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Abstract

Traditionally, interest in parallel computation centered around the
speedup provided by parallel algorithms over their sequential counter-
parts. In this paper, we ask a different type of question: Can parallel
computers, due to their speed, do more than simply speed up the solu-
tion to a problem? We show that for real-time optimization problems, a
parallel computer can obtain a solution that is better than that obtained
by a sequential one. Specifically, a sequential and a parallel algorithm
are exhibited for the problem of computing the best-possible approxima-
tion to the minimum-weight spanning tree of a connected, undirected and
weighted graph whose vertices and edges are not all available at the out-
set, but instead arrive in real time. While the parallel algorithm succeeds
in computing the exact minimum-weight spanning tree, the sequential al-
gorithm can only manage to obtain an approximate solution. In the worst
case, the ratio of the weight of the solution obtained sequentially to that
of the solution computed in parallel can be arbitrarily large.

*This research was supported by the Natural Sciences and Engineering Research Council
of Canada.



1 Introduction

Ever since parallel computation appeared on the computer science scene as an
alternative to conventional (that is, sequential) computing, questions were raised
regarding the capabilities of parallel computers. The vast majority of these
questions have to do with the speedup, if any, provided by parallel computers:
Can parallel computers solve computational problems faster than sequential
computers, and if so, how much faster? In this paper, we ask a different type of
question: Can parallel computers, due to their speed, do more than simply speed
up the solution to a problem? In particular, can a parallel computer provide a
solution to an optimization problem that is better than the best-possible solution
that can be obtained sequentially?

We begin by reviewing some of the issues surrounding the notion of speedup,
leading up to the central question of this paper. In what follows, the speedup
provided by a parallel algorithm when solving a problem is defined as follows:
Worst-case running time of the best sequential algorithm for the problem divided
by the worst-case running time of the parallel algorithm. Throughout the paper
we adopt the traditional definition of time unit, that is, the unit used to measure
the running time of an algorithm: A time unit is the length of time required by
a processor to: read a datum from memory, perform a constant-time operation
(such as adding two numbers), and write a datum to memory.

1.1 Speedup

As the raison-d’étre of parallel computers is the speeding up of computations
performed sequentially (that is, using one processor), the first question to be
asked was: Is speedup possible at all? More specifically, and perhaps more
precisely, if a computation requires 7 time units on a one-processor computer,
can it be performed on a parallel computer with n processors, n > 1, in time
T, = T1/f(n), where f(n) is w(1) and O(n), that is, f(n) is asymptotically
larger than any constant and asymptotically no larger than n?

It is now widely known that this question is answered in the affirmative, at
least in theory. There is ample and well documented evidence of parallel algo-
rithms whose running time satisfies the aforementioned condition. For instance,
parallel algorithms using n processors and running in O(logn) time exist to

1. Sort n numbers in non-decreasing order using comparisons [29],
2. Find the convex hull of n planar points [19],
3. Compute the discrete Fourier transform of n inputs [31],

to name just a few examples of problems for which the best sequential algorithms
run in O(nlogn) time.



1.2 Superlinear speedup

Having established that a speedup by a factor of f(n) is indeed possible, it was
natural to ask whether further speedup could be achieved through parallelism.
The second question, therefore, was: Is superlinear speedup possible? In other
words, can a computation requiring 77 time units sequentially be performed on
a parallel computer with n processors in time T,, = T1/g(n), where g(n) is Q(n),
that is, g(n) is asymptotically larger than n? Once again, several examples of
computations satisfying this condition have been published. These examples, are
less well known as they concern nonstandard, yet realistic, paradigms, including,
for example, problems where

1. All the data are not available at the outset of the computation, but instead
arrive over time; the computation is considered complete when all the data
arrived so far have been handled regardless of whether more data arrive
later [6, 7, 23, 24],

2. The values of the data change as the algorithm proceeds; the computation
is considered complete when all the corrections arrived so far have been
handled regardless of whether more corrections arrive later [8, 23, 24],

3. A computation is involved that is not efficiently invertible: With a suffi-
cient degree of parallelism, the inverse computation is not required; with
an insufficient number of processors, the inverse computation becomes
necessary [2].

1.3 Infinite speedup

Taking the line of reasoning expressed in section 1.2 to its logical limit, the
ultimate question was: Are there computations for which parallelism makes the
difference between success and failure? In other words, are there computational
problems whose solution can be obtained only on a parallel computer with
sufficiently many processors (while any computer with fewer processors is guar-
anteed to fail in computing the solution)? Recent work has demonstrated that
the answer here is also positive. Examples include computations with deadlines,
computations involving several streams of input, and computations where data
arrive in real time but each new input depends on the previous output [1].

1.4 Beyond speedup

The purpose of this paper is to begin the exploration of other capabilities of
parallel computers beyond speedup (as originally hinted to in [1]). To this end,
we wish to ask whether parallel computers can, in some circumstances, do more
than just speed up the computation. We show that for real-time optimization
problems, a parallel computer can obtain a solution that is better than that
obtained by a sequential one.

Specifically, the following computation is considered: Given a connected,
undirected and weighted graph whose vertices and edges are not all available at



the outset, but instead arrive in real time, it is required to find the best-possible
approximation to the minimum-weight spanning tree of that graph. For this
problem, a sequential and a parallel algorithm are exhibited. While the parallel
algorithm succeeds in computing the exact minimum-weight spanning tree, the
sequential algorithm can only manage to obtain an approximate solution. In
the worst case, the ratio of the weight of the solution obtained sequentially to
that of the solution computed in parallel can be arbitrarily large.

The remainder of this paper is organized as follows. In section 2 the real-time
optimization paradigm is defined. Section 3 sets the minimum-weight spanning
tree problem in the context of this paradigm, and presents the two algorithms
together with their analyses. Some concluding remarks and suggestions for
future investigations are offered in section 4.

2 Solving Real-Time Optimization Problems

In this section we describe the paradigm chosen for our analysis, namely, real-
time optimization. We begin by defining optimization, then real-time compu-
tation.

2.1 Optimization

The family of optimization problems, as used in this paper, is defined as follows.
Each problem in the family takes as input a finite set of M data. It is required
to select a subset of this set, consisting of m elements (where m is a positive
integer, which may or may not be given). The selected subset must satisfy
certain conditions germane to the problem being solved. Among all subsets
satisfying the conditions, we are to find the one maximizing (or minimizing)
a given function ¢ of m arguments. This form of optimization is commonly
referred to as discrete or combinatorial optimization [22, 25].

Examples of optimization problems include finding the shortest path be-
tween two vertices in an undirected, connected, and weighted graph, finding a
maximum-sum subsequence of a sequence of numbers, and finding a minimum-
weight complete matching for an even number of points in the plane (where
the weight of the edge joining two points is the Euclidean distance separating
them).

2.2 Real-time computation

Problems solved in real-time, as used in this paper, are characterized by the fact
that all their data are not available at the outset of the computation. Instead,
the data arrive as the algorithm proceeds. Initially, a small set of data is given
and a partial solution to the problem is computed. Subsequently, more data
arrive at regular intervals. Each new datum received must be incorporated into
the solution. Real-time computation is sometimes known as on-line computa-
tion, by contrast with off-line computation in which all the required data are



available at the outset [14, 16, 17, 21, 28]. The adjectives updating, incremental,
and dynamic are also often used to refer to algorithms that receive and process
new data [4, 9, 10, 11].

Examples of real-time computations include sorting a sequence of numbers,
computing the convex hull of a set of points in the plane, and finding the longest
increasing subsequence of a sequence of numbers.

2.3 Real-time optimization

The computational paradigm used in this paper has the following characteristics:

1. A set S of M data is given and represents the input to an optimization
problem P.

2. Initially, an optimal solution to P is known for the set S.

3. Time is divided into intervals. Each interval is 7 time units long, where
T is a function of M.

4. Additional data for P arrive in real time and must be used to compute a
new solution to P without any knowledge of future data to be received.
The solution should be optimal, or the best-possible one that can be com-
puted in 7 time units. Specifically, at the beginning of each time interval:

(a) If data were received at the beginning of the previous interval, the
best solution computed so far (incorporating these data) is sent to
an output device in order to be produced to the outside world;

(b) If new data are received (in the present interval) they must be used to
compute a new optimal (or best-possible) solution; such computation
can last only the length of the present interval.

5. There may or may not be a bound on the total number of data received
throughout the computation.

3 Real-Time Minimum Spanning Trees

Our chosen problem for illustrating the ability of a parallel algorithm to do
better than the best sequential algorithm when solving optimization problems
in real time is the well-known minimum-weight spanning tree problem. We
begin with a few definitions then introduce the problem to be solved. This is
followed by a description of sequential and parallel solutions. An analysis of the
two solutions then follows.



3.1 The minimum-weight spanning tree problem

A tree is a connected and undirected graph with no cycles. Given a connected
and undirected graph G, a spanning tree of G is a subgraph of G which, in
addition to being a tree, includes all the vertices of G. Suppose now that G
is weighted, that is, a real number is associated with each of its edges. A
minimum-weight spanning tree (MST) of G is a spanning tree of G, such that
the sum of its edge weights is a minimum (among all spanning trees of G).
Several sequential and parallel algorithms exist for solving the minimum-weight
spanning tree problem efficiently; see, for example, [1, 5, 13, 19]. Note that even
though the graph G may have more than one MST, we refer in what follows to
‘the’ MST of G for simplicity.

3.2 Computing the MST in real time

The real-time version of the minimum-weight spanning tree problem is defined
as follows:

1. A connected, undirected, and weighted graph G with n vertices and the
n(n — 1)/2 edges connecting them is given, where n is a positive integer
larger than 1. This graph represents the input to the minimum-weight
spanning tree problem.

2. Initially, the MST of G is known; it consists of n vertices and the n — 1
weighted edges connecting them. These n — 1 edges defining the MST are
the only data that matter for the rest of the computation (in other words,
the remaining edges of G that are not in the MST, while still available,
are irrelevant from this point on).

3. Time is divided into intervals of ¢n® time units, where ¢ is a positive
constant and 0 < e < 1.

4. A new vertex and its associated edges are received at the beginning of
every time interval. A new MST, or a best approximation possible to it,
incorporating the new data must now be computed. The new tree is then
produced as output at the beginning of the next time interval. Specifically,

(a) At the beginning of the kth interval a new vertex is received along
with n 4+ k — 1 weighted edges connecting it to the existing n+k —1
vertices, k > 1.

(b) The best-possible approximation to the MST that can be obtained
in en® time units is then computed over the n + k vertices and (n +
kE—2)+ (n+k—1) edges.

5. At most n®> — n new vertices are received in all. If this many vertices are
indeed received, the last tree will be produced as output (n? —n) x en®
time units after the beginning of computation.



3.3 Sequential algorithm

The problem to be solved is as follows. The MST (or an approximation thereof)
is given for some graph G. The tree is defined over n + k — 1 vertices, and
consists therefore of n + k — 2 edges. A new vertex is received as input along
with its associated n + k — 1 weighted edges connecting it to each of the existing
vertices. It is required to compute a new MST (or an approximation thereof),
that includes the new vertex and takes the new edges into consideration. This
tree would have n + k vertices and n + k — 1 edges. An important requirement
is that the computation must be completed in cn® time units.

There are two well-known algorithms for computing the MST sequentially
[5, 13]. However, neither of these algorithms can be used here as they would
require time on the order of (n + k)% and (2n + 2k — 3) log(2n + 2k — 3) time
units, respectively. Two sequential algorithms are also known that are capable
of updating an existing MST [12, 32]. Unfortunately, these algorithms cannot
be used either as they run in time on the order of 2n + 2k — 3 time units.

The only viable approach for a sequential algorithm is to replace up to n¢ of
the existing edges with an equal number of new edges of smaller weight, such
that the entire computation is completed within one time interval. The resulting
tree is not guaranteed to be the MST.

3.4 Parallel algorithm

The problem that a parallel computer needs to solve is exactly the same as in
section 3.3. There exists a parallel algorithm for computing the MST (not an
approximation to it) for a graph with n + k vertices and 2n + 2k — 3 edges in
time on the order of log(n + k) time units using 2n + 2k — 3 processors [3].
The algorithm runs on a Concurrent-Read Concurrent-Write Parallel Random
Access Machine (CRCW PRAM) in which write conflicts are resolved using the
MINIMUM rule: This means that when several processors attempt to write
in the same memory location simultaneously, only the one writing the small-
est value succeeds. (Another equivalent option is to use the PRIORITY rule,
where processors are assigned certain priorities to resolve write conflicts: Here,
a processor’s priority is the weight and index of the edge associated with it.)

In the worst case, n? —n new vertices are received. As a result, the last (and
largest) problem to be solved by the parallel algorithm is to find the MST for a
graph with n? vertices and 2n? — 3 edges. This requires a running time on the
order of log n time units, which is asymptotically smaller than n¢. Consequently,
the computation can be completed within one time interval.

3.5 Analysis

In the best case, the sequential algorithm manages to produce the (exact) MST
for every new vertex received. Typically, however, the spanning tree produced
after receiving a new vertex (and its associated edges) is only an approximation
of the MST. In the worst case, this approximation can be arbitrarily bad.



For the sake of definiteness when comparing the sequential and parallel so-
lutions, we make some concrete assumptions. Suppose that

1. A spanning tree over n + k — 1 vertices is known. Each of the n + k — 2
existing edges has a weight of 2" units (of weight).

2. A new vertex now arrives. Each of the n + k — 1 new edges has a weight
of 1 unit (of weight).

Clearly, the MST for the new graph (now defined over n + k vertices and
2n + 2k — 3 edges) consists entirely of the newly received n + k — 1 edges.

The sequential algorithm can at best replace n¢ of the existing edges with
new ones. This way it obtains an approximation to the MST whose weight is

2"(n+k —2) — 2"nf 4+ n° units.

By contrast, the parallel algorithm can compute the MST exactly. Its solution
has a weight of n+ &k — 1 units. The ratio of the weight of the sequential solution
to the weight of the parallel solution is therefore on the order of 2.

4 Conclusion

The overwhelming majority of theoretical and empirical analyses of parallel
algorithms use the speedup provided by these algorithms as a measure of their
goodness. Speedup is usually defined as the ratio of the time required by best
sequential algorithm solving the problem at hand to the time required by the
parallel algorithm being evaluated. Here, time refers to worst-case time and is
typically a function of the size of the problem. It is also customary to express
the number of processors used by a parallel algorithm as a function of the size
of the problem. For these reasons, speedup has been traditionally evaluated
in terms of its relation to the number of processors. Thus, a speedup may be
sublinear, linear, or superlinear in the number of processors.

In this paper we articulated the thesis that other measures of the goodness of
parallel algorithms may be employed. In particular, one such measure proposed
here is the quality of the solution obtained by a parallel algorithm to a real-time
optimization problem. To illustrate this point we exhibited an example of such
a problem, namely the computation of the minimum-weight spanning tree in an
environment where the vertices and edges of the input graph arrive in real time.
The ratio of the solution obtained by the best possible sequential algorithm to
that obtained by the parallel algorithm was shown to grow arbitrarily large in
the worst case.

It is important to note here that, while the underlying cause for the phe-
nomenon observed is the fact that the parallel algorithm is faster than the
sequential one, the net effect (that is, the phenomenon itself) is entirely distinct
from speedup. Indeed, for the MST example studied, speedup is not at all spec-
tacular. The algorithm of [32] can update the MST of a graph with m vertices



in O(m) time. On the other hand, the parallel algorithm of [3] solves the same
problem in O(logm) time while requiring m — 1 processors. The speedup here
is O(m/logm) and hence sublinear in the number of processors! It can also
be pointed out that the algorithm of section 3.4 would not have succeeded in
obtaining an exact solution to the minimum-weight spanning tree problem had
the time interval been smaller than log(n + k), or had the number of available
processors been smaller than 2n + 2k — 3.

It is of course possible to update an existing MST in parallel in constant
time; however, this requires considerably many more processors than needed by
the algorithm of section 3.4. The idea is as follows. Suppose that the current
MST consists of n+ k — 1 vertices (and n + &k — 2 edges). Adding to this MST a
new vertex along with the n + & — 1 edges connecting it to the previous n+k—1
vertices creates a new graph containing a collection of cycles. Each of these
cycles consists of at most n + k edges, of which exactly two are new edges.
There are, therefore, (""57') cycles in all. A new MST is obtained over the
new graph by removing the edge of maximum weight from each of these cycles.
(Since there are only 2n + 2k — 3 edges, some edges are ‘removed more than
once’, so to speak.) This can be done in O(1) time and at most (n+k) x ("HZ“_I)
processors on the CRCW PRAM using the MAXIMUM rule for resolving write
conflicts. Variants of this algorithm are described in [10, 20, 26, 27, 30, 33, 34].

Additional examples of real-time optimization problems can be easily devel-
oped along the same lines outlined in this paper. These include the problems
listed in section 2.1, namely, those calling for the computation of shortest paths,
maximum-sum subsequences, and minimum-weight matchings. Furthermore,
for the class of NP-hard problems, several real-time approximation algorithms
have been proposed (for a survey, see [18]). However, all of these algorithms are
sequential, and none of the problems states either the rate at which data are to
be received or the rate at which results are to be produced. Developing parallel
real-time approximation algorithms for NP-hard problems, that also take into
account the input and output rates, appears to be a worthwhile prospect.

Another paradigm of real-time computation occurs when corrections to the
existing data arrive on line and must be incorporated in the solution to the
problem at hand [8, 24]. Within this framework, an interesting case arises in
connection with the minimum-weight spanning tree problem when corrections
to the weights of the edges currently in the MST are received in real time and
must be taken into consideration. Sequential and parallel algorithms for this
problem are described in [10, 15, 27]. However, while these algorithms update
the MST as required, their analyses (much like those of the algorithms in [18])
do not allow for the corrections to arrive, or for the results to be produced, at a
certain specified rate. Here too an open avenue for research suggests itself quite
naturally.

Finally, other areas beside real-time optimization need to be explored for
further measures to evaluate parallel algorithms. One such area, mentioned in
[1], is numerical computation: Can the accuracy of a solution to a numerical
problem be increased through the use of parallelism? Candidate numerical com-
putations that present themselves naturally here are polynomial interpolation



and power series manipulation, in which the data arrive in real time.
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