deterministic network. If the stochastic gradient
estimate accurately approximates the gradient across the entire data set, then a

72

stochastic network would be N times as fast as the deterministic one. However,
for any non-trivial data set, it is unlikely that the estimate of the gradient
from a single example is going to be a very accurate approximation of the
deterministic gradient. Thus, the error term " for stochastic learning is likely
to be very large. The presence of this error term causes the network update
to be misdirected from the true gradient update. Figure 13 illustrates this
divergence between deterministic and stochastic gradient calculations. The
e�ect of the error term is that the stochastic learning network requires several
steps in order to reach a comparable state to that of the updated deterministic
learning network. Due to the in
uence of ", the stochastic learning network

from the �gure converges to the error minimum B in N
8

th
the speed of the

deterministic network.

A

B

B1

B2

B3

B4

B5

B8

B7B6

Figure 13: Comparison of deterministic and stochastic gradient descent in a
topological error surface. Point A represents the initial network state. Point
B represents the minimum in the weight space. The straight line shows the
network update performed by the deterministic learning network. Due to
the fact that the deterministic gradient approximates the true gradient of the
error space, the network can proceed directly to the minimum in a single step.
The dotted, jagged line indicates the path through the error space taken by
a stochastic learning network. The in
uence of " prevents the network from
correctly estimating the gradient. The stochastic gradient tends to oscillate
around the deterministic gradient because every new gradient estimate has to
compensate for the error of the previous iteration. This network required 8
steps to reach the minimum B.

From the example of stochastic learning, it is clear that the speed of con-
vergence will not necessarily increase as smaller and smaller batches are used.
At some point, the estimated gradient ceases to be a su�ciently accurate ap-
proximation of the true gradient rG(w). Unless the database is completely

73

redundant, there is simply insu�cient information in each example to accu-
rately estimate the true gradient. Due to the size of the noise term in the
stochastic gradient calculation, a relatively small learning rate step size is
required to prevent the network weights from overshooting the minimum or
being updated too far in an inaccurate direction. Thus, the learning rate must
decrease as the presence of the noise term increases. The decrease in learning
rate step size means that the network will require more updates to reach a
minimum. Therefore a tradeo� exists between the accuracy of the gradient
estimate, and the number of weight updates per epoch. Somewhere between
the extremes of deterministic and stochastic learning exists an optimal batch
size which will maximize the convergence speed of the network.

4.2 Batch Learning in Practice

From the previous subsection, several theories were posited about the be-
haviour of deterministic, batch and stochastic approaches to neural network
learning. This subsection will attempt to support these hypotheses by creat-
ing a set of experiments that will train supervised and unsupervised neural
networks using a range of di�erent batch sizes. The supervised neural network
that will be used in these experiments is the cross-entropy multi-layer per-
ceptron. The unsupervised neural network that will be used is the Gaussian
mixture model. These neural networks will be applied to classi�cation and
clustering tasks for three data mining data sets.

This subsection will begin by describing the properties of each of the data
mining databases. Next, the experimental framework will be presented for each
type of neural network. The results and observations for each experiment will
be presented. Finally, the full cost of BSP implementation using exemplar
parallelism will be determined for each experiment.

4.2.1 Data Mining Data Set Descriptions

There are three databases which will be considered in these experiments: the
Wisconsin breast cancer database, the Daimler-Benz thyroid database, and
the 1994 US Census Bureau database. Each of these databases was gathered
from the UCI (University of California at Irvine) data repository6 This data
repository contains many databases that have been collected from real-world

6These databases can be downloaded from the UCI web site at

ftp://ftp.ics.uci.edu/pub/machine-learning-databases/README.

74

sources and have been analyzed using data mining techniques. The reason
for selecting these data sets is to show that results of these experiments are
practical and are applicable to standard data mining applications. In addition,
the databases that will be explored in these experiments are not proprietary
and are part of the public domain. Thus, the analyses presented in this report
can be compared with existing publications and can be used as a reference for
future explorations mining these databases.

The Wisconsin Breast Cancer database consists of a collection of mam-
mogram data from 699 patients with discovered breast lumps. The results
of the mammogram for each patient are described by 9 continuous-valued at-
tributes. These attributes numerically describe properties of each breast lump,
such as its size, shape, and consistency, from X-ray data. The purpose of this
database is to classify each breast lump as being malignant or benign based on
the attribute information. The collation and initial analysis of this database
are demonstrated in [52][36]. These initial experiments were able to attain
93.7% classi�cation accuracy when using 1-nearest neighbour clustering. This
database is well-suited to the preliminary testing of a data mining algorithm
because it is a reasonable size, it is easy to attain good classi�cation accu-
racy and it is easy to analyze for clustering applications (the database can be
described quite accurately using two Gaussian distributions).

� Database size: 699 examples

� Classes:

{ Class 1 = Benign (458 examples (65.5%))

{ Class 2 = Malignant (241 examples (34.5%))

� Attributes:

{ 9 continuous-valued attributes with domain (1, 10)

{ missing values were replaced with the mean value

{ scaled to range (0, 1)

Table 4: Description of the Wisconsin breast cancer database.

The Daimler-Benz thyroid database is larger and more complex than the
previous database. The database contains information about 3772 patients
who were examined for thyroid conditions. The patient information consists

75

of a combination of 21 binary and continuous attributes. There are three
possible diagnoses for each patient: normal, hyper-, and hypothyroid. This
classi�cation is complicated by the fact that the vast majority of cases exhibit
a normal thyroid. Therefore, there are relatively few examples of the hyper-
and hypothyroid groups to construct a class description from. In addition, the
classi�er must attain a very high classi�cation accuracy (> 92:47%) in order
to be recognized as successfully classifying any of the non-normal cases. This
database was used as a benchmark to compare the performance of a variety
of neural network algorithms in [47].

� Database size: 3772 examples

� Classes:

{ Class 1 = Hyperthyroid (93 examples (2.47%))

{ Class 2 = Hypothyroid (191 examples (5.06%))

{ Class 3 = Normal thyroid (3488 examples (92.47%))

� Attributes:

{ 21 attributes: 15 binary and 6 continuous

{ no missing values

Table 5: Description of the Daimler-Benz thyroid database.

The third database that will be examined in these experiments is a col-
lection of census data polled from over 30000 US citizens during 1994. This
database contains a variety of demographic information, from education to
race, describing each of the polled individuals. This information is repre-
sented by a mixture of nominal and continuous variables. In order to identify
the discrete values of the nominal variables, a 1-of-n encoding scheme is used to
transform the attribute7. The resultant data set contains 47 input attributes.

The classi�cation task for this database is to predict the income level of
each individual citizen based on their census information (probably for taxa-
tion purposes). There are two possible levels of income that are considered:

7By performing a 1-of-n encoding, a nominal attribute with C possible values

could be represented by a C bit binary string of zeros with a single 1 at the position

corresponding to the attribute value.

76

individuals with a high income earning over $50,000 per year, and individuals
who earn less than that amount. The classi�cation performance of several
data mining algorithms applied to this database are summarized in [32]. This
database is very noisy and it is quite di�cult to attain a high degree of clas-
si�cation accuracy. Also, due to its size, it requires long training times.

� Database size: 30162 examples

� Classes:

{ Class 1 = High income (> $50,000) (7474 examples (24.78%))

{ Class 2 = Low income (� $50,000) (22688 examples (75.22%))

� Attributes:

{ 12 attributes: 6 binary and 6 continuous

{ binary attributes encoded using 1-of-n encoding

{ total of 47 inputs attributes

Table 6: Description of the 1994 US Census database.

4.2.2 Experimental Framework

To recapitulate, the theoretical analysis of batch learning from Subsection 4.1
posited three main hypotheses regarding the rate of convergence of neural
networks:

1. batch learning will be faster than deterministic learning.

2. the number of training epochs decreases linearly with the number of
batches as long as the batch gradient resembles the deterministic gradi-
ent.

3. there is a lower limit to the number of training epochs required to train
a network using batch learning

In order to create empirical support for these claims, a set of experiments
needs to be designed. The goal of these experiments is to examine the implica-
tions for batch learning on the convergence speed of neural network training.

77

The simplest way to examine the e�ects of batch learning is to train several
neural networks, each with a di�erent batch size, and examine how many
epochs they each require to meet some performance criterion. Using this ap-
proach, a set of speci�cations can be drafted to ensure that each hypothesis
will be address by the experiment.

According to the �rst hypothesis, neural networks that use batch learning
will require fewer epochs to train than networks trained using deterministic
learning. This hypothesis is simple to examine by training several networks
using deterministic learning, and several neural networks that partition the
data set into a number of batches. By comparing the average number of
training epochs that are required by each type of network, the validity of the
hypothesis can be examined.

In order to examine how the number of required training epochs changes
with the number of batches, several neural networks can be trained with dif-
ferent batch sizes. If the average number of epochs that they require increases
linearly with the number of batches, then this hypothesis can be supported.

The third hypothesis can be explored in a similar fashion to the previous
two hypotheses. By training several neural networks using a large number
of batches, a point is sought beyond which the number of training epochs
required remains constant or increases.

Given the fact that each of these experiment speci�cation have similar
requirements, a single experiment can be designed to examine all of the hy-
potheses. In general, this experiment will train several networks with various
numbers of batches and examine the number of epochs that are required to
meet some performance criterion. This experiment can be conducted for both
cross-entropy multi-layer perceptrons and Gaussian mixture models. Both
types of neural networks will be trained on each of the three data mining
databases speci�ed in the previous subsection.

However, before these experiments can be conducted, several design deci-
sions must be addressed. These are:

� choosing a performance criterion to halt network training,

� determining the learning rate,

� initializing the network, and

� selecting an appropriate number of hidden neurons or components.

The choice of the relevant parameters to meet these design decisions are listed
for each experiment in Tables 7, and 8.

78

� Cross-entropy multi-layer perceptrons:

{ Breast cancer database:

� Number of training trials for each batch size: 50

� Number of hidden neurons: 6

� Classi�cation accuracy threshold: 98%

{ Thyroid database:

� Number of training trials for each batch size: 50

� Number of hidden neurons: 10

� Classi�cation accuracy threshold: 99%

{ US census database:

� Number of training trials for each batch size: 10

� Number of hidden neurons: 20

� Classi�cation accuracy threshold: 85%

Table 7: Batch learning experiment parameters for cross-entropy multi-layer
perceptron networks.

Choosing a Performance Criterion

Before beginning neural network training, it is important to establish a cri-
terion for deciding when to stop training. In the ideal, neural network training
would be halted once the network has converged to a minimum in the error
space. However, it is both exceedingly time-consuming and unnecessary for a
neural network to settle into a minimum. Generally, comparable performance
can be gained by halting training before a minimum has been reached. In
addition, for batch learning networks, convergence to a minimum may not be
possible due to the noise term in the gradient estimate.

Thus, it is generally preferable to establish a criteria for halting neural
network training based on the cost function J(w) or some other measure of
network performance. Considering that both cross-entropy multi-layer percep-
trons and Gaussian mixture models are concerned with modeling probability
distributions, it is logical to choose a convergence criterion that is based on
some probability measure.

For cross-entropy multi-layer perceptrons, the most common measure of
network training performance is classi�cation accuracy. This measure calcu-

79

� Gaussian mixture models:

{ Breast cancer database:

� Number of training trials for each batch size: 50

� Number of components: 4

� Log-likelihood threshold: 3550

{ Thyroid database:

� Number of training trials for each batch size: 50

� Number of components: 32

� Log-likelihood threshold: 150000

Table 8: Batch learning experiment parameters for Gaussian mixture model
networks.

lates the percentage of examples which have been classi�ed correctly by the
network. This measure provides a consistently-ranged (0� 1) and intuitively-
understandable representation of the network's performance. Classi�cation
accuracy is also suitable because it is commonly used by many di�erent data
mining techniques so that the results of the neural network are easily compared
with other methods.

It is more di�cult to de�ne an appropriate convergence criterion for the
Gaussian mixture model. Because there is no prede�ned target value to which
the network output can be compared, the performance of the network is based
on its ability to represent the input. Thus, the measure that will be used is
the log-likelihood. The log-likelihood estimate is calculated by taking the sum
of the logarithms of the output of the network function (28) for each input
example. Thus, the larger the log-likelihood value, the better the performance
of the network.

There are two main problems with using log-likelihood as a convergence
criterion. The �rst is that it is not particularly intuitive to interpret because
it is not de�ned on a �xed range. The second is that mixture models which
maximize likelihood are susceptible to singularities [43]. If a component is
assigned to a single data example, it will attempt to represent that point ex-
actly by letting its variance go to zero. In e�ect, this will drive the output of
the component to in�nity (27). This will cause the log-likelihood value to be
arbitrarily large even though the network may be a poor representation of the

80

data. The e�ect of singularities can be minimized by preventing the variance
of each component from dropping below a certain value. Despite these short-
comings, log-likelihood provides a good statistical measure of the convergence
and is the measure that will be used for the mixture model experiments.

For each experiment, an appropriate value must be chosen as a threshold
for the performance measure. Each threshold was selected by training several
networks on each data set for a large number of epochs. Based on the results of
these training trials, a convergence threshold was chosen which was attainable,
but di�cult for the networks to reach. For supervised neural networks, the
convergence threshold was set at one or two percent below the best-attained
classi�cation accuracy. For unsupervised neural networks, the convergence
threshold was set at ninety percent of the best log-likelihood. Because mixture
models can solve the gradient directly for each parameter (33{35), determin-
istic mixture model are capable of converging to a minimum within relatively
few epochs. Due to the in
uence of the noise term " in the batch gradient es-
timates, it is quite di�cult for batch learning mixture models to approach this
minimum. Therefore, the performance threshold for mixture model networks
is generally quite far (10%) from the largest log-likelihood.

Because these experiments are strictly concerned with how quickly a neural
network trains, it is not essential for the networks to be trained to reach the
best possible minimum. By allowing networks to train to di�erent performance
levels, comparing the convergence speed becomes more di�cult. Thus, the use
of a �xed convergence criteria to halt network training is very important.

Determining the Learning Rate

In order to update the neural network weights in the direction of the gradi-
ent, a parameter �, called the learning rate, is used to determine the magnitude
of this update. It is important to accurately determine this parameter because
a value that is too small will lead to slow convergence, and a value that is too
large may prevent the network weights from reaching the performance thresh-
old. It is assumed that the learning rate parameter remains constant during
the course of each neural network training session.

Technically, for a deterministic mixture model, it is not necessary to deter-
mine a learning rate value because the network is capable of directly solving
the gradient with respect to each weight in the network (33{35). Thus, the up-
dated weight value for the next iteration can be determined directly. However,
for a mixture model that uses batch learning, this update is not necessarily
accurate because it is calculated using only a subset of the data. Therefore, it
necessary to use the learning rate parameter to provide an incremental tran-

81

sition between the calculated update and the current network state. From
the mixture model weight update equations (36), it can be assumed that de-
terministic mixture models have a learning rate of 1 because they base their
weight update entirely on the newly-estimated weight value. For batch learn-
ing mixture models, a learning rate parameter value in the range (0; 1) is used
to provide an incremental transition from the current network state to the new
one.

For cross-entropy multi-layer perceptrons, the gradient only provides in-
formation about the direction of the update for each weight. Therefore, it is
necessary to use the learning rate to specify the size of the update in the di-
rection of the gradient. The learning rate parameter may be set to any postive
real value.

In these batch learning experiments, it is desirable to determine the fewest
possible training epochs required for convergence for each di�erent batch size.
This way, the training performance of each neural network can be compared
in an unbiased fashion. In order to satisfy this constraint, it is necessary to
optimize the learning rate for each neural network trial. The best learning rate
is chosen by training several neural networks with a range of di�erent learning
rate parameters. The learning rate that yields the fewest average number of
training epochs for convergence is chosen.

A momentum term is commonly used when training supervised stochastic
learning networks. However, no momentum was used in these experiments for
two reasons. The �rst reason is that the addition of a momentum constant in-
creases the number of parameters that must be optimized for each batch size.
Because it requires training many networks to determine the optimal learning
rate for each batch size, the process of determining an optimal parameter is
quite time consuming. With the addition of a momentum term, both param-
eters would have to be optimized simultaneously. This greatly increases the
size of the search space. Thus, co-optimizing a momentum constant is very
time consuming. The second reason for not including a momentum term is
that from my experiments, I found that a network with well-chosen learning
rate converged just as quickly as a network which used momentum. Thus, the
addition of a momentum term is unlikely to have a signi�cant e�ect on the
speed of network training

Initializing the Neural Network

The weights of a neural network are generally randomly initialized at the
start of each training trail. For supervised neural networks, weights are gener-
ally set to normally-distributed values around zero with a small variance. For

82

unsupervised neural networks, the means �i of each distribution are set to val-
ues that are normally-distributed around the center of the input distribution.
The variances and mixing proportions for mixture models are generally set to
the same value for each component.

One of the consequences of random initialization is that it is common for
neural networks to converge to di�erent solutions on di�erent trials. Therefore,
it is necessary to train several neural networks in order to accurately assess
their training performance. For these experiments, multiple neural networks
were trained for each di�erent batch size, and their average number of training
epochs were calculated.

Selecting the Number of Hidden Neurons or Components

The number of hidden neurons determine the processing capability of the
cross-entropy multi-layer perceptron. Networks with more hidden neurons are
able to model more complex problems. Similarly, for mixture models, the
number of components determines the network's ability to represent the input
data. The more component distributions that are used in a mixture model,
the more clusters can be identi�ed by network.

The appropriate number of hidden neurons and components in a network
is the smallest number that enables a neural network to reach the performance
criterion. This number of neurons or components limits the risk of over-�tting
the data while still providing adequate performance. For each database, the
appropriate number of hidden neurons or components was determined exper-
imentally.

4.2.3 Batch Learning Experiment Results

In this subsection, the results of the batch learning experiments described
above will be presented for each database. Each experiment will be analyzed
to examine whether the experiment hypotheses are supported. The results for
the supervised and unsupervised neural networks will be discussed separately.
The observations for each experiment will be used to explore the validity of
the experiment hypotheses.

Batch Learning Experiment Results for Supervised Neural Networks

Figures 14, 15, and 16 illustrate the number of training epochs required by
the cross-entropy multi-layer perceptron applied to the breast cancer, thyroid
and US census databases. In each of these �gures, the average number of
training epochs is plotted against the batch size of the network. An asterisk
on the graph indicates the result of training a batch learning network for a

83

particular number of batches. These �gures emphasize the convergence speed
for networks with large batch sizes. Because their batch size is su�ciently
large, these neural networks should be capable of accurately approximating
the deterministic gradient from the data in each batch. Therefore, in theory,
they should converge to a solution b times more quickly than a deterministic
neural network, where b is the number of batches used by the batch learning
neural network.

0 100 200 300 400 500 600 700
20

30

40

50

60

70

80

90

100

110

120

Batch size (examples/batch)

Nu
m

be
r o

f t
ra

in
in

g
ep

oc
hs

Figure 14: The number of training epochs required by cross-entropy multi-
layer perceptrons applied to the breast cancer database plotted against batch
size.

For the training results on the thyroid and US census databases, it is clear
that the number of epochs required to train batch learning networks with
su�ciently large batches does, indeed, decrease with ED

b
. ED is the average

number of epochs needed to train the deterministic neural network on these
two databases. This observation can be easily veri�ed using the numerical
results for these experiments which are presented in Appendix A. For the
breast cancer database, the reduction of the number of training epochs due
to batch learning is not as large. However, it can be noted from the �gure
that the number of training epoch still decreases approximately linearly with
the number of batches. These observations are su�cient to support the �rst
two hypotheses of the experiment (faster convergence using batches and a
near-linear relation between batch size and training epochs).

In order to examine the validity of the third hypothesis, it is helpful to
invert the x-axis of the �gures so that the number of training epochs is plotted

84

0 500 1000 1500 2000 2500 3000 3500 4000
0

100

200

300

400

500

600

Batch size (examples/batch)

Nu
m

be
r o

f t
ra

in
in

g
ep

oc
hs

Figure 15: The number of training epochs required by cross-entropy multi-
layer perceptrons applied to the thyroid database plotted against batch size.

against the number of batches. The batch size B is inversely proportional to
the number of batches b (B = N

b
), so these �gures simply invert the x-axis so

that the training results of networks with a large number of batches can be
examined more closely. Figures 17, 18, and 19 illustrate these plots for each
of the three data mining databases. These �gures emphasize the results of
cross-entropy multi-layer perceptrons that are trained using a large number of
batches. In theory, there should be a lower limit to the number of epochs that
are required. Further, increasing the number of batches once this limit has
been reached will not lead to any further improvement in convergence speed.
The number of training epochs that are required will remain constant or may
even increase.

All three of these �gures clearly indicate a lower limit to the number
of epochs that are required to successfully train a neural network on each
database. In each of these experiments, this limit is reached by a batch learn-
ing neural network with an intermediate number of batches. From the �gures
it can be observed that by increasing the number of batches beyond this point
yields no further decrease in the number of training epochs. Therefore, the
third hypothesis is supported by these experiments.

Because the lower limit to the convergence speed is reached by a neural
network trained with an intermediate number of batches, these experiments
are amenable to exemplar parallelism. The constraint imposed by exemplar

85

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

Batch size (examples/batch)

Nu
m

be
r o

f t
ra

ini
ng

 e
po

ch
s

Figure 16: The number of training epochs required by cross-entropy multi-
layer perceptrons applied to the US census database plotted against batch
size. Note that the both x- and the y-axis have logarithmic scale.

parallelism is that the batch size must be larger than the number of pro-
cessors. For these experiments, the batch size of the network requiring the
fewest training epochs is generally larger than the number of processors for
most general-purpose parallel machines. In the next subsection, the optimal
number of batches will be determined more accurately using the BSP cost
model.

It is also important to consider how the optimal learning rate varies with
changes in the batch size. Figures 20, 21, and 22 plot the optimized learn-
ing rate against the batch size. Each of these �gures have approximately the
same shape (the US census database �gure is distorted somewhat due to the
logarithmic scaling of the axes). The learning rate is constant for networks
trained with large batch sizes. Once a certain batch size is reached, the opti-
mized learning rate drops quite rapidly. By comparing these graphs with the
Figures 14, 15, and 16, it can be observed that the learning rate begins to drop
o� as the increase in the convergence speed begins to falter.

Considering the theoretical analyses of batch learning, it has been posited
that the batch learning gradient attempts to approximate the deterministic
gradient. So far, this theory has been stated without proof. However, this
theory can be supported by examining these plots of the optimized learning
rate. Recall that the calculated gradient for supervised learning provides the

86

0 100 200 300 400 500 600 700
20

30

40

50

60

70

80

90

100

110

120

Number of batches (weight updates/epoch)

Nu
m

be
r o

f t
ra

in
in

g
ep

oc
hs

Figure 17: The number of training epochs required by cross-entropy multi-
layer perceptrons applied to the breast cancer database plotted against the
number of batches.

direction in which weight should be adjusted so as to minimize the error; how-
ever, it does not dictate the magnitude of this update. The size of the update
is speci�ed by the learning rate parameter. Now, if the batch gradient ac-
curately estimated the deterministic gradient, both gradients would have the
same direction. Assuming that a learning rate parameter was chosen to opti-
mally update the weights using the deterministic gradient, this same learning
rate parameter would be optimal for the batch gradient as well. Therefore,
considering that the learning rate remains constant for batch sizes which have
a linear decrease in the number of training epochs required, it can be inferred
the batch gradient is an accurate approximation of the deterministic gradient.

Batch Learning Experiment Results for Unsupervised Neural Net-

works

Because the results of these batch learning experiments for training Gaus-
sian mixture models are practically identical to the results given above, only
the �gures from training on the �rst two databases are provided. The numer-
ical results of these experiments are listed in Appendix B.

The validity of the �rst two hypotheses can be examined by viewing the
plots of the number of training epochs against the batch size. These plots
are displayed in Figures 23, and 24. The �gure containing the training results
from the breast cancer database illustrates an approximately linear speedup in

87

0 50 100 150 200 250 300
0

100

200

300

400

500

600

Number of batches (weight updates/epoch)

Nu
m

be
r o

f t
ra

in
in

g
ep

oc
hs

Figure 18: The number of training epochs required by cross-entropy multi-
layer perceptrons applied to the thyroid database plotted against the number
of batches.

the convergence speed for mixture models trained with large batch sizes. For
the thyroid database, although the decrease in the number of training epochs
is not linear, the speed of convergence de�nitely increases with the number
of batches. The magnitude of this speedup can be examined by using the
numerical results from Appendix B. These two �gures demonstrate that the
use of batch learning with Gaussian mixture models can lead to an increase in
the convergence speed and a decrease in the number of training epochs that
are required for training.

The lower limit to the number of required training epochs rate can be
examined by plotting the number of epochs against the number of batches.
These plots are displayed in Figures 25 and 26. In these �gures, it is clear that
the number of training epochs approaches a limit as the number of batches
increases. In both plots, the number of epochs reaches a maximum once a
critical number of batches are used. For both of these experiments, it was
impossible to train networks to meet the convergence criterion that partitioned
the data set into more than 64 batches; the noise term in the gradient estimate
for these networks was too large to enable them to reach the convergence
criterion. The presence of this limitation to the decrease in the number of
training epochs supports the third hypothesis.

Like the experiments for supervised neural networks, the limit to the num-
ber of training epochs is reached by neural networks trained using an interme-

88

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

Number of batches (weight updates/epoch)

Nu
m

be
r o

f t
ra

ini
ng

 e
po

ch
s

Figure 19: The number of training epochs required by cross-entropy multi-layer
perceptrons applied to the US census database plotted against the number of
batches. Note that the both x- and the y-axis have logarithmic scale.

diate batch size. This observation means that batch learning Gaussian mixture
models are suitable for parallel implementation using exemplar parallelism.

The last set of �gures to be examined plot the learning rate against the
batch size. Figures 27 and 28 display these results. These �gures are very sim-
ilar to the plots of the optimized learning rate for supervised networks. While
the number of training epochs decreases approximately linearly in relation to
the number of batches, the optimized learning rate retains a �xed value. Once
the number of epochs ceases to decrease linearly with the number of batches,
the learning rate begins to decrease. The same analysis of the implications of
the variation in the optimized learning rate parameter that were presented for
supervised neural networks can be applied to unsupervised neural networks.

4.2.4 BSP Cost Analysis and Batch Learning

In the previous subsection, several neural network training experiments were
conducted examining the e�ect of batch size on the number of training epochs.
The results of training neural networks with di�erent batch sizes were com-
pared based on the number of epochs that were required to reach a performance
threshold. On a sequential computer, these results are su�cient to indicate
that network training time can be reduced by using batch learning. However,
this is not as clear for a parallel neural network implementation because the

89

0 100 200 300 400 500 600 700
0

2

4

6

8

10

12

14

Batch size (examples/batch)

Le
ar

ni
ng

 ra
te

 s
te

p
siz

e

Figure 20: The optimized learning rate of cross-entropy multi-layer percep-
trons applied to the breast cancer database plotted against batch size.

use of multiple weight updates per epoch incurs the cost of additional commu-
nications and barrier synchronizations for each epoch. By applying the batch
learning network training results to the BSP cost model, the magnitude of
the cost of these additional operations can be determined. In addition, the
execution time of these batch learning networks can be accurately predicted
for a range of parallel computers.

Before the parallel execution times can be computed, the BSP cost equa-
tions for supervised and unsupervised neural networks need to be tailored to
work with batch learning. Considering the theoretical and empirical results
from Section 3, exemplar parallelism was deemed the superior strategy for par-
allelizing neural networks. Thus, this subsection will only consider the applica-
tion of exemplar parallelism to batch learning neural networks. However, the
general conclusions should be applicable to other neural network paralleliza-
tion strategies. The BSP cost equations for exemplar parallelism are given in
Subsections 3.2.1 and 3.2.2. It can be observed that the BSP cost equations
are equivalent for supervised and unsupervised neural networks; thus, the al-
terations to these cost equations required by batch learning are applicable to
both types of neural networks.

In order to minimize the number of supersteps, the most cost-e�cient im-
plementation of exemplar parallelism performs a single weight update for each
epoch. Thus, the BSP cost equations for exemplar parallelism assume that

90

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10

12

14

16

18

20

Batch size (examples/batch)

Le
ar

ni
ng

 ra
te

 s
te

p
siz

e

Figure 21: The optimized learning rate of cross-entropy multi-layer percep-
trons applied to the thyroid database plotted against batch size.

deterministic learning is being used. For batch learning, however, b weight
updates are performed for each epoch, where b is the number of batches.
Therefore, the number of supersteps performed by a parallel neural network
implemented with batch learning is increased by a factor of b for each epoch.
Thus, a batch learning implementation of exemplar parallelism is will have
a higher BSP cost because it will require b times more communications and
synchronizations for each epoch. However, if the decreased number of training
epochs of batch learning outweigh these additional costs, then a parallel batch
learning network may indeed have a faster execution time.

Because batch learning divides the data set into b batches, the parallel
processors operate on a single batch for each superstep. Thus, the cost of
computation for each superstep is simply the cost of processing N

b
examples.

The costs of communication and synchronization are independent of the num-
ber of examples being processed, therefore their costs remain unchanged from
the original BSP equation. Making these minor changes, the BSP cost of
exemplar parallelism for batch learing neural networks can be stated:

b

"
N

b

AW

p
+ (p� 1)Wg + 2l

#
(95)

It can be observed from this equation that, by multiplying through by the num-
ber of supersteps b for each epoch, the computation cost becomes equivalent to

91

10
1

10
2

10
3

10
4

10
5

10
−1

10
0

10
1

Batch size (examples/batch)

Le
ar

ni
ng

 ra
te

 s
te

p
siz

e

Figure 22: The optimized learning rate of cross-entropy multi-layer percep-
trons applied to the US census database plotted against batch size. Note that
the both x- and the y-axis have logarithmic scale

the computation cost in the original equation, and the costs of communication
and synchronization are increased by a factor of the number of batches b.

The total cost for neural network training is the number of epochs E mul-
tiplied by the BSP cost for each epoch. Thus, the total BSP cost of training
a neural network using exemplar parallelism and batch learning is:

E

"
NAW

p
+ b(p� 1)Wg + 2bl

#
(96)

The theoretical and empirical analyses of batch learning given above hold
important implications for the interpretation of this cost equation. It has been
demonstrated that the number of training epochs decreases linearly with the
number of batches, as long as the batch gradient is an accurate estimate of the
deterministic gradient. Thus, the number of epochs E required for training is
inversely proportional to b. Due this proportionality, it can be assumed that:

E / 1

b
� E =

c

b
; (97)

for some constant c. By applying this result to (96), this cost equation can be
reduced to:

E
NAW

p
+ c(p� 1)Wg + 2lc (98)

92

0 100 200 300 400 500 600 700
2

4

6

8

10

12

14

16

18

Batch size (examples/batch)

Nu
m

be
r o

f t
ra

in
in

g
ep

oc
hs

Figure 23: The number of training epochs required by Gaussian mixture model
networks applied to the breast cancer database plotted against batch size.

Thus, it can be observed that the cost of communication and synchronization
remains constant in relation to the number of batches that are used. How-
ever, the computation term is still a product of the number of epochs that are
required for training the network. Because batch learning networks require
fewer epochs to train, the BSP cost of batch learning will be less than the
cost of deterministic learning as long as the decrease in the number of training
epochs for the batch learning network outweighs the constant cost of commu-
nication and synchronization. Therefore, it can be stated that the predicted
execution time for parallel neural networks trained using batch learning is less
than for comparable networks trained with deterministic learning methods.
Despite the additional communication and synchronization costs, the use of
batch learning still leads to a reduction in parallel execution time.

The above result only holds as long as the number of training epochs de-
creases linearly with the number of batches. As has been demonstrated previ-
ously, this decrease in the number of epochs only holds up to a certain point.
Beyond this point, the error term in the batch gradient calculation " is too
large to permit accurate estimation of the deterministic gradient. Therefore,
no further decrease in the number of training epochs can be attained. For
supervised neural networks, this error term has relatively little in
uence and
the number of epochs tends to remain constant as the number of batches is
increased further. For unsupervised neural networks, the presence of the error

93

0 500 1000 1500 2000 2500 3000 3500 4000
2

4

6

8

10

12

14

Batch size (examples/batch)

Nu
m

be
r o

f t
ra

in
in

g
ep

oc
hs

Figure 24: The number of training epochs required by Gaussian mixture model
networks applied to the thyroid database plotted against batch size.

term may lead to an increase in the number of training epochs or may even
prevent the network from converging to the speci�ed performance threshold.

As a lower bound, the implications of a constant number of training epochs
can be examined using (96). Because the number of training epochs is �xed
as the number of batches increases, the cost of computation remains constant,
and the cost of communication and synchronization increase linearly with the
number of batches. Therefore, the total BSP cost of network training also
increases linearly with the number of batches. For the case of unsupervised
neural networks where the number of training epochs increases, it is clear that
an even larger increase in the total BSP cost would occur.

Therefore, there is a well-de�ned minimum in the BSP cost equation for
batch learning that occurs once the number of training epochs stops decreasing.
Clearly, it is desirable to determine the number of batches b that corresponds
to this minimum. This number of batches yields an implementation with
minimal execution time on both sequential and parallel computers.

Figures 29 and 30 show a breakdown of the computation, communication
and synchronization costs of training several supervised batch learning neural
networks on the thyroid and US census databases. These �gures represent
the training results from the previous subsection applied to the BSP cost
equation for batch learning. Both of these �gures display the costs for parallel
implementation on an IBM SP2 with 4 processors. From these �gures, the

94

0 10 20 30 40 50 60 70
2

4

6

8

10

12

14

16

18

Number of batches (weight updates/epoch)

Nu
m

be
r o

f t
ra

in
in

g
ep

oc
hs

Figure 25: The number of training epochs required by Gaussian mixture model
networks applied to the breast cancer database plotted against the number of
batches.

minimum in the cost function is clearly apparent8. The �gures show that where
the number of epochs is decreasing, the cost of computation decreases linearly
and the cost of communication and synchronization remain constant. It is also
clear that in the regions where the number of epochs is constant, the cost of
computation remains �xed and the cost of communication and synchronization
increases linearly. These �gures provide an empirical demonstration of the
analysis of the BSP cost equation for batch learning presented above.

4.2.5 Batch Learning Parallel Execution Times

In the previous subsection, the BSP cost equation for exemplar parallelism
applied to batch learning neural networks was derived. Now, the parallel
execution times of the results from Subsection 4.2.3 can be predicted for a
range of parallel computers by using the BSP cost model. Parallel execution
times will be presented using 4 parallel computers: the CrayT3E, the IBM
SP2, the SGI PowerChallenge, and the multiprocessor Sun computer. The
BSP parameters for each of these parallel computers are listed in Table 1. In
order to compare the execution times of each of these computers, the BSP cost
in
oating point operations can be divided by the execution rate to yield the

8It is useful to compare these �gures with the network training results from

Figures 18 and 19.

95

0 10 20 30 40 50 60 70
2

4

6

8

10

12

14

Number of batches (weight updates/epoch)

Nu
m

be
r o

f t
ra

in
in

g
ep

oc
hs

Figure 26: The number of training epochs required by Gaussian mixture
model networks applied to the thyroid database plotted against the number
of batches.

execution time in seconds. It will be assumed that each of these computers
has 4 processors (p = 4).

In this subsection, the results of supervised and unsupervised network
training will be presented separately. The BSP parallel execution time will
be given for the training results of each of the three data mining databases.
The optimal number of batches will be discussed for each experiment, and the
parallel speedup attainable by using batch learning will be presented.

BSP Execution Times for Supervised Networks

Figures 31, 32, and 33 display the predicted parallel execution times for
batch learning neural networks trained on the breast cancer, thyroid and US
census databases. For the �gures showing results from the thyroid and US cen-
sus databases, a well-de�ned minimum in the BSP cost function is apparent.
This minimum corresponds to the optimal number of batches for minimizing
the parallel execution time. For these two �gures, the location of this minimum
is relatively consistent for each of the parallel computers considered. There
is more variation between the location of the minimum in Figure 31. This
variation is largely a product of the small size of the breast cancer database.

In addition, these �gures can be used to compare the performance of the
di�erent parallel computers. For each experiment, the CrayT3D yielded the
best performance. The IBM SP2 had the slowest execution time for each

96

0 100 200 300 400 500 600 700
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Batch size (examples/batch)

Le
ar

ni
ng

 ra
te

 s
te

p
siz

e

Figure 27: The optimized learning rate of Gaussian mixture model networks
applied to the breast cancer database plotted against batch size.

experiment due to its large cost of performing a barrier synchronization.
The results of these �gures are summarized in Tables 9, 10, and 11. In

each table the optimal number of batches is shown for each parallel computer.
It is important to note that there is relatively little variation in the optimal
batch size between each of the parallel computers. The tables also show the
fastest and the slowest times execution times for each parallel computer. By
comparing these two times, the speedup of batch learning over deterministic
learning can be calculated. The average speedup for each database is: 3.6 for
the breast cancer database, 10.3 for the thyroid database, and 52.4 for the
US census database. If these parallel computers can be taken as a small, but
representative sample of the performance of average parallel computers, it can
be stated that batch learning is potentially 52.4 times faster on average than
deterministic learning when applied in parallel to the US census database. It
is important to note that the speedup increases as the size of the database
increases. If this pattern is indicative of a trend, then batch learning becomes
increasingly important for accelerating network training as the size of the
database increases.

BSP Execution Times for Unsupervised Networks

Figures 34 and 35 show the BSP execution times for the training results
of the Gaussian mixture models applied to the breast cancer database and
the thyroid database. Comparing these �gures to the same types of �gures

97

Computer # Batches Best Cost Best Cost Worst Cost Speedup
(M
ops) (seconds) (seconds)

CrayT3D 70 2.2 0.18 0.64 3.5
IBM SP2 7 5.7 0.47 2.36 5.0

SGI PowerChallenge 7 4.2 0.35 1.12 3.2
Sun 14 2.9 0.24 0.65 2.7

Table 9: BSP cost of training cross-entropy multi-layer perceptron networks
on the breast cancer database.

Computer # Batches Best Cost Best Cost Worst Cost Speedup
(M
ops) (seconds) (seconds)

CrayT3D 42 73.0 6.09 67.82 11.1
IBM SP2 23 89.0 7.42 68.42 9.2

SGI PowerChallenge 23 78.2 6.51 67.98 10.4
Sun 23 77.0 6.41 67.93 10.6

Table 10: BSP cost of training cross-entropy multi-layer perceptron networks
on the thyroid database.

Computer # Batches Best Cost Best Cost Worst Cost Speedup
(M
ops) (seconds) (seconds)

CrayT3D 512 233.1 19.43 1087.5 56.0
IBM SP2 256 276.6 23.05 1088.1 47.2

SGI PowerChallenge 512 239.9 19.99 1087.5 54.4
Sun 256 251.7 20.97 1087.7 51.9

Table 11: BSP cost of training cross-entropy multi-layer perceptron networks
on the US census database.

98

0 500 1000 1500 2000 2500 3000 3500 4000
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Batch size (examples/batch)

Le
ar

ni
ng

 ra
te

 s
te

p
siz

e

Figure 28: The optimized learning rate of Gaussian mixture model networks
applied to the thyroid database plotted against batch size.

for the supervised networks show a similarity in the shape of the plots. The
main distinction between the unsupervised and the supervised results is that
the number of training epochs increases after a certain point for unsupervised
neural networks rather than remaining constant. The similarity between these
�gures indicates that there is a consistency in the database that is exploited
by using batch learning, regardless of the particular neural network technique.

From these �gures, the execution time can be compared for the di�erent
parallel computers. Once again, the Cray T3D outperforms the other machines
and the IBM SP2 is the slowest due to its expensive barrier synchronizations.

Tables 12 and 13 summarize the results displayed in the �gures. The opti-
mal number of batches and the best execution time is speci�ed for each parallel
computer. It can be observed that the optimal number of batches is relatively
consistent among each of the parallel computers for both experiments. The
Worst Cost column refers to the execution time for deterministic learning (al-
though deterministic learning does not necessarily have the worst cost in the
breast cancer example). By dividing the worst cost by the best cost, the
speedup enabled by batch learning can be determined. For the breast cancer
database, the average speedup is 3.4. For the thyroid database, it is 6.6.

These speedup results are not as large as the speedup results for supervised
results. In addition, the optimal batch size is smaller than for supervised
networks. These results are largely a product of the superior convergence

99

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9
x 10

8

Number of batches (weight updates/epoch)

BS
P

ex
ec

ut
ion

 co
st

(fl
op

s)

Figure 29: Breakdown of the BSP cost for training supervised batch learning
neural networks on the thyroid database using a 4-processor IBM SP2. The
solid line represents the total BSP cost of parallel implementation. The dashed
line is the cost of computation, the dot-dashed line is the cost of communica-
tion, and the dotted line is the cost of synchronization.

properties of a deterministic mixture model. Because a mixture model can use
the gradient directly to solve the best new value for each parameter, it can
converge quickly and accurately to a minimum. Therefore, the batch gradient
estimates have to be very accurate to enable a linear decrease in the number
of training epochs. However, clearly there is still some speedup to be gained
by using batch learning for mixture model networks.

5 Summary and Conclusions

In this report, I have presented a novel synthesis of several disparate areas of
computing that are on the cusp of converging in industry. The �elds of data
mining, neural networks and parallelism are three areas of rapid development
and topical research. The growing abundance of data mining applications
has created a need for powerful data analysis tools that can process massive
databases in a reasonable amount of time. The hybridization of parallelism
and neural networks presents a powerful approach to solving these problems.

However, before parallel neural networks can gain widespread acceptance
and application in industry, a framework needs to be established for their

100

Computer # Batches Best Cost Best Cost Worst Cost Speedup
(M
ops) (seconds) (seconds)

CrayT3D 16 0.1 0.01 0.05 4.7
IBM SP2 8 0.4 0.04 0.07 1.9

SGI PowerChallenge 8 0.2 0.02 0.06 2.6
Sun 16 0.2 0.01 0.06 4.3

Table 12: BSP cost of training Gaussian mixture model networks on the breast
cancer database.

Computer # Batches Best Cost Best Cost Worst Cost Speedup
(M
ops) (seconds) (seconds)

CrayT3D 16 7.7 0.64 4.37 6.8
IBM SP2 16 8.4 0.70 4.40 6.3

SGI PowerChallenge 16 7.8 0.65 4.38 6.7
Sun 16 7.9 0.66 4.38 6.7

Table 13: BSP cost of training Gaussian mixture model networks on the thy-
roid database.

101

10
0

10
1

10
2

10
3

10
4

10
6

10
7

10
8

10
9

10
10

10
11

Number of batches (weight updates/epoch)

BS
P

ex
ec

ut
io

n
co

st
 (f

lo
ps

)

Figure 30: Breakdown of the BSP cost for training supervised batch learning
neural networks on the US census database using a 4-processor IBM SP2. The
solid line represents the total BSP cost of parallel implementation. The dashed
line is the cost of computation, the dot-dashed line is the cost of communica-
tion, and the dotted line is the cost of synchronization. Note that the both x-
and the y-axis have logarithmic scale.

development and analysis. In this report, I assert that statistical parameter
estimation and bulk synchronous parallelism are two suitable foundations for
this framework.

Statistical parameter estimation presents a theoretically-established ap-
proach to dealing with data analysis tasks. As I have demonstrated in this
report, this approach is particularly well-suited to the description of super-
vised and unsupervised neural networks for clustering and classi�cation appli-
cations. In particular, the development of the cross-entropy error term and
the progression of unsupervised networks to mixture models are a product of
the in
uence of statistics on the �eld of neural networks. This statistical per-
spective provides a much-needed context for the analysis and comparison of
neural networks with other data analysis techniques.

The framework for the design and development of parallel neural network
software is provided by bulk synchronous parallelism. As I have detailed,
the BSP model of parallel computation is well suited to parallelizing neural
networks for several reasons: it enables the creation of code which is easy to
understand, e�cient, and architecture-independent, it is designed speci�cally

102

0 20 40 60 80 100 120 140
2

3

4

5

6

7

8

9

10

11

Number of batches (weight updates/example)

BS
P

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Figure 31: The parallel execution time for training cross-entropy multi-layer
perceptrons on the breast cancer database is plotted against the number of
batches. Training time is displayed for several di�erent parallel computers.
Legend: solid line - CrayT3D, dashed line - IBM SP2, dot-dashed line - SGI
PowerChallenge, dotted line - Sun.

to handle communication-intensive applications, and it has a highly accurate
cost model. By using BSP to develop the network software, general-purpose
parallel neural networks can gain wide application in industry.

Using the framework established by statistical parameter estimation and
bulk synchronous processing has enabled me to make several discoveries in
the area of parallel neural networks. I will brie
y summarize each of these
contributions.

I have used the BSP cost model to perform detailed analyses of the cost of
parallelizing supervised and unsupervised neural networks. Three granularities
of parallelism were examined and compared in this report: exemplar, block
and neuron parallelism. I analyzed each of these techniques theoretically and
with application to speci�c parallel computers by using the BSP cost model.
The results of these analyses revealed that exemplar parallelism is the superor
technique under practical training considerations. The superiority of exemplar
parallelism is even more apparent when the size of the data set is large, as it is
in data mining applications. Most existing parallel neural network applications
arbitrarily choose a method of parallelization to suit their speci�c parallel
computer or their particular application. The theoretical and empirical results

103

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

Number of batches (weight updates/epoch)

BS
P

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Figure 32: The parallel execution time for training cross-entropy multi-layer
perceptrons on the thyroid database is plotted against the number of batches.
Training time is displayed for several di�erent parallel computers. Legend:
solid line - CrayT3D, dashed line - IBM SP2, dot-dashed line - SGI Power-
Challenge, dotted line - Sun

in this report show that exemplar parallelism is an optimal form of parallelism
in neural networks.

However, the results of the BSP cost analysis only prove optimality on an
epoch-by-epoch basis. Each of the parallelization strategies were optimized
to minimize the cost of training for each epoch. This optimization process
entailed limiting the number of weight updates for each epoch. Thus, the
three parallelization strategies assumed that the neural network implemen-
tations used deterministic learning. However, by minimizing the number of
weight updates for each epoch, the speed of neural network training is slowed
considerably. Thus, a neural network implementation which is optimal on
an epoch-by-epoch basis may end up incurring a higher cost than a network
which is more expensive for each epoch but requires more epochs to reach the
convergence criteria. Thus, it is important to consider the speed of network
convergence in order to assert the superiority of exemplar parallelism.

To examine the potential convergence speed for a particular neural network
algorithm, I analyzed the implications of the number of weight updates per
epoch on the speed of network training. This is the only paper that I am aware
of that conducts this type of examination. I created a set of experiments

104

10
0

10
1

10
2

10
3

10
4

10
1

10
2

10
3

10
4

Number of batches (weight updates/epoch)

BS
P

ex
ec

ut
ion

 tim
e

(s
ec

on
ds

)

Figure 33: The parallel execution time for cross-entropy multi-layer percep-
trons on the US census database is plotted against the number of batches.
Training time is displayed for several di�erent parallel computers. Legend:
solid line - CrayT3D, dashed line - IBM SP2, dot-dashed line - SGI Power-
Challenge, dotted line - Sun.

to examine the extent of the variation in the number of training epochs by
dividing the data set into a number of subsets or batches. I trained several
neural networks, each with a di�erent batch size, and examined the number
of epochs that were required to reach a certain performance threshold. Three
reasonably large data mining data sets were used to train the neural networks.

The phenomenon that I observed throughout these experiments was that
the required number of training epochs decreases linearly with the number
of weight updates up to a point. Beyond this point, the number of training
epochs stopped decreasing. This result was consistent for both supervised and
unsupervised neural networks trained on each of the three data sets. Invariably,
this point described some intermediate batch size between deterministic and
stochastic updating.

In order to explain this phenomenon, I conducted an analysis of the method
of batch learning. I de�ne batch learning as an attempt to approximate the
deterministic gradient using a subset of the data set. As long as the gradient
estimate is accurate, then a batch learning network will be in the same state
after each weight update as a deterministic learning network at the end of an
epoch. Therefore, a deterministic network that requires E epochs to converge

105

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

Number of batches (weight updates/epoch)

BS
P

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Figure 34: The parallel execution time for training Gaussian mixture model
networks on the breast cancer database is plotted against the number of
batches. Training time is displayed for several di�erent parallel computers.
Legend: solid line - CrayT3D, dashed line - IBM SP2, dot-dashed line - SGI
PowerChallenge, dotted line - Sun.

to a solution would require only E
b
epochs for convergence if it was implemented

using batch learning to divide the data set into b batches (assuming that the
error gradient for each batch approximates the deterministic gradient). From
this result, it is clear that the number of training epochs of a batch learning
network decreases linearly with the number of batches.

However, because the batch estimate of the gradient is noisy and incom-
plete, there is a minimum number of examples in a batch that are required in
order to determine an accurate estimate of the deterministic gradient. Thus,
there is a bound to the number of training epochs required that can be sur-
passed by further dividing the data set into smaller and smaller batches. Since
smaller batches imply more weight updates and weight updates are expensive
in a parallel environment, it is important to determine the batch size at which
the number of training epochs stops decreasing.

By incorporating the results of these experiments into the BSP cost equa-
tions for exemplar parallelism, the parallel execution cost of neural network
training for each batch size can be determined. In each case, the BSP cost was
minimized for a batch size which approximates the optimal number of train-
ing epochs. Therefore, because the cost of exemplar parallelism is minimal for

106

0 10 20 30 40 50 60 70
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of batches (weight updates/epoch)

BS
P

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Figure 35: The parallel execution time for training Gaussian mixture model
networks on the thyroid database is plotted against the number of batches.
Training time is displayed for several di�erent parallel computers. Legend:
solid line - CrayT3D, dashed line - IBM SP2, dot-dashed line - SGI Power-
Challenge, dotted line - Sun.

each epoch and because exemplar parallelism is nearly optimal for the fewest
number of epochs, exemplar parallelism can then be asserted as the optimal
strategy for parallelizing neural network training.

Empirically, by using batch learning to train neural networks, I was able to
demonstrate a considerable acceleration in the speed of convergence. For the
largest data mining training set, I was able to reduce the training execution
time by two orders of magnitude as a result of batch learning when training a
cross-entropy multi-layer perceptron.

In summary, the results that I have presented in this report demonstrate
that exemplar parallelism and batch learning are two theoretically-soundmeth-
ods for accelerating neural network training. In addition, I assert that both of
these methods are particularly well-suited to data mining applications where
the training sets are very large and are likely to contain many redundancies.
Therefore these two optimization techniques have immense potential for in-
creasing the viability of neural networks for data mining problems.

107

References

[1] M.A. Arbib, editor. The Handbook of Brain Theory and Neural Networks.
MIT Press, Cambridge, Massachusetts, 1995.

[2] S. Becker and M. Plumbley. Unsupervised neural network learning proce-
dures for feature extraction and classi�cation. In F. Pineda, editor, Jour-
nal of Applied Intelligence, volume 6, pages 1{21, Boston, 1996. Kluwer
Academic Publishers.

[3] M. Besch and H.W. Pohl. Flexible data parallel training of neural net-
works using MIMD computers. In Third Euromicro Workshop on Parallel

and Distributed Processing. San Remo, Italy, 1995.

[4] C.M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press,
Oxford, 1995.

[5] G. Blelloch. NESL: A nested data-parallel language. Technical Report
CMU-CS-95-170, Carnegie-Mellon University, 1995.

[6] G. Blelloch. Programming parallel algorithms. Communications of the

ACM, 39(3), March 1996.

[7] J.M. Buhmann. Data clustering and learning. In Arbib [1], chapter 3,
pages 278{282.

[8] N. Carriero and D. Gelernter. Data parallelism and Linda. Technical
Report TR-915, Yale University, 1992.

[9] P. Cheeseman and J. Stutz. Bayesian classi�cation (AutoClass): The-
ory and results. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Min-

ing, pages 153{180. AAAI Press, 1996.

[10] C. Darken, J. Chang, and J. Moody. Learning rate schedules for faster
stochastic gradient search. In Neural Networks for Signal Processing 2

{ Proceedings of the 1992 IEEE Workshop, Piscataway, NJ, 1992. IEEE
Press.

[11] C. Darken and J. Moody. Note on learning rate schedules for stochastic
optimization. In R.P. Lippmann, J.E. Moody, and D.S. Touretzky, editors,
Advances in Neural Information Processing Systems 3, pages 832{838,
Palo Alto, CA, 1991. Morgan Kaufmann.

108

[12] J. Dayho�. Neural Network Architectures: An Introduction. Van Nostrand
Reinhold, New York, 1990.

[13] K.M. Decker and S. Focardi. Technology overview: A report on data
mining. Technical Report TR-95-02, Swiss Scienti�c Computing Center,
1995.

[14] S.E. Fahlman. An empirical study of learning speed in back-propagation
networks. Technical Report CMU-CS-88-162, Carnegie-Mellon University,
1988.

[15] U.M. Fayyad. The KDD process for extracting useful knowledge from
volumes of data. Communications of the ACM, 39(11), November 1996.

[16] U.M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to
knowledge discovery: An overview. In Fayyad et al. [17], pages 1{36.

[17] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, ed-
itors. Advances in Knowledge Discovery and Data Mining. AAAI Press,
1996.

[18] M.J. Flynn. Computer Architecture: Pipelined and Parallel Processor

Design. Jones and Bartlett, Boston, Massachusetts, 1995.

[19] W. J. Frawley, G. Piatetsky-Shapiro, and C.J. Matheus. Knowledge dis-
covery in databases. In G. Piatetsky-Shapiro and W. J. Frawley, editors,
Knowledge Discovery in Databases, chapter 1, pages 1{27. AAAI Press,
1191.

[20] A. Grimshaw. An introduction to parallel object-oriented programming
with Mentat. Technical Report TR-91-07, University of Virginia, 1991.

[21] J. Han. Data mining techniques. In ACM-SIGMOD'96 Conference Tuto-

rial, 1996.

[22] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice
Hall, New Jersey, 1994.

[23] J.M.D. Hill, P.I. Crumpton, and D.A. Burgess. Theory, practice, and
a tool for BSP performance prediction. In Europar'96, volume 1124 of
LNCS, pages 697{705. Springer-Verlag, 1996.

109

[24] J.M.D. Hill and D.B. Skillicorn. Lessons learned from implementing BSP.
In High-Performance Computing and Networks, Springer Lecture Notes
in Computer Science Vol. 1225, pages 762{771, April 1997. Also appears
as Oxford University Computing Laboratory Technical Report TR-96-21.

[25] M.A. Holler. VLSI implementations of learning and memory systems:
A review. In R.P. Lippmann, J.E. Moody, and D.S. Touretzky, editors,
Advances in Neural Information Processing Systems 3, pages 993{1000,
San Mateo, California, 1991. Morgan Kaufmann Publishers.

[26] M. Holsheimer and A. Siebes. Data mining: the search for knowledge in
databases. Technical Report CS-R9406, CWI, 1994.

[27] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward net-
works are universal approximators. In Neural Networks 2, pages 359{366.
1989.

[28] R.A. Jacobs and M.I. Jordan. A competitive modular connectionist ar-
chitecture. In R.P. Lippmann, J.E. Moody, and D.S. Touretzky, editors,
Advances in Neural Information Processing Systems 3, pages 767{773,
San Mateo, CA, 1991. Morgan Kaufmann Publishers.

[29] M. Joost and W. Schi�mann. Speeding up backpropagation algorithms
by using cross-entropy combined with pattern normalization. Technical
Report to be submitted, University of Koblenz-Landau, 1997.

[30] M.I. Jordan and C.M. Bishop. Neural networks. In A. Tucker, editor,
CRC Handbook of Computer Science. CRC Press, Boca Raton, Florida,
1996.

[31] S. Kaski. Data Exploration Using Self-Organizing Maps. PhD thesis,
Helsinki University of Technology, 1997.

[32] R. Kohavi. Scaling up the accuracy of naive-bayes classi�ers: a decision-
tree hybrid. In Proceedings of the Second International Conference on

Knowledge Discovery and Data Mining, page to appear, 1996.

[33] A.H. Kramer and A. Sangiovanni-Vincentelli. E�cient parallel learning
algorithms for neural networks. In D.S. Touretzky, editor, Advances in
Neural Information Processing Systems, volume 1, pages 40{48, San Ma-
teo, California, 1989. Morgan Kaufmann Publishers.

110

[34] Y. le Cun. Generalization and network design strategies. Technical Report
CRG-TR-89-4, University of Toronto, 1989.

[35] Y. le Cun, P.Y. Simard, and B. Pearlmutter. Automatic learning rate
maximization by on-line estimation of the Hessian's eigenvectors. In R.P.
Lippmann, J.E. Moody, and D.S. Touretzky, editors, Advances in Neural

Information Processing Systems, volume 5, pages 156{163, San Mateo,
California, 1993. Morgan Kaufmann Publishers.

[36] O.L. Mangasarian, R. Setiono, and W.H. Wolberg. Pattern recognition
via linear programming: Theory and application to medical diagnosis.
In T.F. Coleman and Y. Li, editors, Large-scale numerical optimization,
pages 22{30. SIAM Publications, 1990.

[37] R.A. Mann. Application of the Kohonen self-organising feature map to
radar signal classi�cation. Master's thesis, McMaster University, 1990.

[38] H. Mannila. Data mining: machine learning, statistics, and databases.
In Eighth International Conference on Scienti�c and Statistical Database

Management, pages 1{8, Stockholm, 1996.

[39] J.L. McClelland and D.E. Rumelhart. Explorations in Parallel Distributed
Processing. MIT Press, Cambridge, Massachusetts, 1988.

[40] S.J. Nowlan. Max likelihood competition in RBF networks. Technical
Report CRG-TR-90-2, University of Toronto, 1990.

[41] S.J. Nowlan. Maximum likelihood competitive learning. In R.P. Lipp-
mann, J.E. Moody, and D.S. Touretzky, editors, Advances in Neural In-

formation Processing Systems, volume 2, pages 574 { 582, Palo Alto,
California, 1990. Morgan Kaufmann Publishers.

[42] S.J. Nowlan. Soft Competitive Adaptation: Neural Network Learning Al-
gorithms based on Fitting Statistical Mixtures. PhD thesis, Carnegie-
Mellon University, 1991.

[43] D. Ormoneit and V. Tresp. Improved gaussian mixture density estimates
using bayesian penalty terms and network averaging. Technical Report
FK1-205-95, Technical University of Munich, 1995.

[44] D.A. Pomerleau, G.L. Gusciora, D.L. Touretzky, and H.T. Kung. Neural
network simulations at Warp speed: How we got 17 million connections

111

per second. In IEEE International Conference on Neural Networks, pages
143{150, San Diego, 1988.

[45] H. Ritter. Self-organizing feature maps: Kohonen maps. In Arbib [1],
chapter 3, pages 846{851.

[46] R.O. Rogers and D.B. Skillicorn. Strategies for parallelizing supervised
and unsupervised learning in arti�cial neural networks using the BSP cost
model. Technical Report TR-97-406, Queen's University, 1997.

[47] W. Schi�mann, M. Joost, and R. Werner. Optimization of the backprop-
agation algorithm for training multilayer perceptrons. Technical Report
TR 16/1992, University of Koblenz, 1992.

[48] N. Serbedzija. Simulating arti�cial neural networks on parallel architec-
tures. In Computer, volume 29, pages 53{63, 1996.

[49] D.B. Skillicorn, J.M.D. Hill, and W.F. McColl. Questions and answers
about BSP. Scienti�c Programming, to appear. Also appears as Oxford
University Computing Laboratory, Technical Report TR-15-96, Novem-
ber 1996.

[50] D.B. Skillicorn and D. Talia. Models and languages for parallel compu-
tation. In Computing Surveys, 1997. to appear.

[51] M. Witbrock and M. Zagha. An implementation of back-propagation
learning on GF11, a large SIMD parallel computer. Technical Report
CMU-CS-89-208, Carnegie-Mellon University, 1989.

[52] W.H. Wolberg and O.L. Mangasarian. Multisurface methods of pattern
separation for medical diagnosis applied to breast cytology. In Proceedings
of the National Academy of Sciences, volume 87, pages 9193{9196, 1990.

[53] T. S. Wong. Partitioning strategies for parallelizing neural networks.
Master's thesis, Queen's University, 1993.

[54] A.L. Yuille and D. Geiger. Winner-take-all mechanisms. In Arbib [1],
chapter 3, pages 1056{1060.

112

NB BS LR EP STD Speedup
1 699 0.018 110.18 36.09 0
2 350 0.036 74.16 22.96 1.48
4 175 0.065 55.96 22.06 1.97
7 100 0.11 43.62 11.25 2.53
14 50 0.19 34.6 9.79 3.18
28 25 0.29 31.36 17.56 3.51
70 10 0.57 21.24 5.66 5.19
140 5 0.76 21.92 6.79 5.03
233 3 0.7 22.56 5.33 4.88
699 1 0.7 23.4 6.84 4.71

Table 14: Batch learning training results for the cross-entropy multi-layer
perceptron on the breast cancer database.

A Batch Learning Results for Supervised Net-

works

Legend:

� NB : number of batches (number of weight updates for each epoch)

� BS : batch size (number of examples in each batch)

� LR: the optimal learning rate for each batch size

� EP : average number of epochs required for convergence

� STD : the standard deviation of the number of training epochs for each
batch size

� Speedup: the speedup attained over the rate of convergence of the deter-
ministic neural network

B Batch Learning Results for Unsupervised

Networks

Legend:

113

NB BS LR EP STD Speedup
1 3772 0.005 598.94 115.39 0
2 1886 0.01 302.88 95.45 1.98
4 943 0.018 172.1 27.63 3.48
7 539 0.028 101.84 14.2 5.88
14 270 0.05 64.92 11.66 9.23
23 164 0.07 53.78 7.574 11.14
42 90 0.07 52.32 6.976 11.44
60 63 0.08 52.45 6.357 11.42
122 31 0.08 52.94 7.702 11.31
270 14 0.08 50.54 6.866 11.85

Table 15: Batch learning training results for the cross-entropy multi-layer
perceptron on the thyroid database.

NB BS LR EP STD Speedup
1 30162 0.0001 294.3 15.68 0
2 15081 0.0002 146.2 8.49 2.01
4 7541 0.0004 73.5 3.68 4.00
8 3771 0.0008 42 1.49 7.01
10 3017 0010 33.3 2.58 8.84
16 1885 0.0016 23.7 1.41 12.42
32 943 0.0032 13.7 0.67 21.48
64 472 0.0064 8.5 0.85 34.62
128 236 0.0128 6.3 0.67 46.71
256 118 0.02 5.3 0.48 55.53
512 59 0.02 5.1 0.5676 57.71
1024 30 0.02 5 0.667 58.86
2056 15 0.02 5.3 0.483 55.53

Table 16: Batch learning training results for the cross-entropy multi-layer
perceptron on the US census database.

114

NB BS LR EP STD Speedup
1 699 1.0 18 7.00 0
2 350 1.0 9.2 2.25 1.96
4 175 1.0 6.3 1.95 2.86
8 88 0.9 4.2 1.03 4.29
16 44 0.85 3.3 0.68 5.45
32 22 0.5 3.2 0.92 5.63
40 18 0.45 3.9 1.33 4.62
48 15 0.4 4.0 1.45 4.50
64 11 0.3 5.3 2.35 3.40

Table 17: Batch learning training results for Gaussian mixture model networks
on the breast cancer database.

� NB : number of batches (number of weight updates for each epoch)

� BS : batch size (number of examples in each batch)

� LR: the optimal learning rate for each batch size

� EP : average number of epochs required for convergence

� STD : the standard deviation of the number of training epochs for each
batch size

� Speedup: the speedup attained over the rate of convergence of the deter-
ministic neural network

115

NB BS LR EP STD Speedup
1 3772 1.0 13.8 10.22 0
2 1886 1.0 5.0 2.22 2.76
4 943 1.0 4.0 1.25 3.45
8 472 0.9 2.4 0.55 5.75
16 236 0.9 2.1 0.37 6.57
32 118 0.7 2.0 0.13 6.90
48 79 0.7 2.0 0.2 6.90
64 59 0.6 3.6 6.89 3.83

Table 18: Batch learning training results for Gaussian mixture model networks
on the thyroid database.

116

