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Abstract

The primary purpose of parallel computation is the fast execution of
computational tasks that are too slow to perform sequentially. However, it
was shown recently that a second equally important motivation for using
parallel computers exists: Within the paradigm of real-time computation,
some classes of problems have the property that a solution to a problem
in the class computed in parallel is better than the one obtained on a
sequential computer. What constitutes a better solution depends on the
problem under consideration. Thus, for optimization problems, ‘better’
means ‘closer to optimal’. The present paper continues this line of inquiry
by exploring another class enjoying the aforementioned property, namely,
cryptographic problems in a real-time setting. In this class, ‘better’ means
‘more secure’. A real-time cryptographic problem is presented for which
the parallel solution is significantly better than a sequential one.
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1 Introduction

Parallelism was invented in order to speed up time-consuming computations. On
a sequential computer there is but one processor. An algorithm for solving a
problem on such a computer is executed one step at a time. A parallel computer,
by contrast, possesses several processors. These processors, working in parallel,
execute several steps of an algorithm simultaneously. Usually, this results in a
significant reduction in the time required to solve the problem at hand [1, 2, 3,
9, 10, 11, 23, 26, 27, 33, 37].

There exists, however, a second equally important motivation for using paral-
lel computers. A parallel computer can in some circumstances obtain a solution
to a problem that is better than that obtained by a sequential computer. A
computational paradigm in which this phenomenon is manifested is real-time
computation. Consider the following example.

Example. Suppose that a computer is programmed to play a two-player
board game of strategy (such as Checkers, Chess, or Go), against a human or
another computer. The computer program typically involves searching a tree
data structure. In this tree, each node represents a board configuration and
each edge represents a move. The root R of the tree represents the current
configuration from which the computer is to make a move. The children of
the root represent all possible board configurations reached by computer moves.
The children of these represent configurations reached by the opponent’s moves,
and so on. In what follows we assume that each node has B children. Associated
with each node is an evaluation function which assigns a value to that board
configuration indicating its goodness from the computer’s point of view.

In order to make a move, the computer searches the tree, up to a certain
depth, and determines (among all leaves at that depth or less) which leaf (call
it L) is best for it (assuming that each of the two players has chosen the best
move from its viewpoint at each level). The edge leaving the root (on the unique
path leading to L) is the selected move. Usually, such a move must be found by
the computer within a fixed amount of time, for example 7 time units. (The
standard definition of ¢ime wnit is used throughout the paper. Specifically, a
time unit is the length of time required by a processor to: Read a datum from
memory, perform a constant-time operation—such as adding two numbers—and
write a datum to memory. This is the unit used to measure the running time
of an algorithm [2, 8, 16, 23].)

Assume that it is the computer’s turn to move. If the computer is a sequen-
tial one, it can search the game tree up to a depth of d;, that is, examine B%
leaves in 7 time units. A parallel computer, with p processors, on the other
hand, can search the game tree up to a depth of dp, where d, > d;, that is
examine B% leaves in 7 time units. The parallel computer, therefore, makes
a more informed decision when choosing its move, having looked farther ahead
in the game tree [4]. B

The situation described in the preceding example has worked fairly well for
some games, such as Chess. For instance, the world Chess champion today is a



parallel computer [29]. There is, however, no proof that this strategy works in
all cases, for at least two reasons:

1. The game tree is not searched in full: Nodes at depth d, do not necessarily
represent end-game configurations (the latter may occur at a depth D >

dy).

2. The evaluation function may not measure the goodness of a position as
accurately as one would want.

As a result, the parallel computer may on occasion arrive at a move that is
worse than that obtained sequentially.

Real-time optimization provided the first example of a problem for which a
solution obtained in parallel is always better than one obtained sequentially [6].
The real-time weighted spanning tree problem is described in [6] as follows:

1. The minimum-weight spanning tree (MST) of an undirected, connected,
and weighted graph is given; it consists of n vertices and n — 1 edges.

2. Time is divided into intervals of ¢n time units, where ¢ > 0 and 0 < € < 1.

3. A new vertex and its associated edges are received at the beginning of
every time interval. A new MST, or a best approximation possible to
it, incorporating the new data must now be computed; the new tree is
produced as output at the beginning of the next time interval.

It is shown in [6] that for this minimization problem the ratio of the weight of
a solution obtained sequentially to the weight of a solution obtained in parallel
can be arbitrarily large.

The purpose of this paper is to continue the study begun in [6]. We present a
problem from real-time cryptography for which a parallel solution is consistently
better than a sequential solution. In [6], the notion of ‘better’ meant ‘closer
to optimal’. In this paper, ‘better’ is interpreted as meaning ‘more secure’.
Specifically, the problem to be solved is one in which blocks of data are received
by a computer system from the outside world at regular intervals and must
be encrypted. No input block can be stored unencrypted, and thus must be
processed as soon as it arrives. The encrypted blocks are to be produced as
output, also at regular intervals. If the computer system operates sequentially,
it can apply only one iteration of an encryption function on each block within
the time available. By contrast, if n processors are used, n iterations of the
encryption function are possible. This results in a significantly higher degree of
security. In fact, we show that the parallel implementation is infinitely better
than the sequential one.

The remainder of the paper is organized as follows. The real-time computa-
tional paradigm is introduced in Section 2. Section 3 provides a brief description
of some basic notions from the field of cryptography. The problem to be solved
is defined in Section 4, along with sequential and parallel solutions. Section 5
offers some concluding remarks.



2 The Real Time Paradigm

In the conventional paradigm of computation, an algorithm solves a problem by
operating on a set of inputs all of which are available at the outset. By contrast,
in the real time computational paradigm the data needed by an algorithm are
not all given initially. Instead, inputs to a problem arrive, typically at regular
intervals, while the algorithm is in the process of computing a solution. The
newly arrived data must be incorporated in the solution at hand. The final
solution is to be returned by a certain deadline.

Real-time computations form a subclass of a larger class of problems known
variably as on-line, incremental, dynamic, and updating computations [7, 12, 13,
14, 17, 18, 19, 20, 21, 22, 24, 25, 30, 31, 32, 36, 38, 40, 41]. What distinguishes a
real-time problem from problems in the larger class is the presence of deadlines—
by which the input is to be processed, by which the output is to be produced,
and so on.

3 Modern Cryptography

The purpose of contemporary cryptography is the protection of digital infor-
mation. The information may be, for example, personal, commercial, financial,
or military. It may be stored in the memory of a device (such as a bank card
or a computer), or it may be traveling on an insecure communications channel
(such as a telephone cable or the electromagnetic waves of a wireless transmis-
sion). What is to be protected is the secrecy of the information, its integrity,
its authenticity, and so on.

In order to accomplish these goals, modern cryptography uses a mathemat-
ical transformation known as a cryptosystem. Let M be a meaningful piece of
information, called the plaintext. Thus, M may contain, for example, alphabet-
ical, numerical, sound, or image data. An encryption function E transforms M,
using a key K, into another piece of information C', referred to as the ciphertext.
This function E typically works in a number n of iterations as follows:

C; = E(K,Ci_1),

where Cy = M and C,, = C. Usually, M is replaced with C' (in memory or on
the communications channel) and the information contained in M is thus pro-
tected against various forms of attack by an opponent (such as eavesdropping,
for example). When the plaintext is to be recovered by a legitimate party, a
decryption function D, using cryptographic key K’ operates on C' (in a manner
similar to the way E operated on M) and allows M to be obtained from the
ciphertext.

What constitutes an iteration in the definition of E (and D) depends on the
cryptosystem being used.



3.1 Symmetric cryptosystem

If the cryptosystem is a symmetric one, meaning that K = K', then an iteration
of E consists of a constant number 7 of substitution-transposition rounds, num-
bered 1 to r. Here, the text to be encrypted is viewed as a string of bits. This
string is divided into blocks, where each block M is b bits long. The function E
is now applied to M. The first round receives M as input. Subsequently, the
output of round ¢ is the input to round i+ 1, 1 < ¢ < r — 1. Within each round,
a substitution followed by a transposition are performed under the control of
the key K:

1. Substitution: Each bit of the binary string received as input to this round
is replaced by another bit (for example, assuming that b = 6, the block
101101 may become 011100 under a substitution transformation).

2. Transposition: The bits of the binary string resulting from the substitution
phase are permuted (for example, the block 011100 may become 100110
under a transposition transformation).

The same description applies to an iteration of D. An example of a symmet-
ric cryptosystem is the Data Encryption Standard (DES) [28, 34, 35, 39]. Here,
M and C are each 64 bits long, K has 56 bits, and one iteration consisting of
16 rounds is performed. Usually, the number of iterations (and hence the total
number of rounds) depends on the length of the key. The longer is the key used,
the larger is the number of iterations possible. For example, a 112-bit key for
DES would allow two iterations (that is, 32 rounds). For simplicity, we assume
in what follows that a k-bit key allows k encryption rounds.

3.2 Asymmetric cryptosystem

In an asymmetric cryptosystem K # K'. An iteration of E usually performs an
operation in modulo arithmetic, such as raising an integer to some exponent,
followed by modular reduction. In this case, the text to be encrypted is broken
into blocks (of alphabetic characters, for example), and each block is mapped
to an integer M, where 0 < M < m —1, and m is a large positive integer called
the modulus. For 1 < i < n, an iteration takes the form

— €4
C; = C;*, mod m,
where e; is a positive integer. In particular,
C, = M mod m.

The pair (ejes - - ey, m) represents the encryption key. Typically, the ex-
ponent ejey---e, of M depends on m: A larger modulus allows for a larger
exponent, and hence for more iterations of the encryption function E. A similar
transformation is used to describe an iteration of D.



The preceding description of an iteration of E is representative of asymmetric
encryption and is inspired by the Rivest-Shamir-Adleman (RSA) cryptosystem,
named after its inventors [28, 34, 35, 39].

Modern cryptography is founded on the principle that it should be compu-
tationally hard to obtain the plaintext from the ciphertext without knowledge
of the decryption key. For most cryptosystems (symmetric and asymmetric) a
necessary and often sufficient condition for achieving this goal is to use keys that
are large in size. Of course, a large key size makes it impractical for an opponent
to launch an exhaustive attack based on key enumeration. Of more importance
to our purpose in this paper, however, is the fact that a large key contributes to
making the function E computationally hard to invert. One reason for this is
that a large key allows for a large number n of iterations of £ when computing
C from M. In the remainder of this paper we assume that a cryptosystem using
a long key is more secure than one using a shorter key.

The results in this paper apply to both symmetric and asymmetric cryp-
tosystems. However, we do not specify exactly which functions are used for
encryption and decryption. Indeed, any function fitting the broad description
in this section will be adequate. For definiteness, we do present in our subse-
quent treatment examples of general functions encompassing each of the two
families. We also make specific assumptions about the computational require-
ments of these functions and their level of security. Detailed introductions to
the field of cryptography are provided in [28, 34, 35, 39].

4 Real-Time Cryptography
The problem to be solved is defined as follows:

1. A computer system receives a stream of plaintext data in real time. These
data are to be encrypted.

2. Time is divided into intervals. Each interval is 7 +2 time units long, where
T is a positive constant.

3. A the beginning of each time interval a block of data is received. Depend-
ing on the cryptosystem being used, this block may be regarded as:

(a) A string of bits of constant length, in case of a symmetric cryptosys-
tem.

(b) A nonnegative integer smaller than some given modulus, in case of
an asymmetric cryptosystem.

4. No block received can be stored in plaintext form. Therefore, each input
block must be processed as soon as it arrives. Each output block is then
stored in some memory or transmitted over an insecure channel.



5. An encrypted block is to be produced as output at the end of each time
interval (with possibly an initial delay before the first output is produced).

6. Computational Assumptions. The operation of reading a block and
that of storing (or transmitting) it require one time unit each. One iter-
ation of the encryption function E requires 7 time units. Depending on
whether a symmetric or asymmetric cryptosystem is used, this assumption
has the following implications:

(a) Symmetric cryptosystem. Recall that an iteration consists of a con-
stant number r of rounds. Since an iteration requires 7 time units,
only r rounds are performed in one interval.

(b) Asymmetric cryptosystem. Computing C;’, mod m requires on the
order of log, e; time units, 1 < i < n, since exponentiation can be
performed through squaring and multiplication. Again, since one
iteration requires 7 time units, the value of e; that can be used
within an interval is bounded from above by a constant.

7. Cryptographic Assumptions. One iteration of the cryptographic func-
tion E (whether symmetric or asymmetric) is breakable without knowledge
of any cryptographic key used. Specifically, an opponent can with reason-
able computational effort recover M from C} by inverting F, that is, by
computing

M =E 1 (C).

On the other hand, without knowledge of the encryption/decryption keys,
n iterations of the encryption function E (whether symmetric or asym-
metric) are unbreakable with current mathematical knowledge and present
(and foreseeable) computers. Specifically, given C),, an opponent cannot
feasibly recover M.

We now present two implementations of this computation, the first sequential
and the second parallel.

4.1 Sequential implementation

Suppose that the computer system receiving the real-time input is a sequential
one, that is, there is a single processor in charge of reading each successive block,
encrypting it, and finally storing (or transmitting) it. Because an interval of
T +2 time units separates consecutive blocks, the computer must be finished
processing a block by the time the following block arrives. This means that
only one iteration of the encryption function E can be performed on a block
before the latter is stored or transmitted. Specifically,

1. If a symmetric cryptosystem is used, then the sequential computer per-
forms r substitution-transposition rounds on a block within an interval.
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Figure 1: Parallel computer.

2. If an asymmetric cryptosystem is used, then the sequential computer per-
forms

Ci1 = M° mod mg

where m is the sequential modulus and e < 27_, since log, e cannot exceed

T.

In either case, if the plaintext consists of w blocks, the sequential computer
requires w(7 +2) time units to encrypt all blocks.

4.2 Parallel real-time cryptography

In this section we consider the case in which the computer system receiving the
real-time input is a parallel one. Our chosen model of parallel computation is
first presented, followed by the parallel implementation.

4.2.1 Parallel model

The parallel computer consists of n processors, denoted by Py, Ps, ..., P,, as
illustrated in Fig. 1. The processors are connected to one another by (one-way)
communication links such that:

1. Py receives its input from (and only from) the outside world.
2. P; receives its input from (and only from) P;_q, 2 < i < n.

3. P; sends its output to (and only to) Piyq, 1 <i<n-—1.
4

. P, sends its output to (and only to) a memory or a communications
channel.

This parallel computer operates in a pipeline fashion: Data travel from P;
to P,, with P; beginning to operate only when it receives input, 1 < ¢ < n.
Among all models of parallel computation that provide some form of communi-
cation among their processors, the pipeline model is arguably the weakest. Yet,
despite the severely limited communication paths it affords, this model is en-
tirely adequate for our purposes. Indeed, we show in the following section that
the pipeline model allows an implementation of real-time cryptography that is
significantly better than a sequential one.



4.2,2 Parallel implementation

Naturally, when a pipeline computer (with n processors) is used to implement
real-time encryption, processor P; is in charge of reading each successive in-
put block, while processor P, is responsible for storing (or transmitting) the
corresponding (encrypted) output block. As observed in the sequential imple-
mentation, because a new input block is received every T +2 time units, the
computer must have finished processing a block when the next block arrives.
Therefore, again as in the sequential implementation, processor P; can perform
only one iteration of the encryption function E on each block it receives. How-
ever, unlike the sequential implementation, the parallel implementation allows
further iterations to be performed. Thus, when P; has executed one encryption
iteration on some block M, it sends the resulting encrypted block C; to P, and
turns its attention to the next incoming plaintext block. Now P, can execute
a second encryption iteration on C}, before sending the resulting block C5 to
P;. This continues until C),, emerges from P,. Meanwhile, n — 1 other blocks
reside in the pipeline (one in each of the other processors) at various stages of
encryption. One time interval after P, has produced its first encrypted block,
it produces a second, and so on, so that an encrypted block is stored or trans-
mitted every 7 +2 time units. If there are w blocks in all, the final encrypted
block is stored or transmitted by P,

n(T+2) + (w —1)(T+2)

time units after the first plaintext block arrives at P;.
Each input plaintext block is therefore subjected to n encryption iterations.
Specifically,

1. If a symmetric cryptosystem is used, then the parallel computer performs
rn substitution-transposition rounds on a block.

2. If an asymmetric cryptosystem is used, then processor P; of the parallel
computer performs

_ e
C; = C7 | mod my,

for 1 <i < n, where Cy = M, C,, =C, e < 27-, and m,, is the parallel
modulus, with m, > ms. In other words, C = M*¢" mod m,.

4.3 Analysis

By our initial assumptions, the sequential implementation provides a level of
encryption that is effectively breakable, while the parallel implementation pro-
vides a level of encryption that is unbreakable for all practical purposes. It is
therefore possible to say that the parallel solution to the real-time encryption
problem is infinitely better than the sequential one.



For a quantitative analysis, we introduce the following parameters. We define
the insecurity value V, 0 < V < 1, to be a measure of the likelihood that
a cryptosystem can be broken. Similarly, let the security value, 1 —V be a
quantity that expresses the level of security offered by a cryptosystem. For an
unconditionally secure cryptosystem, V' = 0, and the security value is 1. At the
other extreme, a cryptosystem that is guaranteed to be breakable has V =1
and a security value of 0. The majority of cryptosystems have a security value
between 0 and 1.

Suppose that two implementations of a cryptosystem have insecurity values
V1 and V3, respectively, where Vi > V5. The improvement in security provided
by the second implementation is given as V; /V5.

In the context of our discussion, we define V' as follows. Let = be the number
of iterations of the encryption function E performed by a certain implementa-
tion of a given cryptosystem. Then, for this implementation, V' = 1/z. The
sequential implementation of Section 4.1 executes one iteration of E, and con-
sequently its insecurity value V is 1. For the parallel implementation of Section
4.2, the number of iterations is n, resulting in an insecurity value V, of 1/n.
For large n, V,, approaches 0. Hence, the improvement in security provided by
the parallel implementation over the sequential one is V;/V,. This improvement
grows without bound as n increases.

5 Conclusion

The principal purpose for using parallel computers remains the speeding up of
computations that are too slow when performed sequentially. Another justifi-
cation for using parallel computers, however, and one that is important in its
own right, turns out to be a by-product of their speed. As it is beginning to
become apparent, parallel computers can often solve computational problems
faster, while at the same time delivering solutions that are better than is possible
sequentially.

To date, only one computational paradigm, namely, real-time computation,
has been identified, in which parallel computers obtain better solutions faster.
Within this paradigm, two problem areas manifesting this phenomenon have,
so far, been recognized. These two areas are optimization (as shown in [6]) and
cryptography (the subject of this paper). A third area that holds promise is
numerical computation. Here the parallel computer can obtain a solution to a
numerical problem with a higher degree of accuracy than a sequential computer
[5].

We conclude with an open problem: Do other computational paradigms ex-
ist, besides real-time computation, in which it is possible for parallel computers
to obtain better solutions to computational problems than sequential ones?
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