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Abstract

One of the most compelling illustrations of the power of parallelism is

the furniture-moving paradigm. In it, a large item of furniture needs to

be moved from one place to another. A single mover, working alone, must

take the item apart, move each piece separately, and then reassemble the

item at the new location, taking a long time to complete the job. By

contrast, four movers can simply lift the item and quickly move it to its

new location. Thus, the time required to accomplish the task is reduced

by a factor signi�cantly larger than four.

This paper describes a computational analog to the furniture-moving

paradigm. The computation in question is concerned with transferring

a computer �le from one computer system to another over an insecure

communications channel. The �le contains private or sensitive information

whose secrecy and integrity need to be maintained. Cryptography is used

to obtain a digital signature of the �le, thereby protecting its integrity, and

then encrypting it to ensure its secrecy. If the �le transfer is performed

sequentially, the �le and its digital signature need to be broken into blocks,

each of which is signed and encrypted individually then transmitted. At

the receiving end, each block is checked for authenticity, then the original

�le is reassembled and its digital signature veri�ed. On the other hand,

performing the �le transfer in parallel allows the entire �le and its digital

signature to be sent as a whole in one step. Consequently, the parallel

solution speeds up the sequential one by a factor that is superlinear in the

number of processors used.

�This research was supported by the Natural Sciences and Engineering Research Council

of Canada.
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1 Introduction

The furniture-moving paradigm is described in [1] as follows:

\[A] large piece of furniture [..] needs to be moved from one place
to another. One mover working alone is unable to lift, push, or drag
the item and, in order to move it, must take it apart, transport each
of the parts individually, and then put them back together at the
indicated spot. The job requires one hour. On the other hand, four
movers working together can simply lift the piece of furniture and
put it in its new location in 15 seconds."

The furniture-moving paradigm clearly illustrates the power of parallelism
in everyday life: Certain tasks are faster to accomplish if done by more than
one person. However, the point of the paradigm, as presented in [1] (and even
earlier, in a slightly di�erent form, in [12]), goes beyond this obvious observation.
Indeed, it is generally believed that four people should �nish a job in at best

1/4 of the time required by one person. Yet in the furniture-moving example,
the four workers complete the task much faster than the 15 minutes predicted
by common sense!

In the theory of parallel computation there is also a belief that mirrors the
conventional wisdom of everyday experience. It goes as follows: If p processors
are put to a computation, they can complete it in at best 1=p of the time required
by one processor. This is known as the `speedup theorem'. The motivation in [1]
behind the furniture-moving paradigm was to suggest that it may be possible to
contradict the speedup theorem of parallel computation. Certain computations
are described in [1] that achieve this. Thanks to a phenomenon called parallel

synergy , these computations are performed by p processors in much less than 1=p
of the time they take using one processor. However, none of the computations
described in [1] and displaying parallel synergy is a true analog to the furniture-
moving paradigm.

The purpose of the present paper is to propose a computation that captures
the essence of the furniture-moving paradigm. It concerns transferring a �le
securely from one computer system to another. The �le contains some sensitive
(or private) information. It is required to safeguard the secrecy of the informa-
tion while in transit: A wiretapper must face a di�cult job when attempting to
read it. Furthermore, the integrity of the �le is to be protected: Any tampering
with its contents should be hard to conceal. Sequential and parallel solutions
to this problem are presented. We show that the parallel solution has a run-
ning time signi�cantly smaller than that prescribed by the speedup theorem. It
should be emphasized here that the proposed computation is an analog to the
furniture-moving paradigm not because of the apparent similarity between the
two tasks suggested by the fact that they both involve `displacing' an object.
Instead, the analogy stems from their common property of being able to be
carried out quickly if and only if performed simultaneously by several agents
(that is, movers in one case and processors in the other).

2



The remainder of this paper is organized as follows. Some background mate-
rial is presented in Section 2. This includes a de�nition of the speedup theorem
and a brief introduction to the �eld of cryptography whose techniques are used
by the algorithms in this paper. Section 3 states the �le transfer problem to
be solved. Sequential and parallel solutions are described in Sections 4 and 5,
respectively, along with their analyses. A discussion of the superlinear speedup
achieved by the parallel solution over the sequential one is provided in Section
6. Some concluding remarks are o�ered in Section 7.

2 Background

This section gives some background to the two main ideas used in this paper,
namely, speedup and cryptography.

2.1 Speedup

Speeding up the sequential solutions to computational problems is the principal
motivation behind parallel processing. In order to determine the goodness of a
parallel algorithm that solves a certain problem, a measure known as speedup
is used. Speedup is de�ned as the ratio of the time T1 required by the best
sequential algorithm for solving the problem at hand, to the time Tp required
by the p-processor parallel algorithm being evaluated, where p > 1. Denoting
the speedup by speedup(1; p), we have:

speedup(1; p) =
T1

Tp
:

It is widely believed that the speedup achieved by a parallel algorithm using
p processors over a sequential algorithm is at most equal to p [5, 10, 14, 19, 28].
This belief is usually called the `speedup theorem' and is stated as:

speedup(1; p) � p:

One can view the above inequality as `bad news', since it puts an upper bound
on the amount of speedup possible with p processors. Most traditional com-
putations (such as sorting, searching, operating on matrices, and so on) when
executed in parallel using p processors exhibit a speedup of at most p (or some
linear function of p), thus obeying (the spirit if not the letter of) the `speedup
theorem'.

Another largely accepted concept in parallel computation is the so-called
`slowdown theorem' (also known as Brent's principle) [6, 11, 13, 17, 25]. Let a
computation be performed with p processors in time Tp and with q processors,
1 � q < p, using the same algorithm, in time Tq, where Tp < Tq. The slowdown
experienced is de�ned as:

slowdown(q; p) =
Tq

Tp
:
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The `slowdown theorem' states that slowdown is at most the ratio of p to q;
thus:

slowdown(q; p) �
p

q
:

The above inequality is in some sense `good news', as it puts an upper bound
on how much slower a computation runs when only q instead of p processors
are available. The `slowdown theorem' is clearly a general form of the `speedup
theorem'. Most traditional computations satisfy the `slowdown theorem'.

Over the last few years, however, a number of unconventional, yet realistic,
paradigms have been advanced which contradict one or both of the `speedup
theorem' and the `slowdown theorem'. Speci�cally, these computations have at
least one of the following properties:

1. speedup(1; p) is superlinear in p; thus, for example, the speedup is on the
order of pr, or even rp, for some r > 1.

2. slowdown(q; p) is superlinear in p=q; thus, for example, the slowdown is
on the order of (p=q)r, or even rp=q , for some r > 1.

These results are described in [1, 4, 7, 8, 9, 20, 21]. They suggest that for
some computations it is possible to obtain a speedup that is asymptotically
larger than the number of processors used (in other words, the previous bad
news are now replaced with good news). Furthermore, if the necessary number
of processors is not available then a slowdown is incurred that is asymptotically
larger than the processor ratio (in other words, the previous good news are
now replaced with bad news). In a nutshell, these results imply that certain
computations are inherently parallel . One such computation, not previously
described, is proposed in this paper. It is based on cryptography to which we
now turn.

2.2 Cryptography

Modern cryptography is a branch of knowledge that combines the methods of
computer science, mathematics, and electrical engineering. Its purpose is the
protection of the secrecy and/or integrity of digital information that is stored in
the memory of a device or is traveling on an insecure communications channel. A
cryptographic scheme (also known as a cryptosystem) works as follows. Suppose
thatM is a meaningful string of bits;M is called the plaintext . With the help of
a cryptographic key k, an encryption function transformsM into another string
C, which for all practical purposes now appears totally meaningless; C is called
the ciphertext . Using a cryptographic key k0, a decryption function allows M
to be recovered from C. Note that if k = k0, the cryptographic scheme is said
to be symmetric; otherwise, it is asymmetric. Usually, C is substituted for M ,
thus concealing the information that M contained. In other circumstances, C
is obtained by encrypting a compressed version of M ; now C accompanies M ,
thus serving as its digital signature and protecting its integrity (an opponent
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cannot modify M without a�ecting C). Most often, M is both encrypted and
signed.

The crucial property here is that C should be computationally hard to obtain
from M without knowledge of k, and that M should be computationally hard
to obtain from C without knowledge of k0. This ensures that private or sensitive
information is kept secret and/or that a digital signature cannot be forged. For
clear introductions to the techniques of modern cryptography, see [22, 26, 27, 29].

Our subsequent treatment makes use of both symmetric and asymmetric
cryptographic schemes. It should be noted, however, that we do not specify ex-
actly which encryption and decryption functions are used. Such a speci�cation
would give the false impression that our results are tied to particular functions.
On the other hand, we do specify the computational requirements of such func-
tions since our analysis is concerned with speedup. Therefore, any choice of
encryption and decryption functions satisfying the stated conditions would be
acceptable.

3 Secure File Transfer

This section presents the computational problem proposed as an analog to the
furniture-moving paradigm.

3.1 Preliminaries

In the memory of a computer system is stored a block Q of 2nb bits. Here, both
n and b are positive integers and b is a constant. The block Q consists of the
following components:

1. A �le F of nb bits containing some sensitive information (this could be
text, data, or programs).

2. A cryptographic encryption key k1 of (n � 1)b bits used to compute a
digital signature.

3. A cryptographic decryption key k2 of b=2 bits used to verify a digital
signature.

4. A digital signature S of b=2 bits.

The signature S is used to verify the authenticity of the �le F . It is computed
as follows:

1. The (2n � 1)b bits formed by the concatenation of F and k1 are �rst
compressed into a block H of b=2 bits. This is obtained by computing the
Exclusive-OR of the 2(2n � 1) (b=2)-bit blocks of F and k1. Note here
that the ith bit of H is the Exclusive-OR of all ith bits of the 2(2n � 1)
blocks, 1 � i � b=2.
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2. An asymmetric cryptographic scheme is now used to obtain S from H .
Recall that such as scheme uses distinct keys for encryption and decryp-
tion, respectively. Let the encryption function be denoted by Ea, where
E stands for encryption and the superscript a refers to asymmetric. The
encryption key k1 is used in conjunction with H to obtain S using Ea;
thus:

Ea(k1; H) = S:

When the authenticity of F and k1 is to be veri�ed, this is done as follows:

1. The (2n� 1)b bits of F and k1 are compressed into a block of b=2 bits (by
computing the Exclusive-OR of the 2(2n � 1) (b=2)-bit blocks of F and
k1). Let the resulting (b=2)-bit block be denoted by H 0.

2. The decryption component of the asymmetric cryptographic scheme is
now used. Let the decryption function be denoted by Da, where D stands
for decryption and the superscript a refers to asymmetric. The decryption
key k2 is used in conjunction with S to obtain a (b=2)-bit block H 00 using
Da; thus:

Da(k2; S) = H 00:

3. The �le F and the key k1 are recognized as being authentic if and only if
H 0 = H 00.

Some relevant points are worth noting here:

1. The two keys k1 (used for signature) and k2 (used for veri�cation) are
unique keys generated by the creator and owner of the �le F . These keys,
and only these keys, can be used whenever F (or any part thereof) is to
be signed digitally or authenticated.

2. The quadruple Q = (F; k1; k2; S) needs to be stored in a fashion that
protects its secrecy and integrity. One option is to store Q in a secure
location. Another is to store it in encrypted form. For simplicity, we
adopt the �rst option in the present and the next two sections. The
second option is discussed in Section 7.

3. The number of bits in a �le, key, or signature is chosen to simplify the
presentation and has no particular meaning in itself. However, the analysis
does require b to be a constant and n a variable. It is also important
that k1 be signi�cantly longer than k2. This underscores the fact that
computing S from H with k1 should be computationally demanding. As
a consequence, obtaining S from H without k1, and similarly H from S

without k2, are computationally hard tasks, making it di�cult to commit
fraud. By contrast, computing H from S with k2 should be extremely
easy computationally, since it is used for signature veri�cation.
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4. During the authentication process, to discover that H 0 6= H 00 indicates
that Q has been somehow tampered with and should be rejected.

3.2 The File Transfer Problem

Throughout its useful lifetime the �le F needs to be moved across several com-
puter systems. The communications channel that carries F from one computer
to another is considered insecure. Such a channel may be vulnerable to various
attacks, in particular:

1. Passive wiretapping, where an enemy may compromise the secrecy of the
information through eavesdropping.

2. Active wiretapping, where an enemy may compromise the integrity of the
information by modifying it while in transit.

Therefore, when F travels from one computer to another, it is required to safe-
guard its secrecy and integrity. This is done as follows:

1. Secrecy is protected through encryption before transmission and decryp-
tion upon receipt. Here, a symmetric cryptographic scheme is used. Recall
that such a scheme uses the same key for encryption and decryption. Let
k3 be a b-bit secret key shared by the two communicating computers.
In other words, k3 is known to both computer systems before the trans-
mission. We denote the encryption function by Es, where E stands for
encryption and the superscript s refers to symmetric. The sending com-
puter encrypts an mb-bit message M , m � 1, by applying Es to it using
k3; thus:

Es(k3;M) = C:

The mb-bit encrypted message C is now transmitted. The receiving com-
puter decrypts C using a decryption function Ds, where D stands for
decryption and the superscript s refers to symmetric. It applies Ds to C
using k3 to recover M ; thus:

Ds(k3; C) =M:

2. Integrity is preserved using the functions Ea and Da and the keys k1 and
k2, as explained in Section 3.1.

In what follows we study the computational requirements when moving the
�le F from the memory of a computer system A to that of a computer system B.
In doing so, we present two analyses. In the �rst analysis, both systems A and
B are sequential (that is, single-processor) computers. In the second analysis,
both systems A and B are parallel (that is, multi-processor) computers.
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3.3 Computational Assumptions

We de�ne a time unit as the time required to perform a constant-time operation
such as addition or comparison of two �xed-size operands, or reading/writing a
�xed-size operand from/to memory. Thus, for example, comparing two (b=2)-
bit blocks for equality requires one time unit. In addition, our analysis makes
the following assumptions:

1. Compressing a w-bit block into an x-bit block, where 1 � x < w and w is
a multiple of x, requires w time units.

2. Encrypting or decrypting a y-bit block using a z-bit key requires yz time
units.

3. Moving a 2b-bit block from one computer to the other requires one time
unit.

4 Sequential Solution

As mentioned in the previous section, computer systems A and B each have
one processor. Computer system A can transmit at most 2b bits at a time to
computer system B. Because each message transmitted must be signed and
encrypted, the sender and receiver perform the steps described in what follows.

4.1 Computer System A

The quadruple Q is viewed as consisting of 2n b-bit blocks Qi, 1 � i � 2n. Each
of these is treated separately; thus:

1. Block Qi is compressed into a (b=2)-bit block Hi; this is achieved by
computing the Exclusive-OR of the two (b=2)-bit blocks of Qi.

2. The (b=2)-bit block Hi is signed using k1 to produce a (b=2)-bit signature
Si by computing

Ea(k1; Hi) = Si:

3. The 2b-bit block Mi consisting of Qi, k2, and Si is now encrypted using
k3 to obtain Ci by computing

Es(k3;Mi) = Ci:

4. The 2b-bit block Ci is now transmitted to computer system B.

The previous four steps are performed 2n times (once for each b-bit block
Qi). The time required is therefore

2n(b+ b2(n� 1)=2 + 2b2 + 1)
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time units. It is important to observe here that each message sent to computer
system B is transmitted in encrypted form in order to protect its secrecy. Thus,
when it leaves computer system A, the 2b-bit ciphertext Ci contains (in en-
crypted form) a message Qi, the signature Si required to authenticate Qi, and
the key k2 needed to verify Si.

4.2 Computer System B

At the receiving end, the following steps are performed on each 2b-bit block Ci

received:

1. Block Ci is decrypted using k3; thus:

Ds(k3; Ci) =Mi:

(This reveals Qi, k2, and Si.)

2. Block Qi is compressed into a (b=2)-bit block H 0

i .

3. Block Si is decrypted using k2; thus:

Da(k2; Si) = H 00

i :

4. If H 0

i = H 00

i , then the signature is valid; otherwise, it is not.

Since the preceding four steps are repeated 2n times, the time required for this
phase is

2n(2b2 + b+ b2=4 + 1)

time units.
When all 2nb bits of Q = (F; k1; k2; S) have been received, the following

three steps are performed by computer system B:

1. The �le F and the key k1 are compressed into a (b=2)-bit block H 0.

2. The signature S is decrypted using k2; thus:

Da(k2; S) = H 00:

3. If H 0 = H 00, then F and k1 are accepted as authentic; otherwise, they are
not.

These three steps run in
(2n� 1)b+ b2=4 + 1

time units.
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4.3 Sequential Running Time

The sequential solution therefore requires

2n(b+ b2(n� 1)=2 + 2b2 + 1) + 2n(2b2 + b+ b2=4 + 1) + (2n� 1)b+ b2=4 + 1;

that is, on the order of �1b
2n2 time units, for some positive constant �1.

5 Parallel Solution

In this section we present a solution to the �le transfer problem that uses sev-
eral processors operating simultaneously. However, unlike the case with the
sequential approach to computation, there is more than one way to organize the
processors when addressing a problem from a parallel computing point of view.
We therefore begin by de�ning our chosen model of computation.

5.1 Model of Computation

For de�niteness we assume in what follows that the model of computation is the
Parallel Random Access Machine (PRAM). In this model, a given number of
processors execute an algorithm synchronously while sharing a common memory
from which they can read and to which they can write. This model is described
in detail in [1]. We mention one feature briey for its relevance to our subse-
quent treatment. Simultaneous writing by several processors to the same shared
memory location, using a Concurrent Write (CW) instruction is allowed by the
model. Thus, when several processors write simultaneously to the same memory
location U , the model requires that the CW instruction indicate what ends up
stored in U . For example, given several values each sent by one processor, the
CW instruction may select one of the values for writing in U , or it may select
the sum of the values, or their logical AND, and so on. The choice depends on
the algorithm being executed and is speci�ed by the algorithm designer. The
CW instruction is executed in one time unit.

Let each of computer systems A and B consist of a PRAM with n processors
denoted by P1, P2, : : :, Pn. The quadruple Q = (F; k1; k2; S) is viewed as
consisting of n 2b-bit blocks Qj , 1 � j � n. Each processor Pj of computer
systemA can transmit at most 2b bits at a time to computer system B. However,
because all processors can operate in parallel, all n 2b-bit blocks Qj of Q can
be transmitted simultaneously. In order to satisfy the secrecy requirement,
each processor Pj encrypts its block Qj before transmission. The integrity
requirement, on the other hand, is satis�ed automatically. This is because Q
is sent from computer A to computer B as one message. Hence, as required,
the pair (F; k1) is accompanied by its signature S as well as the key k2 needed
for authentication. The sender and receiver perform the algorithms described
below.
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5.2 Computer System A

With all processors operating in parallel, processor Pj , 1 � j � n, executes the
following two steps:

1. Encrypts the 2b-bit block Qi of Q using k3; thus:

Es(k3; Qj) = Cj :

2. Sends the 2b-bit block Cj to computer system B.

This requires 2b2 + 1 time units.

5.3 Computer System B

The n 2b-bit blocks Cj , 1 � j � n, are received simultaneously. Now, with
all processors operating in parallel, each processor Pj , 1 � j � n, executes the
following steps:

1. Decrypts the 2b-bit block Cj using k3; thus:

Ds(k3; Cj) = Qj :

(This reveals Q = (F; k1; k2; S).)

2. Compresses one 2b-bit block of the pair (F; k1) into a (b=2)-bit block qj .
(Processor Pn compresses a b-bit block into a (b=2)-bit block, since there
n processors and only (2n� 1)b bits to compress.)

3. Writes qj into a memory location U using the instruction Exclusive-OR
CW. (Because all processors write in U simultaneously, U now holds a
(b=2)-bit block H 0 representing the compressed version of (F; k1).)

Finally, one processor (for example, P1) executes the following two steps:

1. Decrypts S using k2; thus:

Da(k2; S) = H 00:

2. Compares the resulting (b=2)-bit block H 00 to the block H 0; then F and
k1 are accepted as authentic if and only if H 0 = H 00.

The previous �ve steps run in

(2b2 + 2b+ 1) + (b2=4 + 1)

time units.
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5.4 Parallel Running Time

The parallel solution therefore requires

(2b2 + 1) + (2b2 + 2b+ 1) + (b2=4 + 1)

time units. This time is on the order of �2b
2 time units, for some positive

constant �2.

6 Superlinear Speedup

The speedup achieved by the parallel solution over the sequential one is there-
fore:

speedup(1; n) =
�1b

2n2

�2b2
= �3n

2;

for some positive constant �3. This speedup is superlinear in n, the number of
processors used by the parallel solution. Speci�cally, the speedup in this case is
quadratic in n. This contradicts the `speedup theorem'. It is also interesting to
observe that had the number of processors been any smaller than n, the parallel
solution of Section 5 would have been impossible. Even n� 1 processors would
lead to an algorithm with no better running time than the sequential solution
described in Section 4. This contradicts the `slowdown theorem'.

7 Conclusion

In this paper we have presented a computational analog to the furniture-moving
paradigm. The problem involves a �le that needs to be transferred from one
computer to another such that its secrecy and integrity are to be preserved. A
parallel computer system with multiple processors can transport the �le in its
entirety in one step and hence meet all the security requirements. A sequential
computer system, on the other hand, has but one processor and hence needs to
break the �le into smaller parts, transmit each part securely, and then reassemble
it at the other end. The speedup achieved by the parallel solution over the
sequential one is superlinear in the number of processors used.

We conclude with the following remarks:

1. Throughout the paper we have tacitly assumed that all cryptographic
functions are safe against cryptanalytic attack (that is, the actions of an
opponent who wishes to discover the contents of F or compromise its
integrity). There is, of course, no such guarantee. Any choice for the en-
cryption and decryption functions Es, Ds, Ea, and Da has its weaknesses
of which the user must be aware. Similarly, the Exclusive-OR function for
computing H , selected here for its simplicity, can be replaced with cryp-
tographically stronger compression schemes, still without any guarantee.
It follows that when an encrypted and signed message is received, we can-
not be sure that its secrecy or integrity have not been compromised. An
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eavesdropper may have been able to recover the plaintext, without a�ect-
ing the transfer. Also, when H 0 is found to be equal to H 00, there is no
proof that they are both equal to the original H computed by the creator
of F : An enemy may have succeeded in modifying the pair (F; k1) and
its signature S in such a way that the resulting H 0 and H 00 remain equal.
Only when H 0 6= H 00 are we certain that the integrity of the message has
been compromised. All of these considerations, however, are peripheral to
the main focus of this paper.

2. Normally, the quadruple Q = (F; k1; k2; S) would be initially stored in
the memory of computer system A in encrypted form. Encryption would
have been carried out (at the time �le F is created and stored) using a
function similar to Es and a key k0 (similar to k3). Thus, when it is
time to send Q to computer system B, the quadruple would need to be
decrypted in preparation for transmission using a function similar to Ds

and key k0. Upon receipt in computer system B, and following signature
veri�cation, the quadruple Q would have to be re-encrypted. (Note that in
the sequential solution of Section 4, the key k1 is needed to sign each block
Hi. When all 2n blocks have been transmitted as ciphertext, the plaintext
version of k1 should always be erased from the memory of computer system
A, regardless of whether Q was initially stored in encrypted form or not.)
All of these steps are omitted in the solutions presented in Sections 4 and
5 for simplicity of exposition. However, their inclusion would not a�ect
the speedup result of Section 6 in any signi�cant way.

3. In Section 3.1 the encryption key k1 is chosen to be (n�1)b bits in length,
while the decryption key k2 is only b=2 bits long. The reason given for this
choice in Section 3.1 is to make it computationally hard to obtain S from
H without k1 and H from S without k2, whereas obtaining H from S with
k2 is easy. We note here that the same goal can be reached by taking the
two keys k1 and k2 to be of the same length, while making the encryp-
tion function Ea signi�cantly more computationally demanding than the
decryption function Da. For example, let F be a �le of (2n� 3=2)b bits,
and suppose that k1, k2, and H are each b=2 bits long. These particular
lengths are selected for convenience, in order to maintain the number of
bits of the quadruple Q = (F; k1; k2; S) equal to 2nb as previously. If V
and W are x-bit blocks derived from F , then we can take Ea(k1; V ) and
Da(k2;W ) to require (xb=2)n and xb=2 operations, respectively. With this
choice, the speedup result of this paper becomes even stronger. Indeed,
the sequential and parallel solutions of Sections 4 and 5 now have running
times on the order of �4nb

2n and �5b
2 time units, respectively, for positive

constants �4 and �5. This leads to a speedup on the order of �6nb
2n�2, for

some positive constant �6. Such speedup is exponential in n, the number
of processors used in the parallel solution.

4. It may be argued that the CW instruction used in the parallel solution
of Section 5 is too powerful, and that perhaps its ability to compute the
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Exclusive-OR of n (b=2)-bit blocks in one time unit is the reason for the
superlinear speedup. Suppose then that the CW instruction is not used.
Instead, we assume that the only instruction allowed for writing to memory
is Exclusive Write (EW). With the latter, no two processors can write to
the same memory location simultaneously: When several processors write
to memory, each must write to a distinct memory location. However, it is
well known that a CW instruction executed by n processors in one time
unit can be simulated by the same number of processors, using the EW
instruction only, in logn time units [17]. It follows that the running time
of the parallel solution of Section 5 (with EW replacing CW) is now

(2b2 + 2b+ logn) + (b2=4 + 1)

time units. As a result, the speedup is on the order of �n2= logn, for some
positive constant �, which is still superlinear in n.

5. It is mentioned in Section 2.1 that computations such as the one described
in this paper are said to be inherently parallel. This term is preferred to
the expression `embarrassingly parallel' sometimes used to refer to compu-
tations that lend themselves easily to parallelization [30]. There are two
reasons for preferring the term inherently parallel :

(a) The expression `embarrassingly parallel' has a negative connotation
that is inappropriate and in fact totally unnecessary (not only for
the purposes of this paper, but also in general). If a computation
can be executed e�ciently in parallel, then there is every reason to
celebrate, and nothing to be embarrassed about!

(b) The computation in this paper is more than just e�ectively paral-
lelizable. It has two important properties:

i. The parallel solution leads to a superlinear speedup when the
optimal number of processors is used.

ii. If fewer than the required number of processors are available,
then no speedup whatsoever is possible.

6. Another computational paradigm which leads to superlinear speedup is
on-line (or real-time) computation. When a problem is solved on line, not
all of its input data are available initially. Data arrive one at a time or in
bundles, according to a given data-arrival law, while the solution to the
problem is being computed. Whenever a new datum is received, it must
be taken into account in updating the solution [15, 16, 18, 24]. The on-line
computational paradigm has been used to exhibit superlinear speedup in
a variety of contexts [7, 8, 9, 20, 21]. Recently, it was used to demonstrate
that parallelism can do more than just speed up computation. It is shown
in [3] that for real-time optimization problems, a solution obtained in
parallel can be closer to optimal than any solution computed sequentially.
Another example is provided by game-playing programs [2, 23]. Consider,
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for instance, a program for playing chess in real time (against a human or
another program). Suppose that the program runs on a parallel computer
and that it is its turn to make a move. Given a �xed amount of time to
move, the program can search a game tree much larger than is possible
sequentially and hence make a more informed decision.

Today, in many applications of cryptography, both encryption and decryp-
tion occur in real time. On-line cryptography, therefore, appears to be an
area where parallel computation may prove most pro�table. Exploring
this possibility promises to be an exciting avenue for future research.
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