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Abstract

We present several novel data communication algorithms for hypercubes. Speci�-

cally, we obtain (1) an algorithm that broadcasts m messages of unit size on a hyper-

cube of size N in optimal time O(m + logN); and (2) algorithms for special cases of

computing m pre�x sums, also in optimal time O(m + logN). Unlike previous algo-

rithms for performing similar tasks, our schemes require no use of pipelining. They

can be implemented using the standard ASCEND/DESCEND strategy commonly used

for hypercubes, making their implementations much easier. Moreover, while previous

pipelined algorithms require that we know exact embeddings of binary trees into hyper-

cubes, our algorithms use recursive properties of the hypercube. Because of this, our

schemes can be easily implemented directly on other similar interconnection networks

such as stars and pancakes (both members of the family of recursively decomposable

Cayley graphs, to which the hypercube also belongs) without �rst having to �nd em-

beddings of tree-like structures of constant degree.

To demonstrate the applications of our data communication algorithms, we use

them to solve several problems in computational geometry. In particular, we present

two parallel algorithms that run in O(m + logN) time, where N is the network size.

The �rst algorithm locates m planar points in a simple polygon with N vertices. This

algorithm works on the hypercube, the star, and the pancake interconnection networks.

To our knowledge, this algorithm is the �rst for the star and pancake to achieve this

performance. For the hypercube, the running time of this algorithm matches that

of a previous algorithm (designed for a binary tree) that uses pipelining [3]. The

second algorithm locates m planar points in a planar subdivision with O(N) vertices.

This algorithm is for the hypercube only. When m = o(log3N), it is better than the

algorithm by Lee and Preparata [11], designed to locate O(N) points in O(log3N) time
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on a cube-connected-cycles network. In addition, both algorithms are simpler than

previous ones in that they are direct parallelizations of a straightforward sequential

algorithm described in [15], p. 42.

Keywords: parallel algorithms, hypercube, star, pancake, interconnection networks, pipelin-

ing, computational geometry, data communication.

1 Introduction

Consider an interconnection network parallel computer (such as the hypercube) in which

each processor stores several data items. Many algorithms for such a network are based on

a pipelining approach. The latter typically implies that an embedding of another network

(such as a tree) into the network at hand (the hypercube) is known. The resulting algorithms

are usually complicated to implement and involve a considerable amount of computational

overhead. In addition, by using special embeddings and pipelining, some of the properties of

the underlying interconnection network are not used advantageously. This is the case when

the network is the hypercube, one of the most popular networks for interconnecting proces-

sors in a parallel computer. In this paper, we develop several data communication algorithms

for the hypercube and some other recursively decomposable Cayley graphs [8] without re-

sorting to pipelining. These algorithms exploit the standard ASCEND/DESCEND schemes

which are common for hypercube-like networks. The implementations are simple and their

performances match those of previous algorithms that invoke embeddings and pipelining.

More signi�cantly, these algorithms can be easily applied to similar interconnection networks

without having to �nd some embeddings �rst in order to use the technique of pipelining.

In addition, we will apply the data communication algorithms developed here to obtain

several parallel algorithms on hypercubes and other networks for some problems in compu-

tational geometry: locating multiple points in a simple polygon and in a planar subdivision.

These algorithms' performances either match those of previous ones or surpass them in some

cases.

To better illustrate our ideas, we �rst design all of our algorithms on hypercubes. The

ideas are then extended to other networks. As a result, we organize our paper as follows.

We de�ne the hypercube and brie
y describe some of its properties in Section 2. Section

3 presents our data communication algorithms on hypercubes. Our planar point location

algorithm for simple polygons is given in Section 4 while Section 5 gives an algorithm for

locating multiple planar points in a subdivision. Section 6 discusses extension of our results

to other interconnection networks, and �nally, concluding remarks are o�ered in Section 7.

Some of the material in this paper appears in [18] and is included here for completeness.

2 Hypercubes

A hypercube of dimension n, denoted Qn, with N processors P0, P1, ..., PN�1, where N = 2n,

is de�ned as follows. Let in�1in�2 � � � ij+1ijij�1 � � � i1i0 be i's binary representation. Processor

Pin�1in�2���ij+1ij ij�1���i1i0 is connected to processor Pin�1in�2���ij+1 �ijij�1���i1i0 along dimension j for
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0 � j < n, where �ij is the complement of ij. Therefore, each processor has n neighbors along

dimensions 0, 1, ..., n� 1. The n-dimensional hypercube is also referred to as an n-cube.

One of the many important properties of the n-cube is that it can be constructed recur-

sively from lower dimensional cubes. More precisely, consider two identical (n � 1)-cubes

whose vertices are numbered likewise from 0 to 2n�1� 1. By joining every vertex of the �rst

(n � 1)-cube to the vertex of the second having the same number, one obtains an n-cube.

Conversely, separating an n-cube into the subgraph of all the processors whose leading bit

is 0 and the subgraph of all the processors whose leading bit is 1, the two subgraphs are

such that each node of the �rst is connected to one node of the second along dimension

n� 1. If we remove the edges between these two graphs, we get two disjoint (n� 1)-cubes.

For convenience, we call the �rst Qn�1 the left subcube, and the second the right subcube.

In this case, we say that the n-cube has been decomposed into two Qn�1's. Note that the

splitting suggested above gives privilege to the leading bit but there is no particular reason

for this. Since an n-cube has n dimensions, the splitting can be done along any of these n

dimensions.

Assume that each of N data items, N = 2n, is stored in a processor of an n-cube, i.e.,

data t0, t1, ..., t2n�1 are stored in processors P0, P1, ..., P2n�1, respectively. A hypercube

algorithm is in the DESCEND class if it performs a sequence of basic operations on pairs

of data located in pairs of processors whose binary indices di�er successively by 2n�1, 2n�2,

..., 20. In the dual class ASCEND, an algorithm performs a sequence of basic operations on

pairs of data located in pairs of processors whose binary indices di�er successively by 20, 21,

..., 2n�1. Many hypercube algorithms fall directly or indirectly into these two classes [14],

while others consist of a sequence of algorithms in these two classes.

3 Data Communication Algorithms

An interconnection network is classi�ed as either a weak model or a strong model, depending

on how a processor communicates with its neighbors. In a weak model, in one time unit,

a processor can send (receive) at most one datum of �xed length to (from) one and only

one of the processors to which it is directly connected, i.e., each processor uses a single-port

communication mode. On the other hand, in a strong model, in one time unit, a processor

can send (receive) one datum of �xed length to (from) all the processors to which it is directly

connected, i.e., each processor uses an all-port communication mode. All the algorithms in

this paper are based on weak models.

For some positive integer m, we consider the following two fundamental data communi-

cation problems on an n-dimensional hypercube Qn with processors P0, P1, ..., PN�1, where

N = 2n:

1. broadcasting m messages of unit length from one processor to all processors in the

hypercube; and

2. computing m sums
PN�1

i=0 xij, for all 1 � j � m, and storing these values in all the

processors, assuming that each processor Pi, 0 � i � N � 1, stores m values xij,

1 � j � m.
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The �rst problem is also equivalent to sending one message of sizem from one processor to all

other processors. Clearly, a lower bound for this problem in the weak model is 
(m+logN)

since the originating processor can send only one datum of �xed length at a time, and

n = logN is the diameter of Qn. By vertex symmetry of the hypercube, without loss of

generality, we will assume that the originating processor wanting to broadcast messages is

always P0.

The standard algorithm that broadcasts one message of unit length on Qn takes O(logN)

time, and uses the standard ASCEND/DESCEND strategy [14]. See, for example, Program

3.1 of [10]. For m messages, one could trivially apply this algorithm m times and obtain

a total running time of O(m logN). This is precisely what is done in [10], for example, to

broadcast m messages on a hypercube (or, to use the terminology of [10], a single message

of length m, i.e., a message consisting of m constant-size components).

Using the technique of pipelining, this task can be accomplished in the following two

ways:

It is known that two complete binary trees each with N=4 leaves and whose roots are

connected by a path of length 3 can be embedded in a hypercube of size N (see, for example,

[12], pp. 406-407). Therefore, one way to broadcast m messages on a hypercube is as follows:

the originating processor (one of the two roots) sends the m messages to the other root in

O(m) steps; the two roots now send the m messages to their descendents in a pipelined

fashion in O(m+ logN) time.

The second approach is to consider the problem of broadcasting m messages as a special

case of the problem of performing m distinct pre�x sums computations. Initially, processor

P0 contains messages M1, M2, ..., Mm, which are treated as values used in pre�x sums while

each of the other processors contains m 0 values. The binary associative operator is the

exclusive OR. At the end of the pre�x computation, each processor contains all messages. It

is shown in [13] thatm pre�x sums can be computed on a hypercube of sizeN inO(m+logN)

time by using the technique of pipelining. This approach also uses the fact that a binary

tree can be embedded into a hypercube.

A disadvantage of both algorithms is that they use pipelining and thus more compli-

cated control is required. In addition, neither can be implemented by the standard AS-

CEND/DESCEND scheme on hypercubes. Furthermore, in order to implement the pipelin-

ing technique, an embedding of a certain binary tree into the hypercube needs to be known.

If we are to �nd a broadcasting algorithm for multiple messages on another interconnec-

tion network, these two algorithms are not readily implementable, unless we can �nd some

embedding of graphs of constant degree, which is not always guaranteed.

In the following, we present a novel, yet very simple algorithm that takes O(m+ logN)

time for m messages and does not use pipelining. They can also be implemented on certain

other interconnection networks easily, as will be shown later in Section 6.

Suppose that P0 wishes to broadcast m messagesM1,M2, ...,Mm, to all processors in Qn.

Our algorithm is based on the following simple idea. In at most bm=2c steps, the originating

processor P0 �rst sends half of the m messages to its neighboring processor PN=2 along

dimension n � 1. Now we have two Qn�1's such that P0 in the left Qn�1 contains messages

M1, M2, ..., Mdm=2e (as well as Mdm=2e+1, ..., Mm) and PN=2 in the right Qn�1 contains

messages Mdm=2e+1, ..., Mm. We can now broadcast roughly m=2 messages in each Qn�1
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recursively, in parallel. Once this is done, each processor in the left subcube has messages

M1, M2, ..., Mdm=2e and each processor in the right subcube has messages Mdm=2e+1, ..., Mm.

In another dm=2e steps, each processor in the left Qn�1 exchanges its messages in parallel

with its neighbors in the right Qn�1 along dimension n � 1 and now each processor in Qn

has all m messages.

In this algorithm, the recursion ends when either (1) a subcube of dimension n0, where

n0 � n, has only one message to broadcast to all its processors in the Qn0 , and in this case,

it simply uses the standard broadcasting algorithm to broadcast the single message within

the Qn0 . This case happens when m � N ; or (2) in each 0-cube (with 1 processor) each

processor has 1 or more messages (roughly m=N of them). This is the case when m > N .

In this case, nothing needs to be done.

Formally, the broadcasting algorithm is given as follows (note that initially Pj is P0, and

the algorithm is called with parameters n and m):

Algorithm BROADCAST(n̂, m̂)

1. The originating processor Pj sends messages M̂i, dm̂=2e + 1 � i � m̂, to a processor

in the right subcube Qn̂�1, along dimension n̂� 1.

2. In parallel, each Qn̂�1 recursively broadcasts (at most) dm̂=2e messages by calling

BROADCAST(n̂ � 1; dm̂=2e); the recursion ends when either of the terminating con-

ditions mentioned above is met.

3. Each processor exchanges all its messages with its neighbor along dimension n̂� 1.

As for the time complexity of the algorithm, let t(n;m) be the time required to broadcast

m messages in Qn. Clearly, Step 1 takes O(m) time. Step 2 takes t(n�1; dm=2e) time. Step

3 also takes O(m) time. Therefore,

t(n;m) = t(n� 1; dm=2e) +O(m):

When m < N , we have

t(n;m) = t(n� 1; dm=2e) + cm

= t(n� 2; dm=22e) + cdm=2e+ cm

= t(n� 3; dm=23e) + cdm=22e + cdm=2e+ cm

...

= t(n0; 1) + c(m + dm=2e+ dm=22e+ � � �)

= t(n0; 1) +O(m(1 + 1=2 + 1=22 + � � �)) (n0 < n)

= O(m+ logN);

where c is some constant. When m � N , we have

t(n;m) = t(n� 1; dm=2e) + cm

= t(n� 2; dm=22e) + cdm=2e+ cm
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= t(n� 3; dm=23e) + cdm=22e + cdm=2e+ cm

...

= t(0; dm=Ne) + c(m+ dm=2e + dm=22e + � � �)

= t(0; dm=Ne) +O(m(1 + 1=2 + 1=22 + � � �))

= O(m):

In any case, time required is bounded by O(m+ logN).

We now consider the second problem: Given that processor Pi contains m values xij,

0 � i � N � 1 and 1 � j � m, compute
PN�1

i=0 xij, for all 1 � j � m, so that every processor

in the hypercube contains these m sums.

Clearly, this problem can be solved on an n-cube in time O(m + logN) by using the

algorithm given in [13] that we mentioned earlier for computing m parallel pre�x sums.

The following algorithm accomplishes this task in time O(m+logN), using the standard

hypercube ASCEND/DESCEND scheme and requiring no pipelining. The idea is to let each

subcube with N=2 processors recursively compute the required sums for half of all the values

xij so that these sums are stored in all the processors in the left subcube (every processor in

the left subcube contains
PN�1

i=0 xij, for all 1 � j � dm=2e) and all the processors in the right

subcube (every processor in the right subcube contains
PN�1

i=0 xij, for all dm=2e+1 � j � m,

respectively, and then exchange the sums between the two subcubes. Now every processor

has all the sums required. To do so, we �rst divide the hypercube into two subcubes. Each

processor in the left subcube sends the last bm=2c values to its neighbor in the right subcube

along dimension n�1 while each processor in the right subcube sends the �rst dm=2e values

to its neighbor in the left subcube, also along dimension n � 1. Now each subcube has all

the necessary values to compute m=2 sums recursively. Finally, each processor exchanges its

(roughly) m=2 sums with its neighbor along dimension n� 1 in O(m) time.

The running time for this algorithm is also O(m + logN) and the analysis is similar to

that of algorithm BROADCAST and is thus omitted.

4 Point Location Algorithm for Simple Polygons

The point location problem can be described as follows: Given a query point z, we want to

determine whether it lies in a region R [15]. In this section, we �rst consider the version

where z is a planar point and R is a simple polygon. We then extend our work to answer

m queries: Given m planar points and a simple polygon, determine which points are in the

polygon. Sequentially [15],

(a) one point can be located in a simple N -gon G in O(N) time, without preprocessing;

(b) with O(N logN) preprocessing, one point can be located in a simpleN -gon in O(logN)

time; for convex and star-shaped polygons, the preprocessing time becomes O(N).

Thus, locating m points in a straightforward way requires O(m logN) time with pre-

processing.
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Using the standard broadcasting algorithm [10] and the two data communication al-

gorithms described in the previous section, it is simple to parallelize the point location

algorithm from [15] for one and m queries on a hypercube of size N . We will �rst give a

trivial O(logN) algorithm for locating one point in an N -gon. We also assume that initially,

each processor of the hypercube holds one edge of the N -gon and P0 has the query point

z. The idea of the sequential algorithm for locating one point (without preprocessing) is

as follows: (1) Compute L, the number of intersections (to the left of z) of polygon edges

with the horizontal line containing z; (2) If L is odd then z is internal to G (otherwise, z is

external).

An algorithm for locating one point in an N -gon on a hypercube with N processors is as

follows:

1. Processor P0 broadcasts z to all other processors;

2. Each Pi sets a variable li to 1 if the edge stored in the processor intersects the horizontal

line containing z to the left of z (otherwise, Pi sets li to 0).

3. If L =
PN�1

i=0 li is odd then z is internal to the polygon, else it is external.

Step 1 takes O(logN) time. Step 2 takes O(1) time. Step 3 also takes O(logN) time (for

example, we can use the standard DESCEND paradigm to add all the numbers li stored in

processors and the �nal sum is obtained in P0).

With m points zj, 1 � j � m, the algorithm is as follows:

1. P0 broadcasts m points to every processor in the hypercube;

2. Do in Parallel: For each point zj, 1 � j � m, processor Pi, 0 � i � N � 1, sets a

variable lij to 1 if the polygon edge stored in Pi intersects the horizontal line containing

zj to the left of zj (otherwise, lij is set to 0);

3. Use the second data communication algorithm presented in the previous section to get

m sums in P0, namely, Lj =
PN�1

i=0 lij, 1 � j � m;

4. If Lj is odd then zj is internal to the polygon, else it is external.

As for the time complexity of the algorithm: Steps 1 and 3 take O(m+logN) time, while

Steps 2 and 4 require O(m) time. Therefore, the entire algorithm requires O(m + logN)

time to answer m queries without any preprocessing.

We note here that there exists a parallel algorithm for point location in a polygon using

a binary tree of processors. It locates one point in O(logN) time using N processors [3].

So, using pipelining, m points can be located in O(m + logN) time on a binary tree, and

consequently, on a hypercube because of the embedding of binary trees into the hypercube

mentioned earlier. Of course, pipelining has to be used here.
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5 Point Location Algorithm for Planar Subdivisions

A more general point location problem is de�ned for planar subdivisions [15]. A planar

subdivision is a partition of the plane into regions bounded by straight-line edges. Each

region is a polygon whose corners are the vertices of the subdivision. The problem of point

location in a planar subdivision calls for determining the region of the subdivision occupied

by each of a given set of query points [5]. Various parallel algorithms on di�erent parallel

computational models have been found for this version of point location problem. The reader

is referred to [5] for a more comprehensive review.

A planar subdivision with O(N) vertices consists of many simple polygons. Let these

polygons be p1, p2, ..., ps, for some s � 1. The edges of these polygons are stored in the

processors as follows: the edges of pi, 1 � i � s, are stored in the �rst available processor,

starting from processor P0. Note that some edges may be stored twice since they can be

shared by two neighboring polygons. Clearly, we have to assume that the total number of

polygon edges is no more than N , the number of processors. For example, for the subdivision

in Fig. 1, the edges are stored in a 16-processor hypercube as follows:

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

e11 e12 e13 e21 e22 e23 e31 e32 e33 e41 e42 e43 e44 e51 e52 e53
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Figure 1: A Subdivision

The algorithm to locate m points zj, for 1 � j � m, in a subdivision is as follows:

1. P0 broadcasts m points to every processor in the hypercube;

2. Do in Parallel: For each point zj, 1 � j � m, processor Pi, 0 � i � N � 1, sets a

variable lijk to 1 if the edge of polygon pk, 1 � k � s, stored in Pi, intersects the

horizontal line containing zj to the left of zj (otherwise, lijk is set to 0);
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3. Compute, for each point zj and each polygon pk: Ljk =
P
lijk mod 2 where Pi stores

an edge of pk;

4. Compute
Ps

k=1 Ljk, for each 1 � j � m, and store this value in P0.

Steps 1 and 2 are the same as in our previous algorithm for locating m points in a simple

polygon. Step 4 can be done by using our data communication algorithm for computing m

sums (to be stored in P0). The time required for the three steps is therefore O(m+ logN).

We now explain Step 3 in detail.

Clearly, since any point zj can be located in at most one polygon of the subdivision, we

have
Ps

k=1 Ljk � 1. Also, because we care only about the parity of Ljk and
Ps

k=1 Ljk, the

addition in
P

should be done modulo 2 (i.e., exclusive OR).

Step 3 computes s segmented sums, each corresponding to a polygon in the subdivision,

for each of the m points to be located. That is, for each query point and each polygon, it

computes the number of intersections to the left of the point of the polygon edges with the

horizontal line containing that point. In other words, it is doing what Step 3 of the algorithm

for locating m points in one simple polygon does, but for s polygons this time. Surprisingly,

this step can also be done in time O(m+ logN) on a hypercube of size N , as shown below.

Step 3 is done recursively. Initially, each processor communicates with its neighbor along

the lowest dimension (dimension 0). That is, the processors are paired as (P0, P1), (P2, P4),

..., (PN�4, PN�3), (PN�2, PN�1). For each pair, the sums (m of them) are computed (more

on this later) and stored in the processor with the smaller label for the �rst m=2 values and

the processor with the larger label for the second m=2 values. Now, for the �rst m=2 points

to be located, their required sums can be computed recursively in an Qn�1 consisting of

processors P0, P2, P4, ..., P2n�2, while in parallel, for the second m=2 points to be located,

their required sums can be computed recursively in another Qn�1 consisting of processors

P1, P3, P5, ..., P2n�1. The termination condition for the recursion is similar to that of the

broadcasting algorithm for multiple messages. Also, the time complexity for the step satis�es

the equation t(n;m) = t(n� 1; m=2) +O(m), resulting in t(n;m) = O(m+ logN).

The algorithm is in the class of ASCEND since each processor communicates with its

neighbors along dimensions 0, 1, 2, ..., n� 1, in this order.

For each point z to be located, when two processors communicate with each other in order

to compute sums, some care needs to be taken. We can see that for any point zj, the number

of 1's in each processor can be more than one during the computation. However, for that

point, the number of 1's in each processor at any moment during the computation is never

more than three because (1) edges for each polygon are stored in a segment of consecutively

labeled processors; (2) any segment of consecutively labeled processors contains edges of

zero or more polygons whose edges are all stored in this segment plus at most two polygons

whose edges are stored in the segment partially; and (3) each planar point can be located in

at most one polygon of the subdivision. Therefore, when computing the sum modulo 2, the

two 1's to be added must be from the same polygon.

The total time for the algorithm for locatingm points in a subdivision with O(N) vertices

on a hypercube with N processors is therefore O(m + logN). Previously, an O(log3N)

algorithm was developed by Lee and Preparata that runs on a cube-connected-cycles (CCC)
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network with O(N) processors to locate O(N) points [11]. Our algorithm performs better

than this algorithm when m = o(log3N).

We now illustrate our algorithm by the following example. The subdivision is the same

as given in Fig. 1. The subdivision, labeled polygon edges, and the 8 points to be located

are all shown in the �gure.

After Steps 1 and 2, we have:

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

z1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

z2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

z3 1 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0

z4 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0

z5 0 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0

z6 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0

z7 1 0 1 1 0 1 0 1 1 1 1 0 0 0 0 0

z8 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

During the computations of Step 3, each processor �rst communicates with its neighbor

along dimension 0 (the lowest dimension in the hypercube) in order to compute the sum.

The results are shown below. The subscript to each 1 indicates the polygon associated with

the value.

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

z1
z2 11
z3 11 11,12 12 13 13,14
z4 11 11 15
z5 11 11 14,15 15
z6 11 11,12 12 13
z7 11 11,12 12 13 13,14 14
z8 11

The recursion starts since we now have two 3-cubes (P0, P2, P4, P6, P8, P10, P12, P14),

and (P1, P3, P5, P7, P9, P11, P13, P15). Each processor interacts with its neighbor along

dimension 1 (the lowest dimension in each subcube). The results are given below.

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

z1
z2 11
z3 12 12,13 13,14
z4 15
z5 14
z6 12 12 13
z7 12 12,13 13
z8 11

10



We now have four 2-cubes (P0, P4, P8, P12), (P2, P6, P10, P14), (P1, P5, P9, P13), and

(P3, P7, P11,P15). Each processor interacts with its neighbor along dimension 2 (the lowest

dimension in each subcube). The results are given below.

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

z1
z2 11
z3 13 13,14
z4 15
z5 14
z6 13
z7 13 13
z8 11

We now have eight 1-cubes (P0, P8), (P4, P12), (P2, P10), (P6, P14), (P1, P9), (P5, P13),

(P3, P11), and (P7, P15). Each processor interacts with its neighbor along dimension 3 (the

lowest dimension in each subcube). The results are given below.

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

z1
z2 11
z3 14
z4 15
z5 14
z6 13
z7
z8 11

This is the end of Step 3. Finally, we just use our second data communication algorithm

developed in Section 3 to move the �nal results to processor P0.

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

z1
z2 11
z3 14
z4 15
z5 14
z6 13
z7
z8 11

The �nal results indicate that z2 is in polygon p1, z3 in p4, z4 in p5, z5 in p4, z6 in p3, and

z8 in p1,
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6 Extensions of the Results to Other Networks

In this section, we show how to extend the �rst algorithm that locates m points in a simple

polygon on hypercubes to some other interconnection networks.

It can be seen that two of the most important components in our planar point location

algorithm for m query points in a simple polygon are the two communication algorithms.

Therefore, if these two algorithms can be implemented on another interconnection network

e�ciently, it is reasonable to expect this algorithm to have a similar performance on that

network as well. The new networks we have in mind are the star and pancake interconnection

networks. It will be clear after this section that our discussion applies to any interconnection

network that is a recursively decomposable Cayley graph [8].

The star and pancake graphs were proposed as attractive alternatives to the hypercube

topology for interconnecting processors in a parallel computer (interconnection network), and

compare favorably with it in several aspects [1, 2]. For example, an n-star or n-pancake has

N = n! nodes, but both its degree and diameter are O(n), i.e., sub-logarithmic in the number

of vertices, while a hypercube with O(n!) vertices has a degree and diameter of O(log(n!))

= O(n logn), i.e., logarithmic in the number of vertices. Other attractive properties include

their symmetry properties, as well as many desirable fault tolerance characteristics. These

two interconnection networks have received much attention lately [1, 2, 6, 7, 16].

Let Vn be the set of all n! permutations of symbols 1, 2, ..., n. For any permutation v 2 Vn,

if we denote the ith symbol of v by v(i), then v can be written as v(1)v(2) � � �v(n). A star in-

terconnection network on n symbols, Sn = (Vn; ESn), is an undirected graph with n! vertices,

where each vertex v is connected to n � 1 vertices which can be obtained by interchanging

the �rst and ith symbols of v, i.e., (v(1)v(2) � � �v(i� 1)v(i)v(i+ 1) � � �v(n); v(i)v(2) � � �v(i�

1)v(1)v(i+ 1) � � �v(n)) 2 ESn , for 2 � i � n. Sn is also called an n-star. Fig. 2 shows S4.
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Figure 2: A 4-Star S4

A pancake interconnection network on n symbols, Pn = (Vn; EPn), is an undirected graph

with n! vertices, where each vertex v is connected to n � 1 vertices which can be obtained

by 
ipping the �rst i symbols of v, i.e., (v(1)v(2) � � �v(i � 1)v(i)v(i + 1) � � � v(n); v(i)v(i �

1) � � �v(2)v(1)v(i+ 1) � � �v(n)) 2 EPn , for 2 � i � n. Pn is also called an n-pancake. Fig. 3

shows P4. Clearly, Sn = Pn, for n � 3. Sn and Pn are in the family of Cayley graphs [1].
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Since our discussion and results in this section apply to both networks, we henceforth use

Xn to denote either Sn or Pn.
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Figure 3: A 4-Pancake P4

Let Xn�1(i) be a sub-graph of Xn induced by all the vertices with the same last symbol

i, for some 1 � i � n. It can be seen that Sn�1(i) is an (n � 1)-star and that Pn�1(i) is

an (n � 1)-pancake, both de�ned on symbols f1; 2; � � � ; ng � fig. It follows that Xn can be

decomposed into n Xn�1's: Xn�1(i), 1 � i � n [1, 2]. For example, S4 in Fig. 2 contains

four 3-stars, namely S3(1), S3(2), S3(3), and S3(4), by �xing the last symbol at 1, 2, 3, and

4, respectively. Pn can also be decomposed similarly.

Let I: i1; i2; :::; il and J : j1; j2; :::; jl be two sequences from f1; 2; :::; ng such that no two

elements of I are equal, no two elements of J are equal, and fi1; i2; :::; ilg \ fj1; j2; :::; jlg =

;, i.e., jfi1; i2; � � � ; il, j1; j2; � � � ; jlgj = 2l. It is desired to exchange the contents of Xn�1(i1),

Xn�1(i2), ..., Xn�1(il) with those of Xn�1(j1), Xn�1(j2), ..., Xn�1(jl) such that the contents

of Xn�1(ik) are exchanged with Xn�1(jk), for 1 � k � l. This task can be achieved in

constant time by a procedure named GROUP-COPY [6].

As mentioned earlier, most hypercube algorithms are of the type ASCEND or DESCEND,

or some variation thereof [14]. Those hypercube algorithms that fall in this class can be

divided further into two sub-classes according to whether or not they preserve the ordering

of the processors while ascending or descending, i.e., whether or not a processor ranked kth

in one subcube has to communicate with a processor also ranked kth in another subcube.

Basically, an algorithm in the �rst sub-class means ordering is important when processors

communicate with each other while the second sub-class algorithms do not care about the

ordering. Examples of algorithms in the �rst sub-class are Batcher's bitonic merging and

sorting algorithms [9] as implemented on the hypercube. Algorithms that belong to the

second sub-class include broadcasting algorithms, where it does not matter which processors

receive the information �rst as long as eventually every processor receives a copy of the

message being broadcast. Since Procedure GROUP-COPY allows one to perform recursive

doubling/halving on Xn in O(1) time, it is obvious that using it, we can directly implement

on the star and pancake networks any algorithm for the hypercube that is in the second

sub-class, using asymptotically the same number of processors and without time loss.

Using the routing scheme GROUP-COPY, various optimal broadcasting algorithms for
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Xn have been found, including the one for broadcasting m messages in O(m + logN) =

O(m + n logn) time [17]. Our second data communication algorithm also belongs to the

second sub-class algorithms mentioned above and therefore can also be implemented on Xn

without time loss, i.e., in O(m + logN) = O(m + n logn) time. This fact immediately

implies a parallel planar point location algorithm for the star and pancake interconnection

networks that locates one point in an N -gon in O(logN) = O(n logn) time, and m points

in O(m+ logN) = O(m+ n logn) time.

As we see from the Step 3 of the algorithm for locating m points in a subdivision in

Section 5 and the corresponding example, the order in which each processor communicates

with other processors is critical in order to guarantee that the number of 1's in each processor

during the entire computation is constant. Therefore, this algorithm for subdivisions can

not be readily implemented on stars and pancakes without time loss.

7 Conclusion

We have presented several novel data communication algorithms for hypercubes and related

interconnection networks. The performances of these algorithms match those of previous

ones (whenever the latter exist). However, our algorithms are simpler in that they use the

standard ASCEND/DESCEND paradigms that are common for hypercube-like networks.

Moreover, the idea can be easily applied to other similar networks which are recursively

decomposable [8]. This eliminates the need to �nd a mapping �rst that embeds a graph of

constant degree (such as a binary tree) into the corresponding network, which is essential

to using the technique of pipelining. We demonstrated the applications of our data com-

munication algorithms by using them to solve several problems in computational geometry.

The performances of these algorithms either match those of earlier algorithms or show an

improvement in certain cases. Our future study includes �nding more applications of the

data communication algorithms developed here.
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