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Partial Match Queries Using Error Correcting

Code Signatures

Abstract

An important component of some data mining algorithms is determining the fre-

quency of some set of attributes in an extremely large dataset. This requires partial

match queries, in which some attributes have \don't care" values. We present a

partial match query algorithm that uses the codewords of error-correcting codes

as signatures.
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1 Introduction

Data mining algorithms aim to extract concepts (for example, predicates) from

data collected by enterprises, often originally for another purpose. Although

such algorithms are computationally intensive, their performance tends to be

dominated by the time required to access the data. Early data mining algo-

rithms often assumed a database interface to the data, but it is now more

common to assume that the data is extracted and stored in some 
at format

before algorithms are executed on it.

We will assume that the dataset is a table of n rows and m columns con-

taining a single bit in each position. Each row corresponds to a `customer'

and each column to an `attribute'. The bits then describe whether or not

each customer has each attribute. For example, the rows may be the items

purchased in a single visit to a supermarket.

A typical operation involving the data might be to determine how often a

particular tuple of attributes occur together in a row. This requires examining

every row of the table. In practice, the value of n is extremely large, perhaps

109, so direct lookups are expensive.

Such queries are partial match queries, since they can be expressed in the

form - - 1 - - 1 - - where - denotes \don't care". We will treat only the case

where the explicit values in the query are 1's, that is, we are interested only

in the presence of an attribute in a row, and not in its absence. This form

of query arises in the Frequent Set problem [6], an important component of

many data mining algorithms, for example, association rules.

A partial match query is a special form of point access query. It is natural

to represent each row as a point in m-dimensional space. However, standard

point access methods do not handle partial match queries well. In data mining

applications, m is large, perhaps 103, and the extent in each dimension is

small (1 here); whereas most point access methods assume that the number of

dimensions is small and the extents large. Thus grid �les [5], and R-trees [4]

and their extensions, are unlikely to perform well because the dimensionality

is high. Techniques such as k-D trees [1] partition points based on attributes

in some particular order. They will not work well if the attributes appearing

�rst in this ordering are \don't care"s in the query.

Another approach to point queries is to map them to spatial queries and

use a spatial access method. Space-�lling curves [2] replace an m-dimensional

space by a linear one. Unless there is some underlying geometric property

determining the order in which the curve visits dimensions, a region may

become a long sequence of blocks in the linear ordering. A partial match query

1



is a particular kind of region, a quadrant, and so su�ers from this e�ect. There

is no natural a priori ordering of the dimensions in data mining applications,

since relationships between the dimensions, which represent attributes, are

exactly what algorithms are trying to �nd. So partial match queries do have

a spatial structure (they all select quadrants of 2m) but they cannot assume

a dimension ordering without potentially in
uencing their own results. This

suggests that Hamming distance is an appropriate metric to use on 2m.

Even though a typical data mining dataset is extremely large, it is still

sparse in 2m. Signature techniques, in which elements of the dataset are

mapped to representatives against which queries can be rapidly checked, are

a useful way to handle this sparsity. The use of Hamming distance suggests

that the codewords of error-correcting codes would be appropriate signatures.

2 A method based on error-correcting codes

Choose a t-error-correcting code withN codewords of lengthm. For simplicity,

we assume that the code is perfect, but that is not essential. These codewords

will be signatures for rows in the dataset. As signatures, they are particularly

appropriate because they are evenly distributed through 2m (2t + 1 apart if

the code is t-error-correcting).

The dataset is preprocessed by mapping each row of the table to its nearest

codeword. Codewords maintain a list of those rows which have been mapped

to them. Codewords to which no rows have been mapped may be discarded.

A partial match query consists of b positions set to 1 and m� b positions

that are \don't care"s. When a query is generated, its intersection with the set

of codewords is computed. This reduces the problem to a partial match query

on a particular �xed, well-structured dataset, the codewords. We describe the

search technique used for this step in the next section.

The set of rows associated with the codewords selected may potentially

match the query. A check on the appropriate bit positions returns that match-

ing set.

We now examine the complexity of this search algorithm. The complexity

of a direct search of the table is, of course, n.

Each codeword is at the centre of a sphere of radius t containing s points

such that

N � 2n=s
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(equal if the code is perfect) and
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The complexity of a low-weight query is therefore
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where f(N) is the cost of searching the codewords. The coe�cient of n in the

second term decreases rapidly as b increases, that is as the number of bits set

in the query increases. Making t small makes this coe�cient small too, but t

is the radius of spheres around codewords, and making it small means that N

must be increased. (Notice that we assume here that the table rows associated

with each codeword are searched linearly, but small optimisations are surely

possible here.)
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3 Searching the codewords

It is clear that f(N) is trivially no larger than N , and N � n. However, f(N)

may sometimes be as small as logN as we now show.

The problem has now been reduced to partial match queries over the code-

words which have a special structure that we can exploit. We store the code-

words using a Patricia tree [3]. A Patricia tree is a form of index structured

as a partial binary tree. The leaves contain values (that is, answers) stored in

such a way that the value corresponding to a particular binary key is at the

leaf found by traversing a path from the root of the tree, using successive bits

of the key to choose the left or right subtree at each internal node. Since the

tree is partial, some nodes may have only one descendant. The bits along the

paths this creates are usually concatenated and treated as a single branch.

Consider the Patricia tree indexed by the N codewords. Each codeword is

at distance at least 2t+1 from every other code word. A search down the tree

of m� (2t+1)+1 = m� 2t steps must have uniquely determined a particular

code word, since another code words may have agreed with it in every one of

the m�(2t+1) bit positions but must then di�er from it in those that remain.

A code word that di�ered in one of the �rst m� (2t+1) bits has already been

distinguished. Note that m� 2t � logN so that the Patricia tree has e�ective

depth logN .

This establishes that we can satisfy a full query in logarithmic time. How-

ever, our queries contain \don't care"s. As a position containing a \don't care"

is processed, the search must continue down both branches of the tree. When

some set of leaves are reached, the leaf label of the remaining 2t+1 bits of the

code word associated with that leaf is su�cient to determine whether or not

that code words satis�es the query. The complexity of a query satis�ed by x

codewords is therefore the maximum number of distinct edges of a balanced

binary tree that must be traversed to reach x leaves. This function is approx-

imately x logN for small x, and approximately N for large x. Note that x is

inversely related to b, the number of bits set in the query.

4 Conclusions

We have presented a signature-based scheme for partial match queries in binary

data in which the codewords of error-correcting codes are used as signatures.

For queries in which the number of set bits, b is large the overall complexity
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of query evaluation is

query complexity �
logN

b
+ n

bt

2b

using a code with N codewords correcting t errors.
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