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Abstract

In the data{accumulating paradigm, the input is an endless stream. A computation is

considered to be �nished when all the already received data are processed before another

datum arrives. We study sorting algorithms in this paradigm. First, we consider the data

arrival law as being polynomial in time. We prove the existence of an upper bound on the

running time, and hence on the amount of processed data, for any polynomial arrival law.

This contradicts previous research, which states that such a limit exists only for particular

cases. We extend this result to a large class of data-accumulating algorithms besides sorting.

On the other hand, we show that, if the number of processors is large enough, then the sorting

algorithm terminates for any polynomial arrival law. Then, we analyze an example of a non-

continuous data arrival law. We �nd similar properties for the sorting algorithm, namely, (i)

the existence of an upper bound on the running time, and (ii) termination of the algorithm

for any such arrival law when there are su�ciently many processors. Therefore, we conjecture

that these properties are not dependent on the expression of the arrival law.

1 Introduction

Researchers in the area of parallel computation have always striven to establish limits on the power

of parallel algorithms. One such result states that when two or more processors are applied to

solve a given computational problem, the decrease in running time is at most proportional to the

increase in the number of processors [5, 10]. Since, according to this result, the ratio of the speedup

achieved to the number of processors used is at most 1, the behavior of any parallel algorithm is at

most unitary. By contrast, suppose that a parallel algorithm is found to provide a speedup larger

than the number of processors it uses. Then this algorithm would contradict the aforementioned

result and would be said to exhibit superunitary behavior. No such algorithm seemed to exist until

some parallel search algorithms appeared to demonstrate superunitary behavior when operating

on particular instances of the problem to be solved (see, for example, [6]). However, since this

property manifested itself only for some special inputs, no general conclusion could be drawn.

Problems that admit superunitary behavior in all instances were later discovered. They are

based on unconventional (yet realistic) paradigms. Some computations that can be described

as a disjunction of tasks are considered in [3]. Environments in which such problems exhibit

superunitary behavior have been investigated; they include, for example, the existence of time

critical tasks that must be solved in a speci�ed time, the high cost of inverting a computation, and

so on. The common property of such situations is the existence of a threshold value for the number

of processors. Once the number of processors is smaller than this threshold, more work is required
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to solve the problem. This direction was continued in [2], where new paradigms are investigated,

such as (i) memory �lling computations, in which each iteration of the algorithm produces a value

and an address where that value is to be stored, and the value produced by an iteration depends

on the previously computed values and addresses, or (ii) dealing with several input streams, when

the completion of the computation requires that all the streams be monitored in real time.

In the classical study of algorithms, input data are considered to be available at the beginning

of computation. No additional data come while the computation proceeds, and the algorithm

will eventually terminate when the input data have been processed. But what happens when the

data arrive while the computation is in progress? If the arrival rate is su�ciently high, then a

sequential algorithm will be simply overwhelmed by the stream of data and will not be able to

process it fast enough. A parallel algorithm, on the other hand, may succeed to handle all the

incoming data. This paradigm is called the data{accumulating paradigm [7, 8, 9]. The data are

considered here as being an endless stream. An algorithm terminates when all the data that were

already received have been processed. It is shown that the speedup o�ered by a parallel algorithm

can be made arbitrarily large by modifying the parameters of the data arrival law and/or the

number of processors. The data arrival law considered in [7, 8, 9] is polynomial with respect to

the elapsed time.

In this paper we continue the investigation of data{accumulating algorithms. As a case study

we consider sorting algorithms, which are basic elements for various applications. It has been shown

[7] that, if the data arrive too fast, then a successful algorithm (that is, one that terminates) must

have a running time upper bounded by a constant. In other words, it must process all the received

data (before a new datum arrives) in a time which is no larger than that constant. This, of course,

is not always possible. In fact, when the running time exceeds that constant, then the algorithm

never terminates. Indeed, our results indicate that such a constant upper bound for the running

time exists for any polynomial data arrival law. This is a negative, yet important, result because

it establishes a limit that was not previously known. However, we also show that any arrival law

can be handled in �nite time with a su�ciently large number of processors. Subsequently, we

extend these results in two ways. First, we consider another data arrival law which is signi�cantly

di�erent from the polynomial one, being a non-continuous function. Second, we show that the

constant upper bound mentioned above is not a particular feature of sorting, but it occurs for a

large class of problems.

The paper is organized as follows. In section 2 we summarize the results concerning the old

upper bound for speedup. In section 3 we formalize the class of data{accumulating algorithms,

and in section 4 we study sorting algorithms with a data arrival law conforming to this paradigm,

also generalizing the results obtained. We conclude in the last section.

In the following, a proposition is a result proved elsewhere. Where possible, the name of the

original theorem is provided. Throughout the paper we use the RAM and the PRAM as our

sequential and parallel computational models, respectively [2].

2 Classical Speedup Bounds

The most common measure of the performance of a sequential algorithm is the speedup. Given

some problem �, the speedup of an algorithm that uses p1 processors over an algorithm that uses

p2 processors with respect to problem � is the ratio S(p2; p1) = T�(p2)=T�(p1), p1 > p2 > 0,

where T�(x) is the running time of the best x-processor algorithm that solves �. In many cases

[2] this de�nition is used to compare a parallel algorithm with a sequential one, that is, p2 = 1.

The e�ciency is de�ned [2] as the ratio of the speedup over the number of processors, that is,

E(1; p) = S(1; p)=p. When the e�ciency is de�ned in this way, we will omit the �rst argument

and denote the e�ciency simply by E(p). However, in some cases [3], the e�ciency is de�ned in a

more general way: E(p1; p2) =
T�(p1)

T�(p2)
�

p1
p2
, where T� is de�ned as above.

In a conventional environment, the speedup (and hence the e�ciency) of a parallel algorithm
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is bounded by the following results [2, 5, 10].

Proposition 2.1 (Speedup Theorem [10]) S(1; p) � p or, equivalently, E(1; p) � 1.

Proposition 2.2 (Brent's Theorem [5]) If a computation C can be performed in time t with q

operations and su�ciently many processors that perform arithmetic operations in unit time, then

C can be performed in time t+ (q � 1)=p with p such processors.

These two propositions state that, when more processors solve a given problem, then the

increase in performance is at most proportional to the increase in the number of processors.

3 Data{Accumulating Paradigm

Some paradigms for which the bounds from propositions 2.1 and 2.2 do not hold are presented by

Luccio and Pagli:

� The input data are not all available at the beginning of the computation; more data come

while the algorithm is operating [7, 8, 9];

� PRAM processors may fail; then, the algorithm must be organized such that, for any pro-

cessor failure, all pending operations can still be executed on the remaining processors [8];

� Computing in a secure environment; some actions are performed by several distinct agents

in order to certify the reliability of the result [8].

We focus in this paper on the �rst of these paradigms. Two variants of it have been investigated

[7]: (i) the computation terminates when all the data currently arrived have been treated, and (ii)

data are considered an endless stream, but the computation is divided into stages, where the

work in each stage is based on the data set updated with the data received in the previous stage.

However, results obtained for the �rst variant may easily be extended to the second one. Therefore,

we are concerned henceforth only with the case in which the computation terminates when all the

currently received data have been processed. Algorithms pertaining to this class are called data-

accumulating algorithms or, for short, d-algorithms.

A standard algorithm, working on a non-varying set of data, is referred to as a static algorithm.

Consider a given problem �. Let the best known static algorithm for � be A0. Then, a d-algorithm

A for � working on a varying set of data of size N is optimal if and only if its running time T (N)

is asymptotically equal to the time T 0(N), where T 0(N) is the time required by A
0 working on the

N data as if they were available at time t = 0.

The data arrival law can have any form. However, only non-decreasing functions make sense.

The form proposed in [7] is

N = n+ kn

t
�
; (1)

where n is the size of the initial data set and k, , and � are positive constants.

The problems considered in [7] are solvable in polynomial time, that is, T 0(N) = O(N�), where

� is a positive constant, with T
0 de�ned as above. This implies that an optimal d-algorithm

must have a time complexity of T (N) = cN
�, for some positive constant c1. If the d-algorithm

terminates at time t, then we have t = cN
�. Considering the data arrival law given by relation

(1), the termination time t can be expressed by the implicit function

t = c(n+ kn

t
�)�: (2)

1Note, however, that our study in the present paper covers d-algorithms that have a time complexity of cN�,
even if they are not optimal.
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It is shown in [7] that the d-algorithm will terminate for n in some interval that depends on

the constants involved only for certain values of �, �, and . For example, it is claimed that, if

 = 1, for �� < 1, then n grows as (1=(kc1=�))t(1���)=�. That is, for any n, the d-algorithm will

eventually terminate, even if its running time can be very large (the expression of t as a function of

n may be exponential). For �� � 1, on the other hand, the algorithm terminates only for bounded

values of n; moreover, for �� > 1, the running time itself is upper bounded by a constant (and

this bound is not present in the other cases).

The parallel d-algorithm is de�ned in the same manner as the sequential one, except that its

execution time Tp(N) is compared to the execution time T 0p(N) of a parallel static algorithm that

uses the same number of processors P (N) as the parallel d-algorithm. The equation for the parallel

optimal d-algorithm is similar to the one obtained for the sequential case:

tp =
cp(n+ kn


t
�
p )

�

P
; (3)

where the subscript p denotes the parallel case and P is the number of processors. It is assumed

in [7] that P is a polynomial function of N .

We quote the following main results obtained in [7]:

Proposition 3.1 For a problem admitting an optimal sequential d-algorithm obeying relation (2)

and an optimal parallel d-algorithm obeying relation (3) we have

t

P tp
=

c

cp

1� (cp=P )kn

1� ckn
; for � = � =  = 1:

For cp=P < c we have:

t

P tp
!1 for n!

1

kc1=�
;

where �� = 1,  = 1, and P = �(n + kn

t
�
p )

�, with some constants �, � > 0, and �, 0 � � � �,

and

t

P tp
>

c

cp
;

for all values of �, �, .

Proposition 3.2 (Corollary) For optimal d-algorithms the bound on parallel speedup of proposi-

tion 2.1 is violated for proper values of the parameters. In particular, this always occurs for cp = c.

This result gives a precise formula for parallel speedup when � = � =  = 1 and shows that

the quantity t=P tp may become arbitrarily large. This implies that, for optimal d-algorithms, the

bound for parallel speedup from proposition 2.1 does not hold for proper values of the parameters

(and this always occurs for cp = c). Also, Brent's theorem (proposition 2.2) does not hold.

In the following sections we study d-algorithms for the problem of sorting a sequence of numbers

in non-decreasing order. A new restriction on the running time is derived, namely, that a constant

upper bound exists on the running time which does not depend on � or n (as previously thought),

but only on �. On the other hand, propositions 3.1 and 3.2 still hold, having even a stronger form

(namely, data arriving according to any law can be processed in �nite time with su�ciently many

processors). We also generalize these results for a large class of problems.
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4 Sorting

In the following, we study sorting with respect to the data{accumulating paradigm. Note that a

similar problem is investigated in [7], but there the result is a search tree. This implies an O(logn)

access time, which may be unacceptable for a large data structure. Therefore, an O(1) access time

data structure is preferred in many applications. That is, the sorting algorithms discussed here

will output an array of sorted elements. Henceforth, we refer to such processing as sorting on a

linear structure (or simply sorting, for short, when there is no ambiguity).

One may say that an array is a static data structure and thus it is not suitable for varying

data. However, arrays that extend themselves in order to accommodate an increasing amount of

data are known (for example the Vector data type in the Java language [4]).

For comparison purposes, we use a static sorting algorithm whose running time is �(n logn)

[1].

4.1 The Sequential Case

By de�nition, data accumulates as the computation proceeds. Generally, we consider that the

incoming data are bu�ered until some amount q is reached, and then the bu�ered data are inserted

into the already sorted sequence (for the non-bu�ered case simply set q to 1). The time complexity

of such an operation is given by the following lemma.

Lemma 4.1 Let the length of the already sorted sequence be l. Then, the time complexity of

inserting q new elements into the sorted sequence is �(q log q+ l), for any q and l such that either

q = 1 or l � (q log q)=(q � 1).

Proof. In order to prove the upper bound on the time complexity, note that it is enough to sort

the newly arrived sequence (this will take O(q log q) time) and then merge it with the old sequence

(in time O(q + l)), for an overall running time of O(q log q + l).

For the lower bound, we have the following:

Supposing that the distance between the insertion point of some element and the end of the

bu�er is 
(l) (which is the general case), the time required for inserting a datum into some sorted

sequence is also 
(l), since all data that are behind the insertion point should be shifted to make

room for the new one. But, if the newly arrived data are not sorted, then one should insert them

into the bu�er one by one. Therefore, the insertion time for the whole sequence is 
(ql).

On the other hand, the number of operations needed to sort q data is 
(q log q) [1], while

merging the sorted sequences requires 
(q + l) operations [1]. Hence, the lower bound for the

entire process in this case is 
(q log q + l).

Therefore, the overall lower bound is given by 
(q log q+l) provided that q = 1 or ql � q log q+l,

that is, l � (q log q)=(q � 1). 2

Note that most implementation details were left out of the proof. These details, however, do

not a�ect the complexity. For example, two bu�ers are actually needed: one of them contains data

that are processed (that is, sorted and merged), and the other accumulates data that continue to

arrive. After the �rst bu�er is processed, the functions of the two bu�ers are switched and the

computation continues.

We did not consider the case in which more than q elements come before the processing of the

already arrived data is �nished. But this case is equivalent to the one in which the data arrive too

fast and the d-algorithm never stops. Indeed, as seen below, the necessary condition (5) for the

algorithm to terminate in �nite time covers this case.

Considering the data arrival law of relation (1), the time tq in which the bu�er is �lled is given

by the equation

q = kn

t
�
q : (4)
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At some time tx, when the bu�er is �lled and is ready to be inserted, the length of the already

sorted sequence will be l = n + kn
(t�x � t

�
q ), because all the arrived data have been inserted,

except the data which are in the bu�er (otherwise, some elements are lost). We will consider for

simplicity that � = 1, but similar results can be obtained for other values as well. In this context,

the time interval between two arrivals is dt = 1=kn . Suppose that the algorithm stops at time t.

This means that, at time t, all the bu�ered data have been inserted before another datum arrives.

That is, the time required to insert the bu�er (given by lemma 4.1) should be no greater than dt:

dt � q log q + n+ kn
(t� tq); (5)

or, considering relation (4) and the expression for dt,

1

kn
� q log q + n+ kn

(t�
q

kn
): (6)

Simple calculations let us derive the following bound on the computation time:

t �
1

(kn)2
+

1

kn
q(1� log q)�

n

kn
: (7)

This imposes a limit on the running time of any sequential sorting d-algorithm that terminates

for the polynomial data arrival law given by relation (1). Henceforth, the right-hand side of relation

(7) will be denoted by t
0

B
2.

We are now ready to determine the complexity of sorting on a linear structure.

Theorem 4.2 Under the polynomial data arrival law given by relation (1), the running time of

any sequential d-algorithm for sorting on a linear structure is �(N2).

Proof. Let us assume �rst that q is a constant. Speci�cally, q does not depend on elapsed time

(however, if it is a function of n, then the proof is not a�ected). By lemma 4.1, the time required

to insert the q elements from the bu�er is �(q log q + l), where l is the number of already sorted

elements. This time is �(l), since q is constant. But l increases by q each time a new bu�er is

inserted. The initial size of l is the amount of initial data, namely, n. Therefore, the total time

required for sorting N elements is

�

0
@N=qX

l=n

ql

1
A = �(N2); (8)

as claimed.

However, one may consider that the size q of the bu�er varies with time. We have

@t
0

B

@t
=

@

@t

�
1

(kn)2
+

1

kn
q(1� log q)�

n

kn

�

= �
1

kn
log q

@q

@t
:

Obviously, q � 1 and t
0

B > 0 (otherwise, the algorithm never terminates). If there is some

constant (with respect to the time) Q such that q � Q everywhere, then relation (8) holds (because

q may then be approximated by Q and the rate of growth does not change). Therefore, it is enough

to consider the case of q being an increasing function. Then, @q
@t

> 0, and this implies
@t0B
@t

< 0,

because log q > 0 for q > 1. That is, t0B is a decreasing function. Since t0B(0) is �nite, there exists

2This notation was chosen in order to be consistent with the notation from [7]. There, tB denotes an upper

bound on the running time. Obviously, relation (7) also de�nes an upper bound.
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some Q such that t0B(q) � 0, for all q � Q. But, from relation (7), the termination time of the

algorithm is less than t
0

B . Therefore, when q � Q, the upper limit for the termination time is

negative, which means that the algorithm never stops. Thus the values q for which the algorithm

terminates are bounded again and we are in the case covered by relation (8). This completes the

proof. 2

Corollary 4.3 Sorting on a linear structure does not admit an optimal d-algorithm.

4.2 Extending the Upper Bound on the Running Time

In the previous section we established an upper bound on the running time only for proving the

complexity of sorting d-algorithms. In this section, we analyze this bound. We begin by considering

sorting d-algorithms, and then generalize our results for other d-algorithms.

First, note that a side consequence of the proof of theorem 4.2 is that the best value for the

bu�er size q is the minimal possible, that is, 1, because t0B is a decreasing function with respect

to q. In other words, there is no reason to bu�er data; it is better to insert each arrived datum

in linear time. Hence, we will consider q = 1. Second, when obtaining relation (7), we considered

only the rate of growth of the functions involved. If we want a quantitative result, then the time

required in order to insert one element into the already sorted sequence (q = 1) is cl, for some

constant c. Relation (6) becomes in this case

1

kn
� c(n+ kn


t); (9)

and hence

t
0

B =
1

c(kn)2
�

n

kn
: (10)

Relation (10) de�nes the limit in terms of n. Therefore, it can be as small as desired (in

particular, smaller than tB) for appropriate values of n.

The limits obtained in [7] for the running time and the initial amount n of data for  = 1 are

tB =
1

(k(�� � 1))1=�
;

and

nB =
(�� � 1)(��1)=��

c1=�k1=����
:

But, in our case, � = 2 by theorem 4.2 and � = 1. Then, the two relations above become

tB =
1

k
;

nB =
1

2c1=2k1=2
:

For nB as above, t0B becomes 3=k. Therefore, our limit turns out to be too optimistic (even if

of the same order). However, it provides a way of characterizing sorting d-algorithms. Also, note

that t0B depends on the initial amount of data n. In fact, we can provide a stronger result for the

general case.

We have considered � = 1. But this implies that the product �� is larger than 1, and the

existence of a limit on the running time in this case was established in [7]. More interesting is

the situation where � � 1=2, for �� � 1. Under these conditions, no limit on the running time is

known. We now study this case.

7



Theorem 4.4 For the polynomial data arrival law given by relation (1), if a sorting d-algorithm

terminates, then its running time is upper bounded by a constant T that does not depend on n.

Proof. We will have the restriction  = 1 for easier calculations. Note that this does not make

the problem less general, since both k and n are constants with respect to time. Therefore, for any

term kn
 one can choose another constant k0, such that kn = k

0
n (k0 = kn

�1).

The time dt after which a new datum arrives is given by

1 = kn
((t+ dt)� � t

�);

for some moment t. That is,

(t+ dt)� � t
� =

1

kn
: (11)

On the other hand, relation (5) in the general case becomes

dt � q log q + n+ kn
(t� �

q

kn
);

which leads to

dt+ t � q log q + n+ kn
(t� � q

kn
) + t ,

dt+ t � q(log q � 1) + n+ kn

t
� + t ,

(dt+ t)� � (q(log q � 1) + n+ kn

t
� + t)� :

By relation (11), the last expression becomes

1

kn
� (q(log q � 1) + n+ kn


t
� + t)� � t

�
: (12)

In particular, for  = 1,

1

kn
� (q(log q � 1) + n+ knt

� + t)� � t
�
: (13)

But the complexity of the sorting algorithm is O(N2) by theorem 4.2. That is, the running

time is given by

t = cN
2 = c(n+ kn


t
�)2;

and, for  = 1, this implies

n =
t
1=2

c(1 + kt�)
: (14)

>From relations (13) and (14) we have

qc(1+kt�)

kt1=2
� (q(log q � 1) + t1=2

c
+ t)� � t

�
,

qc
k
�

t1=2

(1+kt�)

�
(q(log q � 1) + t1=2

c
+ t)� � t

�
�
:

Let us denote the term t1=2

(1+kt�)
by b(t) and (q(log q � 1) + t1=2

c
+ t)� � t

� by a(t). Then, the

above expression becomes
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qc

k
� b(t)� a(t): (15)

But

@b(t)

@t
=

t
�1=2

(1 + kt�)2
(1=2 + k(1=2� �)t�);

and hence, for � � 1=2,
@b(t)

@t
> 0. That is, b(t) is an increasing function. Analogously, a(t) is an

increasing function as well:

@a(t)

@t
= �(

t
�1=2

c
+ 1)(q(log q � 1) +

t
1=2

c
+ t)��1 � �t

��1

> �

�
(q(log q � 1) +

t
1=2

c
+ t)��1 � t

��1

�
[because t�1=2=c > 0]

> 0 [because q(log q � 1) + t
1=2

=c > 0]:

Therefore, b(t)� a(t) is increasing. Moreover, for � < 1=2,

lim
t!1

b(t) =1; (16)

since b(t) is the ratio of two polynomials in t and the degree of the numerator (namely, t1=2) is

larger than the degree of the denominator (namely, 1 + kt
�).

But a(t) is a strictly increasing function as shown above and

a(1) = (1=c+ 1)� � 1

> 0

(for suppose that (1=c + 1)� � 1 � 0; then, 1=c + 1 � 1 and this implies that c � 0, which is

absurd). But then a(t) > 0 for any t � 1. Therefore,

lim
t!1

a(t) > 0: (17)

By relations (16) and (17),

lim
t!1

b(t)� a(t) =1;

for � < 1=2.

For � = 1=2, limt!1b(t) = 1=k. In this case, a(t) � (t1=2=c+ t)1=2 � t
1=2. Suppose now that

(t1=2=c+t)1=2�t1=2 < t
1=8. This implies t1=2=c+t < t

1=4+t+2t5=8. That is, t4=5 < ct
2=5+2c, which

is obviously false for t large enough. Hence, for such a t, a(t) � t
1=8 and thus limt!1a(t) = 1.

But then, again, limt!1 b(t)� a(t) =1.

The facts that b(t)�a(t) is an increasing function and that its limit is in�nite imply that there

exists some �nite T such that b(t)� a(t) > qc
k
for any t > T . But then, such a t larger than T will

contradict the condition necessary for algorithm termination and given by relation (15). Hence, T

is an upper bound for the running time and this completes the proof. 2

Note that the theorem implicitly gives an upper bound for the maximum amount of data which

can be processed, because this amount is given by N = n+kn

t
� and its upper bound is obviously

n+ kn

T
�. We contradict by theorem 4.4 the results derived in [7], where it is claimed that such

a bound does not exist for �� < 1.

In the case of sorting on a linear structure we found an upper bound on the running time for

any data arrival law. But sorting is not the only case in which such a bound exists.
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Theorem 4.5 For the polynomial data arrival law given by relation (1), let A be any d-algorithm

with time complexity 
(N�), � > 1. If A terminates, then its running time is upper bounded by a

constant T that does not depend on n.

Proof. It is enough to consider the case � � 1=�, because in the other case (namely, �� > 1)

the limit has been already found [7].

Let � = � � 1. This implies � > 0. If the algorithm terminates at some �nite time t, then N

data have been processed, where N = n + kn

t
� . That is, the time for processing one datum is

cN
�
=N = cN

� for some positive constant c. Following the same idea as the one used for deriving

relation (5), we have

dt � c(n+ kn

t
�)�;

which is similar to relation (5). Therefore, analogously to the proof of theorem 4.4, we obtain for

 = 1

qc

k
�

t
1=2

(1 + kt�)

�
(c(n+ knt

�)� + t)� � t
�
�
: (18)

But the left-hand side of this relation is increasing, because c(n+knt�)� > 0, and it is immediate

that the limit of the right-hand side is in�nite. Hence, the limit T is derived in the same way as

in the proof of theorem 4.4. 2

4.3 The Parallel Case

Recall that P is the number of processors in the parallel model.

Lemma 4.6 The process described in lemma 4.1 admits linear speedup.

Proof. Sorting q elements admits linear speedup [2] (page 179). Inserting the bu�er into the

previously sorted sequence may be achieved by using an optimal merging algorithm [2] (page 209).

2

Conforming to lemma 4.6, relation (6) becomes in the parallel case

P

kn
� q log q + n+ kn

(t�
q

kn
):

This implies

t �
P

(kn)2
+

1

kn
q(1� log q)�

n

kn
: (19)

As expected, relations (7) for the sequential case and (19) for the parallel one are similar.

Therefore, all the above sequential results hold for the parallel case as well. That is, the best value

for q is 1 (bu�ering no longer helps), and a similar limit for the running time can be found. This

limit is

t
00

B(P ) =
P

cp(kn)2
�

n

kn
: (20)

Note the close similarity with the limit obtained for the sequential case, given by relation (10).

It is easy to see that theorem 4.4 holds for the parallel case as well.

Theorem 4.7 If the running time of a sequential sorting d-algorithm is larger than t
0

B and the

running time for a P -processor parallel sorting d-algorithm is less than t
00

B(P ), then the speedup

S(1; P ) is in�nite.
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Proof. The theorem is established by recalling that t
0

B and t
00

B(P ) are the respective upper

bounds on the running times of sequential and parallel sorting d-algorithms that terminate under

the polynomial data arrival law given by relation (1). 2

The term \in�nite speedup" means that the sequential d-algorithm never stops (since its run-

ning time is larger than t
0

B), while the parallel one produces a result in �nite time. The following

characterization is similar to proposition 3.1.

Theorem 4.8 For the problem of sorting, if cp < cP , then

S(1; P ) > P �
c

cp
;

or, alternatively,

E(P ) >
c

cp
:

Proof. Following the same idea as in [7], from relations (2) and (3) with � = 2 we have

S(1; P ) =
t

tp
= P

c

cp

 
n+ kn


t
�

n+ knt
�
p

!2

But it is immediate that t > tp if cp < cP and therefore (n+ kn

t
�)=(n+ kn


t
�
p ) > 1. 2

It is consistent to assume cp < cP , because usually cp and c are close to each other. However,

cp < cP will hold for P large enough.

Theorem 4.9 If the running time of a P -processor sorting d-algorithm is larger than t
00

B(P ), then

the algorithm can be rescheduled for P
0 processors, P 0 > P , such that the speedup S(P; P 0) is

in�nite.

In other words, if we have enough processors, then the d-algorithm will stop each time.

Proof. If the running time t is larger than t
00

B(P ), then the P -processor algorithm will never stop.

But t00B is a strictly increasing function with respect to P , therefore there exists some P 0 such that

t � t
00

B(P
0). 2

We can also give a generalization of theorem 4.5 for the parallel case.

Theorem 4.10 For the polynomial data arrival law given by relation (1), let A be any P -processor

d-algorithm with time complexity 
(N�), � > 1. If A terminates, then its running time is upper

bounded by a constant T that does not depend on n but depends on P .

Proof. It is enough to replace the �rst term from the right-hand side of relation (18) in the proof

of theorem 4.5 by

P � t
1=2

(1 + kt�)
:

Then, the proof is analogous, because this replacement introduces a multiplicative constant

which does not change the sign of the derivative. Also, the constant P does not change the limit.

2

Finally, it is worth pointing out that a closer look at the proof of proposition 3.1 given in

[7] reveals that the optimality of the d-algorithm in question is not used to establish the result.

Therefore:

Theorem 4.11 Proposition 3.1 holds for any optimal or non-optimal d-algorithm with polynomial

running time.

Note that we extended proposition 3.1 for a non-optimal d-algorithm (sorting) by theorem 4.8.
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4.4 Using Another Data Arrival Law

Until now, we have considered a polynomial data arrival law for the sorting problem, but we expect

similar results for other expressions. As an example, we consider here a totally di�erent law:

N(t) = q(n) + q(n)bt=r(n)c; (21)

for some �xed n, where q and r are some functions from IN to IN. In plain English, data arrive

in bundles of q(n) elements each r(n) time units. This law is interesting because it extends the

analysis of d-algorithms to non-continuous functions.

Lemma 4.12 For the data arrival law given by relation (21) the minimum value for the size of

the bu�er q is q(n).

Proof. By relation (21), q(n) data arrive together (at precisely the same time). All of them must

be temporarily stored into some bu�er until they are inserted into the sorted sequence. 2

Note that, in this case, the time interval dt between two data arrivals is r(n). By the same

method used to obtain t
0

B we have dt � q log q +N(t� tq). But tq is null (since the whole bundle

of data arrives at once) and q = q(n) by lemma 4.12. Hence,

bt=r(n)c �
r(n)

q(n)
� (1 + log q(n)): (22)

Relation (22) is the limit for the running time of the sequential algorithm. The limit for a

P -processor algorithm may be derived analogously, by considering lemma 4.6 (sorting and merging

admit linear speedup):

bt=r(n)c � P
r(n)

q(n)
� (1 + log q(n)): (23)

The two relations above are very similar to the ones obtained for the polynomial arrival law.

Therefore, theorems 4.7, 4.9, and 4.8 hold.

As an example, consider q(n) = n and P = n. Then, relation (23) becomes:

bt=r(n)c � r(n) � 1� logn:

Obviously, bt=r(n)c � 0. Therefore, r(n)� 1� logn � 0. That is,

r(n) � 1 + logn: (24)

But, intuitively, n processors will succeed to sort the �rst bundle of n data in t = O(logn) time.

If r(n) is less than t, then new data arrive before the old data have been processed. The system

has no chance to handle the current data in r(n) time (and after this time another bundle arrives).

Thus the algorithm never stops. On the other hand, if r(n) is large enough (that is, larger than

t), then the processing is �nished before the second bundle arrives, therefore the algorithm stops

at time t.

Note that the lower bound on r(n) obtained in relation (24) is 
(logn). Hence, our result

matches in terms of rate of growth the observation in the previous paragraph. The constant \1"

in relation (24) stands for merging the sorted bu�er with the already sorted sequence (which is

simply a copy operation, since the old sequence is void). This means that the equation is not too

general but not too restrictive either. We ignored all the constants and thus relation (23) is valid

only in terms of rate of growth, but it is simple to introduce constants as in the previous section.
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5 Conclusions

In our study of data-accumulating algorithms for sorting, we have taken a di�erent approach than

the one in [7]: we �rst obtained a bound for the running time and, based on this result, we were

able to characterize sorting d-algorithms in terms of complexity. This bound also helped us �nd

the optimal size of the input bu�er. Note that a sorting (d-)algorithm updates the data structure

in a time interval that depends on the number of already processed input data. This is the reason

for which the upper bound on the running time t0B exists. Therefore, we expected similar upper

bounds for other problems with this property, such as the construction of search trees (problems 3

and 4 in [7]). Our expectations were justi�ed as shown in theorems 4.5 and 4.10.

Theorems 4.5 and 4.10 are the main results of this paper. They prove the existence of an upper

bound on the running time for a large class of algorithms. It has been claimed [7] that the existence

of such a limit depends on both � and �. That is, it depends on both the complexity of the d-

algorithm and the data arrival law. We have shown that, in fact, the bound depends only on the

complexity of the d-algorithm, and this dependence is weak: if the complexity of the d-algorithm is

more than linear, then such a bound exists. This is a serious limitation of d-algorithms. However,

if the parallel case is considered, this limitation is not that important, since theorems 4.7 and 4.9

show that any arrival law can be handled in �nite time if the number of processors is su�ciently

large. This shows the importance of parallelism for the theory of d-algorithms.

Considering a data arrival law other than the polynomial one, we found that properties of

sorting d-algorithms do not change signi�cantly. Based on this, we conjecture that the general

properties of such algorithms hold for any type of data arrival law.
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