
A Study of Semi-Automated Program

Construction

H. Dayani-Fard1 J. I. Glasgow2 D. A. Lamb3

June 23, 1998

External Technical Report

ISSN-0836-0227-

1997-416

Department of Computing and Information Science

Queen's University

Kingston, Ontario, Canada K7L 3N6

Document prepared June 23, 1998

1IBM Centre for Advanced Studies
2Department of Computing and Information Science, Queen's University
3Department of Computing and Information Science, Queen's University

Contents

1 Introduction 1

2 Semi-Automated Programming Systems 4

2.1 Rule-Based Systems . 5

2.1.1 Transformational Implementation 7

2.1.2 Programmer's Apperentice 12

2.1.3 Draco . 16

2.2 Case-Based Systems . 17

2.2.1 Deja Vu . 19

2.2.2 PROSA . 20

2.2.3 CAESAR . 21

2.2.4 Reuse Assistant . 22

3 A Comparative Study 24

3.1 Knowledge Acquisition . 24

3.2 Initial Cost . 26

3.3 User Support . 27

3.4 Overall Practicality . 29

3.5 Ranking . 30

4 Future Directions 31

List of Figures

1 Automation-Based Software Paradigm (Adapted from Balzer

1985) . 8

2 Division of Labor in Programmer's Apprentice (Adapted from

Waters 1985) . 13

3 Layers of CAKE Reasoning System (Adapted from Rich and

Waters) . 14

i

1 Introduction

The term \Software Engineering" was supposedly �rst introduced at the 1968

NATO software engineering conference [31], the theme of which was the \soft-

ware crisis." From that date, computer applications have grown in number,

size, and complexity but the \crisis" still remains. The modern de�nition of

the software crisis relates to the problem of building and maintaining large,

complex, and reliable software systems in a controlled and cost e�ective way

[24, 32]. Thus far, the growth of software needs has been addressed in part

by the increase in the number of trained professionals. However, this trend

cannot continue [25].

A proposed alternative solution to the software crisis, since the early days

of computers, has been the use of automatic programming techniques. In the

1950's, a Fortran compiler was considered by many to be an automatic pro-

gramming system [4]: high-level programs could be translated automatically

into machine language. Today, even very high-level languages can hardly qual-

ify as automatic programming systems. Automatic programming is a moving

target, which re
ects the increasing expectation of automation [38].

The main idea behind automatic programming is to translate a \speci�ca-

tion" of a problem into an executable program with little or no intervention

on the user's part. The false assumptions in this characterization of automatic

programming are: 1) one's speci�cation can be another one's implementation,

2) speci�cations are often incomplete, and 3) for every speci�cation there are

combinatorially many implementations [27]. As a result, an automatic pro-

gramming system that takes as an input a (general) speci�cation and results

in an implementation is far from reality.

An alternative approach to improving software construction involves a hy-

brid technique: a combination of AI and traditional software reuse techniques.

The main motivation behind this hybrid approach is the nature of the software

itself. Software has been compared to hardware IC's and the process of soft-

ware construction as the composition of the software components [29]. This

analogy was considered de facto by most researchers until it was suggested (for

example, see Software Reusability [8]) that unlike hardware components soft-

ware does not wear or tear: there is no physical representation of software and

it is di�cult to construct abstractions for software components. Our abstrac-

tions are based on how we want to perceive software components; there is no

physical object that we can compare our abstractions against. Furthermore,

unlike most engineering products, software can change over its life time. Soft-

1

ware resembles human thoughts more than any physical artifacts [8]. Software

is a solution to a problem which when coded in some programming language

communicates our intentions with the computer. In other words, we can view

software as a static representation of our knowledge of a solution to a particular

problem.

This view is consistent with the results of research in component libraries

[4]. Component libraries do not store the history of design: the decisions

made and the rationales behind them are lost. In e�ect, the knowledge gained

through the design process is absent in the �nal software. The evolution of

software attests to the importance of this history. In general, software systems

were designed with the assumption that their life time would be short, but

many have out-lasted their life expectancy. Modi�cations, changes of require-

ments, and upgrades have caused the design history {if it was documented{

to be outdated and in most cases of little or no use.

In recent years, the issue of capturing software engineering knowledge has

received fair attention. The problems of software evolution, program under-

standing, and reverse engineering have been identi�ed as the direct conse-

quences of the lost knowledge of the original development process; this knowl-

edge is in the minds of the people who may no longer be available to help

in the evolution of the software. Domain knowledge has also received much

attention. In fact, it has been suggested that software engineering, due to the

diverse computational needs, is no longer a homogeneous �eld: the knowledge

of the domain of application plays a crucial role in the success of software

engineering [20, 21].

For the reasons mentioned above, a new approach to software engineer-

ing has evolved: knowledge-based software engineering [27]. The idea behind

knowledge-based software engineering is that programmers reuse their knowl-

edge when designing new software systems. Knowledge-based software takes

advantage of AI techniques for knowledge representation to capture the design

decisions, problem solving knowledge, domain knowledge, and other important

aspects of the history of software systems. Simply stated, knowledge-based

software engineering can be viewed as the application of expert systems to the

domain of software engineering [27].

There have been many e�orts invested in knowledge-based software engi-

neering (e.g. KIDS [45], GLITTER [14], and DRACO [32]). There are special

issues of journals and conferences that are dedicated to this topic. However,

at the time of writing this paper, there has not been any comparative study

2

of the applications of AI techniques to software engineering with emphasis on

semi-automated program synthesis.

The AI techniques used in software engineering have one common aspect:

they try to capture and reuse the knowledge needed to design and implement

software. We can classify these approaches based on their methods of knowl-

edge representation. In the rule-based approach, knowledge about the domain

and/or software design is formally expressed using production rules. This ap-

proach is similar to transformational systems, where the transformations are

rules and their applications can be determined using the captured knowledge.

Examples include DRACO [33], TI [4], and GLITTER [14].

An alternative approach uses case-based reasoning. The fundamental idea

of case-based reasoning is that problem solvers use their previous experiences {

called cases{ to solve new problems [22]. Cases are semi-formal representations

of individual instances of problem solving knowledge which can be reused to

solve new problems. The main tasks involved in case-based reasoning are

abstraction, selection, adaptation, evaluation, and storage [22]. These tasks

are similar to Krueger's list of the fundamental issues in software reuse [24].

The ideas behind knowledge-based software engineering seem reasonable.

However, despite all the e�orts spent over the past decade, there are still not

many functioning systems that can be used by industry practitioners. The

main motivation of this study is to compare a sample of di�erent approaches

to semi-automated program synthesis and identify strengths and shortcomings

of each approach. Further, we can draw some conclusions based on this study

as what the future directions should be.

This paper presents a study of a sample of research e�orts in semi-automatic

program construction. These e�orts all focus, to varying degrees, on recording

and employing some forms of experts' knowledge and the knowledge of the ap-

plication domain. Further, they provide mechanisms to allow for some degree

of automation in program construction. The results of this study identify with

the realities of automatic programming as outlined by Rich and Waters [38]:

1. system speci�cations are rarely complete; an iterative process is required

to identify the inconsistencies and incompleteness in the speci�cation,

2. knowledge of the application domain is needed to allow for e�ective com-

munication between the user and the system,

3. automatic programming systems must allow for the user's interaction

and provide assistance in the decision making process, as opposed to full

3

automation based on a predetermined policy that excludes users during

all or some of the development stages, and

4. the history of program construction, the decisions made during the de-

sign, and the rationales behind them must be recorded in such ways that

they can be reused in the future.

The systems selected for this study are representatives of di�erent ap-

proaches that have persisted over time. The study is not exhaustive and we

focus on the chronological progress of automatic programming concepts rather

than the developed systems. The Transformational Implementation [4] and the

Programmer's Apprentice [47], discussed in Section 2.1, have been exemplars

of the semi-automatic programming paradigm, while GLITTER [48], PAD-

DLE [14], and Draco [32] have tried to improve upon the lessons learned from

these approaches. In Section 2.2, we study some of the newer research e�orts;

though they have not shown their persistence, they o�er a di�erent approach

to tackling semi-automated program construction.

This survey is organized as follows. Section 2 presents a study of selected

semi-automatic programming systems. This section is divided into two subsec-

tions: rule-based systems and case-based systems. This division is not accurate

according to the traditional AI de�nitions of rule-based and case-based sys-

tems. We categorize each approach based on its resemblance to one of the

two categories: if a system records the expert's knowledge in a form similar to

production rules, we categorize it as a rule-based system; if a system records

the expert's experiences, we categorize the system as a case-based system.

Our study concludes in Section 3 by providing a comparison of di�erent

approaches based on 1) their knowledge acquisition ability, 2) their initial cost,

3) the level of support they provide in decision making and software evolution,

and 4) their overall practicality. Section 4 provides some remarks on the future

directions of semi-automatic programming systems.

2 Semi-Automated Programming Systems

There have been many studies done on the applications of AI techniques to

software engineering (for example, see Lowry [26]). More and more, researchers

and practitioners try to �nd ways to employ AI to achieve the goals of higher

reliability and shorter design time in software engineering in general and soft-

ware reuse in particular. This trend stems from the thought that in order

4

to solve di�cult problems using computers, one will generally have to use a

great deal of domain speci�c knowledge rather than a few general principles

[9]. To be able to use this knowledge automatically, or semi-automatically, it

must be represented in some manner inside the computer. Some of the exist-

ing knowledge representations used in main stream AI can be readily used in

the domain of software engineering; others must be altered to better represent

software engineering knowledge. Furthermore, new knowledge representations

need to be devised to capture shortcomings of other methods mainly with

respect to non-functional requirements (for example, see Telos [23]).

In this section, I describe some AI approaches to software reuse. This study

is by no means comprehensive. Instead, I have included those approaches that

focus on the problem of the lost history of software. As described previously

in Section 1, during the design of a software system, design decisions, the

rationales behind them, and other motivations, are poorly captured or lost

altogether. For this reason, in this study I focus on semi-automated program

synthesis systems which attempt to remedy this problem.

The systems studied here are divided into two sections. First, I look at

systems that use formal languages to capture and represent knowledge about

a software artifact (speci�cation, design, etc). Then, I look at systems that use

a form of AI reasoning, case-based reasoning, which is less formal and relies

heavily on the notion of similarity. For the sake of this study, I loosely cate-

gorize the former under rule-based systems. These systems, more or less, rely

on the rule-based knowledge representation schemes. They represent software

engineering knowledge in the form of rules that can be manipulated to provide

a semi-automated program synthesis system. The latter systems, I categorize

under case-based reasoning systems. Several examples from both categories

are presented and compared.

2.1 Rule-Based Systems

This section presents a study of program synthesis approaches that are loosely

categorized under rule-based systems. The justi�cation for this categorization

stems from the resemblance between these approaches and traditional expert

systems. Expert systems generally capture the domain knowledge in the form

of production rules and provide inference engines for reasoning and manipulat-

ing these rules. All approaches studied in this section, to some extent, follow

this paradigm. They generally use a set of transformation rules and some form

5

of automated reasoning to provide suggestions for selecting a rule, apply rules,

consistency check, constraints satisfaction, etc.

The approaches studied in this section can be classi�ed as program trans-

formation systems. In general, program transformation systems enable the

designer to begin with a high-level speci�cation and, using the transformation

rules, re�ne the speci�cation to an implementation. Transformation rules are

mappings from one program to another:

P � T ! P 0

where P is a program, T is a transformation rule, and P 0 is the resulting

program. The most important semantic relation of a transformation rule is

program equivalence, where there is an inverse rule for transforming a program

back to its original form (i.e., a one-to-one relation). The next important

relation is weak equivalencewhere unde�ned situations are ignored; this enables

a designer to ignore certain situations such as error condition.

Transformation rules vary in form, some are syntactic rules which relate

language constructs, for example a loop construction rule can be stated as:

L : if b then S; GOTO L = while b do S

Others are domain rules which express domain knowledge, for example:

pop(push(s; x))$ s

for an unbounded stack s.

The advantage of using transformation systems stems from the formaliza-

tion of incremental changes to a program. In another words, all changes to

the initial speci�cation can be recorded as the design history and replayed or

backtracked at a later time.

The early transformation systems were manual; the designer had to select

a transformation and apply it. More ambitious systems later on attempted

to fully automate the transformational process. As an example consider PSI

[10], which starts with an abstract algorithm and automatically re�nes it to an

executable program. Due to the narrow domain of application for a fully auto-

mated system on one end and the lack of any form of automation in fully man-

ual systems, semi-automated systems were introduced. The motivation behind

semi-automation was that the designers need decision support rather than full

automation. The newer systems attempted to include a knowledge-base in

6

their systems to provide support in the decision making process. Further, the

commercially available systems, such as KIDS [44] from Kestrel Institute, were

built on top of available knowledge-bases.

The next section presents three semi-automated approaches. First, the

Transformational Implementation paradigm is studied, which is one of the

earliest attempts at semi-automated program synthesis. Next, we study the

Programmer's Apprentice project, which deviates from mainstream transfor-

mational systems, and lastly we present the Draco system, which focuses on

domain analysis to capture knowledge about software systems.

2.1.1 Transformational Implementation

The program transformation paradigm has been studied as a means of program

synthesis since the early 1970's (e.g. SAFE [2], TI [4], PADDLE [48]). The

basic idea behind this paradigm is to apply a set of transformations to a

formal speci�cation of a system to produce an e�cient implementation. The

process of transformation application can be manual, semi-automated, or fully

automated. In all cases, systems are interactive and need some degree of user

input.

Transformational systems, mostly, have a prede�ned collection of transfor-

mation rules called a catalog. A catalog is a hierarchically structured collection

of transformation rules relevant to a particular aspect of the development pro-

cess [34]. Catalogs may contain rules about solution strategies such as binary

search, optimization rules such as recursion removal, or domain knowledge

such as set operations.

The goal of the transformational paradigm is to assist in producing reliable

and e�cient implementations. Further, some systems based on this paradigm

record decisions behind transformations applied, while others provide replay

mechanisms which enable the designer to go back to an arbitrary point in time

and reconstruct the derivation of the system. Such facilities simplify the main-

tenance task; instead of maintaining the code, modi�cations are performed on

the speci�cation of the system and the derivation is repeated. However, if the

design history is lost or recorded partially, it becomes extremely di�cult to

perform maintenance tasks.

One of the early attempts at using the transformational paradigm for pro-

gram synthesis was made by Balzer [2]. This work focused on the project

SAFE [6]. The motivation behind this project was to acquire and validate

a speci�cation using an operational speci�cation language, which could then

7

Interactive
Trasformation

Tuning

Automatic
Compilation

Source
Program

Formal
Development

Decision
and
Rationals

Low-Level
Speci�cation

High-Level
Speci�cation

Figure 1: Automation-Based Software Paradigm (Adapted from Balzer 1985)

be translated into an e�cient implementation. The latter part of the project,

program synthesis, led to the Transformational implementation project (TI)

[4], whose main goals were:

� to provide a means for acquiring and validating a speci�cation,

� to record decisions employed during the design process;

� to transform a formal speci�cation of a system into an e�cient imple-

mentation.

The ideas of TI were based on the automation-based software paradigm [5],

which in
uenced future projects in this area. According to this paradigm, a

high-level speci�cation can be converted to a low-level speci�cation through

an interactive transformation; the low-level speci�cation can be automatically

compiled into an e�cient implementation (see Fig. 1). This paradigm includes

a mechanism for recording decisions and rationales behind the selection of

transformation rules as well as a tuning mechanism for improving the e�ciency

of the resulting implementation. According to this paradigm, developing an

implementation from a formal speci�cation is viewed as a continuous process

of applying transformation rules, either to replace speci�cation constructs or

to simplify algorithmic constructs.

8

A side bene�t of the TI project was the development of a high-level speci�-

cation language called GIST [3]. GIST was developed to provide the
exibility

and ease of expression needed for describing acceptable system behaviors. Fur-

thermore, GIST is a wide spectrum language: it is not only a speci�cation lan-

guage, but also an implementation language for describing e�cient programs.

The only restriction on low-level speci�cation is that it must be written in a

subset of GIST which is automatically translatable into an existing program-

ming language.

The main task of the programmer in TI is the selection of appropriate

transformation from a pre-existing catalog. If an appropriate transformation

does not exist in the catalog, the programmer may either extend the cata-

log or modify the program directly through an interactive editor. In either

case, the responsibility for the correctness of a transformation rests with the

programmer.

A key contribution of this automation-based paradigm was the notion of

evolution [4]. Balzer suggested that large, complex systems cannot be pre-

designed; they must grow and evolve based on the feedback from the use of the

system. In order to facilitate evolution, a replay mechanism must be provided

to allow derivation of the system to be repeated. To do so, the history of the

derivation must be recorded so that they can be applied again.

The PADDLE system [48] intended to provide what was absent in the

TI project, namely the development history. The main motivation behind

PADDLE was that a program development is a formal document explaining

the implementation of a speci�cation. This document, in principle, could be

used by subsequent maintainers.

The development language, PADDLE, used in this project provided fa-

cilities to emphasize the structure of the program development: goals and

subgoals are organized according to strategies (e.g. sequential composition,

re�nement subordinates, conditional) and ways of achieving them (e.g. do X

by doing Y and Z). This structure enables the designers to use a larger catalog

of rules; they are classi�ed according to their strategies.

The program development process in PADDLE can be divided into �ve

steps [48]:

1. Focus on a program fragment

2. Find an appropriate implementation strategy

9

3. Satisfy the conditions of the chosen strategy. (At this step, the pro-

grammer can use the interactive editor to modify the program so that

the conditions of the strategy are satis�ed.)

4. Simplify the resulting program.

This development process is based on the observation that a formal structure

representing the transformation of a speci�cation can partially be replayed

automatically [12]. However, having only the explanations is not su�cient to

enable the replay of the development process accurately [48]. The PADDLE

system does not record the rationales, motivations, and assumptions behind

design decisions.

The PADDLE project o�ers improvements in transformational implemen-

tation; the system uses a large catalog of rules organized by strategies and

records the development history as a sequence of transformation applications.

Its main shortcoming is its inability to record design rationales. This short-

coming was one of the motivations behind the GLITTER system.

The GLITTER [14] system was designed to improve on the shortcomings

of the TI and PADDLE systems. The key goals behind this system are:

1. To provide some degree of automation for the transformation implemen-

tation.

2. To provide an interactive system to include the user in the process of

transformation.

3. To record goals, subgoals, and strategies as well as decisions and ratio-

nales behind them, to provide a more complete history of the develop-

ment process.

Fikas observed that the full automation of solutions to realistic problems is

still unachievable [14]. Also, lack of automation in the transformational imple-

mentation can be time consuming and tedious. Hence, by including the user

in a semi-automated environment, the system can achieve better results.

The GLITTER system has three types of catalogs: transformation rules,

methods, and selection rules. A transformational development in GLITTER

starts with some design goal expressed in the GIST language. The system, in

turn, either asks the user for details or checks its method catalog. A method

in GLITTER is a frame that has a slot for the goal, a slot for the �lter, and

a slot for an action. The goal slot is �lled with the goal to be achieved, the

10

�lter slot with predicates that will check for situations when the method is

not applicable, and the action slot with one or more operations for achieving

the goal. The posting of a goal causes all methods to check their goals slot.

All matches are (automatically) collected together in a candidate set. If there

is more than one applicable method in the candidate set, GLITTER uses the

selection rules catalog to decide which method to choose.

The GLITTER system attempts to automate more portions of transfor-

mation selection and application, and leaves smaller portions to the user. For

example, when the candidate set has more than one method, the system may

ask the user to supply a truth value to a clause in the selection rule. The

questions that GLITTER asks the user can be very di�cult. However, these

decisions are common to most transformational systems, with a crucial dif-

ference that these decisions are made explicit in GLITTER, whereas in TI,

PADDLE, and other systems they remain implicit. GLITTER attempts to

formalize goals, strategies, decisions, rationales, and all the information it is

able to capture during the transformation process. This information is stored

declaratively to enable the GLITTER system to behave like an expert. In

other words, GLITTER can reuse (replay) its experiences partially in the de-

velopment of a system.

To summarize, the TI system introduced a new paradigm in software de-

velopment based on reusing transformation rules. The main goals of transfor-

mational implementation are:

� to improve system reliability

� to reduce development time

� to provide automation in the development process, and

� to allow reuse of speci�cations and problem solving strategies

The PADDLE and GLITTER systems, which are direct successors of TI, have

solved some of the shortcomings of TI. However, there remain several issues

that are common to most transformational systems. The �rst issue is the

extension of transformation rules: none of the systems studied here provide

adequate support in generating new rules. When adding a new rule to the

catalog, the responsibility for ensuring that the newly added rule preserves

correctness remains with the user.

In terms of automation, GLITTER provides a better balance between user

interaction and system automation than PADDLE. Furthermore, GLITTER

11

attempts to capture its experiences, in a similar manner to that of expert

systems, to reduce its reliance on the user. However, to further improve the

behavior of the system, domain knowledge must be introduced into the system.

This problem is partially solved by the DRACO system [18] which will be

described in Section 2.1.3.

2.1.2 Programmer's Apperentice

The Programmer's Apprentice project (PA) started in the mid 1970's with

the goal of providing intelligent assistance for software engineering tasks [47,

39, 40]. The idea behind the intelligent assistance was the IBM's Chief Pro-

grammer's Team approach [7]. In the chief programmer's team approach, a

chief programmer is supported by a group of junior programmers (appren-

tices). The chief programmer makes the di�cult decisions and performs the

high-level design, while the junior programmers perform the low-level design.

Further, the chief programmer could, at any time, perform the low-level design

and implementation when need be.

The interaction between the programmer's apprentice and a software en-

gineer is modeled after the interaction between a chief programmer with a

human assistant. The programmer's apprentice plays an active role in the

development process by cooperating on or taking over aspects of the software

engineering tasks. However, the software engineer is always allowed to use the

underlying environment directly without interaction with the programmer's

apprentice. In short, a software engineer makes the hard decisions about what

should be done, while the apprentice takes over much of the mundane pro-

gramming tasks.

Figure 2 shows the division of labor in the programmer's apprentice project

[47]. The key issue in the cooperation of a software engineer and the apprentice

is their shared knowledge. This is the knowledge about the system being

worked on (e.g. requirements, design) and a large shared vocabulary so that

the software engineer does not have to describe everything from �rst principles

(e.g. design ideas, implementation techniques).

To formalize the shared knowledge the programmer apprentice uses the

plan calculus [40]. Plan calculus is a programming language independent for-

malization that combines
owcharts, data abstraction, and predicate calculus.

The goals of plan calculus were to be expressive, provide simple facilities for

combining cliches, and allow machine manipulatability of cliches. A cliche

is a common combination of elements with familiar names ranging from low-

12

Editor Compiler Debugger

Programmer

Shared
Knowledge

Assistant

Programming Environment

Figure 2: Division of Labor in Programmer's Apprentice (Adapted from Wa-

ters 1985)

level implementation ideas through design ideas and high-level speci�cation

concepts. Examples of cliches are device drivers, information systems, and

successive approximation. Cliches are theoretical concepts; to apply these

concepts, cliches are represented as plans [40]. A plan contains three kinds of

information:

1. plan diagrams, which contain information about the algorithmic aspects

of a plan such as data and control
ow. Plan diagrams are represented

using
owcharts.

2. logical annotations, which represent non-algorithmic aspects of a plan.

These are in forms of pre- and post-condition annotations of
owcharts.

3. overlays, which capture the transformational aspects of a plan. Overlays

are mappings between two plans. They di�er from transformations in

that they are bidirectional.

The underlying reasoning mechanism for plans is a multi-layer hybrid rea-

soning system called CAKE [37]. CAKE has several layers for reasoning

about di�erent aspects of plans (see Fig. 3). The bottom three layers of

13

Overlays

Plan Diagrams

Frames

Algebraic Reasoning

Proposotional Logic

General
Purpose
Reasoning

Special
Purpose
Reasoning

Figure 3: Layers of CAKE Reasoning System (Adapted from Rich and Waters)

CAKE (general-purpose reasoning) provide automatic one-step simple deduc-

tion, record dependencies which enables CAKE to explain its actions, detect

contradictions, and verify algebraic properties and inheritance. However, the

propositional logic layer of CAKE is relatively weak, which makes the practi-

cality of CAKE to be dependent on whether most of the information in a plan

is represented diagrammatically as opposed to logically.

The programmer's apprentice project focused on di�erent aspects of soft-

ware engineering tasks: requirement acquisition, design, program understand-

ing, and program synthesis. However, this paper focuses only on its program-

ming synthesis aspects. The demonstration system for program synthesis is a

knowledge-based system which uses only a subset of plan calculus [39]. This

prototype, knowledge-based editor in Emacs (KBEmacs), is an extension of the

standard Emacs editor.

The main goal of KBEmacs was to assist in constructing programs rapidly

and reliably by combining cliches. The heart of KBEmacs is a library of

programming cliches or algorithmic components. The cliches are used as the

shared knowledge between the programmer and KBEmacs, which can be ex-

tended by the programmer by de�ning new cliches. An underlying assumption

in KBEmacs shared knowledge is that the programmer is at least aware of ba-

sic features of the various cliches. This assumption is reasonable only when

cliches are related to a particular domain.

KBEmacs maintains two representations of the program being developed:

a program text and a plan. The programmer, at any time, can modify ei-

ther representation. To modify the program text, the programmer can use the

14

standard Emacs editor module, and to modify the plan, the user can use the

knowledge-based editor module which supports several commands for instan-

tiating and combining cliches.

When executing any knowledge-based command, KBEmacs �rst analyzes

the e�ects of any editing that the programmer has done. If the plan is modi-

�ed, the coder module of KBEmacs creates a new program text from the plan.

If the program text is modi�ed, the analyzer module of KBEmacs creates a

new plan by analyzing the data and control
ow of the program text [40]. The

analyzer module is similar to the front end of an optimizing compiler. The

coder module, on the other hand, is fairly complex. This complexity stems

from the need to create aesthetic code. KBEmacs has comment generation ca-

pabilities, which provide signi�cant high-level information that are not explicit

in the program code.

In summary, KBEmacs as a prototype demonstrated the key ideas behind

the programmer's apprentice project. First, the programmer is provided with

the freedom to work on either the program text or the plan. Second, the assis-

tant automatically modi�es the plan or the program text after the programmer

has completed the modi�cations. Lastly, at any given time, the programmer

is allowed to directly interact with the underlying programming environment.

Despite its limited success in terms of industrial applications, KBEmacs

demonstrated a few novel ideas in semi-automated program synthesis:

� a new formalization, plan calculus, which combines existing formaliza-

tions,

� a semi-automated system that aims to actively assist the programmer as

well as providing freedom to the programmer, and

� a facility for documenting programs, which includes high-level informa-

tion.

The main shortcomings of KBEmacs and perhaps the programmer's apprentice

project are the lack of a strong reasoning system and standard guidelines for

division of labor between the programmer and the system. In KBEmacs, in

principle, the programmer can altogether bypass the system. However, a set of

guidelines may contribute to better division of labor and contribute to stronger

reasoning system.

15

2.1.3 Draco

The Draco project started in the late 1970's with the aim to provide assis-

tance in software construction [32, 33]. Unlike the other approaches to semi-

automated program constructions, such as TI and PA, the Draco approach did

not intend to advance knowledge representation schemes, planning, language

design, parser generation, program transformation, or module interconnection

languages. Instead, it focused on combining the successful techniques in each

of the mentioned domains into a framework that concentrated on the construc-

tion aspects of software.

The designers of Draco intended to drastically reduce the number of de-

velopment team members needed to produce a large software system. This

reduction of number of team members could facilitate a rapid development

approach by allowing feedback cycles involving the original speci�ers [33]. To

achieve this goal, the Draco approach focused on domain speci�c software sys-

tems. Hence, the underlying assumption of this approach is that numerous

similar systems would be constructed over time in a given application domain

[15].

The Draco's view of software design di�ers from the traditional view with

respect to the notion of domain analysis. In the traditional view there are two

phases in software design: the analysis phase, where the focus is placed on

\what" the system should do, and the design phase, where the focus is placed

on \how" the system is to perform its function. In Draco's view, there are

also two phases. However, these phases focus on a domain of application, as

opposed to one single system. The two phases in the Draco approach are [33]:

1. application domain analysis, during which the requirements of a collec-

tion of similar systems are examined. This phase results in a set of

objects and operations encapsulated as a domain.

2. domain analysis, during which di�erent implementations for the objects

and operations of a domain are speci�ed in terms of other known domain

to Draco.

As a result, the heart of the Draco approach is a library of problem domains.

In Draco, di�erent application domains are described using a domain lan-

guage, which are de�ned and implemented in Draco [15]. Once a set of Draco

domains has been de�ned, new systems can be considered in the light of ex-

isting system. When a problem is cast as a program of a domain language,

16

the designer interacts with Draco to re�ne the problem into executable code.

The re�nement process is carried out by using a set of transformation rules

(in the order of 1000's). These transformation rules, unlike those of TI, are

source-to-source rules which only optimize the domain language programs [33].

To limit the number of decisions that the designer has to make, Draco pro-

vides a set of domain-independent rules, called re�nement tactics, for making

re�nement decisions about the representation and structure of programs [32].

To further reduce the number of possibilities, Draco annotates all program

fragments with all possible applicable transformations.

The role of Draco, similar to that of the Programmer's Apprentice [47], is

active in the re�nement process. The designer never suggests transformations;

instead, the designer solicits suggestions from Draco [15]. Draco, in turn,

suggests possible transformations based on program annotations and re�ne-

ment tactics. Once a transformation is applied, it suggests other applicable

transformations.

Draco, like other transformational systems, captures the design history

by recording the re�nement history. The re�nement history enables Draco

to provide replay mechanisms and also helps in a better understanding of

the system [32]. However, this history is very large |Neighbor estimates the

history to be ten times the size of the resulting code [33]| and does not capture

design rationales. The motivations and rationales are to some degree implicit

in the domain where objects and operations are annotated by implementation

techniques or applicable transformation rules.

In summary, Draco enables the de�nition and implementation of languages

of various types, provides transformation rules for source to source transfor-

mation, and consistency checking mechanisms for transformations. Draco is

a semi-automated system that plays an active role in the re�nement process,

and facilitates the recording of the re�nement history [15]. The main obstacle

in using the Draco approach is the di�culty of domain analysis, which requires

extensive knowledge of a particular application domain.

2.2 Case-Based Systems

Case-based reasoning is a problem solving paradigm, which involves the use

of previous experiences (cases) for solving new problems [22]. The motivation

behind this paradigm stems from the observation that experts rely more on

their previous experiences than a corpus of general knowledge. Furthermore,

17

as the expert gains more experiences, her problem solving ability will improve.

The main steps of case-based reasoning are:

1. identi�cation of the problem at hand,

2. retrieval of similar cases,

3. adapting the solution in the best matching case(s) to �t the current

problem,

4. evaluating the new solution, and

5. storing the new problem and its solution.

An important feature of case-based reasoning is the storage of both positive

and failed experiences. Positive experiences can be used to provide problem

solving directions, whereas failed experiences can be used to avoid repeating

mistakes.

The construction of case-bases is in general simpler than the construction

of a traditional knowledge base, which normally consists of general rules. This

simplicity is due to the informal records of problem solving experiences that

are usually kept by experts. Further, the initial number of cases for an e�ective

case-based system need not be very large so long as they are carefully selected.

As case-based systems solve new problems, their case-bases grow and their

problem solving abilities, in principle, improve. The main challenges of case-

based reasoning, however, are the retrieval of similar cases and their adaptation

to �t the new problems. These challenges are not trivial and are among the

main focuses of research in case-based reasoning.

Case-based reasoning has a striking resemblance to the compositional soft-

ware reuse approach as de�ned by Prieto-Diaz [35]. As a result, in recent

years, there has been a growing interest in the research community in apply-

ing case-based reasoning to compositional software reuse.

One of the earliest attempts to apply case-based reasoning to software con-

struction was outlined by MacKellar and Maryauski [28]. Their work focused

on the construction of a knowledge base for code reuse calledWharfRat. Whar-

fRat was limited to retrieval of \data types," which are structured de�nitions

of the data and the operations associated with them. These data types are

organized in a semantic net with several di�erent types of links: is a special-

ization, is an instance of, has a member, and has parts links. The similarity

18

between data types is also de�ned by a fuzzy link is like. WharfRat is interac-

tive and attempts to retrieve data types by evaluating a similarity score (based

on fuzzy logic) to the representation of data types and their links. The goal of

this system was to be included in a complete programming-by-similarity sys-

tem [28]. At the time of this study there were no further information available

on the future of WharfRat.

Another early attempt at using case-based reasoning in compositional soft-

ware reuse focused on program optimization [41]. One of the shortfalls of

compositional software reuse is e�ciency: composed components sometimes

require optimization to meet their performance requirements. The CGS sys-

tem [41] used case-based reasoning as a learning system, which attempted to

facilitate program optimization while preserving correctness of the program.

Simply viewed, CGS generates rules for program optimization based on its

previous experiences. The process of rule generation is interactive. The sys-

tem uses its previous experiences to formulate rules that are proposed to the

user, who can further qualify them by narrowing the domain of application,

or constraining functional and non-functional requirements, etc.

Despite its short history, case-based reasoning has been seriously consid-

ered as an enabling technology for software engineering in general and software

reuse in particular. More recent attempts in employing case-based reasoning in

software construction has focused more on pre-existing components. Further-

more, the degree of automation provided by these systems varies depending on

their domain of application. In the following subsection, we look at Deja Vu

[46], a task oriented program generator, PROSA [30], an experimental program

synthesis system for educational purposes, CAESAR [16, 17] a semi-automatic

program synthesis system that uses pre-existing programs from a well-de�ned

application domain to generate new programs, and �nally we study the Reuse

Assistant [13], which focuses on the retrieval of classes from commercially

available class libraries.

2.2.1 Deja Vu

Deja Vu [46] is a case-based reasoning system for constructing software for a

task oriented application. The problem domain is the development of plant

control software for controlling autonomous vehicles in loading and unloading

metal coils in a steel milling process. Deja Vu resembles, in some respect, a

very high-level language: it receives a domain speci�c high-level problem state-

ment (e.g., Move Two Speed Buggy Forward To Tension-Reel with shop

19

floor layout A) and produces a high-level solution that can be compiled

into an executable program.

In Deja Vu, a case consists of a high-level problem statement, the solution,

and a feature set providing a description of the case goals. Cases are stored

within a taxonomy that re
ects the plant-model planning. These cases can be

composite, that is, they can have other cases as part of their solution. This

approach allows for greater
exibility during problem solving by providing

access to all sub-cases so that the best match for the current problem can be

selected.

The novel feature of Deja Vu is its multi-stage problem solving process.

Like the expert problem solver, Deja Vu tries to solve problems by successive

re�nement. This is made possible by composite structure of cases, which can

contain other cases at di�erent levels of details. Deja Vu also provides facilities

for user interaction during the adaptation process. As mentioned previously,

adaptation is the hardest part of reasoning. The interactive adaptation process

allows for the human expert to rectify any problems that cannot e�ectively be

dealt with automatically.

2.2.2 PROSA

PROSA is a case-based reasoning system for program synthesis [30]. It was

developed to model the learning process in di�erent application domains of

programming. Mendiz et al. [30] observed that programming is usually taught

by examples. Students are typically provided with a set of example programs

from which students can abstract program schemas and general programming

techniques.

The core component of PROSA is a Dynamic Knowledge Base (DKB),

which is implemented as a net of frames. The DKB contains two types of

information: a basic concept dictionary and a case library. The basic concept

dictionary contains the basic concepts in the application domain, which can,

at any time, be extended according to the user's needs. Each concept is rep-

resented as a set of attribute value pairs. These concepts can be accessed by

their names or their attribute lists. The concepts stored in the dictionary are

either objects, entities that are manipulated by a program (e.g. strings), or

operations, which are actions that manipulate objects (e.g. length). The case

library in DKB stores cases, which consist of a problem and its solution. The

solutions in cases are described at di�erent levels of abstractions to capture

the entire re�nement process [30]. The �nal level of a solution can directly

20

be translated into an imperative programming language. Cases and their sub-

problems are indexed in DKB by the operations they implement, which allows

for reuse of both problem solution and their subproblem solutions in other

problems.

When a new problem is presented to PROSA in terms of its attributes,

the system searches the DKB for analogous problems by following a top-down

strategy. Upon selection of suitable matches, PROSA attempts to interac-

tively and successively adapt the selected solutions to �t the new problem.

The main objective of PROSA is educational and suggests the importance

of characterizing a problem in terms of domain speci�c attributes. This sug-

gestion is consistent with the shared knowledge concept introduced in the

Programmer's Apprentice project [47].

2.2.3 CAESAR

CAESAR is a case-based reasoning system for constructing programs, in a

speci�c domain, from existing program components [16, 17]. The main goal

of CAESAR is to help users to build a �rst draft of new program from the

given speci�cation. To do so, CAESAR contains an adaptation process, in

form of Prolog rules, to modify, merge, or extract program fragment from its

case base. Furthermore, the cases stored in the case-base contain data tests,

which allows CAESAR to evaluate its solution.

The case base in CAESAR consists of programs of the software reuse li-

brary, which are composed of the code itself, a repository structure describing

the composition of di�erent subparts of the program, and a set of speci�ca-

tions of program subparts and some data test examples. In conjunction with

the case base, CAESAR also contains domain knowledge. Domain knowl-

edge is composed of taxonomies representing generalization of concepts and

production rules expressing equivalence between speci�cations.

CAESAR accepts as input a problem speci�cation in the form of a conjunc-

tive of high-level goals. The conjunctive goals are interpreted as a sequence of

function calls. CAESAR re�nes the problem speci�cation using its cases and

its domain knowledge. The indexing of cases is accomplished by matching the

speci�cations of program subparts in conjunction with the domain knowledge.

The use of domain knowledge relaxes the reliance of the matching process on

exact syntactic similarity [36].

The re�ned speci�cation can be seen as a decomposition of original func-

tion calls into a sequence of lower-level function calls. CAESAR tries to �nd

21

cases matching these function calls and upon selection of these cases com-

poses them according to its adaptation rules. The next step involves testing

of the assembled solution. The results of testing are evaluated and reported

to the user for �nal approval. If approved, the case is added to the case base;

otherwise CAESAR repeats its problem solving cycle. It must be noted that

CAESAR does not store its failed attempts.

If CAESAR cannot �nd any cases matching the re�ned function calls, then

it tries to generalize the speci�cation of these function calls. The generalization

process is always performed on the data type parts of these speci�cations

and function calls in the user speci�cation always remain unmodi�ed. The

generalization results in a di�erent input speci�cation for the selected function.

If the generalized speci�cation is accepted by the user, she is required to modify

the program code. The new modi�ed speci�cation and program code, after

successful testing, is added to the case base.

A novel feature of CAESAR is the seeding of its case base. The initial

number of cases in CAESAR does not need to be large. As new problems

are solved, the number of cases is increased, which in turn contributes to the

problem solving ability of CAESAR: improved e�ciency and correctness of

solutions. Another novel feature of CAESAR is the use of existing program li-

braries. Through the use of program understanding techniques, data-
ow and

control-
ow analysis tools, CAESAR can semi-automatically extract proper-

ties of programs needed for case representation. The main constraint on pro-

gram libraries is that they must be small and self-contained encapsulating

most of the application domain knowledge. Furthermore, the user must be a

domain expert to understand how the library programs must be decomposed

in terms of their functional speci�cations. The domain analysis, though de-

manding, is a necessity for successful software reuse. CAESAR was tested

using a publicly available library of linear algebra routines written in C. The

results, though promising, can not be considered as a major success for CAE-

SAR. Linear algebra routines and a few other mathematical domains are well

de�ned and narrow, which are not typical of most application domains.

2.2.4 Reuse Assistant

The Reuse Assistant [13] is less of an automated program synthesis than an

intelligent assistant that helps users to locate the best matched component for

their purpose. Fernandez-Chazimo et al. based their ideas on the observation

that in software engineering the required information cannot fully be speci�ed

22

a priori. Hence, use of traditional information retrieval techniques is insu�-

cient for software reuse; problem setting and problem solving knowledge must

be taken into account to help users to articulate their queries. The Reuse

Assistant is a tool that allows users to construct their queries incrementally,

locate the required components, as well as helping the user in comprehension

of the retrieved information.

The Reuse Assistant takes a hybrid approach to storage and retrieval of

software components: automatic indexing [42], from traditional information

retrieval, to capture syntactic information, and a case-based representation

of components to capture the semantic knowledge. Every component in the

library is indexed using both approaches. This allows the queries to be ex-

pressed either in a restricted natural language based on keyword matching or

incrementally by �lling a form. The former queries are treated by the infor-

mation retrieval module, whereas the latter queries are treated by the case

base. Furthermore, the results of any queries can be used as an entry point

for searching the case base.

The main focus of the Reuse Assistant has been on object oriented lan-

guages and commercially available class libraries. Fernandez-Chazimo et al.

observed that basic libraries cannot be considered at the same level, in terms

of reusability, as the user implemented components; these have higher reuse

potential [13]. This observation is the justi�cation for hand-coded represen-

tation of the user implemented components. First, using statistical methods

of automatic indexing a set of keywords are associated with each component.

Then, the user can add her own representation as a case. Cases in the Reuse

Assistant are implemented as frame like structure with links to other cases.

This implementation creates an inheritance hierarchy, where general purpose

programming concepts (i.e., methods, classes, and relations) are placed at

higher levels and concepts speci�c to the library and the actual description of

the components are placed at lower levels.

The creation of such an inheritance hierarchy requires domain analysis;

concepts, objects, operations, and relationships among them must be identi�ed

and accurately recorded. As the system is used, new relationships may be

added to facilitate future searches. The domain analysis and dynamic update

of cases represent the main drawbacks of the Reuse Assistant. The domain

analysis is an expensive operation, which requires careful study of the domain.

Further, the dynamic update of the cases raises the issues of consistency and

the quality of knowledge. Fernandez-Chazimo et al. have tested the Reuse

23

Assistant on a Smalltalk class library and reported a high degree of success.

However, the class libraries of commercial languages are generally well designed

and conform to the case base structure of the Reuse Assistant. Furthermore,

their case study does not answer the problem of consistency and the quality

of knowledge. These are open problems that authors reported as being part

of their future research [13].

3 A Comparative Study

In this section, we compare the approaches studied in Section 2. This compar-

ison is based on knowledge acquisition, initial cost, the level of support that

each method provides, and their overall practicality. Section 3.1, presents a

comparison based on knowledge acquisition. We discuss the knowledge repre-

sentation technique, the type of knowledge used, and how this knowledge is

captured. Section 3.2 presents a comparison based on the initial costs involving

knowledge acquisition, domain analysis, and the domain of application of each

approach. Section 3.3 compares all methods based on their provided support

in decision making, evolution process, and learning. Finally, in Section 3.4 we

complete our comparative study by taking into account the practical issues.

These issues include human-readable documentation, access to the underlying

environment, and scalability. Section 3.5 concludes this section by providing

an overall ranking for each of the approaches studied.

3.1 Knowledge Acquisition

Knowledge representation is a crucial issue in semi-automatic programming

systems. Software engineering is a problem solving activity and as a result

knowledge intensive [11]. In order for a semi-automatic programming system

to be able to provide assistance in the process of programming, it must re
ect

the knowledge of the expert. The importance of the knowledge, in turn, raises

the issue of the knowledge capture. Table 1 shows a comparison of approaches

studied in Section 2 in terms of the type of knowledge that they represent, the

type of representation, and how this knowledge is captured.

Rule-based systems rely heavily on reusing production rules with the excep-

tion of the Programmer's Apprentice. The Programmer's Apprentice reuses

its cliches, in conjunction with rules, to provide higher-granularity reusable

artifacts [40]. Case-based systems rely heavily on their cases, which are less

24

Production

Formal

PADDLETI

TheoreticalTheoretical

Production

GLITTER

Domain

Production

Formal Formal

Programmer's

Domain

Cliches/

Theoretical/ Theoretical/

Formal/
Semi-
Formal

Apprentice Draco

Theoretical/

Rep.

Knowledge

Knowledge

Formal

Type

Knowledge

Acquisition

Rules Rules Rules Rules

Production

Rules

Formal

Deja Vu

Experience/

DomainDomain

Cases

Semi-

Formal

PROSA

Experience/

Theory

Cases

Semi-

Formal

CAESAR

Reuse

Assistant

Experience/

Theory

Cases/

Rules

Semi-

Formal

Experience/

Theory

Cases

Semi-

Table 1: Comparison based on Knowledge Acquisition

formal than production rules. Cases also provide an advantage that they can

o�er di�erent levels of abstractions.

The dominant type of knowledge in rule-based systems is theoretical knowl-

edge: this is what can be assimilated from a theoretical study of programming

[19]. With the exception of the TI and PADDLE systems, other rule-based

systems also require some degree of domain knowledge. The case-based sys-

tems take a di�erent approach and use mainly experiences or practical knowl-

edge: this is what can be obtained from having been active in a practice [19].

Due to the nature of practical knowledge, case-based systems also contain do-

main knowledge. Experiences are generally domain dependent. CAESAR and

PROSA also include some theoretical knowledge, in the form of production

rules, to improve the performance of their systems.

The acquisition of knowledge is an important issue in semi-automatic pro-

gramming systems and directly in
uences the initial cost of the system. The

rule-based systems, due to their reliance on theoretical knowledge, require a

formal study of the programming process, perhaps designing a formal language,

and formalization of their knowledge in form of production rules. Further, the

production rules must be veri�ed for consistency and completeness. This pro-

cess can be extremely costly, time consuming, and sometimes error-prone, if

there is no record of a previous e�ort that is considered useful.

The case-based systems described use semi-formal approaches to knowledge

capture. These systems rely on available records of previously solved problems

for their cases. Where such records are available, case-based systems provide

a signi�cant advantage in the knowledge acquisition over rule-based systems.

25

PADDLE

Programmer's

Apprentice

Reuse

Assistant

Initial

Cost

Domain of

Application

Domain

Analysis

General

None

High High

General

None

Very

High

High

General/

Speci�c

Low

General/

Speci�c

Low

High Very

High

Speci�c

High

Medium

Narrow/

Speci�c

High

PROSA CAESARDeja VuDracoGLITTERTI

Medium Medium Medium

Speci�c

Medium

Narrow/

Speci�c

High

Speci�c

Table 2: Comparison based on Initial Cost

3.2 Initial Cost

Another important aspect of semi-automatic programming systems is the ini-

tial cost: how much e�ort must be invested initially with respect to the ex-

pected bene�ts. Most of the automatic systems have some degree of depen-

dence on the domain of application that they are being used for. Table 2 shows

a comparison of the approaches studied in Section 2 in terms of their domain

of application, the domain analysis e�orts, and an initial cost of the system.

Rule-based systems were generally designed with the aim at general pro-

gramming. They hoped to be applicable to every domain. However, the

practical issues with regard to the anticipated support cause some of these

systems to include some domain speci�c information to improve their perfor-

mance. For example, the Programmer's Apprentice provides a repository of

shared knowledge which may contain domain terminologies so that the users

do not have to start from �rst principles [47]. Glitter also provides facilities

that require domain knowledge [14]. Hence, in general, rule-based systems

have little or no overhead in terms of domain analysis. We must note that

the Draco approach, though not domain speci�c, requires extensive domain

analysis [33].

Case-based system, as previously mentioned (see Section 3.1), are in general

domain dependent. However, in general, due to the availability of cases and

the fact that case-based systems do not require a large number of cases to start,

the domain analysis costs are not as high as expected. The Reuse Assistant

26

PADDLE

Programmer's

Apprentice

Reuse

AssistantPROSA CAESARDeja VuDracoGLITTERTI

Decision

Support

Evolution

Support

Learning Manual Manual Manual Manual Automatic Automaitc

None

Automatic Semi-

Automatic

Manual/

Assistance

None Low/

Automatic

Medium/

Semi-Auto.

High/

Semi-Auto.

High/

Semi-Auto.

High/ High/ High/ Low/

Semi-Auto. Semi-Auto. Semi-Auto. Semi-Auto.

None Low Medium High High Very

High

High Very

High

Table 3: Comparison Based on User Support

has less overhead in terms of domain analysis since initially it uses automatic

indexing for representing its cases. As the system is used, extra e�orts must

be invested to improve its knowledge-base [13].

3.3 User Support

The goal of semi-automatic programming is to provide support to program-

mers. As a result, we compare each approach based on the level of support

they provide in decision making, evolution, and learning. Table 3 shows a

comparison of approaches studied in Section 2 in terms of the support they

provide.

Rule-based systems in general do not support learning. They do not record

a history of the problems they solve and hence they cannot learn from their

experiences. If need be, the programmer must explicitly add new production

rules and verify that the newly added rules are consistent with the existing

rules. Case-based systems, on the other hand, learn from their experiences: as

the system solves more problems, in principle, it becomes more e�cient and

e�ective in problem solving.

There are two exceptions to the approaches that we studied. The Draco

approach provides assistance in terms of allowing the user to de�ne new do-

mains using the existing domains of Draco [33]. The Reuse Assistant, on the

other hand, unlike other case-based systems, does not provide learning. How-

ever, it provides users with the ability to re
ect what was learned by manually

27

updating cases [13].

In terms of decision support, we compare each approach based on how

much support they provide and how this support is provided. The decision

support in the TI system is almost none. The system does not provide any

suggestion in terms of what rules can be applied and which ones are more

likely a better choice. The PADDLE system provide more support in terms

of automatic application of rules. The Glitter system provides more support

in terms of allowing the user to interact with the system with regards to

the selection of rules and it partially automate the application of these rules.

The Programmer's Apprentice and the Draco approach, both provide a higher

degree of support in decision making. These systems are active participants

and try to make suggestions to the user based on the problem at hand and

their knowledge. Furthermore, based on the decisions made, they provide some

degree of automation by performing redundant tasks [33, 40].

The degree of decision support in case-based systems is much higher. They

semi-automatically re�ne the input speci�cation, retrieve similar cases, select

cases, and perform adaptation. An exception to these systems is the Reuse As-

sistant, which provides a lower degree of support. It provides only incremental

query formation and component location.

Software evolution is increasingly becoming a crucial issue in software en-

gineering: software systems increasingly outlive their life expectancies; their

original developers, in most cases, are unavailable, and the knowledge gained

during the development process is locked in their minds. The TI system was

pioneer in providing support for software evolution. Though it does not pro-

vide any support itself, it has in
uenced other systems in evolution support.

The PADDLE system provides a higher degree of support in evolution than TI.

However, this support is minimal in comparison to other systems. The PAD-

DLE system records the development process as a sequence of applications of

production rules. It does not provide any support in terms of decisions made

and the rationales behind them. The Glitter systems goes one step further and

attempts to record these lost rationales. However, the decisions stored are not

completely machine usable. Further, the above mentioned systems do not

provide user readable outputs (see Section 3.4). The Draco approach and the

Programmer's Apprentice focus on producing user-readable documentation as

well as an internal record of the development history.

Case-based systems generally provide some degree of support in the evolu-

tion. Their degree of support provided is dependent on the structure of their

28

case bases: a case re
ects the development history in the form of a hierarchy

of re�nement steps, where each step can be a case itself. The only exception

to this category is the Reuse Assistant, which does not store the history of

the development and as a result can not provide much support in the software

evolution.

One of the shortcomings of rule-based systems in providing evolution sup-

port stems from the lack of information of unsuccessful attempts. To some

extent, this is also a reason for the lack of learning ability in such systems.

Unsuccessful attempts are crucial in learning: they can be used to reduce the

possibility of future failures. With the exception of the Reuse Assistant, all

of the other case-based systems presented record both positive and negative

experiences, which can be used as a means of support in the evolution process.

3.4 Overall Practicality

Overall, for a semi-automatic programming system to be of practical use,

it must provide mechanisms to improve the programming task, from initial

speci�cation through evolution. Furthermore, it must not enforce \policies."

A system must 1) allow the user to access the underlying environment, 2) allow

the user to take full control of the development process, and 3) provide human-

oriented documents as well as an internal representation of the development

process. Further, a system designed for practical use must also be scalable:

prototypical systems are not always an indication of practical success. Table 4

shows a comparison of Section 2 approaches in terms of overall practicality.

The creation of human readable documents is crucial since it allows the

human expert to verify or understand what the system has done and what are

the reasons behind these decisions. The only system that provides good hu-

man readable documents is the Programmer's Apprentice. The Programmer's

Apprentice helps in both program commenting and external documentation

by using its shared knowledge [40]. Draco, Deja Vu, PROSA, and CAESAR

provide low level of support in this area, while other systems do not provide

\human readable" documents. TI, PADDLE, and Glitter, produce a speci�ca-

tion of the system written in GIST, which has been pretty-printed. However,

this document requires a great deal of knowledge about GIST and formal

languages.

In terms of scalability, all systems are suspect: to continue to provide their

expected level of support, these systems must be able to handle larger bodies

29

PADDLE

Programmer's

Apprentice

Reuse

AssistantPROSA CAESARDeja VuDracoGLITTERTI

User

Documentation

Access to

Environment

Scalability

Good

None None None None None None None None None

None None None NoneGood Low Low Low Low

None None None None None None None Low

Table 4: Comparison Based on Overall Practicality

of knowledge. All reported systems have been successfully tested on a few

small- to mid-size test cases. However, there is no evidence as how they would

perform in the construction of large-scale systems that may include more than

one domain of application.

The �nal issue that we consider is the access to the underlying environment.

In order for a system to be usable it must allow the user to move freely from the

system to the underlying environment, for example another support system.

The only system that provides such facility is the Programmer's Apprentice,

where the programmer has the choice between using the knowledge-based ed-

itor or the regular editor [47]. Other systems have all failed to recognize the

importance of such support.

3.5 Ranking

In this section, we rank the possible usefulness of each approach based on their

domain of application, the promised support, and ease of use as low, medium,

and high. The TI and PADDLE systems are ranked low: the speci�cation

language GIST is hard to use for average programmer and the support provided

by these systems does not justify learning of GIST. The PROSA system was

mainly designed for educational purposes and its support is very limited in

terms of practical applications. As a result we rank PROSA as low. The

Glitter system provides better support than the TI and the PADDLE systems.

However, it shares a common problem with these systems: the speci�cation

30

language GIST. We rank the Glitter system as medium.

The Draco approach despite its domain analysis is ranked as high since the

domains de�ned in the Draco system are potentially reused may times that

amortizes the overhead of domain analysis. The ranking for the Programmer's

Apprentice is similarly high. This is mainly because of the little restrictions

and signi�cant level of support provided by the system.

The Deja Vu and CAESAR systems are ranked high. Both systems provide

a high level of support in their narrow domain of application. The Reuse As-

sistant is also ranked high mainly due to its simple structure. Our justi�cation

for this ranking stems from the use of existing commercially available class

libraries, use of automatic indexing, and mostly because it is much closer to

the status quo than other systems. In fact, the Reuse Assistant can be con-

sidered as a small but positive step from the more traditional programming

approaches to the semi-automated systems.

4 Future Directions

The study presented in this paper re
ects some of the requirements for future

e�orts in semi-automatic programming systems. First and foremost, we must

realize that the human programmer is at the center of the program develop-

ment process. Hence, the system must provide active support in the decision

making process as opposed to completely taking control of the process [47].

Second, the system must provide ease of access to the underlying environ-

ment, where the human expert can take advantage of other support systems

[15]. Third, a record of the development history, including design decisions,

the rationales behind them, and failed attempts, is necessary to providing sup-

port for software evolution. The software evolution has become a signi�cant

issue in software engineering and as Balzer [5] foresaw in the early 1980's and

further realized in the 1990's (for example, see Selfridge et al. [43]), software

development is indeed an ongoing evolution process. Lastly, the domain anal-

ysis is more and more becoming a determining success in software engineering

[1]. The semi-automated systems are mostly domain dependent. Hence, such

systems must also provide support during the de�nition and analysis of the

application domain.

31

References

[1] P. D. Bailor. Educating knowledge-based software engineers. In 7th

Knowledge-Based Software Engineering Conference, September 1992.

[2] R. Balzer. A global view of automatic programming. In 3rd International

Joint Conference on Arti�cial Intelligence, Stanford, California, 1973.

[3] R. Balzer. Final report on GIST. Technical report, Information Science

Institute, University of Southern California, 1981.

[4] R. Balzer. A 15 year perspective on automatic programming. IEEE

Transactions on Software Engineering, SE-11(11), November 1985.

[5] R. Balzer, T. E. Cheatham, and C. Green. Software technology in the

1990's: Using a new paradigm. IEEE Computer, November 1983.

[6] R. Balzer, N. Goldman, and D. Wile. On the transformational imple-

mentation approach to programming. In 2nd International Conference

on Software Engineering. IEEE, 1976.

[7] F. T. Barker. Chief programmer team management. IBM System Journal,

11(1), 1972.

[8] T. J. Biggersta� and A. J. Perlis eds. Software Reusability, volume 1 and

2 of Frontier Series. ACM Press, 1989.

[9] A. Borgida and M. Jarke. Knowledge representation and reasoning in

software engineering. IEEE Transactions on Software Engineering, 18(2),

June 1992.

[10] T. Cheatham, G. Holloway, and J. Townley. Program re�nement by

transformation. In 5th International Conference on Software Engineering,

1981.

[11] B. Curtis. Cognitive issues in reusing software artifacts. In T. J. Bigger-

sta� and A. J. Perlis, editors, Software Reusability, volume 2 of Frontier

Series, chapter 20. ACM Press, 1989.

[12] J. Darlington and M. Feather. A transformational approach to modi�ca-

tion. Technical Report 80/3, Imperial College, London, 1979.

32

[13] C. Fernandez-Chazimo, P. A. Gonzalez-Calero, L. Hernandez-Yanez, and

A. Urech-Baque. Case-based retrieval of software components. Expert

Systems With Applications, 9(3), March 1995.

[14] S. F. Fickas. Automating the transformational development of software.

IEEE Transactions on Software Engineering, SE-11(11), November 1985.

[15] G. Fischer. Cognitive view of reuse and redesign. IEEE Software, July

1987.

[16] G. Fouque and Stan Matwin. CAESAR: a system for case based soft-

ware reuse. In 7th Knowledge-Based Software Engineering Conference,

September 1992.

[17] Glies Fouque and Stan Martin. A case-based approach to software reuse.

Journal of Intelligent Information Systems, 1993.

[18] P. Freeman. A conceptual analysis of the Draco approach to constructing

software systems. IEEE Transactions on Software Engineering, SE-13(7),

July 1987.

[19] B. Goranzon and I. Josefson. Knowledge, Skill and Arti�cial Intelligence.

Springer-Verlag, 1988.

[20] S. Henninger. Developing domain knowledge through the reuse of project

experiences. ACM Software Engineering Notes, April 1995.

[21] S. Henninger and K. Lappala. Finding the right tool for the job. Techni-

cal Report UNL-CSE-94-002, Department of Computer Science and En-

gineering, University of Nebraska-Lincoln, 1994.

[22] J. Kolondner. Case-Based Reasoning. Morgan Kaufmann, 1993.

[23] M. Koubarakis, J. Mylopoulos, M. Stanley, and A. Borgida. Telos: Fea-

tures and formalization. Technical Report KRR-TR-89-4, University of

Toronto, 1989.

[24] C. W. Krueger. Software reuse. Computing Surveys, 24(2), June 1992.

[25] B. Lientz and E. Swanson. Software Maintenance Management. Addison-

Wesley, 1980.

33

[26] M. R. Lowry. Knowledge-based software engineering. In A. Barr, P. R.

Cohen, and E. A. Feigenbaum, editors, The Handbook of Arti�cial Intel-

ligence, volume 4, chapter 20. Addison Wesley, 1989.

[27] M. R. Lowry. Methodologies for knowledge-based software engineering.

In J. Komorowski and Z. W. Ras, editors, Methodologies for Intelligent

Systems, Lecture Notes in Arti�cial Intelligence, LNCS(698). Springer-

Verlag, 1993.

[28] B. K. MacKellar and F. Maryanski. A knowledge base for code reuse by

similarity. In 13th Annual International Computer Software and Applica-

tions Conference, September 1989.

[29] M. D. McIlroy. Mass produced software components. In P. Naur and

B. Randell, editors, Software Engineering; Report on a conference by the

NATO Science Committee. NATO Scienti�c A�airs Division, 1968.

[30] I. Mendiz, C. Fernandez-Chazimo, and A. Fernandez-Valmayor. Program

synthesis using case based reasoning. 12 IFIP Congress, Poster Session:

Software Development and Maintenance, September 1992.

[31] P. Nauer and B. Randell. Software engineering: Report on a conference

by the NATO science committee. NATO Scienti�c A�airs Division, 1968.

[32] J. M. Neighbors. The Draco approach to constructing software from

reusable components. IEEE Transactions on Software Engineering, SE-

10(5), September 1984.

[33] J. M. Neighbors. DRACO: A method for engineering reusable software

systems. In T. J. Biggersta� and A. J. Perlis, editors, Software Reusability,

volume 1 of Frontier Series, chapter 12. ACM Press, 1989.

[34] H. Partsch and R. Steinbruggen. Program transformation systems. Com-

puting Surveys, 15(3), September 1983.

[35] R. Prieto-Diaz. Classi�cation of software modules. IEEE Software, 4(1),

January 1987.

[36] R. Prieto-Diaz. Implementing faceted classi�cation for software reuse.

Communications of the ACM, 34(5), May 1991.

34

[37] C. Rich. Seven layers of knowledge representation and reasoning in sup-

port of software development. IEEE Transactions on Software Engineer-

ing, 18(2), June 1992.

[38] C. Rich and R. C. Waters. Automatic programming: Myths and

prospects. IEEE Computer, August 1988.

[39] C. Rich and R. C. Waters. A research overview. IEEE Computer, Novem-

ber 1988.

[40] C. Rich and R. C. Waters. Formalizing reusable software components in

the programmer's apprentice. In T. J. Biggersta� and A. J. Perlis, editors,

Software Reusability, volume 2 of Frontier Series, chapter 15. ACM Press,

1989.

[41] S. H. Rubin. Learning in the large: Case-based software systems design.

In 1991 IEEE International Conference on Systems, Man, Cybernetics,

October 1991.

[42] G. Salton and M. J. McGill. Introduction to modern information retrieval.

McGraw-Hill, 1983.

[43] P. G. Selfridge, L. G. Terveen, and M. D. Long. Managing design knowl-

edge to provide assistance to large-scale software development. In 7th

Knowledge-Based Software Engineering Conference, September 1992.

[44] D. R. Smith. KIDS: A semi-automated program development system.

IEEE Transactions on Software Engineering, 16(9), September 1990.

[45] D. R. Smith. KIDS { a knowledge-based software development system. In

M. R. Lowry and R. D. McCartney, editors, Automating Software Design,

chapter 19. AAAI Press, 1991.

[46] B. Smyth and P. Cunningham. Deja Vu: A hierarchical case-based reason-

ing system for software design. In 10th European Conference on Arti�cial

Intelligence, 1992.

[47] R. C. Waters. The programmer's apprentice: A session with KBEmacs.

IEEE Transactions on Software Engineering, SE-11(11), November 1985.

[48] D. S. Wile. Program developments: Formal explanations of implementa-

tions. Communications of the ACM, 26(11), November 1983.

35

