
Technical Report No. 99-424

Parallel Real-Time Numerical Computation:

Beyond Speedup III �

Selim G. Akl and Stefan D. Bruda

Department of Computing and Information Science

Queen's University

Kingston, Ontario K7L 3N6

Canada

Email: fakl,brudag@cs.queensu.ca

May 18, 1999

Abstract

Parallel computers can do more than simply speed up sequential com-

putations. They are capable of �nding solutions that are far better in

quality than those obtained by sequential computers. This fact is demon-

strated by analyzing sequential and parallel solutions to numerical prob-

lems in a real-time paradigm. In this setting, numerical data required to

solve a problem are received as input by a computer system, at regular

intervals. The computer must process its inputs as soon as they arrive.

It must also produce its outputs at regular intervals, as soon as they are

available. We show that for some real-time numerical problems a parallel

computer can deliver a solution that is signi�cantly more accurate than

when computed by a sequential computer. Similar results were derived

recently in the areas of real-time optimization and real-time cryptography.

Key words and phrases: Parallelism, real-time computation, numerical

analysis.

�This research was supported by the Natural Sciences and Engineering Research Council

of Canada.

1



1 Introduction

The range and scope of computer applications in today's society are breathtak-

ing. From business to medicine, from communication to entertainment, there

is an ever increasing demand for computers that can perform complex tasks

quickly and precisely. It is also becoming apparent that present and foreseeable

computers, largely conventional in design, will fall short of the expectations. In-

deed, sequential (that is single-processor) computers are steadily approaching a

point beyond which they will be unable to provide answers to certain computa-

tional problems within the required time limits. One way out of this impasse is

to use computers with several processors. A parallel computer breaks the prob-

lem to be solved into smaller parts that are solved simultaneously on its many

processors. As a result, the solution time is dramatically reduced [1, 25, 38, 40].

It has been recently observed that in some circumstances parallel computers

can solve computational problems, not only faster , but also better . One such

circumstance is the real-time paradigm. Here, the data needed to solve a prob-

lem are received on-line and the results of the computation are to be delivered

by a certain deadline. Within this paradigm, what constitutes a better solu-

tion depends on the class of computational problems under consideration. For

example, for optimization problems, `better' means `closer to optimal'. Simi-

larly, for cryptographic problems, an implementation is `better' than another if

it is `more secure'. Examples of problems in optimization and cryptography, in

which parallel solutions are always better than sequential ones, are described in

[4] and [5], respectively.

The purpose of this paper is to identify a further class of computational

problems in which parallelism provides better (in addition to faster) solutions.

Speci�cally, we study the class of numerical computations . In this context, a

solution is `better' if it is `more accurate'. In order to convey the idea in the

most straightforward way, two simple problems in numerical computation are

chosen for illustration, namely, computing de�nite integrals and �nding roots of

nonlinear equations. Speci�cally, we show that when these problems are to be

solved in a real-time environment, a solution obtained by a parallel computer is

signi�cantly more accurate than one derived sequentially.

The remainder of this paper is organized as follows. Previous work is sum-

marized in Section 2. This includes an introduction to real-time computation

and a brief review of earlier results achieved when applying parallelism within

this paradigm to problems in optimization and cryptography. In Section 3, nu-

merical computation is de�ned along with the notion of error and its application

to the two problems chosen for illustration. Real-time numerical computation

is the subject of Section 4; here, the main results of the paper are presented.

Some �nal thoughts are given in Section 5.

Throughout the paper, we use the standard de�nition of time unit , that is,

the unit used to measure the running time of an algorithm: A time unit is the

length of time required by a processor to read a datum from memory, perform

a constant-time operation (such as adding two numbers), and write a datum to

memory [1, 9, 17, 25].

2



2 Previous Work

The fact that parallel computers can do more than just speed up computa-

tions had been suspected for some time [1, 3]. However, it was one particular

paradigm, namely, real-time computation, that provided the appropriate envi-

ronment for this phenomenon to manifest itself for the �rst time. It was shown

that for two computations, each from a di�erent class of problems, a solution

obtained in parallel is arbitrarily better than a sequential one.

2.1 Real-time computation

The prevalent paradigm of computation, to which everyone who uses computers

is accustomed, is one in which all the data required by an algorithm are available

when the computer starts working on the problem to be solved. A di�erent

paradigm is real-time computation. Here, not all inputs are given at the outset.

Rather, the algorithm receives its data (one or several at a time) during the

computation, and must incorporate the newly arrived inputs in the solution

obtained so far. Usually, the inter-arrival rate is constant.

A fundamental property of real-time computation is that certain operations

must be performed by speci�ed deadlines. Thus, one or more of the following

conditions may be imposed:

1. Each received input (or set of inputs) must be processed within a certain

time after its arrival.

2. Each output (or set of outputs) must be returned within a certain time

after its computation.

Thus, for example, it may be crucial for an application that each input be

operated on as soon as it is received. Similarly, each partial solution (as well as

the �nal one) may need to be returned as soon as it is available [21, 28, 37]. (It

is helpful to note here that, when no deadlines are imposed, computations for

which inputs arrive while the algorithm is in progress are referred to as on-line

[18, 22, 23, 24], incremental [14, 15, 32, 39], dynamic [7, 8, 44], and updating

[13, 16, 19, 26, 34, 35, 41, 43].)

2.2 Real-time optimization

The �rst example of a computation for which a parallel solution is consistently

better than a sequential one was provided by real-time optimization. The real-

time weighted spanning tree problem is de�ned as follows:

1. The minimum-weight spanning tree (MST) of an undirected, connected,

and weighted graph is given; it consists of n vertices and n� 1 edges.

2. Time is divided into intervals of cn� time units, where c > 0 and 0 < � < 1.

3



3. A new vertex and its associated edges are received at the beginning of

every time interval. A new MST, or a best approximation possible to

it, incorporating the new data must now be computed; the new tree is

produced as output at the beginning of the next time interval.

It is shown in [4] that for this minimization problem the ratio of the weight of

a solution obtained sequentially to the weight of a solution obtained in parallel

can be arbitrarily large.

2.3 Real-time cryptography

An input source produces blocks of data in real time. Each block arrives at a

computer system which needs to encrypt it immediately for security purposes.

Once encrypted, the block is sent to an output destination, also in real time.

Speci�cally,

1. Time is divided into intervals of constant duration.

2. An input block is produced by the source at the beginning of each time

interval.

3. An encrypted block must be transmitted to the destination at the end of

each time interval.

4. The three operations of reading an input block, performing one iteration of

an encryption function, and producing the output block, require together

one time interval.

5. For an integer n larger than 1, n iterations of the encryption function

o�er unconditional security, while any number of iterations smaller than

n is e�ectively breakable by an opponent without knowledge of the cryp-

tographic keys used.

A parallel implementation of this scheme is shown in [5] to provide a level of

security that is in�nitely better than a sequential one.

3 Numerical Computation

One of the oldest and most important uses of computers is to perform numerical

calculations, primarily in scienti�c and engineering applications. We begin by

outlining the characteristics of numerical computation. A de�nition of numerical

error is then provided. Finally, two examples of numerical problems are used

for illustration.

4



3.1 Characteristics

Numerical problems, whether they occur in weather prediction or the design of

a high-speed train, share a number of common properties that distinguish them

from other types of computations:

1. Because they typically involve physical quantities, their data are repre-

sented using 
oating-point numbers.

2. Their solutions are obtained using mathematical algorithms.

3. Their algorithms often consist of a number of iterations : Each iteration

is based on the result of the previous one and is supposed, theoretically,

to improve on it. Sometimes, the algorithm performs a discretization:

A computation on a continuous function is transformed into a discrete

operation.

4. Generally, the results produced by numerical algorithms are approxima-

tions of exact answers that may or may not be possible to obtain.

5. There is an almost inevitable element of error involved in numerical com-

putations: Roundo� errors (which arise when in�nite precision real num-

bers are stored in a memory location of �xed size), truncation errors

(which arise when an in�nite computation is approximated by a �nite

one), and discretization errors (when operations on discrete values replace

computations on continuous functions).

Examples of numerical problems include solving systems of equations, com-

puting eigenvalues, and performing polynomial interpolations [20, 27, 33, 36, 42].

3.2 Numerical error

By properties 4 and 5 of Section 3.1, a numerical algorithm only computes

an approximation of the true answer to a problem, and this answer therefore

contains a certain amount of error. Let the exact answer to a problem be Aexact

and the approximate answer obtained numerically be Aapproximate. Then, the

absolute numerical error Eabsolute in Aapproximate is de�ned as

Eabsolute = Aexact �Aapproximate,

while the relative numerical error Erelative is

Erelative =
Eabsolute

Aexact
.

When analyzing a numerical algorithm it is customary to derive an estimate

of the error (absolute or relative). Usually, this estimate is in the form of an

upper bound on the absolute value of the numerical error. Quite often, this

bound for an absolute error takes the form

jAexact �Aapproximatej �
K

g(N)
,

5



where K is a constant that depends on the problem at hand, N is a parameter

of the algorithm (such as, for example, the number of iterations or the number

of discretization steps), and g(N) is an increasing function of N .

3.3 Numerical integration

Given a function f of a real variable x, de�ned over an interval [a; b] of values
of x, it is required to compute the de�nite integral

Iexact =
bR
a

f(x)dx.

For example, consider the function f(x) = e�x
sinx

. In this case, and for most

nontrivial values of f , computing Iexact is very di�cult analytically. Instead,

numerical algorithms are used to compute an approximation. One such algo-

rithm is the trapezoidal method . In it, the function f is replaced with a piecewise

linear function that approximates it over [a; b]. Let h = (b � a)=N , for some

N � 1. The interval [a; b] on the x-axis is divided into N subintervals, such that

x1 = a, xN+1 = b, and xi = a+ (i� 1)h, for i = 2; 3; : : : ; N . Thus,

Iapproximate =
h
2

�
f(a) + 2

NP
i=2

f(xi) + f(b)

�
.

Now, assuming that f 00, the second derivative of f with respect to x, is contin-
uous over [a; b], it can be shown that

jIexact � Iapproximatej �
(b�a)3D

12N2 ,

where D > 0 and jf 00(x)j � D, for all x in [a; b].

3.4 Finding roots of nonlinear equations

It is often required to �nd the root of an equation of one variable, such as

ex�cosx = 0. This is usually impossible to do analytically, and one must resort

to a numerical algorithm in order to obtain an approximate solution. One such

algorithm is the bisection method .

Suppose that f(x) is a continuous function, with a and b two values of the

variable x such that f(a)f(b) < 0. A zero of f , that is, a value xexact for

which f(xexact) = 0, is guaranteed to exist in the interval [a; b]. Let a1 = a
and b1 = b. Now the interval [a1; b1] is bisected , that is, its middle point

m1 = (a1 + b1)=2 is computed. If f(a1)f(m1) < 0, then xexact must lie in the

interval [a2; b2] = [a1;m1]; otherwise, it lies in the interval [a2; b2] = [m1; b1].
The process is now repeated on the interval [a2; b2]. This continues until an

acceptable approximation xapproximate of xexact is obtained, that is, until for

some N � 1, jbN � aN j < �, where � is a small positive number chosen such

that the desired accuracy is obtained. When the latter condition is satis�ed,

xapproximate = (aN + bN )=2. Because

6



jxexact � xapproximatej �
jbN�aN j

2
�

jbN�1�aN�1j

22
� � � � �

jb1�a1j

2N
,

the absolute error bound is

jxexact � xapproximatej �
jb�aj

2N
.

4 Real-Time Numerical Computation

In this section we de�ne a general numerical problem that needs to be solved in

a real-time setting. Sequential and parallel solutions are described, followed by

an analysis.

4.1 Problem de�nition

A computational environment subject to the following conditions is assumed:

1. A computer system receives a stream of inputs in real time. These inputs

represent the data of a numerical computation.

2. Time is divided into intervals. Each interval is n+2 time units long, where

n is a positive integer.

3. At the beginning of each time interval, a set S of data is received by

the computer system. The set S represents the data to some numerical

computation whose output is Aapproximate. For example, for the problems

of Sections 3.3 and 3.4 the set S contains the speci�c function f(x) and
the values a and b.

4. It is required that S be processed as soon as it is received and that

Aapproximate be produced as output as soon as it is computed. Further-

more, one output must be produced at the end of each time interval (with

possibly an initial delay before the �rst output is produced).

5. Computational Assumptions.

(a) The operation of reading S, and that of producing Aapproximate as

output once it has been computed, require one time unit each.

(b) In computing Aapproximate, the numerical algorithm performs n it-

erations (if it is an iterative method) or n discretization steps (if it

is a discretization method) in n time units. Hereafter, we refer to

iterations and discretization steps as passes .

6. Error Bound Assumption. Let Aexact be the exact answer to the

problem at hand. For this problem and the algorithm used to solve it

jAexact �Aapproximatej �
K

g(N)
,

where K is a constant that depends on the problem, N is a parameter

of the algorithm (that is, N is the number of passes), and g(N) is an

increasing function of N .

7



P P P P P1 2 3 n-1 n

 ...
INPUT OUTPUT

Figure 1: Parallel computer.

4.2 Sequential solution

We begin by presenting a solution which assumes that the computer system

receiving the real-time data is a sequential one. Here, there is a single processor

whose task is to read each incoming S, to compute Aapproximate, and to produce

the latter as output. Recall that the computational environment we assumed

dictates that a new input set be received at the beginning of each time interval,

and that such a set be processed immediately upon arrival. Therefore, the

processor must have �nished processing a set before the next one arrives. Since

one interval is n+ 2 time units long, it follows that the algorithm can perform

no more than n passes on each input S.

4.3 Parallel solution

Our second solution to the real-time numerical computation assumes that the

computer system is a parallel one. In what follows, we �rst describe the model

of parallel computation used, then present the parallel algorithm.

4.3.1 Model of parallel computation

Our chosen parallel model is the pipeline computer, shown in Fig. 1. In this

model, n processors, denoted by P1, P2, : : : , Pn, are connected to one another

by (one-way) communication links such that:

1. P1 receives its input from (and only from) the outside world.

2. Pi receives its input from (and only from) Pi�1, 2 � i � n.

3. Pi sends its output to (and only to) Pi+1, 1 � i � n� 1.

4. Pn sends its output to (and only to) a memory or a communications

channel.

Data travel from P1 to Pn, with Pi beginning to operate only when it re-

ceives input, 1 � i � n. It can be argued that the pipeline computer is the

weakest of all models of parallel computation in which the processors have some

means of communicating among themselves. Nonetheless this model, with its

rudimentary communication paths, is perfectly suitable when solving the real-

time numerical problem of Section 4.1. This is demonstrated in the next section

8



where it is shown that the pipeline computer a�ords a parallel algorithm that

is signi�cantly better than a sequential one.

4.3.2 Parallel algorithm

When solving the real-time numerical problem of Section 4.1 on the n-processor
parallel computer of Section 4.3.1, it is evident that processor P1 must be des-

ignated to receive the successive input sets S, while it is the responsibility of Pn
to produce Aapproximate as output. As pointed out in Section 4.2, the fact that

each set needs to be processed as soon as it is received implies that the processor

must be �nished processing a set before the next one arrives. Since a new set

is received every n + 2 time units, processor P1 can perform only n passes on

each set it receives. Unlike the sequential solution of Section 4.2, however, the

present algorithm can perform additional passes. This is done as follows. Once

P1 has executed its n passes on S, it sends the intermediate results, along with

S, to P2, and turns its attention to the next input set. Now P2 can execute

n passes before sending the results (along with S) to P3. This continues until

Aapproximate is produced as output by Pn. Meanwhile, n � 1 other input sets

co-exist in the pipeline (one set in each of P1, P2, : : : , Pn�1), at various stages

of processing. One time interval after Pn has produced its �rst Aapproximate, it

produces a second, and so on, so that an output emerges from the pipeline every

n + 2 time units. Note that each output Aapproximate is the result of applying

n2 passes to the input set S, since there are n processors and each executes n
passes.

4.4 Analysis

As mentioned earlier, the purpose of this paper is to show that a parallel com-

puter can obtain a solution that is better , in other words, more accurate, than

one obtained by a sequential computer. Therefore, our analysis focuses, not on

the reduction in the running time, but rather on the reduction in the size of the

error, achieved through parallelism. In what follows we derive a bound on the

size of the error in Aapproximate for the sequential and parallel solutions. For

de�niteness, we use the two numerical computations of Sections 3.3 and 3.4.

4.4.1 The trapezoidal method

Here, the numerical problem to be solved is to compute the de�nite integral

of a given function f(x) from x = a to x = b. We have g(N) = N2 (and

K = (b � a)3D=12). The sequential computer performs n passes, that is, it

divides the interval [a; b] into n subintervals to compute Iapproximate, and hence

N = n. Consequently,

jIexact � Iapproximatej �
K
n2
.

By contrast, the parallel computer performs n2 passes, that is, it divides the

interval [a; b] into n2 subintervals. Each processor in the pipeline computes

9



the de�nite integral over n consecutive subintervals. Speci�cally, with h =

(b� a)=n2, P1 computes

I1 =
h
2

�
f(a) + 2

nP
i=2

f(xi) + f(xn+1)

�

and sends it to P2 along with f , a, and b. Now P2 computes

I2 = I1 +
h
2

�
f(xn+1) + 2

2nP
i=n+2

f(xi) + f(x2n+1)

�

and sends it to P3 along with f , a, and b. This continues until Pn computes

In =
n�1P
i=1

Ii +
h
2

 
f(x(n�1)n+1) + 2

n2P
i=(n�1)n+2

f(xi) + f(b)

!

and produces it as Iapproximate. Therefore, with N = n2,

jIexact � Iapproximatej �
K
n4
.

It follows that, in the worst case, the error in the solution obtained in parallel

with n processors is n2 times smaller than the error in the solution obtained

sequentially.

4.4.2 The bisection method

The numerical problem to be solved here is to �nd a zero for a continuous

function f(x) that falls between x = a and x = b. In this case, g(N) = 2N (and

K = jb � aj). Sequentially, n passes of the bisection method are performed to

obtain xapproximate, that is, N = n, and

jxexact � xapproximatej �
K
2n
.

In parallel, each processor in the pipeline performs n passes of the bisection

method. Speci�cally, P1 performs n passes and sends (an; bn) to P2 along with

f . The latter performs n additional passes and sends (a2n; b2n) to P3 along

with f . Eventually, Pn performs the �nal n passes and obtains xapproximate as

(an2 + bn2)=2. Therefore, N = n2, and

jxexact � xapproximatej �
K

2n
2 .

The ratio of the sequential error to the parallel error in this case is 2n(n�1). In

other words, increasing the number of processors by a factor of n leads to a

reduction in the size of the error by a factor on the order of 2n
2

.

10



5 Conclusion

We set out to address the following question originally asked in [1]: Can a par-

allel computer, not only reduce the amount of time required to solve a problem

sequentially, but also improve the quality of the solution obtained by a sequential

computer? It was shown in this paper that for numerical problems in a real-time

computational environment, the answer is de�nitely a�rmative. In particular,

there exists numerical problems for which an n-fold increase in the number of

processors results in a solution that is more accurate than one computed se-

quentially by a factor exponential in n. Similar examples were previously found

in optimization [4] and cryptography [5]. These results suggest that, while on

the surface the main purpose of parallelism is to speed up computation, a closer

look reveals that there is more to it than meets the eye.

Several lines of investigation present themselves naturally for future work:

1. As noted in this paper and its predecessors [4, 5], there are many ways

to measure the quality of a solution. Thus, one solution is `better' than

another if it is `closer to optimal' (in optimization), `more secure' (in

cryptography), and `more accurate' (in numerical computation). Other

areas of computation bring di�erent meanings to the word `better', and

parallel computation may have a role to play in such areas. An example

that comes to mind is statistics. Here, a better statistical measure may

be one based on a larger sample size. Consider, for example, a computer

that receives data in real time and must keep track of the average of all

inputs received so far, and report such average. A sequential computer

can only incorporate a subset of the data received at each time interval

when computing the new average. A parallel computer, on the other hand,

may be able to include most, if not all, of the received data. The average

reported by the parallel computer at the end of each time interval is better

than that obtained sequentially.

2. The real-time computation of Section 4.1, and to some extent that of [5],

di�er from the one described in [4] in the following way. In the real-

time optimization problem of [4], the purpose is to compute at each time

interval the minimum spanning tree of least possible weight for the current

graph. At each time interval a new vertex and its associated edges are

added to the graph, and must be incorporated in the solution obtained so

far. Thus, each output depends on all previous inputs. By contrast, in the

problems of Section 4.1 and [5], each time interval procures an entirely new

problem to be solved. It follows that each output is entirely independent

of any previous input. It may be worthwhile to �nd real-time problems in

numerical computation and cryptography where each output depends on

previous inputs in a non-trivial way.

3. In this paper and previous ones [4, 5], every example of a computation

where a parallel computer provides a better solution than a sequential

one, has occurred within the real-time paradigm. Clearly, it would appear

11



especially relevant to determine whether other paradigms of computation

exist in which this phenomenon manifests itself. A candidate paradigm of

this sort is one in which the data needed by an algorithm can be acquired

from one of several sources. Each source holds a set of inputs su�cient

by itself to solve the problem at hand. The inputs held by one particular

source lead to a solution that is `better' than any solution reached by

using data from another source. At any given time, a single processor can

acquire data from exactly one source. Furthermore, a source that is not

selected for providing input to the algorithm ceases to exist (and its data

can no longer be retrieved). In this paradigm, a sequential computer can

�nd the best solution with probability 1=n, where n � 1 is the number of

sources. A parallel computer with n processors on the other hand, assigns

one processor to each source, and is therefore guaranteed to arrive at the

best solution.

It may be interesting to conclude by going back full circle and returning

to the starting point of this discussion, namely, speedup. Suppose that, for a

given problem, the best (possible, or known) sequential algorithm runs in time

T1. Further, let some parallel algorithm using p processors run in time Tp when
solving the same problem. Then, in this case, speedup is de�ned as T1=Tp. In
every one of the examples discovered so far, in which a parallel computer with

n processors provides a better solution than one obtained sequentially, the ratio

of the sequential running time to the parallel running time has been at best

linear in n. Thus,

1. In [4], an n-processor parallel computer obtains the exact MST of a graph

with n vertices at each time interval, requiring on the order of logn time

units. Had no real-time deadlines been imposed, the same computation

would have required on the order of n time units sequentially.

2. Similarly, in [5], an n-processor parallel computer encrypts each of w data

blocks using n iterations of an encryption function. This requires on the

order of w+n time units. The same computation (assuming no real-time

deadlines are imposed) would have required on the order of wn time units

sequentially.

3. The algorithm of Section 4.3.2 in this paper, solves the problem of Section

4.1 using an n-processor parallel computer. If w input sets S are received,

the number of time units required is n(n + 2) + (w � 1)(n + 2). In the

absence of real-time deadlines, the same computation requires on the order

of wn2 time units.

By contrast, the improvement in the quality of the solution in each case is

superlinear in n. Recent work, however, has demonstrated that superlinear

speedups are indeed possible, particularly in the real-time environment [1, 2,

6, 10, 11, 12, 29, 30, 31]. It is therefore tempting to ask: Can a superlinear

speedup and a superlinear improvement in quality be achieved simultaneously?

12



References

[1] S. G. Akl, Parallel Computation: Models and Methods , Prentice-Hall, Up-

per Saddle River, New Jersey, 1997.

[2] S. G. Akl, Secure File Transfer: A Computational Analog to the Furniture

Moving Paradigm, Technical Report No. 99-422, Department of Computing

and Information Science, Queen's University, Kingston, Ontario, Canada,

March 1999.

[3] S.G. Akl, D.T. Barnard, and R.J. Doran, Design, analysis and implemen-

tation of a parallel tree search algorithm, IEEE Transactions on Machine

Analysis and Arti�cial Intelligence, 4, 1982, 192{203.

[4] S. G. Akl and S. D. Bruda, Parallel real-time optimization: Beyond

speedup, Technical Report No. 99-421, Department of Computing and In-

formation Science, Queen's University, Kingston, Ontario, Canada, Jan-

uary 1999, to appear in Parallel Processing Letters .

[5] S. G., Akl and S.D. Bruda, Parallel real-time cryptography: Beyond

speedup II, Technical Report No. 99-423, Department of Computing and

Information Science, Queen's University, Kingston, Ontario, May 1999.

[6] S. G. Akl and L. Fava Lindon, Paradigms admitting superunitary behaviour

in parallel computation, Parallel Algorithms and Applications , 11, 1997,

129{153.

[7] L. Boxer and R. Miller, Dynamic computational geometry on meshes and

hypercubes, Journal of Supercomputing , 3, 1989, 161{191.

[8] L. Boxer and R. Miller, Parallel dynamic computational geometry, Journal

of New generation Computer Systems , 2(3), 1989, 227{246.

[9] G. Brassard and P. Bratley, Algorithmics: Theory and Practice, Prentice

Hall, Englewood Cli�s, New Jersey, 1998.

[10] S. D. Bruda and S. G. Akl, On the data-accumulating paradigm, Pro-

ceedings of the Fourth International Conference on Computer Science and

Informatics , Research Triangle Park, North Carolina, October 1998, 150{

153.

[11] S. D. Bruda and S. G. Akl, The characterization of data-accumulating al-

gorithms, Proceedings of the International Parallel Processing Symposium,

San Juan, Puerto Rico, April 1999, 2{6.

[12] S. D. Bruda and S. G. Akl, A case study in real-time parallel computation:

Correcting algorithms, Technical Report No. 98-420, Department of Com-

puting and Information Science, Queen's University, Kingston, Ontario,

Canada, December 1998.

13



[13] P. Chaudhuri, Finding and updating depth �rst spanning trees of acyclic

digraphs in parallel, The Computer Journal , 33, 1990, 247{251.

[14] P. Chaudhuri, Parallel Algorithms: Design and Analysis , Prentice Hall,

Sydney, Australia, 1992.

[15] P. Chaudhuri, Parallel incremental algorithms for analyzing activity net-

works, Parallel Algorithms and Applications , 13(2), 1998, 153{165.

[16] F.Y. Chin and D. Houck, Algorithms for updating minimum spanning trees,

Journal of Computer and System Sciences , 16, 1978, 333{344.

[17] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms ,

McGraw-Hill, New York, 1990.

[18] S. Even and Y. Shiloach, An on-line edge deletion problem, Journal of the

ACM , 28, 1982, 1{4.

[19] G. Frederickson, Data structures for on-line updating of minimum span-

ning trees, Proceedings of the ACM Symposium on Theory of Computing ,

Boston, Massachusetts, April 1983, 252{257.

[20] C. F. Gerald, Applied Numerical Analysis , Addison Wesley, Reading, Mas-

sachusetts, 1978.

[21] D. Harel, Algorithmics: The Spirit of Computing , Addison Wesley, Read-

ing, Massachusetts, 1987.

[22] J.T. Havill and W.Mao, On-line algorithms for hybrid 
ow shop scheduling,

Proceedings of the Fourth International Conference on Computer Science

and Informatics , Research Triangle Park, North Carolina, October 1998,

134{137.

[23] T. Ibaraki and N. Katoh, On-line computation of transitive closure graphs,

Information Processing Letters , 16, 1983, 95{97.

[24] S. Irani and A.R. Karlin, Online computation, in: D.S. Hochbaum, Ed.,

Approximation Algorithms for NP-Hard Problems, International Thomson

Publishing, Boston, Massachusetts, 1997, 521{564.

[25] J. J�aJ�a, An Introduction to Parallel Algorithms , Addison Wesley, Reading,

Massachusetts, 1992.

[26] H. Jung and K. Mehlhorn, Parallel algorithms for computing maximal in-

dependent sets in trees and for updating minimum spanning trees, Infor-

mation Processing Letters , 27, 1988, 227{236.

[27] J. T. King, Introduction to Numerical Computation, McGraw-Hill, New

York, 1984.

14



[28] D.E. Knuth, The Art of Computer Programming , Vol. 1, Fundamental Al-

gorithms , Addison-Wesley, Reading, Massachusetts, 1975.

[29] F. Luccio and L. Pagli, The p-shovelers problem (computing with time-

varying data), Proceedings of the Fourth Symposium on Parallel and Dis-

tributed Computing , Arlington, Texas, December 1992, 188{193.

[30] F. Luccio and L. Pagli, Computing with time-varying data: Sequential

complexity and parallel speed-up, Theory of Computing Systems , 31(1),

1998, 5{26.

[31] F. Luccio, L. Pagli, and G. Pucci, Three non conventional paradigms of

parallel computation, Lecture Notes in Computer Science, 678, 1992, 166{

175.

[32] P. B. Miltersen, S. Subramanian, J. S. Vitter, and R. Tamassia, Complexity

models for incremental computation, Theoretical computer Science, 130,

1994, 203-236.

[33] J. M. Ortega, Numerical Analysis , Academic Press, New York, 1972.

[34] S. Pawagi, A parallel algorithm for multiple updates of minimum spanning

trees, Proceedings of the International Conference on Parallel Processing ,

St. Charles, Illinois, August 1989, Vol. III, 9{15.

[35] S. Pawagi and I.V. Ramakrishnan, An O(logn) algorithm for parallel up-

date of minimum spanning trees, Information Processing Letters , 22, 1986,

223{229.

[36] A. Ralston and P. Rabinowitz, A First Course in Numerical Analysis ,

McGraw-Hill, New York, 1978.

[37] G.J.E. Rawlins, Compared to What? An Introduction to the Analysis of

Algorithms , W.H. Freeman, New York, 1992.

[38] J.H. Reif, Synthesis of Parallel Algorithms , Morgan Kaufmann, San Mateo,

California, 1993.

[39] D.D. Sherlekar, S. Pawagi, and I.V. Ramakrishnan, O(1) parallel time in-

cremental graph algorithms, Lecture Notes in Computer Science, 206, 1985,

477{493.

[40] J.R. Smith, The Design and Analysis of Parallel Algorithms , Oxford Uni-

versity Press, New York, 1993.

[41] P.M. Spira and A. Pan, On �nding and updating spanning trees and short-

est paths, SIAM Journal on Computing , 4(3), 1975, 375{380.

[42] G. W. Stewart, Introduction to Matrix Computations , Academic Press,

New York, 1973.

15



[43] Y.H. Tsin, On handling vertex deletion in updating minimum spanning

trees, Information Processing Letters , 27, 1988, 167{168.

[44] P. Varman and K. Doshi, A parallel vertex insertion algorithm for minimum

spanning trees, Lecture Notes in Computer Science, 226, 1986, 424{433.

16


