
Technical Report No. 98-418

The Characterization of Data-Accumulating Algorithms
�

Stefan D. Bruda and Selim G. Akl

Department of Computing and Information Science, Queen's University

Kingston, Ontario, K7L 3N6 Canada

Email: fbruda,aklg@qucis.queensu.ca

August 25, 1998

Abstract

A data-accumulating algorithm (d-algorithm for short) works on an input consid-

ered as a virtually endless stream. The computation terminates when all the currently

arrived data have been processed before another datum arrives. In this paper, the class

of d-algorithms is characterized. It is shown that this class is identical to the class of

on-line algorithms. The parallel implementation of d-algorithms is then investigated.

It is found that, in general, the speedup achieved through parallelism can be made

arbitrarily large for almost any such algorithm. On the other hand, we prove that for

d-algorithms whose static counterparts manifest only unitary speedup, no improvement

is possible through parallel implementation.

1 Introduction

Researchers in the area of parallel computation are always seeking to �nd limits to the

performance of parallel algorithms. The most cited result in this connection states that the

decrease in the running time of a parallel algorithm that solves some problem is at most

proportional to the increase in the number of processors [4, 13]. Such algorithms are said to

manifest a behaviour that is at most unitary, since, according to this result, the ratio of the

speedup achieved to the number of processors used is at most 1. By contrast, an algorithm

that would manifest a speedup larger than the number of processors used would be said to

exhibit superunitary behaviour.

The �rst observation of superunitary behaviour was based on parallel search algorithms,

which have been found to exhibit such a behaviour on particular shapes of the search space

[8]. Later, additional examples of such algorithms were found [3], this time manifesting

�This research was supported by the Natural Sciences and Engineering Research Council of Canada.

1

superunitary behaviour in all instances of the solved problem. These algorithms use un-

conventional, yet realistic paradigms. This direction is continued in [2]. Finally, another

approach led to a new paradigm where superunitary behaviour is manifested, namely the

data-accumulating paradigm.

In the data-accumulating paradigm, introduced in [10], the input is considered as a vir-

tually endless stream. An algorithm pertaining to this paradigm, called a data-accumulating

algorithm or d-algorithm for short, terminates when all the currently arrived data have been

processed before another datum arrives. This paradigm is studied further in [9] and [5],

where complexity-related properties are derived for both the parallel and sequential cases.

Even though the study of d-algorithms started from the desire to �nd paradigms in which a

parallel approach can lead to superunitary behaviour, few things have been said about the

performance of parallel implementations of d-algorithms. More precisely, this performance

was investigated only for those d-algorithms whose static version1 manifests a unitary be-

haviour.

In this paper we characterize the class of d-algorithms. First, we show that it is precisely

the same as the well-known class of on-line algorithms. This result basically shows that a

d-algorithm is an on-line algorithm for which the termination time is imposed by some real-

time restriction (namely the shape of the data arrival law). Therefore, given some problem,

the best on-line algorithm for that problem is also the best d-algorithm for it, and one

can rely on this when designing d-algorithms for various problems. The identity between

d-algorithms and on-line algorithms also leads to an interesting discussion on the notion of

optimality of d-algorithms. This discussion is outlined in the last section.

In the second part of the paper we study how a parallel implementation a�ects the

performance of d-algorithms. We address the most general case. That is, we do not restrict

ourselves to those d-algorithms for which the static counterpart is work-optimal (that is,

manifests unitary behaviour). We �nd that, as long as the speedup in the static case is

larger than one, the speedup of the d-algorithm can be made arbitrarily large (that is, if the

parallel static implementation generates even the slightest improvement, then, in the data-

accumulating case, this improvement through parallelism becomes unbounded). On the other

hand, when the static case manifests a unitary speedup, then the parallel d-algorithm will

keep this property (thus, if no improvement is possible for the static case through parallelism,

then neither does parallelism help in the data-accumulating case).

The paper is organized as follows. The next section briey summarizes those results con-

cerning d-algorithms that are used in our study. Section 3 starts by presenting a formal de�-

nition for d-algorithms, and then proves the equivalence between the classes of d-algorithms

and on-line algorithms. Section 4 presents the afordmentioned results concerning the parallel

implementation of d-algorithms. We conclude in section 5. In the following, a proposition

is a result proved elsewhere. Throughout the paper we use the Random Access Machine

(RAM) and the Parallel Random Access Machine (PRAM) as our sequential and parallel

computational models respectively [2], unless otherwise stated. The word \i�" stands for

the phrase \if and only if".

1The static version of a d-algorithm A solves the same problem as A, but the whole input is available at

the beginning of computation, as explained in the next section.

2

2 The Data-Accumulating Paradigm

We present here the necessary preliminaries concerning the data-accumulating paradigm,

conforming to [9], also summarizing the notations used through the paper. A standard

algorithm, working on a non-varying set of data, is referred to as a static algorithm. On

the other hand, an algorithm for which the input data arrive while the computation is in

progress is called a d-algorithm. For such an algorithm, the computation terminates when

all the currently arrived data have been treated. The size of the set of processed data is

denoted by N .

Consider a given problem �. Let the best known static algorithm for � be A0. Then,

a d-algorithm A for � working on a varying set of data of size N is optimal i� its running

time T (N) is asymptotically equal to the time T 0(N), where T 0(N) is the time required by

A0 working on the N data as if they were available at time 0. Generally, when speaking

about some property X of a d-algorithm A , we denote by X 0 the corresponding property of

A0, the static counterpart of A. When referring to the parallel case, we add the subscript p.

We will denote the arrival law by f(n; t), where n denotes the amount of input data

available at the beginning of the computation, and t denotes the time. That is, the amount

of data processed by a d-algorithm will be given by the implicit equation N = f(n; T (N)).

Note that this leads to an implicit equation for either N or T (N), since N is a function of

the elapsed time.

Note the di�erence between the running time and the (time) complexity in the data-

accumulating paradigm. We denoted the running time of such an algorithm by T (N). How-

ever, since N itself is a function of time, the actual running time is not a function of N

anymore, it being obtained by solving an implicit equation of the form t = T (N). The �rst

form of the running time (that is, as a function of N) is referred to as the time complexity

(or just complexity for short) of the d-algorithm in discussion, while the second form (the

solution of the implicit equation) is referred to as the running time and is denoted by t.

For the same reasons, the parallel running time is di�erent from the parallel complexity,

the former being denoted by Tp(N), and the latter by tp. Note that, in the static case, the

running time and the time complexity as de�ned here are identical.

The form proposed in [9] for the data arrival law is

f(n; t) = n + knt�; (1)

where k, , and � are positive constants. In what follows, when we refer to a particular form

of the data arrival law we use the above expression. It is shown in [9] that the termination

time of a (parallel or sequential) d-algorithm of complexity O(N�) is �nite for any �� < 1.

We consider in section 4 problems that are solvable in polynomial time, that is,

T 0(N) = O(N�0

), where �0 is a positive constant. This implies that a d-algorithm has

a time complexity of T (N) = cN�, for some positive constants c and �. Therefore, the

complexity of a parallel d-algorithm has the form Tp(N) = cpN
�00

, with cp and �00 positive

constants. The number of processors used by the parallel algorithm is denoted by P .

From the properties summarized in the above two paragraphs, it results that, in the case

of a sequential d-algorithm, the running time is given by the solution of the following implicit

equation

3

t = c(n + knt�)�: (2)

The size of the whole input data set will be denoted by N!. Since the input data set in

virtually endless in the data-accumulating paradigm, we will consider N! to be either large

enough or tending to in�nity. When considering N! to be in�nite, it is obvious that some

d-algorithm terminates in �nite time i� it terminates before considering the whole input

data set. By abuse of notation we also say this when N! is considered �nite (that is, we say

that the d-algorithm terminates in �nite time i� it terminates before considering all its N!

input data, no matter whether N! is �nite or not).

3 Characterizing D-Algorithms

We characterize here the class of d-algorithms. But, �rst of all, we need a formal de�nition

for such algorithms.

De�nition 3.1 An algorithm A is a d-algorithm if

1. A works on a set of data which is not entirely available at the beginning of computation.

Data come while the computation is in progress, and A terminates when all the currently

arrived data have been processed before another datum arrives.

2. For any input data set, there is at least one data arrival law f such that, for any value of n,

A terminates in �nite time, where f has the following properties: (i) f is strictly increasing

with respect to t, and (ii) f(n; C(n)) > n, where C(n) is the complexity of A. Moreover, A

immediately terminates if the initial data set is null (n = 0). 2

In other words, the �rst condition is the obvious de�nition, implicitly given in [9]. The

second condition means that A stops for some increasing data arrival law, such that at

least one new datum arrives before A �nishes the processing of the initial set of n data.

If this condition is not stated, then any algorithm A1 may be considered a d-algorithm for

the following reason: Let the complexity of A1 be C1(N) and let the data arrival law be

f(n; t) = n + kn([t=C1(n)])
�, where [x] = x if x > 1 and [x] = 0 otherwise. Note that,

in this case, f(n; C1(n)) = n. That is, no new data arrive before time C1(n). But, at this

time, A1 would have processed all its input data and would have simply stopped, without

considering any other datum. Obviously, any algorithm will have this property.

We use the following notations: We denote by Di the i-th datum in the input stream.

The ordering is naturally de�ned as follows: Dj is examined before Di is examined for the

�rst time i� i > j.

We say that an algorithm A is able to terminate at point k if, before visiting any Dk0,

k0 > k, it has built a solution identical to the solution returned by A when working on the

input set D1; : : : ; Dk. If the algorithm A is able to terminate at some point, that point

will be denoted by Nj, j 2 f1; 2; : : :g. Note that N (the amount of data processed by a

d-algorithm) is also a termination point, but we will use N only for this purpose, in order

to avoid confusion.

4

3.1 A Turing Machine Model

Our characterization of d-algorithms is made more convenient through the use of the follow-

ing Turing machine model.

De�nition 3.2 A Turing machine M which models an algorithm that is able to terminate

at some point other than N! is the tuple (K;�; �; h0), K being the (�nite) set of states, �

the (�nite) tape alphabet, � the transition function, and h0 the initial state. The machine

M has two tapes, as in [6]: The �rst tape is the (read-only) input tape, and the second

one is the working tape. In addition, M is deterministic, except that it has to model the

ability to terminate at some point. For this purpose, we allow a designated state h0 to have

two output transitions as follows: �(h0; x) = (h; x), and �(h0; x) = (q; z), where h denotes

the halting state. With the above exception, � is deterministic. Moreover, no other state is

allowed to go directly to h. That is, the halting state h is replaced by an \optional halting"

one (namely, h0). Note that the optional halting state h0 is also the initial state. 2

The de�nition above models a d-algorithm. More precisely, the algorithm A correspond-

ing to such a machine M can terminate before the whole input is considered, namely, when

M enters the state h0. Once in h0, M 's choice of halting or continuing to work models the

ability of A to terminate eventually when it is able to output a solution for the currently

arrived data and there is no arrived but yet unprocessed datum. Note that it is required

that the state h0 be entered at least once before the end of input data in order for A to be

considered a d-algorithm (since, conforming to de�nition 3.1, there is at least one data arrival

law for which A terminates, and this termination is modeled by the nondeterminism of h0).

Since a d-algorithm should immediately terminate on an empty initial input, we impose h0

as the initial state.

Generally, we assume that any algorithm (whether or not modeled by such a machine

M) eventually terminates after considering all its input data. That is, when N! is �nite,

M 's initial state h0 is reached again some time after M visits all the data on the input tape.

Lemma 3.1 A Turing machine M as in de�nition 3.2, working on any su�ciently large

input data set N!, is able to terminate at some point N1 < N!, N1 being constant with

respect to N!, i� it is able to terminate at two �nite points N1 and N2 strictly smaller than

N! and constant with respect to N!.

Proof. The \only if" part is immediate. We provide a proof for the \if" part.

When M halts at the point N1 it must have reached the special state h0. Obviously, this

happened after some constant number of steps (since both K and � are of constant size, and

the number of tape cells visited is N1 which is constant as well). Therefore, we have a cycle,

from h0 (the initial state) back to h0, after a number of steps bounded by some constant �.

Assume now that M chooses not to halt at the point N1 and instead goes to another state

q. But the state h0 is accessible from q (otherwise, M won't halt even after processing all

the N! input data) and, since M already reached h0 for an arbitrary input, it will reach it

again, after a number of steps bounded by � and after visiting a constant number of new

tape cells, because M is deterministic. But this point is the point N2 whose existence we

5

want to prove. Note that N2 does not depend on N! but only on the graph of �, and hence

we have completed the proof. 2

Theorem 3.2 A Turing machine M as in de�nition 3.2, working on any input data set of

size N!, where N! tends to in�nity, is able to terminate at some �nite point N1 i� it is able

to terminate at all of the points in a countably in�nite set S � f1; 2; : : : ; N!g, where S has

the following properties: (i) the least element of S is upper bounded by a �nite constant �,

and (ii) the distance between any two consecutive elements in S is upper bounded by �.

Proof. Again, the \only if" part is immediate. But the \if" part is easily proved by

induction over the size of S, using the theorem's premise (the existence of N1) as inductive

hypothesis and lemma 3.1 for the inductive step. 2

The theorem above says that, if an algorithm working on a set of data of unbounded size

can terminate at some �nite point, then such a point is not unique. In fact, the set of such

points is an in�nite countable set (denoted by S in the theorem).

For any alphabet X and positive integer y, let Xy be the set of all the words of length

y over the alphabet X. Given a constant �, one can compact a Turing machine's tape by

simply considering �� [f#g, where # is the blank symbol, as the tape alphabet instead of

�, then \folding" each sequence of � non-blank tape cells into one cell, and �nally modifying

the function � accordingly (see for example the proof given in [11] of the fact that a k-tape

Turing machine can be simulated by a one-tape Turing machine). We have thus the following

corollary:

Corollary 3.3 A Turing machine M as in de�nition 3.2, working on any input data set of

size N!, where N! tends to in�nity, is able to terminate at some �nite point N1 i� it is able

to terminate at all of the points in the set f1; 2; : : : ; N!g. 2

3.2 On Line Algorithms

The notion of an on-line algorithm was introduced in order to de�ne a class of algorithms

for which the size of the input may be unknown at the beginning of computation. Basically,

such an algorithm processes each input datum Dk without looking ahead at any datum Dk0,

k0 > k. This can be useful when either the input is not entirely available at the beginning of

computation, or the input is virtually in�nite, but a (partial) solution, based on some �nite

subset of the input is acceptable. By contrast, an algorithm that needs to know all the input

in advance is called an o�-line algorithm. From the above informal characterization for the

on-line class, one can already identify a strong similarity between on-line algorithms and

d-algorithms. In this section we formally show that these two classes are in fact identical.

There are many implicit de�nitions of on-line algorithms [1, 7, 12]. In [1], an on-line

execution of some sequence of instructions � is de�ned as requiring that the instructions

in � be executed from left to right, executing the i-th instruction without looking at any

following instruction. An on-line algorithm is de�ned in [12] as an algorithm that cannot

look ahead at its input. A similar de�nition in terms of Turing machines can be found in [6].

Finally, an on-line algorithm A is de�ned in [7] as having the property that A can determine

6

the result of N input data without knowing N in advance, such that it is possible to run the

algorithm until the end of the input data, or to run it until a certain condition is met. We

assume here the latter de�nition, since the de�nition given in [12] leaves the way of reporting

the result unclari�ed. However, if the de�nition in [12] is completed in a natural way (that

is, an on-line algorithm A is able to report a (partial) solution after processing each datum),

we reach the de�nition given in [7].

Also, we should stress again that a Turing machine de�ned as in de�nition 3.2 models any

d-algorithm. The nondeterministic choice of halting or continuing to work (modeled by the

state h0) should be viewed as the decision made conforming to the �rst item in de�nition 3.1

(that is, whether no new data arrived during the current computation).

With the above two paragraphs in mind, corollary 3.3 leads to the following result, where

D and O denote the class of d-algorithms and on-line algorithms, respectively.

Theorem 3.4 D = O.

Proof. Clearly, corollary 3.3 proves the inclusion D � O. It also proves O � D, except

that the second point of de�nition 3.1 is not accounted for. Therefore, in order to complete

the proof, we have to show that, for any on-line algorithm A and any size n of the initial

data set, there is a data arrival law f such that, when working on a data-accumulating input

set, A terminates in �nite time, and considers at least n+ 1 data.

Let the complexity of A be C(n). In general, C(n) depends on the actual values of the

input data. For any positive integer n1, denote by t1 a lower bound on C(n1), and let t2 be an

upper bound on C(n1+1), for any possible input data sets of size n1 and n1+1, respectively.

It is easy to build a function f(n; t), strictly increasing with respect to its second argument,

such that f(n1; 0) = n1, f(n1; t1) = n1+1:1, and f(n1; t2) = n1+1:5 (for example, this could

be done by interpolation). But such a function is the one we are searching for, considering

n1 as the initial amount of data: The function f is strictly increasing with respect to the

second argument and f(n1; t1) > n1+1, meaning that at least one new datum arrived before

t1. But C(n1) > t1; therefore, A needs to consider that new input datum. On the other

hand, analogously, no other datum arrives between t1 and t2, and C(n1 + 1) < t2. That is,

A terminates at some time less than t2. The behaviour of A working on an initial data set

of size n1 and under the data arrival law f clearly satis�es the requirements stated in the

second item of de�nition 3.1. 2

4 On the Parallel Speedup

In this part we analyze how a parallel implementation inuences the performance of a d-

algorithm. The main measure used for evaluating a parallel algorithm is the speedup, de�ned

as follows.

Given some problem �, the speedup provided by an algorithm that uses p1 processors

over an algorithm that uses p2 processors with respect to problem � is the ratio S(p2; p1) =

��(p2)=��(p1), p1 > p2 > 0, where ��(x) is the running time of the best x-processor algorithm

that solves �. In many cases [2], this de�nition is used to compare a parallel algorithm with

7

a sequential one, that is, p2 = 1. In the following, the amount of input data N! is considered

tending to in�nity.

We start by quoting the main result from [9] concerning parallel d-algorithms.

Proposition 4.1 For a problem admitting an optimal sequential d-algorithm obeying rela-

tion t = c(n+ knt�)� and an optimal parallel d-algorithm obeying relation tp =
cp(n+kn

t
�
p)

�

P

we have:

1. For � = � = = 1,
t

P tp
=

c

cp

1� (cp=P)kn

1� ckn
:

2. For cp=P < c,

t

P tp
! N! for n!

1

kc1=�
;

where �� = = 1, and P = �(n + knt�p)
�, with some constants �, � > 0, and �,

0 � � � �.

3. For all values of �, �, ,

t

P tp
>

c

cp
:

2

Here, a discussion on the number of processors is in order. In proposition 4.1, P is

considered a polynomial in n and tp. That is, it depends at �rst sight on the elapsed time.

This may be considered unrealistic, since no machine is expected in the near future to be

able to increase its number of processors during the execution of an algorithm. However, the

termination time tp depends only on the initial data arrival law, the initial amount of input

data, and the speedup. Hence, one can compute a value for P in advance, provided that the

initial amount of data and the data arrival law are known. Consequently, we will retain this

form for P . In addition, the case in which P is constant is covered by the expression for P

in proposition 4.1, since � = 0 is a legal exponent.

Let us �rst take a look at how the implicit equation for the parallel running time has

been derived. Generally,

tp = cpT
0

p(n+ knt�p): (3)

Only work-optimal parallel algorithms2 are considered in [9]. In this case, a static parallel

algorithm requires time T 0

p(N) = O(N�=P), and the implicit equation for the running time

2A parallel algorithm is said to be work-optimal if the product of its worst case running time and the

number of processors it uses is of the same order as the worst case running time of the best known sequential

algorithm solving the same problem. Usually, such parallel algorithms are called simply optimal [2]. However,

we will keep the terminology from [9], because we already used the quali�er \optimal" for d-algorithms.

8

of a parallel d-algorithm follows immediately. However, in the case of a non-work-optimal

parallel static algorithm, we have the relation S 0(1; P) = T 0(N)=T 0

p(N) and thus T 0

p(N) =

T 0(N)=S 0(1; P) which leads to T 0

p(N) = O(N�=S 0(1; P)). In this general case, the implicit

equation for the parallel running time becomes

tp =
cp(n+ knt�p)

�

S 0(1; P)
: (4)

Note that the only change is the replacement of the number of processors P by the

speedup of the static algorithm S 0(1; P) corresponding to the d-algorithm in discussion.

Keeping this in mind, the following extension of proposition 4.1 is immediate.

Theorem 4.2 For a problem admitting a sequential d-algorithm and a parallel d-algorithm

such that the speedup for the static case is S 0(1; P) > 1 we have:

1. For � = � = = 1,
t

tp
=

c

cp

1� (cp=S
0(1; P))kn

1� ckn
S 0(1; P):

2. For cp=S
0(1; P) < c,

t

S 0(1; P)tp
! N! for n!

1

kc1=�
;

where �� = = 1.

3. For all values of �, �, ,

t

tp
>

c

cp
S 0(1; P):

2

Corollary 4.3 For a problem admitting a sequential d-algorithm and a parallel P -processor

d-algorithm, P = �(n+knt�p)
�, such that the speedup for the static case is S 0(1; P) = �1(n+

knt�p)
�, S 0(1; P) > 1 for any strictly positive values of n and tp, we have for cp=S

0(1; P) < c:

t

P tp
! N! for n!

1

kc1=�
;

where �� = = 1, and 0 � � � �, 0 � � � �.

Proof. Conforming to formula (4), we have

tp = (cp=�1)(n+ knt�p)
���: (5)

But, since �� = 1, it follows that (���)� < 1, and hence the solution tp of equation (5) is

�nite for any �nite value of n [9]. But note that, in our case, n! 1

kc1=�
, and thus it is �nite.

9

Then, both P and S 0(1; P) are �nite at the point tp since they are polynomials in n and tp.

But we have by theorem 4.2 that t
S0(1;P)tp

! N! and, obviously, t
P tp

= t
S0(1;P)tp

S0(1;P)

P
(here

we use P and S 0(1; P) to denote the number of processors and the static speedup evaluated

at the point tp). But then
t

P tp
equals an in�nite quantity multiplied by a �nite quantity, and

therefore it is in�nite, as desired. 2

Note that the result of corollary 4.3 is general. It does not apply only to work-optimal

algorithms as the result in proposition 4.1. Indeed, the case � < � is covered as well, for

any small �. By corollary 4.3 we found out that, at least for some data arrival laws, the

speedup of any parallel d-algorithm can be made arbitrarily large, even if, in the static case,

the parallel algorithm is not work-optimal (work-optimality is assumed in [9] when proving

proposition 4.1). On the other hand, it is not an accident that we speci�ed S 0(1; P) > 1 in

theorem 4.2 and corollary 4.3:

Theorem 4.4 For any problem admitting a sequential d-algorithm and a parallel d-algorithm

such that the speedup for the static case is S 0(1; P) = 1, and for any data arrival law such

that either �� � 1, or � 1 and 1=2 � kc�(��� 1), the speedup of a parallel d-algorithm is

S(1; P) = 1.

Proof. When S 0(1; P) = 1, equation (4) become tp = cp(n + knt�p)
�. Also, recall that

the implicit equation for the running time in the sequential case is t = c(n+ knt�)�. Thus,

the complexity of the static parallel algorithm is precisely the same as the complexity of

the sequential algorithm. But then we have c = cp, because the d-algorithm relies on static

processing. We have then

t

tp
=

1 + kn�1t�

1 + kn�1t
�
p

!�

;

which leads to

X(n; t) = X(n; tp); (6)

where the function X is X(n; t) = t�1=�(1 + kn�1t�). Therefore, in order to prove that the

speedup is unitary (that is, t = tp) it is enough to prove that X(n; �) is a one to one function

for any n. For this purpose, we will prove that X(n; �) is a strictly monotonic function and

hence we will complete the proof. We have

@X

@t
=

1

�
t�(�+1)=�(kn�1(�� � 1)t� � 1):

1. If �� � 1, then it is immediate that @X
@t

< 0 for any n, because kn�1(�� � 1)t� � 0.

2. If �� > 1, then we have @X
@t
(n; t0) = 0, and @X

@t
(n; t) > 0 for any t > t0, where

t
�
0 = 1=(kn�1(��� 1)). But the algorithm must process at least the initial set of data

n and one more datum (conforming to de�nition 3.1). That is, t � c(n+1)�. Suppose

now that t0 is a possible value for the termination time. Then, t0 � c(n+ 1)� as well.

This leads to

10

(n + 1)�� �
1

kc�n�1(�� � 1)
:

Since �� > 1 and n � 1 (for if n = 0 both the parallel and the sequential d-algorithms

will immediately terminate and the speedup is obviously 1), we have (n+1)�� > 2 and

then the above formula implies that

n�1 <
1

2kc�(�� � 1)
: (7)

Again, n > 1 and � 1, implying that 1 < 1=(2kc�(���1)), that is, 1 > 2kc�(���1).

This clearly contradicts the theorem's hypothesis. Therefore, our assumption that t0
is a legal termination time is false. But then, for all possible values of the termination

time, X(n; �) is monotonic, and this result holds for any n.

2

We impose in the above theorem a rather limited form for the data arrival law, but no

restriction on n. It is easy though to put the problem in a di�erent way.

Corollary 4.5 For any problem admitting a sequential d-algorithm and a parallel d-

algorithm such that the speedup for the static case is S 0(1; P) = 1, and for any data arrival

law such that either �� � 1, or > 1 and n is large enough, the speedup of a parallel

d-algorithm is S(1; P) = 1.

Proof. The situation is analogous to the one in theorem 4.4, hence the proof is almost

the same. More precisely, the only di�erence is the way in which the falsity of relation (7) is

proved: In this case the relation is immediately false, since �1 > 0 and hence the inequality

does not hold for n � (1=(2kc�(�� � 1)))1=(�1). 2

Finally, some properties concerning the parallel speedup of sorting d-algorithms are de-

rived in [5]. In particular, a limit t00B(P) is found on the running time of any P -processor

algorithm. That is, when the running time of such an algorithm exceeds t00B(P), that al-

gorithm never terminates. Moreover, such a limit holds for any d-algorithm of complexity

(N�), � > 1. The most important result in [5] concerning the parallel case is as follows:

Proposition 4.6 For the polynomial data arrival law given by relation (1), let A be any P -

processor d-algorithm with time complexity
(N�), � > 1. If A terminates, then its running

time is upper bounded by a constant T that does not depend on n but depends on P . 2

We can now extend this result simply by observing that, in the case of a non-work-

optimal parallel static algorithm, the number of processors P should be replaced by the

speedup function S 0, as justi�ed by formula (4). Thus we have:

Theorem 4.7 For the polynomial data arrival law given by relation (1), let A be any P -

processor d-algorithm with time complexity
(N�), � > 1. If A terminates, then its running

time is upper bounded by a constant T that does not depend on n but depends on S 0(1; P).

2

11

5 Conclusions

Theorem 3.4 is an important result, because it characterizes the class of d-algorithms as

being exactly the class of on-line algorithms. When working with d-algorithms, one can

take advantage of this result, since on-line algorithms have already been designed for various

problems (e.g., the on-line algorithms for manipulation of power series [7]).

As an immediate consequence of theorem 3.4, it is easier to know whether some problem

does not admit an optimal d-algorithm (where the notion of optimality is the one de�ned in

[9] and summarized in section 2 of this paper): If a given problem admits an o�-line algorithm

with a complexity asymptotically smaller than the lower bound for the complexity in the

on-line case, then one cannot build an optimal d-algorithm.

As an example, sorting does not admit an optimal d-algorithm, because the best known

(o�-line) algorithm has a complexity of O(n logn) [1], while it is immediate that an on-line

sorting algorithm has a complexity of
(n2) (such an algorithm has to insert each of its input

data into the already sorted sequence, one by one, because, at any time, we should have a

sorted sequence of the already processed data). The same result is obtained in [5], though

with a lot more e�ort.

However, considering theorem 3.4, the above notion of optimality no longer makes sense

since, given some problem, once the lower bound in the on-line case has been established for

that problem, a d-algorithm has no chance to beat it. Therefore, we suggest the following

de�nition of optimality: Given some problem �, a d-algorithm solving � is optimal i� its

complexity matches the lower bound for the complexity of on-line algorithms solving �.

Using this de�nition, it follows that sorting does admit an optimal d-algorithm, namely the

one found in [5] which has a complexity of �(N2).

Concerning the parallel case, we found that, when the parallel implementation of a static

algorithm o�ers some (however small) speedup, then the d-algorithm based on that static

algorithm will e�ciently exploit this feature, such that the speedup may grow without bound

for that d-algorithm. On the other hand, for those problems that take no advantage at all

of a parallel implementation in the static case, a d-algorithm will manifest no speedup.

For example, consider the following list scanning problem de�ned in [9]: Given only a

starting and an ending point in a linked list, it is required that the list be scanned between

those points, some processing being required for each visited node; in the data-accumulating

case, new nodes may be inserted in the list while the scanning is in progress [9]. In light

of the results in this paper, it is unlikely that a parallel d-algorithm for the list scanning

problem would admit any speedup, since a parallel static algorithm for this problem is likely

to manifest unitary speedup only, as shown in [2], where the same problem (in the static

case) is independently found and analyzed (exercise 6.13).

References

[1] A. V. Aho, J. E. Hopcroft, J. D. Ullman, The Design and Analysis of Computer Algo-

rithms, Addison-Wesley, 1974.

[2] S. G. Akl, Parallel Computation: Models and Methods, Prentice-Hall, 1997.

12

[3] S. G. Akl, L. F. Lindon, Paradigms Admitting Superunitary Behaviour in Parallel Com-

putation, Parallel Algorithms and Applications, 11, 1997, 129{153.

[4] R. P. Brent, The Parallel Evaluation of General Arithmetic Expressions, Journal of the

ACM, 21(2), 1974, 201{206.

[5] S. D. Bruda, S. G. Akl, On the Data-Accumulating Paradigm, Proceedings of the Fourth

International Conference on Computer Science and Informatics, 1998.

[6] J. Hartmanis, P. M. Lewis II, R. E. Stearns, Classi�cations of Computations by Time

and Memory Requirements, Proceedings of the IFIP Congress 65, 1965, 31-35.

[7] D. Knuth, The Art of Computer Programming, Vol. 2, Seminumerical Algorithms,

Addison-Wesley, 1969.

[8] T.-H. Lai, S. Sahni, Anomalies in Parallel Branch-and-Bound Algorithms, Communica-

tions of the ACM, 27, 1984, 594{602.

[9] F. Luccio, L. Pagli, Computing with Time{Varying Data: Sequential Complexity and

Parallel Speed{up, Theory of Computing Systems, 31(1), 1998, 5{26.

[10] F. Luccio, L. Pagli, The p-Shovelers Problem (computing with time-varying data), Pro-

ceedings of the IEEE Symposium on Parallel and Distributed Processing, 1992, 188{193.

[11] H. R. Lewis, C. H. Papadimitriou, Elements of the Theory of Computation, Prentice-

Hall, 1981.

[12] F. P. Preparata, M. I. Shamos, Computational Geometry. An Introduction, Springer-

Verlag, 1985.

[13] J. R. Smith, The Design and Analysis of Parallel Algorithms, Oxford University Press,

1993.

13

