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Abstract

Bulk Synchronous Parallelism (BSP) as a parallel model enables accurate costs of parallel
programs to be predicted from the program structure and two architectural parameters,
g, the permeability of the network, and [, the time required for barrier synchronisation.

Networks such as ATM already play a role in parallel computers built as networks of
workstations, and may become the standard mechanism for interconnecting processors
at all scales. We present an analytic model for determining the BSP parameters of
such architectures. Although the model is simple, there is substantial agreement with
measured results where these are known. This represents the first time that these archi-
tectural parameters have been determined other than by benchmarking, and suggests
that the approach may be serviceable for other wormhole routed networks.

Keywords: parallel computing, interconnection network, performance modelling,
total exchange, bulk synchronous parallelism, latency, throughput.



1 Introduction

A successful model [26] for parallel computing should:

e be simple to understand,
e provide us with an easy way to program,
e be architecture-independent,

e and provide a method to predict performance.

Most parallel programming models do not have the above properties. There is a
need for a standard architecture model of parallel computing, which would enable
architecture-independent programming.

Bulk Synchronous Parallelism (BSP) [37] is a parallel computing model, which
shows great promise [14, 27] and satisfies many of the properties above. BSP provides
an easy way to model parallelism by abstracting the details of parallel execution.

The success of parallel computing also depends on the performance of commu-
nication among the processors, which is related to the physical network and its
communication protocols. Implementing parallel computers atop Ethernet or other
shared-physical media can result in large communication latencies, due to inefficient
access to network resources. Switch-based media are a solution for this problem. The
advantage of switch-based connections compared to shared media is that multiple
packets can be passed simultaneously through switches. Switch-based communica-
tions are based on the store-and-forward switching technique. In this technique,
each packet should completely arrive at the intermediate switches before it can be
sent to the next destination along the path, which makes the latency of transferring
packets dependent on the number of intermediate switches. Therefore, topology has
a very strong effect on the latency of communication.

1.1 Contribution

We model ATM networks based on pipelining messages through the network because
sensible runtime systems and hardware transmit messages in this way. The model
is then used to determine optimum message sizes to achieve maximum throughput.
There is strong agreement between the throughput and latancy predicted by the
model, and measured results.

These results are then used to predict BSP architectural parameters. We use
total-exchange (every processor sends/receives different messages to/from the oth-
ers) and one-relation (each processor sends/receives at most one message to/from
another processor) algorithms to predict the g parameter. Total exchange and hard-
ware broadcast algorithms are modelled to determine the value of {.

The contributions of this paper are:



e Providing an analytic model to estimate the optimum message size that should
be sent through the network, and the achieved latency. In this analytic model,
we model the pipelining method for data transmission from the processor to
the network.

e Demonstrating the use of the analytic model to analyse the BSP communica-
tion parameter, g, considering heavily-loaded, and lightly-loaded networks.

e Demonstrating the use of the analytic model to analyse the BSP synchroni-
sation parameter, [, using two different implementation techniques, namely
total-exchange and broadcast.

Section 2 is an overview of the parallel models, especially BSP, and the important
concepts of ATM networks. In Section 3, we establish our analytic model to estimate
the latency of communication considering both heavily-loaded and lightly-loaded
networks. Data pipelining, which is used to transmit data through a network, is
introduced in this section. Moreover, we make use of ATM hardware multi-point
services to analyse the behaviour of collective operations (total-exchange, broadcast)
on communication latency. These collective operations are later used in order to
provide a framework to estimate the synchronisation cost of BSP programs. In
Section 4, we expand our analytic model to cover the BSP synchronisation, and
communication costs. We introduce a framework to estimate the BSP parameters,
g and [, using this analytic model.

2 Background

In this section, we review the important concepts of ATM and the work that has
been done on ATM APIs. We also give a brief presentation of the BSP parallel
model and its properties.

2.1  Asynchronous Transfer Mode (ATM) Network

There are considerable technical and operational advantages to communication providers
in integrating all of their services into a single network, which handles all geographi-

cal scales and delivers a variety of data rates. This integrated service is called Broad-
band Integrated Services Digital Networks (B-ISDN), and offers video on demand,
live television, CD-quality music, and many other services using the telephone line
[34]. The technology that provides these integrated services is called Asynchronous
Transfer Mode (ATM) [11]. ATM transmits data using small fixed-size packets
called cells. The cells are 53 bytes in length, of which 5 bytes are devoted to the
header and the rest are for payload.

The properties of ATM that make it attractive are :



e Using high-bandwidth optical fibres.

e Fast switching of small fixed-size cells. The advantage of switch-based connec-
tions over shared media is that they can pass multiple packets simultaneously.

e Connection-oriented communication.
e Scalability. It is applicable to both local area networks and wide area networks.

e In collective communications, in which more than two processors are involved,
communication networks face the problems of network access, congestion, and
latency. ATM networks are designed to provide high throughput, which should
be a better way to meet the needs of collective communications [15, 25].

The intended speeds for ATM networks are 155 Mbps and 622 Mbps, with the
possibility of gigabit speeds later [34].

ATM networks are connection-oriented, that is the route is established between
source and destination before data transmission. This connection is called a Virtual
Circuit (VC). ATM allows multiple VCs to be grouped into Virtual Paths (VP).

ATM’s 53 byte cells have a 5 byte overhead, which contains:

e 4-bit Generic Flow Control (GFC), which is used for flow control.
e 8-bit Virtual Path Identifier (VPI).
e 16-bit Virtual Channel Identifier (VCI)

e 3-bit Payload Type Identifier (PTI). This field separates the user cells from
the network management cells.

e 1-bit Cell Loss Priority (CLP). This field is used during network congestion.
It helps to decide which cells to discard.

e 8-bit Header Error Correction (HEC), which is a checksum field on the first
four bytes.

All the switches have a table of incoming and outgoing VCs, and they route cells
accordingly. Because cells are small and of fixed length, switching operations are
done very quickly.

In the ATM protocol stack (Figure 1), the ATM layer handles construction and
verification of the cell headers, routing the cells, cells multiplexing and demultiplex-
ing [11,12,31,34]. However, to provide services to users, another layer is needed.
The ATM Adaptation Layer (AAL), above the ATM layer, provides a variety of
services for applications. There are four different AAL protocols:



AAL 1, which supports real-time, constant bit rate, connection-oriented traffic;

AAL 2, which supports variable bit rate, connection-oriented traffic;

AAL 3/4, which supports variable bit rate, both connection-oriented and con-
nectionless traffic; and

AAL 5, which was designed to provide the AAL 3/4 services more efficiently.

Application layer

ATM Adaptation layer

ATM layer

Physical layer

Figure 1: ATM protocol stack

2.2 ATM Application Programming Interface (API)

In order to communicate with the ATM layer, applications need to use Applica-
tion Programming Interfaces (API). Several different implementations of APIs are
available, for example: Fore Systems ATM API [8], the BSD socket programming
interface [3], Sun’s Remote Procedure Call (RPC) [3], and the Parallel Virtual Ma-
chine (PVM) [4] message passing library. Lin et al. [25] discuss the performance
tradeoffs of different APIs in an ATM environment. Fore’s API provides capabili-
ties which are not available in other APIs because it provides direct access to the
ATM layer for the application layer. Moreover, each API represents communication
with a different protocol layer, and introduces different overheads. For example, in
the socket interface, applications use TCP/IP protocols which introduce additional
overhead. Sun’s RPC uses External Data Representation (XDR) [3], which is also
an extra overhead.

Fore’s ATM API The ATM API routines provide connection-oriented commu-
nication. A connection has to be established between two ends before the data can
be transferred. After that, the network makes a strong effort to send the ATM cells



to their destination. Fore’s library routines use a socket-like interface. This API
provides lower communication overhead because it provides applications with direct
access to the ATM Adaptation Layer. Figure 2 shows this capability.

( Application )

ATM API

ATM AAL

ATM

Figure 2: ATM API

Using Fore’s API. In order to make a connection, the application first uses
atm_open() to open a file descriptor. Then, it calls atm_bind() to bind a local
Application Service Access Point (ASAP) to the file descriptor. Connection is set
up using atm_connect on one end together with atm_listen and atm_accept on the
other end. These routines allocate an ATM VPI and VCI to the connection. Before
the connection is accepted, the bandwidth and QoS defined by the host is checked
by the Connection Admission Control (CAC) algorithm [12]. If the communication
resources are available for the requested QoS, then the connection will be set up.

Applications can specify the AAL layer from which they want to work. This is
provided to the applications using an argument in the atm_connect() routine. After
connection establishment, applications can use atm_send() and atm_recv() to send
and receive messages. The maximum size of the message depends on the selected
AAL and the device driver implementation. In our work, we want to automate the
assigning of the maximum message size for a connection to minimise congestion and
latency. Our model will be based on Fore’s ATM API routines.



2.3 Collective communications

Collective communications, such as scatter, gather, broadcast, and reduce, are often
used in parallel computing. Efficient implementation of such operations is critical to
the performance of parallel applications. Collective operations can be classified as
process control, data movement, and global compute operations. These operations
involve more than two processors.

Category Collective Operation | Definition
broadcast one processor sends the same
message to all processors
scatter one processor sends a different
data message to each processor
movement gather each processor sends a different

message to one processor

all-to-all broadcast

every processor performs a broadcast

all-to-all scatter-gather
total-exchange

every processor performs a scatter
and gather

process control

barrier synchronisation

all processors reach the same
point before continuing

global operations

reduction processors perform a global
operation on data
scan partial reduction

Table 1: Collective Operations

2.4 What is BSP?

One major area of research in practical parallel computing is the search for a stan-
dard architectural model for parallel computers. BSP [27,29] is a promising start.
Bulk Synchronous Parallelism provides standardisation in two steps :

e A standard architectural model.

It abstracts all parallel architectures into

one simple machine that consists of a set of processor-memory pairs, a global
communication network, and a mechanism for the barrier synchronisation of
the processors. Both message passing and shared-memory programming styles
can be represented by this architecture (Figure 3).

e A foundation for architecture-independent programming. A BSP program
proceeds in one or more supersteps [14,32, 36]. Each superstep consists of a
set of local memory operations, a set of global communications, in which each
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Figure 3: BSP architectural model

processor sends and receives a number of messages, and a barrier synchroni-
sation, in which all the non-local data communications take effect (Figure 4).

This simple notion of supersteps provides us with an easy way of achieving scal-
able portable parallel programming [9], because it hides the architecture-dependent
features and abstracts a model of parallelism. It also makes it possible to predict
the performance of software programs on a given architecture. BSP uses only two
parameters to capture the properties of each architecture. These two architectural
parameters are:

e ¢, which is the communication cost per one-word message, in the context of
continuous randomly-addressed traffic; and

e [, which is the time required for a global synchronisation among the processors.

These parameters clearly depend on the number and computational speed of the
processors, the speed and bandwidth of the communication networks, and the cost
of barrier synchronisation. The speed of the processors is expressed in terms of
number of basic unit operations (called steps) that they execute each second. Each
step is often a single floating point operation (flop). The parameter g captures the
effective ratio between the rate at which data can be moved between processors
under heavy, but reasonable, load and the computational speed of the processors.
The cost of communication depends not on the total volume of traffic moving
through the network but only on the maximum fan-out or fan-in of traffic at any
processor. Call a communication pattern in which no processor sends or receives
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Figure 4: BSP programming phases

more than h words an h-relation. Then the BSP cost model asserts that the time
taken for the global communication step will be hg. ¢ is often expressed in units of
words transferred per unit floating point instruction time.

Therefore, the cost of a superstep is the sum of three costs:

e the time of local computation in each process during the superstep,
e the time of delivery of the h-relation communication, and
e the cost of barrier synchronisation.

or
Cost of a superstep = Max(w;) + Max(h;g) +

or simply as
Cost of a superstep = w + hg +1
where w; is the local computation of process ¢, h;g is the cost of the h-relation

communication and [ is the cost of barrier synchronisation. The cost of a BSP
program is the sum of the costs of its supersteps.



The current best implementation of BSP is the Oxford BSP Library [10]: It is a
library callable from sequential languages such as Fortran and C. It uses the SPMD
(Single Program Multiple Data) approach.

3 Analytic modelling of ATM performance

In order to observe the performance of a communication network, several approaches
are available. The most common ones are:

e Implementation, which helps us judge the performance of a specific communi-
cation network with a certain environment and a particular parallel algorithm.
Although implementation may give us precise information about parallel com-
puting performance in a specific environment, it is not a good choice to use in
order to observe the performance of a wide range of environments. Moreover,
it is hard to provide certain experimental situations on a real environment.

e Simulation is another approach that may seem to be a good choice for per-
formance measurement. It can be developed to provide the situations that
are hard to achieve in a real environment, and therefore gives stronger results
compared to an implementation model. However, simulation is usually very
expensive, due to the level of detail that it uses.

¢ Queuing network modelling [2] models the performance of a communication
network often using equations to describe the behaviour of each object in the
system. Such models can be very complex.

e Analytic modeling is straightforward and cheap, due to the level of abstraction
that it provides. However, it may miss details.

In this section issues in communication performance are discussed. We introduce an
analytic model for network performance using a pipelining scheme considering the
communication performance issues. The reason for choosing the pipelining scheme
is that it represents what actually happens in processors, and the ATM hardware
and switches.

3.1 Networks of workstations

The cost of supercomputers has encouraged researchers to find other cost-effective
options in the area of parallel computing. One proposal is the use of a network of
workstations [6, 7, 30, 38, 39]. The advantage of this approach is its lower cost. The
drawback is that due to the limited speed and reliability of current medium-sharing
LAN technologies such as Ethernet and token rings, the achieved performance is



low. However, low-bandwidth networks (Ethernet, token ring) are being replaced
by high-bandwidth switch-based networks (ATM). These improvements provide the
potential for workstation clusters to provide performance comparable to that of
supercomputers [5,17,39]. Figure 5 is an example of a cluster of workstations over
an ATM network.

The appearance of high-bandwidth, flexible, switch-based network technology,
such as ATM, promises to minimise the performance degradation inherent to net-
working. However, bandwidth alone is not the only factor needed to reduce commu-
nication time. Communication performance relies on many other factors [22, 23, 38]
such as the overhead of the protocol stack, latency, congestion, and message size.
In this section, we focus on optimising these factors to design a method of handling
collective operations over an ATM communication network and model its cost.

Figure 5: Network of workstations using ATM

3.2 Issues in Communication Performance

There are two components of communication overheads [21, 30, 40]: hardware and
software overheads. Hardware overheads include: host interface overhead, the switch
and signal propagation delay, and the architecture of the host computer. Software
overheads include: interactions with the host operating system, device drivers, and
protocols.

Overheads can also be broken into per-message and per-byte overheads. For
example, interrupt handling, and context switching in the host operating system
are per-message overheads. Data checksumming and data copying from user space
to kernel space and vice versa are per-byte costs.

Performance can also be affected by network congestion [41]. The network is
congested if its resources have been completely consumed. Congestion in the network
may result in packet loss, and queueing delay in the switches.
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There are different solutions for network congestion [11,34]. ATM employs
hardware-based flow control [23] to restrict each host to an agreed transfer rate
based on the network capacity. This flow control reduces the network congestion.
Throughput is limited by the rate at which the sender can send messages into the
network.

3.3 Communication Overheads

The choice of API can have a significant effect on performance. For example, the
BSD socket interface uses TCP as a transport layer with IP. This implementation
degrades performance [1]. ATM networks provide an end-to-end Quality of Service
(QoS) guarantee for each virtual circuit. IP loses this individual QoSs [20], because
it multiplexes multiple transport connections into a single VC. TCP checksums
a packet to detect problems. However, ATM Adaptation Layer 5 (AAL5) does
checksumming, so TCP provides a redundant function which is costly. Moreover,
TCP/IP increases the header overhead in the packets [11]. This overhead reduces the
bandwidth available to the application layer. Some researchers [1, 5] have designed a
transport layer that turns off data checksumming and other redundant functions of
TCP/IP. They have written their own memory management, and task scheduling.
In this case, the operating system is only responsible for handling the packet arrival
interrupts, memory allocation, and calls to the task scheduler. The FORE Systems
APT provides relatively efficient communication.

3.4 Communication Latency

In communication networks, the time required to move data between nodes is critical
to system performance, because it effectively determines what granularity levels of
parallelism are possible in executing an application program. An important metric
to evaluate a network is communication latency, which consists of three values :

e start-up latency, the time to handle the packet at both source and destination
nodes.

e transmission time, the time after the head of the packet has entered the net-
work at the source until the end of the packet exits from the network at the
other end, without considering any blocking time.

e blocking time, all other delays that happen due to the use of shared resources,
such as the delay of channel contention.

The start-up latency depends mainly on the design of protocol stack and the interface
between the host and switch. In an ATM network, packets may traverse one or
more intermediate nodes (switches) before arriving at the destination node. In

11



this case, the topology of the network may have a major effect on the network
latency. However, with the use of different switching techniques [33] this effect can
be decreased considerably.

ATM switching techniques Packet-switched networks are based on the store
and forward switching technique. ATM is also a kind of packet-switched network
(packets are small size cells). In the store-and-forward method, when a packet
reaches an intermediate node, the packet is stored. It is then forwarded to the next
switch when the output channel is available. In this technique, the network latency

is : _
PacketSize

ChannelBandwidth

It is clear that the path length between the source and destination has a direct
impact on the network latency in the store and forward technique. To decrease data
transmission time, the virtual cut-through method has been introduced by Kermani
and Kleinrock [24, 28]. In this method, the packet is stored in an intermediate switch
only if the output channel is busy. In this technique, the header is analysed by the
switch and the rest of packet follows the header in a pipeline fashion. Therefore the
network latency is :

Latencypnetwork = ( ) * (NumberOfSwitches)

HeaderLength
ChannelBandwidth

PacketLength
ChannelBandwidth

Latencypetwork = ( ) * NumberOfSwitches +

When PacketLength > HeaderLength, the effect of the number of intermediate

switches (NumberOfSwitches) on the network latency is reduced. Figure 6 shows
these two techniques of packet switching.

3 D)

Switch 1 Switch 2 Switch 3 Switch 4 Switch 1 Switch 2 Switch 3 Switch 4

= [ JL J[L ] oo ][] L) [
= ][] (Jem ][] [
L =l ] L Hem ] [
I I O o B =) L O L oo

- TiME g TiMe
L >

Packet Packet

Header Data Header Data

Figure 6: a) Store and forward packet switching. b) Cut-through packet switching.
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Because ATM breaks a packet into a number of small cells, switching is performed
very quickly. Furthermore, cells are pipelined over the virtual circuit [16, 18, 35].
These characteristics reduce the effect of the path length on the latency. We will
use this approach (pipelining the packets through the virtual circuit) in our model.
There are two reasons for this:

e pipelining packets provides us with continuous traffic schemes across the com-
munication links. We want to have this continuous traffic to provide a good
estimate of g.

e This approach reduces the effect of path length on message transfer time.

3.5 The maximum theoretically-available bandwidth

Another important factor for network performance is bandwidth. The maximum
bandwidth available to the Application layer depends on protocol formats and the
overheads which are involved in each layer. Let us assume that the physical layer is
based on a 155 Mbit/sec SONET STS-3¢/OC-3c Physical Layer Interface. Its frame
format is shown in figure 7.

9 rows$

87 columns
3 columns

3 rows:

(o |

Path overhead Line overhead Section overhead
Figure 7: SONET STS-3¢/OC-3c
The size of the SONET STS-3¢/OC-3c frame is:

Oc3cframe = ((87+3)%9)x3
= 2430 bytes

The overhead consists of: path overhead (9 bytes), line overhead (54 bytes), and
section overhead (27 bytes). The total overhead of the physical layer is 90 bytes,
and the payload is (2430 - 90) bytes. We can see that the bandwidth left to the
ATM Layer is :

13



AtmBandwidth = %W*ChannelBandwidth

243090 4 155.52

= 149.760 Mbit/sec

The same computation can be performed for the other layers up to the Appli-
cation layer. At the ATM layer, the data units are cells. Figure 8 shows an ATM
cell. As shown in the figure, a cell has a 5 bytes header and a 48 byte payload. So,

- 1-64K »

AAL Payload AAL Trailer

T T T T T T ] T
48 |48 | 481 48,  eeees | 48, 48, 48

5 byte \/47 48 byte —ﬂ/

header payload

Figure 8: ATM cell
the bandwidth available to AALS layer is :

AalBandwidth = %%*ChannelBandwidth

= 22 4149.760 = 135.632 Mbit /sec

The Fore’s ATM API does not have any transport protocol layer over the AALbS
so 135.632 Mbit/sec is the theoretically-calculated bandwidth that is given to the
application.

3.6 Pipelining and optimum message size

ATM cells are pipelined through the VCs, to reduce the communication latency. We
use pipelining to model the data transmission in the upper layers of the protocol
stack because it is used in runtime system, and the hardware works in pipelined
manner. Obviously, pipelining messages reduces the start-up latency, and the effect
of the transmission time on the end-to-end latency (See Figure 9).

An abstract view of the model Assume z to be the size of data to be sent
through the VCs. Instead of sending z as a single message, we send it as n messages

14
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Figure 9: Pipelining messages from the application layer to the pipes or VCs at one
end and receiving them at the other end

of size m (my to my). Moreover, assume t;, (k = 1 to i) to be the latencies of
different layers in the protocol stack, as the messages are traversing the pipeline
stages, and 7 to be the number of layers that the message traverses before it gets to
the pipe (VC). Note that, t; is a function of m. Therefore, pipelining messages has
the following latency:

i
Latencyprotocol = Z ty + (n — 1) MAX],_ (&) (1)
k=1

This is the latency at one end. The other end receives the messages in the same
manner (pipelined), and therefore it has almost the same protocol latency. The
second step of Figure 9 shows the latency of transferring data through a pipe.
Buffering messages and packing them, before they are sent through the pipes (VCs),
helps to better fill up the pipes, and therefore get a lower network latency.

Let us consider a pipe modelling the communication channel and data size of
z. It does not matter if the data is sent in chunks of size m or 2m or larger. The
time of transferring this data is x/Channel Bandwidth. In order to get a minimum
start-up latency, Equation 1 should be minimised.

Analytic model Because of the limited physical bandwidth, and other latencies
that were discussed in the previous sections, there is an optimum message size of

15



m bytes and the number of messages n that gives us the minimum latency. In this
case we will have £ = mn.

The application should pipeline the data z in the chunks of size m. The messages
are sent to the ATM Adaptation Layer using Fore’s API. AAL breaks down messages
into 48 byte segments. Segments are sent to the ATM layer, and after adding a 5
byte header, they are given to the physical layer. On the destination node, cells are
assembled and submitted to the application. The data flow from the source to the
destination involves the steps (Figure 10) given below:

1. The user application calls the ATM API function atm_send, which makes a
write system call. This, in turn, calls the aal_send aal procedure in the kernel,
which hands the message to the ATM device driver’s drv_queue routine that
enqueues the message in the device transmission queue.

2. The card picks up the packet from the queue, and adds the AALD trailer and
segments the AALS frame into ATM cells. Then, cells are transmitted to the
destination node.

3. On the destination end, the card picks up the cells and enqueues them. Then,
the AALD trailer is checked and the required functions for detecting errors
are performed by the card. Furthermore, the packets are placed in a per VCI
queue at the device driver.

4. Then, aal_receive picks up the packet from the per-VCI queue and after check-
ing enqueues the packet. Finally, the application receives the message by call-
ing atm_receive, which makes a read system call. This routine copies the data
from kernel space to user space calling (calling aal_receive).

The latency of the data flow from the source to the destination can be divided
into two major categories: per-byte latency, and per-message latency. We model
the latency of the first step as:

t1 =ay xm+ b (2)

where a1 is the per-byte latency, and b; is the per-message latency. Similarly, the
latency of the second step can be modeled as:

to =az*xm+ by (3)

The third and fourth steps (receiving steps) have almost the same latency as the
first and second steps.

Let us return to the pipelining schemes of our model. The latency of pipelining
n messages of size m in the sending node, using Equation 1 will be :

Latencyprotocol = t1 + t2 + (n — 1) * MAX(t1,12)

16
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drv_queue

A
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Figure 10: Data flow from source to destination.

To achieve a minimum protocol latency by message size, we should compute the
result of: d Latencyprotocor/dm = 0. Assuming that to > ¢;, we will have:

d Latencyprotocol _ d (E%:I (ak *m +b) + (n — 1) * (ag *+ m + bZ))
dm dm

Substituting n = xz/m in the Equation 4, we get:

2 by =
d LatenCyprotocol _ d (Zkzl(a'k:’krn‘l'bk')'i'aZ"‘CU_QZ"‘771-|'—2mI —bz)
dm - (bos) dm
kT
= G-z
= 0

The minimum latency occurs when:

bQ*I
m =

(5)

Equation 5 shows that the optimum message size is of O(y/z). It is related to the
square root of the ratio of the maximum per-message latency to the total per-byte
latencies of the protocol software. Using this message size, the achieved protocol
latency at the sending node is:

a

Latencyprotocol = a1 * %—l—bl—l—@* bz%—i—bQ—l—aQ*w—ag* bz%-i—bzbi — by
2*fﬂ
V @1

= 2%+\ay*xbyxx+as*xx+b
(6)
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There is almost the same protocol latency at the receiving end. Therefore, the
protocol software latency of sending and receiving data would be:

Latencysndrcv = 2X Latencyprotocol

= 2x(2%xva  xbyxx+ay*xx+b) (@)

where, Latencysparey 1S the latency that the sending and receiving end-points are
involved with. This latency is of O(x).

Using the model There has been much work measuring the throughput and la-
tency of ATM networks in different environments. Most of the experiments use the
TCP/IP protocol. Keeton, Anderson, and Patterson [23] have performed experi-
ments on different hardware and software environments. We will use one of their
environments to validate our analytic model. Its parameters are shown in Table 2.

Host workstation 50 MHz Sun SparcStation 20s running Solaris 2.4
Network specification | ATM, using Fore SBA-200 Network Interface (NI) card,
and ASX-200 Switch
Link bandwidth 155 Mbit/sec

Table 2: The analytic environment

Keeton, Anderson, and Patterson [23] have measured per-message latency, and
per-byte latency for the protocol software and network interface (NI) environment
in Table 2. These measurements are shown in Table 3.

per-byte (us) | per-message (1)

protocol software
and 0.0375 151

device driver

NI 0.0425 200

Table 3: Per-byte and per-message latencies for Sun Sparc-20 workstations con-
nected by ATM

Using this data together with the Equations 2 and 3, we have:
t;1 = 151 4 0.0375 * m

and
to = 200 + 0.0425 x m
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It is clear that {2 > ¢1 so, substituting these values in the Equation 1, we have:
Latencyspgrye = 302 + 0.075m + 400 + 0.085m + (n — 1) * (400 + 0.085m)  (8)

Using Equation 5, the optimal message size is:

_ 200
m = 0.0375 (9)

~ T3z

This gives the optimum message size (Equation 9) to minimise the latency of the
protocol software and network interface costs (Equation 8).

The problem is not as simple as this computation. The link bandwidth is also
an important factor that has to be considered. We cannot send a message faster
than the available bandwidth.

Let us consider the available bandwidth which was calculated in Subsection 3.5.
The unit-time (time to transmit one unit of data) of protocol software cannot be
less than the unit-time of physical link available to the application layer, which is
given below:

UnitTimene = ﬁ usec/byte
~ 0.06 usec/byte
Moreover we have :

LatenCyprotocol

N (10)
2%/ a1 ¥boxxr+as*xx+b1
xr

UnitTimeprotocol =

This cannot be less than 0.06; otherwise it causes link overflow. Let us again con-
sider the latencies shown in Table 3. We have, a; = 0.0375 usec, by = 151 usec,
as = 0.0425 psec, and by = 200 psec. Figure 11 shows the unit-time values (Equa-
tion 10) for the range of data sizes from 1,000 bytes to 1,000,000 bytes. For the
small size of messages, the unit-time is effected mostly by the per-message cost. As
the size of messages becomes larger, the per-byte cost becomes a more important
factor for the cost of unit-time.

This graph crosses the 0.06 line at a data size of almost 114,600 bytes. Con-
sidering this data size, the achieved unit-time would be minimised. The required
message size for this size of data, using Equation 5, would be:

bg*x

m = = 24,700 bytes

a
Figure 12 shows the lowest latency of 6,870 usec, which is achieved with the
message size of 24,700 bytes. This value is the theoretical value for the message size
without considering any other traffic, so obviously this value is an overestimation of
the message size.
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Figure 11: The UnitTimey ot0c0r for different data sizes from 1 Kbytes to 1,000
Kbytes

3.7 Latency considering network congestion

The estimated latency in theory is different from the experimental results because of
other traffic in the network. So far, we have estimated the latency of communication
between two hosts without any intermediate switching nodes or any other traffic, but
what is the latency and optimal message size when a message has to pass through
several switches with other traffic present in the network at the same time?

Pipelining the cells through virtual circuits reduces the effect of path length in
the cost of communication. But, there is another issue that increases the latency,
which is congestion. Congestion happens whenever the input rate is greater than
the available link capacity. It means that :

Z(InputRate) > Available link capacity

Many congestion control methods exist. One of the most common methods to
divide the bandwidth fairly among several sources is maz-min allocation [19]. This
method is defined as follows: suppose there are n sources, and the ith source gets a
bandwidth of z;. The allocation vector z1, xo, ..., T, is feasible if all link load levels
are less than or equal to 100%. The total number of these vectors is infinite, but for
each of them the source that is getting the least allocation is the unhappiest source.
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Figure 12: Minimum latency based on a range of message sizes and the data size of
114,600 bytes

Among these allocation vectors, we want to find the one which gives each source the
maximum possible bandwidth. In the environment that we are using, the physical
bandwidth is 155 Mbit/sec from which we get a bandwidth of 135.632 Mbit/sec
available for the application layer. Based on the number of the processors which use
this bandwidth, and taking advantage of max-min algorithm, we can assign a fair
allocation vector.

3.8 ATM switches and their effect on latency

In this section, we consider intermediate switches and their effect on our model.
We consider an ATM network with any reasonable topology. Moreover, we consider
total-exchange communication, because it is often used for synchronisation opera-
tions. In a total-exchange, every processor sends/receives different messages to/from
all the others.

Consider p processors connected to a cluster of switches. Furthermore, assume a
total exchange in which each communication pair has its own VC. In this case there
are p * p VCs for sending data through switches.

The total throughput is limited by the busiest switches and links. The peak
cell rate should be chosen based on the rates available through these bottlenecks.
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The busiest part of the network in total exchange is shown in Figure 13. If we
cut the network into two subnetworks with equal nodes on each side, and with the
minimum possible number of links are placed on the cut-line, then these links are the
bottlenecks. The reason is that these links have to tolerate p/2 * p/2 bidirectional
communication, which is the worst case scenario. The number of physical links that
cross the cut-line is the bisection-width of the network.

Most of today’s ATM switch interconnection topologies with N switches have
bisection-width = /N [11]. If we assign bisection-width = \/N, then we have :

N
VeBandwidth, . = % (11)

4

for VeBandwidtheytine, the assigned bandwidth per VC.

Cut Line

e

: . TATMNS IT?HES @C

N

| | physical links crossing the cut line

Q Processors

‘ VC (Virtual Circuit)

Figure 13: The location of bottlenecks in total exchange

So far, we have considered the network-network bottlenecks. We now consider
the bottleneck at the host interface to the network links. Each host sends p — 1
messages to the other processors and receives p — 1 messages from them, so we will
have 2(p — 1) VCs and 2L physical links from host interface to the network. L is the
number of physical links for each direction. From these 2L links, L links are used for
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sending data to the network, and the rest are for receiving data from the network.
The reason for separating sending links from receiving ones, is that fibre optics,
which are used in ATM, cannot be bidirectional. Usually, L = 1 [20, 22, 25, 38]. We
also consider L = 1 for our analytic model, but it can be replaced with the desired
number of links based on the available environment. If each of these 2L links has a
bandwidth of C’ Mbps, then the bandwidth available for e

LxC
VCBandwidthipgerface = ———— (12)

(p—1)

Using the maz-min algorithm we will assign each VC a bandwidth of:

VN«C (' >

5«8 T(p-1)

VCBandwidth = Min < (13)

We have to compute the optimum message size (m bytes) that can be sent in
order to get the minimum latency and optimum use of the available bandwidth.

3.9 Optimum message size in total-exchange

The latency of the protocol software was computed in Subsection 3.6. We now
compute the protocol unit-time, in which a unit of data (1 byte) can be sent to the
VCs. This unit-time would be:

Latencyprotocol

UnitTimeprotocor = T
a2*x+2*\/m+bl
z

This unit-time cannot be smaller than the UnitTime,. = 1/VCBandwidth, which
was analysed in Subsection 3.5, otherwise the communication link will be faced with
data overflow and message loss problems. Therefore, we have :

ag * T+ 2% /a1 x by x x + by > UnitTimey. x x (14)

Clearly, the best situation is when UnitTimeypioco1 = UnitTime,.. For the environ-
ment that we are analysing, with the latencies that are shown in Tables 2 and 3,
the UnitTime,. > a. Thus, we can say:

(UnitTimey. — ag) x x — 2/ ag x by xx — by <0 (15)

For simplicity, we write UnitTime,. as T in the rest of this discussion. Solving this
inequality, we have:

\/E< \/a1b2+\/a1b2+b1 (T—CLQ)

T a (16)
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where z is the largest size of data that the end point can transmit in order to get
the highest throughput without causing a congestion problem in the network. This
equation has one condition, namely z > Z—?, in order to allow pipelining. If this
condition is not satisfied, then message size and data size would be equal. From
previous discussions we have:

2
T = MAX ((p — 1) « UnitTimeypg, m * Umthmelmk> (17)

In order to compare our results with other researchers’ experiments [18], let us
assume that the bisection_width = 2. Based on the variety number of switches and
processors, the available unit-time for each VC would be different.

Let us consider p = 8, and the physical bandwidth is 155 Mbps, which means
that C' = 155 Mbps and C’ = 155 Mbps. Then, each VC unit-time is:

2 —
T = f—N*Umthmelmk

= 8%0.06 = 0.48 psec/byte

Figure 14 shows a data size of 670 bytes from which we get a unit-time of
0.48 psec/byte. The optimal message size is shown in Figure 15, which is 670 bytes,
considering data size of 670 bytes. The reason that we chose a message with size
equal to the data size is that the optimal data size that each processor can send
is smaller than \/bz/a;. Therefore, the message size is the same as the data size.
The theoretical latency with this message size would be Latencyp,otocor = 404 psec
for one end point. Total-exchange consists of 2(p — 1) protocol latencies, because
each source-end sends/receives (p — 1) messages to/from the others. Therefore, the
latency of total-exchange would be:

Latencytot_ewchange = 2(p - 1)Late"’wyprotocol
= 2x7x404
= 95,656 usec

This result is in line with the results of Hung, Kasten, and McKinley in their
experiments over the topology that is shown in Figure 16 [17,18]. Table 4 shows the
results of our analytic model, which are computed using Equation 1 and the above
discussion, compared to experimental results with a variety number of processors
and data sizes.

3.10 Multicast VCs using API

So far we have used a separate addressing approach for total-exchange. With the
appearance of ATM switches that can handle multiple point services in hardware,
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Figure 14: The UnitTimeprot0cor With 8 processors sending a variety of data sizes
up to 1,000 Kbytes through the VCs.

the latency of collective operations can potentially be decreased. The ATM User
Network Interface (UNI) standard supports VCs with multiple destinations, or mul-
ticast VCs. The API system calls provide us with a way of using this hardware
implementation of multicast. In this case, there is no need to establish different
VCs to send n copies of data to n multiple end-points. The application can estab-
lish multicast VCs and send one copy of data to the switch. Data is then replicated in
the switch and sent through multiple outputs to traverse the path to the destination
nodes. This approach improves performance for collective operations.

Let us take a look at the way that API creates multicast VCs and how the switch
handles multiple end-points. The Fore Systems’ user-level ATM library routines
(API) communicate with the ATM device driver. End systems and switches are
identified by service access points. An application is referred to as an ATM end-
point and has a unique address called application service access point (ASAP). Each
ATM end-point is attached to a particular ATM switch port. We refer to a switch-
id and port number as network service access point (NSAP). An NSAP is used
with APT functions. When an application starts, it uses atm_open() system call to
open the specified device. Using this system call, the device driver assigns a file
descriptor to the specified ASAP and NSAP. The atm_open() system call returns a
file descriptor to be used for establishing the connections in the later request. After
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opening the file descriptor, an application asks the device driver to bind its ASAP
and NSAP to the file descriptor.

In the case of multicasting, the device driver associates the VPIs and VCIs with
the source fd during the connect and accept system calls. This multicast data flow
provides the facility of sending one copy of a piece of data to multiple destinations
instead of sending several copies to each endpoint. Replication of data is done in
the ATM switches using hardware.

In the previous section, we used separate addressing in which the application
has to make several copies of data to send to different destinations. Separate ad-
dressing increases overheads and therefore causes higher latency. Figure 17 shows
the difference between these two approaches and the way that ATM switches can
handle the multicast communication. In Figure 17 (a), L1 physical link bandwidth
should be divided into 4 VCs, but in the Figure 17 (b) all the physical bandwidth
is assigned to one VC.

3.11 Latency using the multicast VCs

Again, we consider a network of interconnected switches with any topology. If we
cut this network into two subnetworks with an equal number of end-points while
the smallest number of links are crossing the cut-line, we will have |bisection-width)|
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Figure 16: Cluster of Sun Sparc-20 Stations over an ATM network.

physical links crossing the cut-line. Most ATM networks have |bisection-width| =
[V/N] in their interconnection topologies. p/p multicasting (p processes send /receive
messages to/from all of the others) over these types of networks using the ATM hard-
ware facility, provides us with a tree structure of replicating data in each switch in
the path to various destinations. As before, the worst point of communication is
on the cut-line because p/2 of end-points send data to the other p/2 end-points. In
this case (hardware multicasting) the user network interface links need to be divided
into p VCs, one for sending data to (p — 1) d

VCBandwidthgeng = % (18)
. C
VCBandwidth,eceive = ) (19)

Equations 18 and 19 show the per-VC bandwidth in the links between the end-
points and the switches. Moreover, the busiest switch-switch links are those on the
cut-line. These physical links have to tolerate the traffic of £v/N, because there

are v N edges crossing the cut-line. In the worst case scenario, each switch that is
placed across the cutline should replicate p/2 outgoing messages. Therefore, we will
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Latency (usec)

Data size 4 6 8
(Kbyte) Processors Processors Processors
Analytic Experiment | Analytic Experiment | Analytic Experiment
1 3,800 5,000 6,320 7,000 8,848 9,000
9,260 12,500 15,440 16,000 21,616 22,000
16 33,890 34,000 56,480 57,000 79,070 80,000
32 66,720 68,000 111,120 112,000 155,000 160,000

Table 4: Comparison of the achieved latencies of total-exchange between the analytic
model and the experimental ([HMK94]) results of McKinley, Huang, and Kasten on
the configuration shown in Figure 16, using the separate addressing approach

have a per VC bandwidth of:

VOBandwidth qytiine =

VNC!
bVN

(20)

Again we have to choose the minimum value of the three Equations 18, 19, and 20
to assign to the VCs. Therefore, we have:

VCBandwidth = Min <C’, —

c 2_C'>
p—1"p

(21)

Now, let us take a look at the latency of this model. In our environment Table
2, Equation 21 becomes:

VCBandwidth = I%Mbit/sec

Assuming p = 8, the optimal data size and message size for this communication
according to the previous values of interface latencies and system calls will be almost:
data_size = 814 bytes, and message_size = 814 bytes. This is shown in Figure 14.
The latency of one VC would be 416 usec for an end-point. Moreover, there are p
VCs on each end-point, so the total latency will be:

Latencytot_exch(mge =

= 8x416
= 3,328usec

p* Latencyprotocol

This latency is in line with the results that Hung, Kasten, and McKinley have given.
Table 5 shows a comparison of our results with experimental results. Our results
are computed using Equation 1.
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Figure 17: a) Multicast using separate addressing in the application end-point b)
Multicast using ATM switch hardware multi-point services.

Data size (Kbyte) 8 Processors
Analytic | Experiment
1 5,208 14,000
10,848 16,000
16 39,048 41,000
32 76,648 77,000

Table 5: Comparison of the achieved latencies of total-exchange between the analytic
model and the experimental ([HMK94]) results of McKinley, Huang, and Kasten on
the configuration shown in Figure 16, using the hardware-multicast approach

When comparing the results of two different approaches for multicasting (Tables
4 and 5), we see that the latency of hardware approach is about half of that of
separate addressing.

4 Analysing BSP Parameters over ATM Networks

The main purpose of this section is to provide an analytic model for predicting g
and [ parameters over ATM networks. The g parameter, is based on two algorithms.
These are: total-ezchange, and one-relation communications. We predict the value
of [ using broadcast and total-exchange algorithms. We use this analysis to estimate
g and [ for a shared-memory Sun Sparc-20 multiprocessor and an IBM SP2.
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4.1 BSP communication and synchronisation routines

For global communication, processors copy the data that should be sent, first to
library space (which may be in the kernel space of the same end point), and then

through the network (Figure 18).
( Application)

y
bsp_librarie

| library spact

:

Device Drive

2

14

Interface space

Figure 18: Steps that are involved in the BSP model for networks of workstations

This process takes effect by first copying data to library space, which can be in
user space or kernel space (using bsp_put(), a BSP library routine to put local data
into the memory of target processor). Then, during synchronisation (bsp_sync(),
a BSP library routine for barrier synchronisation), the data is copied to device
driver space from library space. During synchronisation, atm_send() is called in
order to send the data to the other end and the other end retrieves it by calling the
atm_receive() routine. Therefore, there are two copying processes at each end-point,
one using library routines to copy from user space to library space, and the other
utilising library routines to copy from library space to device driver space. If we want
to trace the latency of the process, we see that the application uses the bsp_put()
routine to copy the data to the library space. This involves the cost of a system
call and a data copy. If we show the cost of a system call as b’ (b’ = 40 usec for
a shared-memory Sun Sparc-20 [7]) and the cost of data copy as a' (a’ = 0.05 usec
for a Sun Sparc-20 [7]), we will have: cost of bsp_put(m) = a'm + . As Hill and
Skillicorn [14] show, collecting data and sending it to the network in large pieces
increases efficiency.

Therefore, assume that there are k messages to be transmitted, followed by a
synchronisation. In this case, we will have:
bsp_put(mi) = a’'my + b
bsp_put(mz) = a’'mg +
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bsp_put(my) = a'my + b’
The total cost of this part is a’ S35, m; + kb/
where Ele m; = x. Therefore,

The total cost of communication before synchronisation = a'z + kb'

where z is the total data size mq to my are the size of the messages that are sent,
and k is the number of bsp_put calls.

Barrier synchronisation takes place by calling bsp_sync(). In this routine, atm_send()
is called to send messages through VCs. Let us take a look at the cost of bsp_sync.
Assume m is the optimal message size to be sent across ATM networks, n is the
number of messages to be sent through VCs, and x = mn. The cost of synchronisa-
tion is as follows:
cost of bsp_sync() call =
pipelining n messages of size m
atm_send(m) = aym + by + agm + by
atm_send(m) = aym + by + aam + bo

The total cost of this part = 32 (a;m + b;) + (n — 1) MAXZ_| (a;m +b;) + V',

The other end receives data using bsp_get() and bsp_sync() routines. Therefore,
we will have the same cost at the receiving node as at the sending node. Now, let us
compute the values of g and [ using the discussion of the previous section regarding
optimal message size.

4.2 Analysing g over ATM networks

The optimal data size and message size that were computed in the previous section
provide us with a minimum latency communication. We want to compute the values
of g for our BSP model over ATM. Using the information from the previous section,
we have Equation 8 which gives the protocol latency of sending data through a
VC and receiving it from the VC at the other end. At present, there is no clear
framework for the costs that are involved in evaluating g. We have assumed the g

31



value to be the sum of three latencies, the protocol latency to send a unit of data,
Latencysparev; and the latency of bsp_put() routines for a data unit.

g is usually computed using a heavily-loaded communication network. Therefore,
the time of transferring the cells through the VCs is short compared to protocol
processing, and most probably is overlapped with it. Therefore we have:

g = (Latencyspgrey + Cost of bsp_put() + Cost of bsp_get()) /x
= (2(d'z+Vk+arm+ b +asm+ by + (n— 1) (agm + b2))) /x usec/word
(22)
Substituting the optimum value of m, computed in the previous section, into this
equation, we have :

Goptimum = (2 (0 + a2) 7+ 2v/arbyz + K + by ) ) /2 (23)

We consider two algorithms, which give us measurements of lower-bound and
upper-bound values of the g parameter. The first algorithm is a I-relation commu-
nication as shown in the Figure 19(a), and the second one is a p-relation communi-
cation provided by total_ezchange (Figure 19(b)). We consider a network topology

a)
Cut-Line
b
) pl pg +1)
p2 pg+2
p3 pg+
Pn Pn
2

Cut-Line

Figure 19: a) A 1-relation communication through cut-line switches. b)A p-relation
communication using total-exchange through cut-line switches.

of 4 switches and 8 processors, as shown in Figure 20, and compare our results with
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the experimental results for an IBM SP2 computer with the same topology network
and Sun Sparc-20 shared-memory architecture [13] with 8 processors.

Cut Line

i i
@ switch switch 7®
|

@ switch switch 4@

|
Q)

P: Processo

Figure 20: Cluster of 8 processors with 4 switches connected to each other

4.3 Analysing the value of g using a 1-relation communication

Let us consider the first algorithm and compute the value of g. As before, we assume
the link capacity of C' and C’ in switch-switch and host-network links. The latency
of the protocol stack and operating system, before submitting data to the VCs and
handling it at the other end, is 2 (Zle(aim +b;) + (n — 1)MAXZ_, (a;m + bz))
The number of VCs crossing the cut-line is p/2 in each direction, as shown in Figure
19.a. Depending on the bisection_width, the V C Bandwidth is:

bisection_width « C g)

V C Bandwidth = Min <

p/2 "1
Using the environment that we are analysing and shown in Figure 20, we have:
V C Bandwidth = % Mbps for our network topology. Therefore, the unit-time of

each VC would be:

T x UnitTimegng

p
2xbisection_width

2% 0.06
= 0.12 usec/byte

Therefore we have:

Lat
S protocol. 5 0,12 psec/byte 24
T
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Figure 21: Corresponding g values for different number of bsp_put() system calls in
a l-relation communication with 8 processors

The optimal data size for this unit-time is 8,440 bytes, and the message size is
6,700 bytes.
Substituting this message size and data size into Equation 23, the value of ¢ is:

Goptimum = (2 ((0.05 +0.0425) 8440 + 2,/0.0375 + 200 + 8440 + 40k + 151) ) /8440
~ 0.35 usec/byte

Figure 21 shows the value of g for a 1-relation communication. This value is
0.35 usec/byte or 0.35 x4 = 1.4 psec/word for Sun Sparc-20 over an ATM network.
In order to compare our results with experimental results of Hill, we assume k =1
in our discussion.

Table 6 shows the clock rates of Sun Sparc-20 and IBM SP2 [13]. The Sun

Machine Clock rate (Mflop/s)
Sun Sparc-20 10
IBM SP2 26

Table 6: Clock rates of Sun Sparc-20 and IBM SP2
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Sparc-20 has a clock rate of 10 Mflop/sec, and therefore ¢ is:
g =10%1.4 = 14 flop/word

The IBM SP2, connected by the manufacturer’s switch, has a clock rate 2.6 times
faster than Sun Sparc [13]. Therefore, we can estimate a g value of g = 14/2.6 =
5.38 flop/word or g = 5.3/26 = 0.20 usec/word for IBM SP2 over ATM using BSP.
Now, let us compare our analytical results of g with the experimental results of Hill
[13]. Hill has used Sun Sparc-20 shared-memory architecture in his experiments.
Table 7 shows this comparison.

g values
Analytic Experiment
Machine (over ATM) (without ATM)
flop/word  pusec/word | flop/word psec/word
SM Sun Sparc-20 14 1.4 3.3 0.33
IBM SP2 5.3 0.2 6.9 switch 0.27
IBM SP2 - - 1246 Ethernet 47.3

Table 7: Values of g for both analytic model and experiment, using a one-relation
communication

As shown in this table, little improvement is observed for g using one-relation
communication on an IBM SP2 over an ATM compared to IBM SP2 (switch). How-
ever, the results show a lot of improvement compared to IBM SP2 over Ethernet.
Comparing the g values of shared-memory Sun Sparc-20 with an ATM interconnect
shows a communication performance degradation compared to its performance using
its internal bus. This is not surprising given the protocol overhead of ATM.

We should take into consideration that this value of g is the lower-bound limit.
The upper-bound value of g is computed using the busiest communication algorithms
such as p/p broadcast and total-exchange communication across the cut-line switches.
In the next section we consider a total-exchange communication.

4.4 Analysing the value of g using a total-exchange communication

Now, let us compute the value of g for a p/p total_exchange on the same network
topology as in Subsection 4.3 and compare our results with other researchers’ ex-
periments [13]. Using the discussion of Subsection 3.9, we have: T=0.48 usec/byte.
The optimal data size (x) for this unit-time (Figure 22) would be 670 bytes, but the
message size (m) that we can assign to get a unit-time close to T (Figure 23) is also
670 bytes. Considering this value of the message size and the data size, the value of
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g for the shared-memory Sun Sparc-20 (using Equation 22) would be:
g = 1.42 psec/byte (25)

If we compute the g value in units of usec/word, we have:

2.2 T T T T T T T T
UnitTine as a function of data size —
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Figure 22: Corresponding data size for the unit-time of 0.48 usec/byte in a 1-relation
communication using BSP over ATM.

g = 142x4
= 5.7 usec/word (26)

Equation 26 shows the value of g for the Sun Sparc-20. In order to compare
the results of our model with the experimental results of Hill, we consider the clock
rates that Hill has measured for Sun Sparc-20 and IBM SP2 (Table 6), and compute
the values of g for these two machines based on flop/word. Moreover, the g values
that Hill achieves are the asymptotic communication cost for very large messages.
In order to compare our results, we should compute this asymptotic values for our
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Figure 23: An optimal message size for ATM with data size of 670 bytes. g starts
growing after this point, because per-byte cost will exceed the per-message cost

model. Therefore, we have:

lim ;
500 Joptimum

= limg 02 ((@' + a2) z + 2Varboz + kW + b1) /z
= 2(ad' +a2)

2 (0.05 + 0.0425)

0.18 usec/byte

0.18 % 4 psec/word

= 0.72 psec/word

= 7.2 flop/word

(27)

This value is for Sun Sparc-20. The clock rate of IBM SP2 is 2.6 times that
for Sun Sparc-20. Therefore, the g value for IBM SP2 would be 2.77 flop/word or
0.11 usec/word.

Comparing these g values with the experimental results of [13] for IBM SP2
(Table 8), shows an improvement of almost four times for g over an ATM network
compared to one using the manufacturer’s switch. This result, compared to IBM SP2
using Ethernet, shows an improvement of 440 times. No improvement is observed
for Sun Sparc-20 over an ATM. This is not surprising since the Sun Sparc-20 used
in this comparison is a shared-memory architecture.
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g values
Analytic Experiment
Machine (over ATM) (without ATM)
flop/word  psec/word | flop/word psec/word
SM Sun Sparc-20 7.2 0.72 4.1 0.41
IBM SP2 2.77 0.11 11.4 switch 0.43
IBM SP2 - - 1224.1 Ethernet 47.1

Table 8: Values of g for both analytic model and experiment, using a total-exchange
communication

4.5 Analysing [ over ATM networks

The parameter [ in the BSP model is the cost of synchronisation among p proces-
sors. This value depends mostly on the communication network, and the algorithm
that is used for synchronisation. In this section, we will show two algorithms for
synchronisation on the BSP model over an ATM network. The first algorithm uses
total_exchange to synchronise processes at the end of a superstep, and the second
algorithm uses a broadcast algorithm for this purpose. In the following discussion,
we will explain these two algorithms, how they work, and the cost, [, of using each
of them. Let us start with the total_exzchange algorithm for barrier synchronisation.

4.6 Analysing the value of / using a total_exchange algorithm

In this algorithm, each process sends a separate message to others and informs
them of the data size that it is going to send to each of them in that superstep. This
information message is small in size (usually less than one hundred bytes). Total
exchange for small messages is very expensive. Figure 24 shows this algorithm.

Figure 24: BSP model of total-exchange algorithm
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Now let us consider our network configuration of p processors with N switches
over ATM. The VCBandwidth assigned to each VC in a total-exchange communica-
tion is given by Equation 13. In order to compute the value of [ for this algorithm,
let us consider our previous network topology of 8 processors with 4 switches (Fig-
ure 20), and the environment of Table 2. We will compute the value of [ for a BSP
model over this network and compare it with an IBM SP2 (switch) with the same
number of processors.

With our network, T = 0.48 usec/byte (as computed before). Usually synchroni-
sation messages are small in size (usually not more than 100 bytes). Let us compute
the value of [ for the message size of 100 bytes. Equation 28 shows the cost of [.

l Cost of bsp_sync() + 2 * (p — 1) * Latencyprotocol
Transfer time in the network (28)

V' +2(p—1) (arm + b1 + aem + b2) + vepandwiain

=+l

Each end-point sends (p — 1) separate messages and gets (p — 1) messages from the
others. Based on the message size, we have:

[ =40+ 14 % (0.0375 % 100 + 151 + 0.0425 % 100 4 200) 4 100 * 0.48 = 5114 usec

For the shared-memory Sun Sparc-20, with clock rate 10 Mflops, we have, [ = 51140 flops.
The IBM SP2 (switch) has a clock rate of 26 Mflop/sec or 2.6 times of that for
a Sun Sparc-20. Therefore, we can see that the value of [ for the IBM SP2 is
[ =19970 flops. If we compare this value with the results of Hill [13], which is
shown in Table 9, it shows that synchronisation over ATM takes 3.5 times longer
than for an IBM SP2 (switch). The results show some improvement for the IBM
SP2 using ATM compared to Ethernet (reduction of 4 times).

Now let us take a look at the second algorithm which uses broadcast communi-
cation for synchronisation.

1 values
Analytic Experiment
Machine (over ATM) (without ATM)
flops  pusec || flops sec
SM Sun Sparc-20 || 51140 5114 || 118 11.7
IBM SP2 19970 768 | 5412 switch 208
IBM SP2 - - 88795 Ethernet 3415

Table 9: Values of [ for both analytic model and experiment using total-exchange
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4.7 Analysing the value of | using a broadcast algorithm

Another way to synchronise is to send a list of all data sizes to all processes. Because
the size of the synchronising message is small, combining all outgoing messages of a
process in one list and using the hardware design of ATM to broadcast the combined
message may help to reduce the latency of synchronisation operation.

Let us consider the broadcast algorithm and provide an analytic model for [.
The BSP model of this algorithm is the same as Figure 24, but the cost model is
different. In this algorithm, each processor sends a message of m * p bytes instead of
m bytes, because it combines p messages of size m bytes. Let us compute the value
of [ for the above equation.

As shown in Equation 21 the appropriate bandwidth to assign to a VC is
V C Bandwidth = p%l Mbps for our network configuration. Therefore, the T value
that is achieved with this bandwidth is R = 0.42 psec/bytes. Therefore, the opti-
mum message size to be sent through the network is m = 814 bytes. Moreover,
each end-point needs to send one message and get p — 1 messages from the others.
Therefore, we have a latency of:

I = Cost of bsp_sync() + 2 (p — 1) * Latencyprotocol + Transfer time in the network

= b’+p(a1m+b1 +a2m+bz) + m

(29)
Assuming the same configuration as before, we will have | = 3, 368 usec for a message
size of 814 bytes. The messages that are used for synchronisation are small in size
(a few hundred bytes). Therefore, for different message sizes from 100 bytes to
814 bytes, we will have different values for /.

In our network configuration, which consists of 8 processors and 4 switches,
combining 8 messages of 100 bytes into one message, gives us a message of at most
800 bytes. The value of [ for this message size is almost 3,000 psec (Equation 29).
This value for a Sun Sparc with a clock rate of 10 Mflops/sec is 30,000 flops, and
for IBM SP2, is about 11500 flops. These values (Table 10) are much smaller than
the ones computed using the total-exchange algorithm in which [ = 51140 flops and
[ = 19970 flops. The reason is that setting up separate VCs for different destinations
is costly, while sending one combined message and using ATM hardware replication
to send the message to separate end-points saves a lot of time.

Implementing synchronisation using the broadcast algorithm has a lower syn-
chronisation cost. However, comparing this [ value with the one in [13], we will see
a latency that is two times greater for IBM SP2 (switch), and 7 times less for IBM
SP2 (Ethernet). It is clear that the value of [ for IBM SP2 (switch) is still large.
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1 values
Analytic Experiment
Machine (over ATM) (without ATM)
flops  usec || flops sec
SM Sun Sparc-20 || 30,000 3000 118 11.7
IBM SP2 11500 442 || 5412 switch 208
IBM SP2 - - 88795 Ethernet 3415

Table 10: Values of [ for both analytic model and experiment using broadcast

5 Summary and Conclusions

The first contribution of this paper is to show that the performance of ATM net-
works can be modelled using simple analytic models. The agreement of the model
presented here with measured results is impressive. This suggests that the perfor-
mance of ATM networks behaves tractably, and highlights performance deficiences,
primarily the dominance of operating system overheads.

The second contribution is to show, for the first time, how to obtain BSP pa-
rameters other than by benchmarking. This enables us to explore the likely effects
of using difference implementation techniques for collective operations and barriers.

Overall the model predicts that g values for ATM-connected parallel computers
are likely to be comparable with, or slightly better than, existing interconnection
networks in terms of throughput, but rather worse in terms of latency.
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