
Architectures for Synchronous Groupware

W. Greg Phillips

greg.phillips@rmc.ca

Technical Report 1999-425
ISSN 0836-0227-1999-425

Department of Computing and Information Science

Queen's University

Kingston, Ontario K7L 3N6

Copyright c 1999, William Greg Phillips

Document prepared May 6, 1999

Abstract

Synchronous groupware systems allow physically separated users to

interact with one another and with shared computational objects in real

time. Such systems are problematic to build since their user interfaces

must support multiple, concurrent users, and both their application logic

and their user interfaces must be distributed across multiple platforms.

This survey explores the range of software architectures that have been

proposed to solve this problem. The presentation includes three distinct

architectural views: reference models, which divide complete systems

into named functional elements and specify data ow between those el-

ements; architectural styles, which prescribe component and connector

types and their allowed patterns of interaction; and distribution archi-

tectures, which represent the distribution of system functionality across

connected computing platforms. The distribution architectures are pre-

sented using a new descriptive framework called Interlace. The archi-

tectural presentation is complemented by a brief overview of consistency

maintenance mechanisms for groupware.

1

Contents 2

Contents

1 Introduction 3

1.1 Groupware . 3

1.2 Architecture . 3

1.3 Presentation . 4

1.4 Related Surveys . 5

2 Reference Models 6

2.1 Seeheim and Arch . 6

2.2 Patterson's Taxonomy . 8

2.3 Dewan's Generic Architecture . 9

2.4 Discussion . 10

3 Architectural Styles 11

3.1 PAC* . 12

3.2 Model-View-Controller . 14

3.3 Abstraction-Link-View . 16

3.4 Clock . 17

3.5 Suite . 19

3.6 Chiron-2 . 20

3.7 GroupKit . 21

3.8 Java Shared Data Toolkit . 23

3.9 Discussion . 24

4 Distribution Architectures 25

4.1 Interlace . 25

4.2 Centralized . 28

4.3 Replicated . 29

4.4 Centrally Coordinated . 31

4.5 Semi-replicated . 33

4.6 Flexible Systems . 36

4.7 Dynamic Systems . 37

4.8 Object-based Distribution . 38

4.9 Discussion . 38

5 Conclusion 39

Acknowledgements 39

Trademarks 39

A Consistency Maintenance 40

A.1 De�nitions . 40

A.2 Pessimistic Approaches . 40

A.3 Optimistic Approaches . 41

A.4 Conclusion . 43

B Visual Notation 44

References 46

1. Introduction 3

1 Introduction

1.1 Groupware

Synchronous groupware systems allow physically separated users to interact with

one another and with shared computational objects in real time. This contrasts

with single-user systems, where there is neither inter-user interaction nor object

sharing; with asynchronous groupware, where the interaction or object sharing is

normally not immediate; and with multi-user databases, where user interaction is a

side-e�ect rather than a goal. Synchronous groupware applications include shared

virtual whiteboards, multi-user editors, distributed brainstorming tools, and real

time network games [51].

The users of a synchronous groupware system may be co-located, as in a meeting

support system, or physically distributed, as in a distance education application. If

co-located, the users may be using a single computer system or several. In this

paper we assume the distributed, multiple-computer case as the default, although

most of the presentation applies equally to systems with co-located users.

Building synchronous groupware (which we will refer to simply as \groupware")

presents a number of special challenges. First, groupware systems typically have

signi�cant user interface components, and user interfaces are notoriously di�cult

to \get right" [58, 103]. Second, they are distributed systems, which means that

issues of resource sharing, concurrency, scalability, fault tolerance and transparency

must be addressed in their design [30]. Third, groupware user interfaces are them-

selves distributed and must support the actions of multiple, concurrent users, which

combines and exacerbates the �rst two di�culties [63, 88]. Further discussion of

groupware issues can be found in a collection written and edited by Baecker et

al. [6], especially a contained paper by Ellis, Gibbs and Rein [51].

1.2 Architecture

The intrinsic di�culty of producing groupware applications has led to a wide range

of development approaches. Some of these are primarily architectural in nature:

that is, they seek to make groupware simpler to develop by proposing and codify-

ing structures appropriate to the problem domain [101]. These codi�ed structures

are called architectures. In this paper we present some of the more widely recog-

nized architectures for groupware, organizing them into three distinct architectural

views [8]:

Reference models. Reference models specify the complete structure of some class

of system at a relatively large granularity. This is typically done by creating

a conceptual structure consisting of a small number of named functional ele-

ments and well de�ned data ow between those elements. One example is the

classical model of a compiler which breaks the system down into a series of

phases, beginning with a lexical analyzer and ending with a code generator,

supported by a symbol table manager and an error handler [3]. A successful

reference model will allow a wide range of existing systems to be easily mapped

1. Introduction 4

onto it, and will provide useful insights into the properties of those systems.

It may also suggest new approaches to system development in its domain of

application. In section 2 we present several reference models which have been

proposed for groupware.

Architectural styles. Architectural styles present a solution to a particular prob-

lem (in this case, how to develop synchronous groupware) in terms of a vocabu-

lary of components, connectors, and the allowed relationships among them [91].

A well-known example of an architectural style in another domain is the Unix

pipe and �lter architectural style, in which concurrent components that trans-

form inputs into outputs (�lters) are chained together using unidirectional

data ow connectors (pipes). Within the constraints imposed by the architec-

tural style, a wide range of actual system con�gurations are possible. A system

may be completely implemented in an architectural style, or a variety of styles

can appear in the design of a single system [101]. The key architectural styles

proposed for groupware are summarized in section 3.

Distribution architectures. Groupware systems are necessarily distributed sys-

tems. Distribution architectures describe the run time distribution of system

state and computation across computing platforms connected by a network.

For example, a groupware application may be implemented entirely on a server

with client/server communication at the level of window system events, or the

application may be replicated at each user's location and the replicas kept in

a consistent state using sophisticated consistency maintenance mechanisms.

We present the range of distribution architectures that have been proposed

for synchronous groupware in section 4, basing our presentation on a new

descriptive framework called Interlace. This is complemented by a brief dis-

cussion of consistency maintenance mechanisms for groupware in appendix A.

The relationships between these three architectural views and the systems or

applications they model is illustrated in �gure 1. In some senses the three views are

orthogonal: a system may be best understood (as a whole) in terms of a particular

reference model, designed in whole or in part according to a particular architectural

style, and implemented using a particular distribution architecture. Since archi-

tectural styles and reference models for groupware typically abstract away issues of

distribution and communication, a system developed using a particular architectural

style or reference model can often be implemented using a range of distribution archi-

tectures [112, 115, 116]. Conversely, a single distribution architecture can generally

be applied to systems designed in a wide range of architectural styles.

1.3 Presentation

The architectural descriptions in this paper are presented informally using a com-

bination of text and diagrams. Unfortunately, the terminology and visual notations

used to describe architectures are not standardized and vary widely from author

to author. In our textual descriptions, we have elected to use the authors' original

1. Introduction 5

distribution
architectures

systems and
applications

architectural
styles

reference
models map

 completely onto
designed

according to

implemented
using

Figure 1: Relationships between the three architectural views presented in this paper and the

systems and applications they model.

terms in all cases. This assists us in maintaining the distinction between similar yet

separate concepts, such as the PAC* abstraction and the MVC model (sections 3.1

and 3.2). We indicate the introduction of terms with special meanings by italics.

Occasionally a single term is used with distinct meanings by di�erent authors, for

example abstraction has a di�erent meaning in the ALV architectural style (sec-

tion 3.3). We also indicate the reintroduction of such a term by italics.

The visual notation used to describe architectures varies not only between sys-

tems and authors, but frequently between individual diagrams drawn by the same

author. In addition, most diagrams in the literature are relatively imprecise with

regard to the types of the components (\boxes") and connectors (\arrows") they

include [101]. Since the intent of this paper is to illustrate the similarities and

di�erences between instances of the three architectural views, a certain degree of

precision is required. We have therefore developed a uniform visual notation which

is used in all architectural diagrams in this paper. In the notation, di�erent shapes,

arrows, and lines have precise, though informal, semantics. The notation is de�ned

in appendix B on page 44.

1.4 Related Surveys

This paper is unique in its uni�ed presentation of reference models, architectural

styles, and distribution architectures for groupware. Complementary material may

be found in work by Dewan [39, 40], Ramduny [93], ter Hofte [114], Greenberg and

Roseman [64], and Urnes and Nejabi [117].

Dewan's two surveys are perhaps closest in spirit to our own, though very dif-

ferent in detail. His earlier paper characterizes the groupware design space using a

layered reference model (see section 2.3) and a list of key implementation issues [39].

His later paper uses the reference model as a basis for discussion of layering, concur-

rency, distribution, versioning and replication, and collaboration awareness issues,

and characterizes a number of systems along these dimensions. He also suggests

some architectural guidelines for groupware system design [40].

Ramduny's survey identi�es temporal behaviour of the user interface as a key

criterion in the selection of distribution architectures, and complements our presen-

tation in section 4 and appendix A [93]. Ter Hofte presents a \service architecture"

and the distribution architectures of a number of groupware systems, while devel-

2. Reference Models 6

oping a document-centric theory of groupware [114]. Finally, Greenberg and Rose-

man [64] and Urnes and Nejabi [117] discuss design issues for groupware toolkits,

many of which are architectural in nature.

2 Reference Models

Reference models for groupware are intended to describe the structure of complete

groupware systems at a relatively abstract level. Reference models can be viewed

as either prescriptive or descriptive. In the prescriptive view, they express a philo-

sophical perspective as to how groupware systems should be constructed. In the

descriptive view, they provide a canonical framework within which we can reason

about the structures of existing groupware systems.

In this section we present four reference models which are relevant to group-

ware: Seeheim [92], Arch [118], Patterson's [89], and Dewan's [39]. Seeheim and

Arch are the products of workshop committee e�orts and are actually models for

single user systems. They can be extended in a relatively straightforward way to

describe groupware systems. Patterson's taxonomy was the �rst real attempt to de-

�ne architectures for groupware systems and focuses on a key issue for groupware:

how to maintain the shared objects with which the users interact. Dewan's \generic

architecture" extends the Arch approach from single user systems to groupware

and generalizes it to include several possible patterns of communication among the

replicated instances of an application.

2.1 Seeheim and Arch

Reference models for groupware originate in similar models proposed for single user

interactive systems. The key idea is that an appropriate decomposition of an inter-

active system includes a clean separation between the application's underlying logic

or functional core and its user interface. This separation allows development of core

and interface to be largely decoupled and admits the possibility of di�erent styles

of user interface for a single functional core. For example, a list of numbers could

be viewed and manipulated as a column of text by one interface, as a bar chart by

another, and as a pie chart by a third. A reasonable extension to this separation

allows multiple, concurrent user interfaces to be attached to a single functional core;

this provides a simple model for a groupware system.

The �rst widely-accepted reference model for single-user interactive systems was

developed in 1985 at a working group in Seeheim, Germany, and later dubbed

\the Seeheim model" [92]. It is illustrated in �gure 2(a). The functional core

is allocated to the application component and the user interface is divided into a

presentation component, a dialogue controller and an application interface. Roughly,

the presentation component handles lexical aspects of the interaction, the dialogue

controller handles syntactic aspects, and the application handles semantic aspects.

The application interface is an adaptor, mapping between application-level concepts

and dialogue concepts to reduce the coupling between functional core and user

interface.

2. Reference Models 7

application
interface

dialogue
controller

presentation

application

dialogue

logical
interaction

physical
interaction

functional
core adapter

functional
core

interaction objects

presentation objects

domain objects

domain objects

(a) Seeheim (b) Arch

application logic

user interface

Figure 2: The Seeheim [92] and Arch [118] reference models for single-user interactive systems.

The Arch model is often drawn with its �ve components in the shape of an arch, the dialogue

component forming the \keystone".

The small box shown to the right of the dialogue controller is a \fast switch",

which recognizes the requirement for rapid response on the part of the interface. It

allows the application to bypass the dialogue controller when dialogue state is not

a�ected by output event.

During the period 1991{1992 the Seeheim model was re�ned and extended into

the Arch model [118], shown in �gure 2(b). Arch removes the fast switch, intro-

duces a new adapter component in the user interface, and makes explicit the types

of data owing between the components. In Seeheim, the dialogue controller is

primarily concerned with processing input syntax; in Arch, this responsibility is

moved forward to the logical interaction component and the dialogue component

becomes responsible for screening inputs and sequencing the tasks performed by the

functional core.

The Arch model also has an associated \Slinky" meta-model which recognizes

that tasks can migrate between components in the architecture depending on the

developers' needs, the relative importance of di�erent development goals, and the

nature of the system. Some components may be compressed out of existence, while

others may expand to cover multiple functions implied in the original architecture.

The mental image behind the name is the Slinky child's toy, which can be compressed

and expanded when passed from hand to hand.

The Seeheim and Arch models are motivated by the conviction that a system

divided into layers is easier to develop, maintain and extend. By de�ning the lay-

ers such that they map easily onto existing systems (e.g., the physical interaction

component of Arch maps directly onto the X-Window system), the architectures'

proponents hoped to support ease of implementation using pre-existing software

components. In section 3 we present a number of architectural styles which can be

2. Reference Models 8

display

view

model

file

display

view

(a) Shared state
architecture

model

file

display

view

model

file

display

view

(b) Synchronized state
architecture

display

view

model

file

display

view

(c) Hybrid architecture

Figure 3: Examples from Patterson's taxonomy [89].

seen as specializations of the Seeheim/Arch reference models.

2.2 Patterson's Taxonomy

The �rst reference model developed speci�cally for groupware systems appears in a

taxonomy proposed by Patterson [89]. It is motivated by the observation that \the

primary challenge for synchronous groupware applications is to maintain shared

state." Patterson divides application state into four levels: display state, which

is implemented in the video hardware that drives the user's physical display; view

state, a logical visual representation of the underlying data; model state, the un-

derlying data itself; and �le state, the persistent representation of the model. The

taxonomy intentionally leaves all computational aspects of the application unspeci-

�ed.

Patterson's taxonomy is illustrated in �gure 3.1 It proposes three classes of

architectures for groupware: those based on actual shared state, those based on

replicated state with synchronization, and hybrids including both approaches. The

key bene�t of actual shared state is simplicity; the bene�ts of replicated state are

potentially improved performance and the ability to turn synchronization on and

o�.

In shared state architectures, all levels above the �rst shared one are assumed

to be shared as well. This leads to architecture diagrams which look as if they

have been \unzipped" from the bottom; Patterson's reference model is occasionally

referred to as the \Zipper" model for that reason. In �gure 3(a) both the model

state and �le state are shared but views and displays are separate, providing users

with independently constructed views of common application data.

Figure 3(b) shows a shared view system implemented using a synchronization

1Where diagrams require multiple users we normally show only two; the reader should imagine

an arbitrary number of users with similar local architectures and communication paths.

2. Reference Models 9

architecture. The synchronized elements are intended to contain exactly the same

information and are replicated for performance or other pragmatic reasons. In the

example, users would see exactly the same views on their displays, a situation some-

times referred to as strict What-You-See-Is-What-I-See or WYSIWIS [105]. This

contrasts with �gure 3(a) in which the users could have arbitrarily di�erent views

of the same underlying state. Patterson suggests that where views are synchronized

it is also necessary to separately synchronize models.

The example in �gure 3(c) is a hybrid architecture in which the model is shared

and the views are synchronized. This architecture provides a simple mechanism for

ensuring consistency of the model state and allows view sharing to be switched on

and o� as desired by the users.

Patterson's taxonomy provides a simple representation of possible distribution

architectures for groupware systems but abstracts away issues of computation, con-

currency and distribution. We revisit these issues in section 4. We suggest that only

sharing at the view and model levels is of direct interest for synchronous groupware:

interaction through shared �les is di�cult to achieve in real time and, as Patterson

notes, synchronization of physical display information (that is, information normally

found in the video hardware itself) is not generally feasible and is not necessary if

views are synchronized or shared.

2.3 Dewan's Generic Architecture

Dewan's reference model [39], illustrated in �gure 4, can be seen as a combination

and generalization of the Seeheim/Arch models and Patterson's taxonomy. As in

Seeheim/Arch, a system is modeled as layered components increasing in abstraction

as one moves up the diagram (away from the user). As in the Patterson's taxonomy,

the structure may be \unzipped" up to some level and direct communication between

the replicated layers is permitted. Dewan proposes no speci�c number of layers.

Objects in layers closer to the user are called interactors of abstractions one

layer higher. An object in the middle of the hierarchy will be both an interactor

and an abstraction. An interactor creates a presentation of its abstraction, which

may include a transformation of the abstraction (e.g., a text �eld representing a

number, a bitmap representing a text �eld) as well as additional information which

may be viewed as \syntactic sugar" (e.g., scrollbars and menus).

Communication among objects in the model is via events, which may be syn-

chronous or asynchronous. Events reecting a single user's interaction with the

system are called interaction events and ow strictly up and down the tree. Events

reecting collaboration among users are called collaboration events and may ow

up and down the tree, if destined for a layer in the shared stem, or across, if des-

tined for peer replicated layers. An event traveling up (down) the tree can also

be \fanned out" to all layers one level above (below), e�ectively replicating input

(output) events across the branches of the system. Dewan suggests and motivates

a number of event classes supporting activities such as locking, commands, undo,

merge, and join/leave.

Components including code that directly supports collaboration are called col-

2. Reference Models 10

layer L
(branch point)

layer 1

layer 0
(hardware)

layer L+1
(base)

layer N
(semantics)

layer L
(branch point)

layer 1

layer 0
(hardware)

br
an

ch

st
em

Figure 4: Dewan's generic architecture [39]. Dotted lines represent ellipsis. All communication

is via events; however, the event indicator (see appendix B) has been omitted from the arrows

for clarity.

laboration aware; those without such code are collaboration transparent. The model

allows either type of component to appear at any location in the hierarchy.

2.4 Discussion

Seeheim, Arch, and Dewan's generic architecture all model systems as a series of

layers going from concrete at the physical interface to abstract at the functional

core. In Arch and Seeheim there are three main layers concerned with physical

interaction, the control of dialogue, and semantic aspects of the application's data

structures. The adapter layers simplify the main layers and permit them to be

constructed in relative isolation. In Dewan's model an arbitrary number of layers is

permitted.

These models support the well-accepted software engineering principles of mod-

ularity and separation of concerns. Allocating the functions of a given layer to a

pre-existing component promotes reuse. Judicious use of the models is expected to

reduce total application complexity and lifecycle cost; while there are no empirical

studies demonstrating the truth of this conjecture for these models in particular,

there is some evidence that it does hold for layered architectures in general [120].

Some groupware development e�orts have been guided by the principles en-

shrined in these models [33, 104]. Arch has been used as the basis for a study of

single-user interactive systems [72] and Dewan has characterized the architectures

of a number of groupware systems using his generic model [40].

Patterson's taxonomy usefully clari�es the patterns of state sharing and repli-

cation found in groupware systems but ignores distributed computation aspects. In

section 4.1 we introduce a new framework to permit exploration of these issues.

3. Architectural Styles 11

All of these reference models propose structures or ways of looking at entire

applications in a relatively coarse-grained fashion. In the next section we look at

architectural styles, which provide patterns for application development at a much

�ner level of detail.

3 Architectural Styles

An architectural style suggests a vocabulary of component and connector types, a

topology of interconnection, and a control ow strategy. Ideally, an architectural

style will provide the developer with a clear mental model for the system under

development, will provoke appropriate questions at an early stage in the develop-

ment process, and will provide direct operational answers to those questions [21].

For groupware the key question centers around how to build systems which allow

multiple users to concurrently interact with each other and with shared data.

In this section we present a selection of architectural styles for groupware which

strive to answer this question. There have been a wide range of such styles proposed,

practically one for every groupware application, system, toolkit or programming

language. Here we include those styles which are inuential and widely known as

well as a limited number of more recently proposed styles.

Most architectural styles for groupware are based on the same separation of user

interface and application seen in the Seeheim model (section 2.1). However, where

Seeheim proposes dividing the entire system into a single application and a single

user interface, these styles divide the system into �ne-grained subsystems, each with

its own application and user interface component. Systems sharing this feature

include the Presentation-Abstraction-Control (PAC) [31], Model-View-Controller

(MVC) [76] , Abstraction-Link-View (ALV) [67], Suite [42], and Clock [61] architec-

tural styles. These styles also share a rather surprising feature: they do not directly

express inter-user interaction. Instead, interaction is allowed to arise implicitly from

some form of state sharing. In a sense this is an e�ort to reduce the complexities

of groupware development to that of single user systems by abstracting away issues

relating to component-level distribution, communication, and consistency mainte-

nance. We revisit these issues in section 4.

There are also architectural styles which do directly express user interaction,

typically by including other architectural features along with a Seeheim-like separa-

tion between user interface and application. Included in this group are architectural

styles based on explicit remote procedure calls (GroupKit [96]), inter-client commu-

nication channels (the Java Shared Data Toolkit [19]), and inter-component buses

(Chiron-2 [113]).

We begin the presentation with PAC*, which can be viewed as inhabiting an

intermediate space between the reference models of the previous section and the

other styles in this section. PAC* suggests a complete structure for an application,

based on the Arch reference model, and is also relatively abstract, whereas the styles

presented after it are quite concrete and most are directly supported by programming

environments or toolkits.

3. Architectural Styles 12

ap c

ap cap c

ap cap c
ap c

(a) A single PAC agent

(b) Example PAC application structure

logical
interaction

physical
interaction

functional
core adapter

functional
core

logical
interaction

physical
interaction

functional
core adapter

ap c

ap cap c

ap cap c
ap c

ap c

ap cap c

ap cap c
ap c

(d) PAC*

logical
interaction

physical
interaction

functional
core adapter

ap c

ap cap c

ap cap c
ap c

functional
core

(c) PAC-Amodeus

abstraction

control

presentation

user
input

display
output

E

Figure 5: The PAC family of architectural styles [32, 33, 85].

3.1 PAC*

The PAC* (Presentation-Abstraction-Control-*) architectural style [21, 33] is the

most recent member of a family of styles stemming from PAC itself, which was

�rst proposed by Coutaz in 1987 [32]. Later, PAC was used as the basis for PAC-

Amodeus [85], an application architecture based on the Arch reference model in

which the Dialogue component is implemented in the PAC style. PAC* is an ex-

tension of PAC-Amodeus to groupware, based on \unzipping" the Arch in the style

suggested by Dewan's generic architecture. In this exposition we present �rst PAC,

then PAC-Amodeus, and �nally PAC*. PAC itself is described in more detail in [20].

The PAC architectural style decomposes a system into a hierarchy of PAC agents.

Each agent includes three facets: a presentation, which represents the user interface,

an abstraction, which maintains the underlying data, and a control, which mediates

all communication between the presentation and abstraction. Each agent is viewed

as autonomous, and may execute in an independent process or thread. A PAC agent

is illustrated in �gure 5(a).

The PAC control facet is similar in spirit to the dialogue component in the Arch

model. It provides a single location for dialogue-dependent code (i.e., code which

controls the dialogue between the presentation and the abstraction), thus simplifying

creation and maintenance of dialogue policy. It also decouples the development of

presentation and abstraction objects, since most syntactic or semantic mismatches

between them can be accommodated by the control.

The structure of a typical PAC application is shown in �gure 5(b). The hierarchy

3. Architectural Styles 13

of PAC agents represents application composition. The root agent represents the

application as a whole, and is decomposed (here) into two subcomponents which

might represent di�erent visible windows of the application. These are in turn

further decomposed until the level of individual interactive objects is reached. Note

that in �gure 5(b) the presentation element of the root agent is shown with a dotted

line; since the application as a whole has no visual representation, its presentation

is e�ectively null. It is also possible for components to have null abstractions.

PAC controls not only adapt the interfaces of their presentations and abstrac-

tions, but also initiate and route communications up and down the hierarchy as

required. This keeps the presentations and abstractions simple and localizes all

communications-related code in the control facets. The control facet can be seen as

implementing the Adaptor and Mediator design patterns described by Gamma et

al. [54].

PAC is intended to be used at a conceptual level and is not tied to any one pro-

gramming language or implementation technique. Communication within a single

agent and between agents can take any appropriate form. One reasonable approach

would be for the control to directly call the presentation and abstraction, but for

the presentation and abstraction to communicate with the control via callbacks.

This allows presentations and abstractions to be written without regard to their

particular employment, making them more reusable. Communication up and down

the PAC hierarchy might take place via events. Other strategies are possible.

The original formulation of PAC assumed that an application would be homo-

geneously structured using only objects interacting in the PAC style. However, in

the development of real applications it is often advantageous to reuse existing large-

grain components, such as windowing systems or relational databases, which are

outside the PAC architectural style.

The PAC developers observed that these large-grained components would typi-

cally be seen as mapping onto the interaction or functional core components of the

Arch model. However, the Arch dialogue component is normally unique for each

application. Since PAC has speci�c support for dialogue implementation, in the

form of its control facet, it seems well suited to this task [33]. This observation mo-

tivated development of the PAC-Amodeus architectural style, in which the dialogue

component of the Arch model is implemented using PAC [85].

PAC-Amodeus is illustrated in �gure 5(c). Typically, PAC presentations within

the dialogue component will be connected to some element of the logical interac-

tion component. Similarly, PAC abstractions will be connected to elements of the

functional core adapter, which will perform any necessary translation between PAC

and the functional core itself. Nigay has proposed a set of structuring rules to guide

designers in creating appropriate PAC hierarchies for dialogue component imple-

mentation [85].

The PAC* architectural style for groupware extends PAC-Amodeus by \unzip-

ping" the Arch structure in the style suggested by Dewan's generic architecture, but

also allowing multiple forks and joins. One possible example of a PAC* architecture

is illustrated in �gure 5(d). In [21], Calvary et al. extend Nigay's structuring rules

speci�cally to deal with groupware development issues. In addition, they suggest

3. Architectural Styles 14

that multi-user applications must address the three dimensions of production (the

creation of shared artifacts), direct communication, and coordination of users' ac-

tivities across time, and explain how PAC* can be used to address these issues. The

PAC* architectural style has been used successfully in the development of complex

multi-user applications with multi-modal input [33].

As indicated above, the PAC* architectural style is at a relatively abstract level

and might reasonably be seen as occupying a middle ground between reference

models and architectural styles. In the balance of this section we present a series

of architectural styles which are much more concrete in nature, many of which have

either direct programming language or toolkit support.

3.2 Model-View-Controller

The Model-View-Controller (MVC) architectural style was introduced in Smalltalk-

76 [76] to provide a clean, principled separation between user interfaces and their

underlying application semantics. In this section we present MVC as de�ned in

Smalltalk-80. The MVC style has been implemented with minor variations in a

wide range of user interface toolkits, most recently in Sun's Swing framework for

Java [49]. MVC is described as a design pattern by Buschmann et al. [20] and is

the archetype of the Observer pattern described by Gamma et al. [54].

The structure of (single-user) MVC is illustrated in �gure 6(a). The basic MVC

structure consists of a model, which represents the application's data; a controller,

which interprets user input; and a view, which presents output. The controller and

the view are together similar to the PAC presentation object and the model to the

PAC abstraction; however, MVC has no direct analogue of the PAC control. Instead

the controller and view can communicate with the model via calls and the model

sends the view and controller events via anonymous callbacks.

The view and controller communicate with each other directly by calls. For

example, a pop-up menu would normally be implemented within a controller ob-

ject; the controller would communicate with the view to paint the menu on screen

as required. Since the coupling between views and controllers can be quite close,

many MVC variants (including Swing) implement view-controller pairs as combined

objects.

A typical MVC interaction sequence begins with user input (event 1, at �g-

ure 6(a)) which is interpreted by the controller and results in an update to the

model (2). The model broadcasts a noti�cation to the view and controller (3) that

some aspect of its state has changed. The view queries the model to determine ex-

actly what the change is (4) and on receipt of the details (5, the value returned from

the query) updates the display (6). The controller may also react to the noti�cation

by changing its mode of interaction.

Each view and controller requires explicit knowledge of its model's calling struc-

ture in order to perform updates and correctly interpret change noti�cations. Con-

versely, the model requires no information about its views and controllers. Instead,

a model provides a mechanism for views and controllers to register anonymous call-

backs with it, and uses those callbacks as destinations for event messages. This

3. Architectural Styles 15

(b) Example MVC application structure

vc

vc vc

vc

vc vc

vc

vcvc vc

m

m

m m

controller view

model

user
input

display
output

notification

updates and
requests í

�

ô

í

÷

ø

û

(a) Interaction scenario

requests

(c) Shared-model multi-user MVC (d) Synchronized-model multi-user MVC

m

vcvc

m

vc

m

vc

E E

E

Figure 6: Single user MVC [76] and extensions for groupware. In (b),(c) and (d) the views

and controllers are combined, the call and callback arrows are superimposed, and the event

indicators have been omitted. In (b) we have shaded the view-controller pairs to highlight the

tree structure.

allows arbitrary views and controllers to attach to a given model without alteration

of the model itself.

As shown in �gure 6(b) an application in the MVC style may have many models

and associated view-controller pairs. The view-controller pairs are typically orga-

nized in a subview/superview tree representing visual containment. This allows

simple support for the clipping operations and coordinate transformations common

in graphical applications. Each view-controller pair could have a separate model;

however, in practice a single model is often associated with a subtree of the view

hierarchy. There is no default pattern of communication between the models in an

application; in fact, the models might not communicate with one another at all.

It is possible to develop groupware under MVC by attaching multiple view-

controller pairs (one for each user) to each model that needs to be shared. This

is illustrated in �gures 6(c) and (d) using true sharing and model synchroniza-

tion as suggested by Patterson's Zipper model. In these �gures the model and

view-controller components represent the collection of model objects and the view-

controller hierarchies, respectively. Despite the simplicity of this approach, MVC

(in its original form) is not a particularly satisfactory basis for groupware as it

does not support concurrently active controllers [76]. Some recent systems loosely

based on MVC, including Clock (see section 3.4), and the transaction-based DECAF

toolkit [108] overcome this di�culty.

3. Architectural Styles 16

(b) Example ALV application structure; there is one
view hierarchy (plus constraints) for each user.

a

aa av

v v

v

v v v

vv v

view
hierarchy

abstraction
hierarchy

constraint
bundle

*

(a) Basic ALV structure

abstraction

user
input

display
output

E
link

view

Figure 7: The ALV architectural style [67].

3.3 Abstraction-Link-View

The Abstraction-Link-View architectural style (ALV, pronounced \al-vee") was de-

veloped at Bellcore as the architecture of the Rendezvous system [66, 67], a toolkit

designed for the construction of groupware supporting \conversational props" or

shared objects. Its overall structure is similar to shared-model MVC, with combined

view-controller pairs (called views), separate hierarchies of views and abstractions

(models), and a declarative constraint mechanism called the link which connects the

two. Abstraction and view components are trees of objects; links are \bundles" of

constraints. The ALV architectural style is illustrated in �gure 7.

As shown in �gure 7(a), ALV treats user inputs as events, which are routed

to event handling routines de�ned in the view. Unlike MVC, the event handlers

do not act directly on the abstraction; instead, they modify data stored locally

in the view. Keeping local view data reduces the overhead of performing view

recomputation, but introduces a requirement that the view data be kept consistent

with any corresponding data in the abstraction. Meeting this requirement is the

role of the constraints. ALV constraints are one-way, from a source to a target;

however, two constraints with inverted sources and targets together constitute a

bidirectional constraint. Thus, changes in the view can automatically be reected

in the abstraction and vice versa.

The structure of an ALV application is illustrated in �gure 7(b). A user's view

component consists of a tree of view objects, which are connected by constraints to

corresponding objects in the abstraction. Normally each object in the abstraction

will be represented by one object in the view; however, some view objects (e.g., but-

tons) will not have corresponding abstractions. Since each user has an independent

view hierarchy and independent constraints, users can have very di�erent graphical

displays of the same underlying abstraction. Any change in the abstraction (typi-

cally arising from an action in one user's view) will be automatically reected in all

users' views through the constraint mechanism.

In interactive applications, it is quite common for view and abstraction objects

to be created and destroyed during execution of a program. In ALV, the creation

of an object in one hierarchy can cause a corresponding object to be created in the

other by means of a \tree maintenance" constraint. For example, in �gure 7(b),

3. Architectural Styles 17

the object at the top of the abstraction hierarchy might dynamically instantiate its

three children at run time. A tree maintenance constraint (part of the constraint

bundle marked by a *") could then cause the creation of corresponding objects

in the view, and the connection of those view objects to the abstraction hierarchy

using appropriate constraints.

The ALV constraint system allows independence of the views and models beyond

that provided by MVC. An MVC view requires intimate knowledge of its model's

calling structure and data representation; however, an ALV view can (in principle)

be programmed independent of any particular abstraction. Since constraints are

programmatic objects, they can include code to provide any syntactic or semantic

conversion required for the views and abstractions to work together. ALV's separa-

tion of interaction issues from representation and presentation issues allows each of

the three components to be simpler than it might otherwise be, supporting greater

reusability at the object level. [67].

3.4 Clock

The Clock architectural style [61] provides a component-level framework supporting

software development in the Clock declarative programming language [56]. The ar-

chitectural style is directly supported by a visual programming environment, Clock-

Works [59].

As illustrated in �gure 8(a), Clock \in the small" is super�cially similar to MVC.

The Clock model is composed of one or more abstract data types (ADTs) whose

interfaces include both requests (referentially transparent accessors) and updates

(mutators). The controller consists of declarative functions, triggered by user inputs,

which may make make requests of, or send updates to, the model. The view consists

of declarative functions, automatically triggered by changes in model request values,

which compute the program's output.

Clock derives some of its ideas from Weasel [60], an earlier system developed

by the same researchers. The principal di�erence is that Weasel had no controller;

rather the Weasel view was a direct projection (in the functional programming sense)

of the underlying model. A user's manipulation of the view therefore resulted in

direct and immediate update of the model, and vice versa. While this approach

is appealing in its simplicity, it makes modal styles of user interface particularly

di�cult to construct; Clock introduced its separate controller element to provide

the required exibility.

A Clock application is composed of Clock components, hierarchically arranged

as illustrated in �gure 8(b). Each component may be missing any one of the model,

view or controller elements, but a component typically includes at least a view and

a controller. As in MVC and ALV, the hierarchy represents visual view contain-

ment. Since containing views are (partially) expressed as functions of their con-

tained subviews, views are constrained by their subviews as indicated in �gure 8(c).

Conceptually this means that a view will be automatically recomputed if any of its

subviews changes. In practice Clock includes optimizations to reduce unnecessary

view recomputation.

3. Architectural Styles 18

controller view

user
input

display
output

requests
E updates

(a) A Clock component

model

(c) View constraints

c v
m

(b) Example Clock application structure

v

v

v

v vv

vv

v

c v
m

c v
m

c v
m

c v
m

c v
m

c v
c v

c v
m

c v
m

c v
m

c v
m

c v
m

c v
m

c v
m

c v
m

c v
m

c v
m

c v
c v

c v
m

c v
m

c v
m

c v
m

cv
m

cv
m

cv
m

cv
m

cv
m

cv
m

cv
cv

cv
m

cv
m

cv
m

(d) Multi-user Clock

E

Figure 8: The Clock architectural style [61]. In (b) and (d) the requests, updates and constraints

have been collapsed into a single arrow to reduce clutter.

The component hierarchy extends the communications pattern shown in �g-

ure 8(a) from the component level to the application level by allowing both con-

trollers and models to respond to requests or updates originating from lower-level

controllers. A request or update is actioned by the local model, or failing this, by

the next component upward in the hierarchy which provides the request or update

in its interface. Within a component, the controller is considered to be below the

model. Having controllers respond to requests and updates provides for their trans-

formation on the way up the hierarchy and allows resolution of any syntactic or

semantic mismatches between components. Since model constraints on views are

syntactically identical to requests, they are extended to the hierarchy in an identical

fashion. This provides a simple and natural mechanism for data sharing: if a par-

ticular ADT is shared by several components, it is normally located in the lowest

component in the hierarchy that is visible to them all. Data required by all com-

ponents in an application is located at the root. The ClockWorks editor provides a

simple mechanism for moving ADTs from one component to another.

Groupware is programmed in Clock by providing a view function at some level

which allows one subview (sub-tree) to be created for each user. This has the e�ect

of \unzipping" the hierarchy, as shown in �gure 8(d), which is a multi-user version

of �gure 8(b). State represented in models above the unzipped sub-tree is common

to all users' views; state in the sub-tree is local to each user. This allows view repli-

3. Architectural Styles 19

application

dialogue
manager

dialogue
manager

active
value
active
value

interaction
variable
interaction

variable

interaction
variable
interaction

variable
E

Figure 9: The Suite architectural style [42].

cation policies to be changed from completely independent views to full WYSIWIS

and back, simply by moving ADTs up and down the hierarchy. Clock's formally de-

�ned semantics [56] guarantee that requests and updates always execute atomically,

which automatically eliminates a large class of concurrency control problems.

3.5 Suite

The Suite system was originally developed to experiment with the automatic gener-

ation of single user interfaces [41] and was later extended to support groupware [42].

It models groupware as a collection of generalized data-structure editors acting on

shared data [38].

The Suite architectural style, shown in �gure 9, is super�cially similar to shared-

model MVC; however, the details are quite di�erent. A Suite program consists of a

shared application which maintains and manipulates semantic state, and replicated

dialogue managers which provide the individual user interfaces (editors) for the ap-

plication's data structures. Applications and dialogue managers are coarse-grained,

heavy-weight objects. Applications are automatically persistent; dialogue managers

are created on request and \attached" to applications.

An application will contain one or more active values representing its shared

data structures. These are replicated in the dialogue managers as interaction vari-

ables. Editors are derived semi-automatically from applications based on attributes

(declarative speci�cations) which the programmer associates with each active value.

Users can manipulate their interaction variables independently and can update the

corresponding active values using a \commit" mechanism. Applications communi-

cate with editors using calls; editors communicate with applications using callbacks

which are registered through the dialogue managers.

Suite's most novel feature is its support for �ne-grained control over the degree

of coupling between a program's multiple user interfaces [43]. This is implemented

as event messages representing constraints on interaction variables and is shown by

the horizontal arrow in �gure 9. Coupling is similar to synchronization but weaker;

3. Architectural Styles 20

(a) Single-user C2

E

E

EEE

E E E

E E

E

EEEE

E

E

E E

E E

E

E

EE

EE

E

*

(b) Multi-user C2

Figure 10: Examples of the C2 architectural style [112].

where synchronized elements exactly replicate one another, coupled elements may

include some replicated data and some local data. In Suite, dialogue coupling can

vary from strict WYSIWIS (which is equivalent to view synchronization), through

relaxed WYSIWIS (where some aspects of the view are shared, others private),

to completely asynchronous, and can be controlled along a number of dimensions

including time and semantic completeness. This control can be exercised by either

the application programmer or the end user.

3.6 Chiron-2

The Chiron-2 (C2) architectural style [112] is a component- and message-based de-

velopment approach for graphical user interface software. Although not speci�cally

targeted at groupware, C2 can be used to develop groupware in a straightforward

fashion; the original C2 paper [112] includes a distributed, multi-user meeting sched-

uler as an example. C2 derives partly from the architecture of the Chiron-1 sys-

tem [113] and is inuenced by MVC.

Figure 10(a) illustrates the architecture of a hypothetical single-user application

designed in the C2 style. The style consists of components and connectors2 with

specialized properties. Components are independent computational elements, each

of which may have internal state and its own thread of control. They communi-

cate with one another via the connectors, which are active elements responsible for

routing, broadcasting and �ltering asynchronous inter-component messages. The in-

ternal structure of components is unconstrained by the C2 style, although Taylor et

al. suggest a wrapper-based mechanism to allow embedding of \legacy components"

(components developed in other styles) in a C2 application [112].

Each component and connector has a de�ned \top" and \bottom", where \up"

normally represents more abstract, as in Dewan's generic architecture. The tops of

2Elsewhere in this paper we use the terms \component" and \connector" in a more general sense,

following, e.g., [91, 101]. In this section the terms are used speci�cally to denote components

and connectors in the C2 architectural style.

3. Architectural Styles 21

components may attach only to the bottoms of connectors, and vice versa. Connec-

tors may also be attached directly to other connectors, with the same top-to-bottom

restriction; however, components may only attach to connectors.

The pattern of messages in C2 is quite similar to that of MVC. Messages owing

up the model are requests: directives that an action be performed by one or more

components higher in the system. Messages owing down are noti�cations, that is,

announcements of state changes. As with MVC, higher level components (models)

can be developed in isolation from lower-level components (view-controllers) but

lower level components necessarily rely on the semantics of higher level components.

There are several key di�erences between C2 and MVC. C2 messages are asyn-

chronous and mediated by the connectors, which may broadcast, selectively trans-

mit, prioritize, or silently absorb them, whereas MVC messages are passed syn-

chronously based on direct calls or callbacks. C2 noti�cations can be of arbitrary

type and are normally information bearing; in the original version of MVC [76]

noti�cations consist of an announcement of change without indication of what has

changed. Finally, C2 components have both a top and a bottom, whereas (in C2

terms) MVC models have only bottoms and MVC view-controllers have only tops.

The C2 connector is similar in spirit to the PAC control element, in that it me-

diates inter-component communication. However, where a PAC control may incor-

porate arbitrary computation (including, e.g., mappings between the presentation

and abstraction interfaces) the C2 connector is responsible only for routing inter-

component communication. Any necessary mappings between components' native

interfaces is expected to be performed internally to the components themselves,

perhaps by providing a component wrapper.

C2 can be used for groupware by \unzipping" the architectural structure to

an appropriate level. Figure 10(b) shows the application of �gure 10(a) unzipped

for multi-user use. Note that the connector marked by a *" would span multiple

machines and encapsulate the required communication topology.

3.7 GroupKit

GroupKit [96] is a widely used toolkit for groupware based on the Tcl programming

language and the Tk widget set [87]. GroupKit's architectural style is at a lower

level of abstraction than the others discussed in this section, since it explicitly ex-

poses distribution and communication issues to the GroupKit client programmer.

GroupKit is based on the concept of a conference, which consists of some number

of users who interact via replicated conference applications. Users in a conference

can interact with one another either directly, via multicast remote procedure calls

(RPCs), or in an MVC-like indirect style using shared active data structures called

environments. Users may simultaneously participate in multiple conferences.

The architectural style supported by GroupKit is illustrated in �gure 11(a). Each

user's conference application is an independent process, running in a Tcl interpreter,

with local state. Tcl is a procedural language; GroupKit extends Tcl by allowing a

procedure call to be directed simultaneously to multiple applications in a conference.

This requires that all applications in a conference support a common set of procedure

3. Architectural Styles 22

local
state

local
stateE

conference
application

E

environment

conference
application

E E

byte array

(a) GroupKit (b) Java Shared Data Toolkit

multicast RPC
channel

client client

Figure 11: The architectural styles supported by GroupKit [96] and the Java Shared Data

Toolkit [19].

calls and data structures, which might seem a restriction; however, in practice this

is rarely an issue since all conference members will normally be running identical

copies of a single application. Multicast RPCs can be directed to all applications

in a conference (including the sender), to all except the sending application, or to a

speci�ed application.

Early versions of GroupKit required that all inter-application communication

be via procedure call, which made maintenance of shared data somewhat burden-

some [117]. Later versions introduced environments, which are shared active dic-

tionaries (collections of key-value pairs) with keys arranged in a tree structure.

Users manipulate environments directly via procedure call; actions on environments

automatically generate events which are multicast to all conference members. Ap-

plications can bind procedures to events in a highly exible fashion, specifying the

binding based on the type of event (e.g. addition or removal of a key) and the af-

fected key's location in the tree [94]. A conference can include an arbitrary number

of environments. The environment mechanism has proven extremely useful in the

creation of sophisticated large-scale groupware applications [97].

In addition to the architectural features discussed here, GroupKit is also no-

table for its comprehensive session management facilities [95] (which are borrowed

by Clock [57]) and its extensive set of group-speci�c user interface widgets. Group-

Kit's session management is built on its environment structure. It o�ers a set of

special purpose events indicating that users have joined or left a conference, or

that a latecomer to the conference requires updating as to the current session state.

Group-speci�c user interface widgets include multiple cursors, a multi-user scrollbar,

and a \radar view" which allows users to see where others are working in a large

shared space. GroupKit is the basis of a commercial product, TeamWave Workplace

(formerly TeamRooms) which extends the GroupKit architecture by allowing mul-

tiple applications to run in nested interpreters, giving each the illusion of a private

variable namespace [97].

3. Architectural Styles 23

3.8 Java Shared Data Toolkit

The Java Shared Data Toolkit (JSDT) [19] is a commercial product available from

Sun Microsystems. It is illustrated in �gure 11(b). The JSDT is built around a

conference model similar to GroupKit's, where the JSDT conference is called a ses-

sion. Clients in a session can interact with one another by sending data over named

channels, by modifying shared active byte arrays, or by manipulating synchroniza-

tion primitives called tokens. The token and JSDT's built-in session abstraction have

been been omitted from �gure 11(b). They are accessed via a call/callback event

mechanism (called listeners) similar to that shown for byte arrays and channels.

Sessions, channels, byte arrays and tokens all support a core set of four events.

These advise attached clients when other clients have joined, left, been invited to

join, or been expelled from the resource in question. JSDT also provides events

speci�c to each resource type: for instance a client which is a listener to a particular

session will be advised whenever a channel, byte array or token has been created or

destroyed within the session.

Channels are routing connectors, which can be con�gured for either \best e�ort"

or guaranteed message delivery. They support four message priorities, and can

optionally guarantee in order arrival of all messages of a given priority originating

with a given client. A client may attach to any number of channels in a session

and may monitor them either via a blocking read or by registering an asynchronous

callback. To send data a client �rst marshals it into a stream of bytes, then invokes

one of the channel's send methods with the byte stream as a parameter. Since

most Java objects can be represented as a stream of bytes via Java's serialization

mechanism [5], messages can include arbitrarily rich data structures. Messages can

be addressed to all attached clients, to all attached clients except the sender, or to

a speci�c client.

The shared byte array provides a service analogous to the MVC model or Group-

Kit's environment. Data in the byte array normally consists of serialized objects,

just as messages on channels do. As with channels, any client can attach to any

number of shared byte arrays within a session. The shared byte array uses MVC-

style noti�cation, in that it only advises its client listeners that something in the

array has changed. It is then up to the listeners to reread the array and perform

any necessary actions.

Finally, the JSDT token is a synchronization primitive which can be requested

by a client, passed from one client to another, grabbed (if free), and released. The

semantics of tokens are de�ned by the client application, and it is expected that

higher level synchronization policies would be implemented on top of atomic token

operations. There can be any number of tokens in a session.

Each JSDT resource (session, channel, byte array or token) can have an active

resource manager associated with it to implement an application-speci�c manage-

ment policy. Resource managers provide client authentication and access control;

actions normally requiring authentication include joining, creating or destroying a

resource. A resource manager can also force a misbehaving client to leave a re-

source by expelling it. The resource manager mechanism allows JSDT to support

3. Architectural Styles 24

applications in which clients are either unreliable or untrustworthy.

3.9 Discussion

In this section we have presented seven distinct architectural styles for groupware,

ranging from high-level and abstract to low-level and concrete.

These styles are all intended to provide appropriate abstractions for groupware

development. Since groupware has a large user interface component, it is hardly

surprising that most of them (PAC*, MVC, Clock, Suite, and Chiron-2) originated

as styles for constructing the user interfaces of single user software systems. What

is particularly striking is how little change was required to convert them to styles

for groupware. In all cases the key was provision of a mechanism for the de�nition

and control of shared state.

PAC*, MVC, ALV, and Clock are all based on components with �xed internal

structures, arranged in trees. Recently Tarpin-Bernard et al. have proposed a gen-

eralization of these styles, expressed as a framework called Multi-Faceted Agents

for Collaboration (AMF-C) [110, 111]. The framework de�nes each component as

an agent which consists of a variable number of facets. Each agent communicates

with others another via messages sent to well-de�ned ports. The internal structure

of AMF-C agents is guided by a series of design patterns. By constructing an agent

with presentation, abstraction, and control facets, the PAC* style may be directly

emulated. Other, more complex, patterns are also possible. However, AMF-C does

not directly support constraints, so it is not clear that it can directly emulate ALV

or Clock.

ALV, Clock, and the Constraint-Imperative programming style [52] all share an

interaction technique in which user events are handled imperatively but views are

updated via declarative constraints. Graham argues that this is the most natural

approach: user inputs normally represent demands for action, and therefore have

imperative semantics; however, views are de�ned in relation to their models, and

the required relations are most clearly expressed declaratively [56].

In the next section we discuss distribution architectures for groupware systems.

Here we �rst mention the distribution approaches supporting the seven architectural

styles already discussed. GroupKit provides the programmer with direct control over

the distributed design of a groupware system, but requires explicit expression of that

design in the application code itself. Chiron-2 encapsulates distribution decisions in

its connectors, allowing components to be ignorant of the distributed topology in

which they are employed. Applications written in MVC, ALV, Clock, Suite and the

JSDT contain no code expressing distribution. Instead, toolkits supporting these

styles provide a run-time system that automatically maps applications onto a dis-

tributed system. PAC* is relatively abstract, and PAC* designs can be implemented

using a number of distribution architectures.

4. Distribution Architectures 25

4 Distribution Architectures

Most of the reference models and architectural styles presented in sections 2 and 3

purposely suppress the distributed system aspects of groupware systems. This al-

lows the designers of groupware applications to focus more directly on problems in

the application domain, while largely ignoring distributed implementation concerns.

However, groupware systems are ultimately implemented as distributed systems, and

the choice of distribution architecture can impact the system's functional capabilities

and performance.

In this section, we examine the range of distribution architectures for groupware

systems that have been reported in the literature. The most well known of these

are centralized and replicated architectures. In a centralized system the application

resides entirely on a shared server, whereas in a replicated architecture each user

has a local copy of the application and the applications are somehow synchronized

with one another. In addition to these, we discuss a variant of the replicated ar-

chitecture that includes central coordination, and the semi-replicated architecture

in which some aspects of the application are centralized while others are replicated.

We conclude with a brief discussion of systems which support exible distribution,

dynamic distribution, and object-based distribution.

To allow precise discussion of the features of these architectures, we begin by pre-

senting Interlace, a new descriptive framework for distributed groupware systems.

Interlace focuses on users, processes, and state, their distribution across connected

computing platforms, and their patterns of interaction. It provides a high-level

framework supporting the precise illustration of a variety of distribution architec-

tures.

4.1 Interlace

There are dozens of groupware applications and toolkits reported in the literature.

In almost every description, the authors provide some indication of the distribution

architecture of the system described, using widely varying terminologies and tech-

niques to do so. In this section we propose a new descriptive framework, Interlace,3

to support our presentation of the distribution architectures of groupware systems.

Interlace is de�ned informally below and is illustrated by example in �gure 12, which

is a verbose version of �gure 13(b). See appendix B on page 44 for an explanation

of the visual notation used in these �gures. All Interlace diagrams in this paper in-

clude two users and are drawn mirror-symmetrically, with the users' input processes

towards the center.

Interlace represents a groupware system as a collection of users, devices, con-

current processes, and state elements distributed across interconnected computing

platforms or sites. Some platforms will have one or more local users; others will op-

3Interlace is named for the Celtic interlace style of art, which consists of overlapping, intersecting

loops. Celtic interlace designs are topologically similar to Interlace architecture diagrams but

are generally much more soothing to look at. They are thought to represent the fundamental

interconnectedness of all things.

4. Distribution Architectures 26

update
process (u)

camera speaker

monitor

mouse

keyboardmic

view
process (v)

rendering
process (r)

input
process (i)

private
state (p)

update
process (u)

cameraspeaker

monitor

mouse

keyboard mic

view
process (v)

rendering
process (r)

input
process (i)

private
state (p)

shared state (s)

consistency
maintenance
process (cm)

Figure 12: An example Interlace diagram. The abbreviations shown with each model element

are used in the Interlace diagrams in the balance of this section and are repeated for convenience

in appendix B.

erate in a server role. Figure 12 includes two user sites and one server site, indicated

by the box-like shaded areas.

In Interlace, each user of a groupware system is supported by one or more input-

output loops starting and ending with the user and consisting of:

� physical input devices connected to an input process, which transforms input

into logical interface events;

� a chain of one or more update processes, which transform interface events into

updates on state;

� a chain of one or more view processes, which collectively compute an interactive

view from the state elements; and

� a rendering process, which presents the view to the user on physical output

devices.

In �gure 12 there are two loops for each user: one through private state and

one through shared state. State and process elements of the model are private if

found only in a single user's loop, shared otherwise. Any element in a diagram

can be either shared or private. Loops can interlace (join and split) at any point; in

�gure 12 the two loops supporting each user split at the update process and rejoin at

the view process. The combination of shared elements and interlacing loops allows

us to model a wide range of systems. This includes, for example, shared editors

4. Distribution Architectures 27

on a single screen [15]; such systems cannot be adequately modeled by Zipper-style

approaches such as Patterson's or Dewan's [39].

State sharing may be implemented through true sharing (as in the example

�gure) or by replication with synchronization, which we indicate using Patterson's

notation introduced in section 2.2 [89]. Data streams in Interlace may also be

synchronized, by which we mean that they contain identically ordered streams of

data in approximate temporal synchrony. We indicate this by applying Patterson's

notation to the a�ected arrows (see e.g., �gure 14(a) on page 30).

Groupware systems generally require some form of consistency maintenance to

ensure that state remains consistent in the face of possibly conicting updates from

multiple users. In Interlace we model this using a consistency maintenance process

which can appear at various places in users' loops depending on the approach taken

by the modeled system. It can also be integrated with shared state elements as

in �gure 12, in which case consistency maintenance is applied to all access to, and

synchronization of, the shared state.

Some updates to shared state may a�ect private state and vice versa. For exam-

ple, consider a shared text editor in which each user's cursor position is private, but

the document itself is shared. Here, the editor must gracefully handle the case in

which one user deletes a paragraph containing another user's cursor. In Interlace,

the update process is implicitly responsible for resolving this sort of inconsistency.

Similarly, the view process should avoid displaying a view that reects mutually in-

consistent shared and private state. Consistency maintenance is discussed in more

detail in appendix A.

The input and rendering processes of groupware systems are typically imple-

mented using a system-level service such as the X Window System, Microsoft Win-

dows, or Java interface primitives. These processes are tightly coupled with the

physical input and output devices and are almost always found on users' local ma-

chines. For this reason most Interlace diagrams do not include explicit physical

devices; however, some example devices are included in �gure 12 for illustration.

We refer to the input and rendering processes collectively as the display services

and de�ne the application as the update and view processes plus their associated

state.

Processes and state elements in an Interlace diagram will rarely map directly

onto the actual processes and data structures of the modeled systems. For example,

the �ve processes and three state elements shown at the server site in �gure 12 might

be implemented by a single-threaded server (one process) accessing a single at data

structure. However, the model would be considered accurate if that server performs

independent update and view computations for each client, and maintains both

private information for each client and shared information. The focus of Interlace is

on what type of computation is performed where, and on the distribution of state

across sites.

The sections that follow use Interlace to present the range of distribution archi-

tectures that have been proposed for groupware systems. These include centralized

systems, in which all elements of the application reside on a single computer; repli-

cated systems, in which a separate instance of the application is provided locally for

4. Distribution Architectures 28

i rir

(a) Collaboration transparent application (b) Collaboration aware application

ir

uv

p

i r

u v

p

s
cm

cm

s

uv

Figure 13: Centralized distribution architectures.

each user; and semi-replicated systems, in which some elements of the application

are centralized while others are replicated. We also present a variant of the repli-

cated architecture which includes a central coordination element, and briey discuss

systems which support exible, dynamic, and object-based distribution.

4.2 Centralized

In a fully centralized architecture, the application is located on a single server and

only the display services are found at the users' sites. Communication from the

users' sites to the application is via interface-level events such as X Window events;

communication in the reverse direction is via rendering requests. There are two

distinct variants of the centralized architecture, illustrated in �gures 13(a) and (b).

4.2.1 Variants

The architecture illustrated in �gure 13(a) supports collaboration transparent ap-

plications, that is, applications which are normally intended for single user use, in

a multi-user setting. This is achieved either by simply merging the user's input

streams or by having the consistency maintenance process enforce a oor control

protocol (see appendix A). On the output side, such systems typically rely on modi-

�cations to the windowing system or a \pseudo-window-server" to broadcast output

events to the user sites. In �gure 13(a) this is abstracted by the multiple arrows

leaving the view process.

The architecture shown in �gure 13(b) is found in collaboration aware applica-

tions which are speci�cally designed for use by multiple users. Since each user has

private update and view processes and private state, the application can provide

relaxed WYSIWIS views of the shared state. Designers adopting this approach can

largely ignore distributed system issues since the only distribution is performed by

the interface toolkit (e.g., the X Window System).

4. Distribution Architectures 29

4.2.2 Bene�ts and Liabilities

The main bene�t of the centralized architecture is its simplicity. Since there is only

one instance of the application running on a single platform, internal e�ciency of

the application can be maximized and state consistency can be guaranteed relatively

easily. The architecture also provides for accommodation of latecomers (users who

join a groupware session after it has begun), since it is generally practical to provide

them with access to the application's shared state or display [27].

Both variants of the centralized architecture tend to be bandwidth intensive and

sensitive to network latencies, since communication between the server and the user

sites is at the level of interface events in both directions. However, performance is

often subjectively acceptable on high-speed local area networks [1, 67, 115].

The collaboration aware variant of this architecture has an additional drawback:

poor scalability. If the application's update and view processes are computationally

intensive, or if there is a large state storage requirement per user, the resources

of the server can quickly become exhausted as the number of users in the group-

ware session grows [60]. This problem is compounded by the fact that changes in

the shared state will normally require view recomputation to be performed for all

users simultaneously [67]. Scalability is also a factor for collaboration transparent

applications, although to a lesser degree [79].

4.2.3 Implementations

Many \shared window systems" including XTV [1], HP Shared-X [55], and Microsoft

Netmeeting [80] are based on the collaboration transparent centralized architecture.

Often in such systems, one of the user sites will double as the server.

The Rendezvous system (section 3.3) was implemented using a centralized, col-

laboration aware architecture since this avoided the requirement for a distributed

constraint implementation. Its designers considered adapting Rendezvous to other

distribution architectures [67], but implementations were never completed. The

Clock run-time system (section 3.4) adopts this distribution architecture by default;

however, Clock can also provide a semi-replicated architecture (section 4.5). The

centralized architecture is also used in most so-called \multi-user dimensions" such

as LambdaMOO [35] and the Pythonic MOO [109].

4.3 Replicated

A fully replicated architecture is the opposite of a fully centralized one: here all

data and computation is replicated at all sites. As with the centralized architecture,

there are two main variants catering for collaboration transparent and collaboration

aware applications.

4.3.1 Variants

The collaboration transparent variant of the replicated distribution architecture is

illustrated in �gure 14(a). Since the internal state of collaboration transparent ap-

plications is not externally accessible, direct state synchronization is not generally

4. Distribution Architectures 30

i r

u v

cm

ir

uv

cm

(a) Collaboration transparent application (b) Collaboration aware application

i r

u v

s s

p

ir

uv

p

s
cm

s
cm

Figure 14: Replicated distribution architectures.

possible. Instead, synchronization of input streams is the approach most frequently

used. As in the centralized case, inputs are routed through a consistency main-

tenance process which may implement a oor control policy. In the centralized

architecture, the consistency maintenance process produces a merged input stream

directed at the single update process; in the replicated case it produces a set of

synchronized input streams directed at the replicated update processes. As long

as each update process is deterministic and receives identical input, the replicated

applications can be expected to operate in synchrony [79].

The collaboration aware variant of the replicated architecture is illustrated in

�gure 14(b). Collaboration aware replicated applications are typically implemented

by synchronizing state rather than inputs. This allows for exibility in selection of

concurrency control protocols and provides for local state and relaxed WYSIWIS

views.

4.3.2 Bene�ts and Liabilities

An obvious liability of replicated distribution architectures is the requirement that

a separate copy of the application execute at each users' site. This means that repli-

cated applications require more aggregate resources (processing power, memory,

software licenses, etc.) than equivalent centralized applications. This is especially

true for collaboration transparent applications. In environments with a mix of ma-

chine types and operating systems, the requirement for identical applications at each

site can become a signi�cant constraint, although multi-platform systems like Sun's

Java [5] mitigate this somewhat [10].

Collaboration transparent applications with a replicated architecture may use

less network bandwidth than equivalent centralized applications. In the centralized

architecture, input events are unicast to the server and output events are multicast

from the server to all participants. In the replicated architecture, output events are

not distributed, since they are computed locally, but input events must be subject to

concurrency control and multicast to all sites. While some argue that the replicated

case is an improvement [79], there is little data to support this contention.

For collaboration transparent applications, the fully replicated architecture has

4. Distribution Architectures 31

a signi�cant number of liabilities, which are documented in detail by Lauwers et

al. [79]. These include the di�culties of ensuring input consistency and ordering,

ensuring output consistency, and of maintaining single application semantics when

multiple copies are running. For example, if a user in a replicated application se-

lects the save operation, should a �le be saved by each replica or only by one?

Latecomers are particularly problematic for fully replicated, collaboration transpar-

ent applications. Since a late joiner cannot simply be given a copy of the current

application state, it is necessary to save a (possibly compressed) copy of the entire

input stream, which is \played back" to synchronize the latecomer with the other

session participants [26].

For collaboration aware applications, the main bene�t of the replicated archi-

tecture is enhanced interface responsiveness. If an optimistic concurrency control

algorithm is used (see appendix A), updates to shared state can be performed lo-

cally and are una�ected by network latency. A further bene�t is that a replicated

architecture distributes the computationally expensive view and update processing

to the users' computers. This would be expected to lead to better scalability; how-

ever, the truth of this conjecture depends on the overhead incurred in synchronizing

the state of the replicated instances, which may be signi�cant.

4.3.3 Implementations

Collaboration transparent shared window systems which have been implemented us-

ing this distribution architecture include MMConf [34], VConf [78], and Dialogo [79].

Collaboration aware groupware systems supporting a replicated architecture in-

clude DreamTeam [98], Mushroom [74], GroupDesign [71], GINA [12] and the orig-

inal version of COAST [100].

4.4 Centrally Coordinated

The centrally coordinated distribution architecture is similar to the fully replicated

architecture except that the consistency maintenance process is centralized. As

with the fully replicated architecture, there is a variant supporting collaboration

transparent applications and a variant supporting collaboration aware applications.

4.4.1 Variants

The collaboration transparent variant of the centrally coordinated architecture is

shown in �gure 15(a). It is directly comparable to its fully replicated counterpart,

providing synchronized input streams to a replicated application. The principal

di�erence is that where the fully replicated architecture requires execution of a dis-

tributed algorithm to ensure input stream synchronization, this architecture allows

a much simpler, centralized concurrency control scheme to be used.

For collaboration aware applications, the architecture shown in �gure 15(b) is

most frequently used. It is di�erent in principle from its fully replicated counterpart

in that the latter uses active state synchronization whereas this architecture uses

synchronization of access to the replicated state. While it is possible to imagine

4. Distribution Architectures 32

i r

u v

ir

uv

(a) Collaboration transparent application

s s

cm

(b) Collaboration aware application

i r

u v

p

ir

uv

p

ss

cm

Figure 15: Centrally coordinated distribution architectures.

a version of this architecture based on state synchronization, we were unable to

identify any actual instances of such an architecture's use.

4.4.2 Bene�ts and Liabilities

The centrally coordinated distribution architecture shares most of the bene�ts and

liabilities of the fully replicated architecture.

The primary bene�t of adding central coordination to a replicated architecture is

the relative simplicity of implementing consistency maintenance using a centralized

algorithm rather than a distributed one. This has motivated at least one groupware

system (COAST) to migrate from a fully replicated architecture to one including

central coordination [99].

The main additional liability imposed by central coordination is the system's

reliance on a single consistency maintenance server: if the server fails, the entire

system is rendered useless. As well, user interface response of a centrally coordinated

application will generally be poorer than that of a purely replicated application

with optimistic concurrency control, since each update to shared state will require

a minimum of two network transmissions.

4.4.3 Implementations

Collaboration transparent systems which have been implemented using this archi-

tecture include the Java Collaboration Environment (JCE) [2] and Java Applets

Made Multi-user (JAMM) [10, 9]. Collaboration aware systems include NCSA Ha-

4. Distribution Architectures 33

banero [23], the Prospero system [46], Ensemble [83], and the most recent version

of COAST [99].

JAMM, JCE and Habanero all rely on the Java Abstract Windowing Toolkit

(AWT) event mechanism [24], in which interface objects post events to a queue

from which they are dispatched to other objects registered as \event listeners".

In Habanero events are manually routed to a central queue, which forwards them

to all applications in the groupware session. JAMM and JCE produce a similar

e�ect for collaboration transparent applications by patching the AWT's internal

event mechanism. JCE works with Java applications, while JAMM works with Java

applets (applications based on mobile code, which are typically embedded in web

pages) [24].

4.5 Semi-replicated

In a semi-replicated distribution architecture some aspects of computation and state

are replicated while others are centralized. The policy for determining what is cen-

tralized and what is replicated may vary with the application or system. One ap-

proach is to to centralize shared state and processes and replicate private ones. An-

other strategy is based on a \zipper-style" reference model (see sections 2.2 and 2.3)

where the branches are replicated while the stem is centralized.

4.5.1 Variants

Figure 16(a) shows a semi-replicated architecture in which shared state and its asso-

ciated update and view processes are centralized, while private state is maintained

locally at each user's site. The architecture is suitable for both collaboration aware

and collaboration transparent applications. In e�ect, this is a classic client/server

architecture.

For collaboration transparent applications, this architecture can be viewed as

an extension of that shown in �gure 13(a). Here, as in that �gure, the single-user

application runs on the server, with a consistency maintenance process insulating the

application from its multiple users. The di�erence is that here the window-sharing

system managing the shared application provides each user with some private state.

This state may allow the user to prepare work privately, then publish it to the shared

application, or it may play a role in the management of the groupware session.

For collaboration aware applications, �gure 16(a) can be seen as a modi�cation

of �gure 14(b) in which the shared state has been centralized on a server. In this case

the private state and its associated processes form an integral part of the application

rather than being an extension to it.

The architecture shown in �gure 16(b) is a multi-threaded client/server system

in which the server maintains some private state for each client. The architecture

shown in �gure 17(a) is quite similar, except that rather than centralized private

state we have replicated shared state. It is also possible to imagine (though di�cult

to draw!) an architecture incorporating both strategies. Both of these architectures

combine features of �gures 13(b) and 14(b). They are suitable only for collaboration

aware applications.

4. Distribution Architectures 34

cm

s

(a) Replicated private state

ir

uv

p

i r

u v

p

uv

(b) Partially centralized private state

s
cm

ir

uv

p

uv

i r

u v

p

u v

p p

Figure 16: Semi-replicated distribution architectures.

4.5.2 Bene�ts and Liabilities

As might be expected, the semi-replicated architecture provides a mix of the bene�ts

and liabilities of the centralized and replicated architectures. There is some evidence

that with careful tuning the bene�ts can outweigh the liabilities [116].

For collaboration transparent applications, the semi-replicated architecture is

more exible than the centralized architecture and accommodates latecomers better

than the fully replicated architecture. Collaboration aware semi-replicated applica-

tions generally scale better than centralized ones, since computationally intensive

view and update processes can execute at the user sites [62]. They are also simpler

to develop, since consistency maintenance can be managed centrally rather than

via a distributed algorithm. If the protocol between the user sites and the server

site is standardized, then a variety of user applications can access the shared data

simultaneously [36].

The principal liability of the semi-replicated architecture is that responsiveness

of the user interface may be impacted by network latencies between the user sites

and the server. This e�ect can be mitigated by the introduction of caches at the

user sites, as in �gure 17(b), at the expense of additional computational and storage

overhead [62]. Caches can also be added to the architectures shown in �gures 16(b)

and 17(a).

The semi-replicated architecture also shares the fully replicated architecture's

liability of requiring that the replicated applications be available at each of the user

sites. Here, as there, multi-platform technologies like Java somewhat reduce the

importance of this issue.

4. Distribution Architectures 35

r i

v u

p

ri

vu

p

cache

cm

uv

s

cache

r i

v u

p

ri

vu

p

cm

uv

s

s s

(a) Partially replicated shared state (b) Cached shared state

Figure 17: More semi-replicated distribution architectures.

4.5.3 Implementations

The semi-replicated distribution architecture shown in �gure 16(a) underlies the

Noti�cation Service Transfer Protocol (NSTP) proposed by Day et al. [36, 37, 90].

NSTP has been used as the basis of a number of synchronous groupware applica-

tions developed with loosely-coupled client components interconnected via a bus-like

structure [81]. The applications themselves are Java applets, which overcomes the

di�culty of distributing them across heterogenous computing environments.

Suite [42] and those GroupKit applications incorporating both shared environ-

ments and multicast remote procedure calls [96] have distribution architectures that

are a variant of �gure 16(a). The key di�erence is that both these systems support

direct communication between user sites, in the form of events in Suite and of re-

mote procedure calls in GroupKit. In Interlace this communication is modeled by

adding a bidirectional arrow between the replicated update processes of �gure 16(a).

Both Weasel [60] and Clock [62] can implement applications using semi-replicated

distribution architectures. Weasel's distribution architecture is that of �gure 16(a).

Clock's distribution annotations (see section 4.6) allow it to create applications

with any of the distribution architectures shown in �gures 16 and 17. Experiments

suggest that applications exhibit the best responsiveness when implemented us-

ing an architecture similar to that of �gure 17(a), with the addition of client-side

shared state caches and a high-performance, semi-optimistic concurrency control

algorithm [115, 116].

Variants of the semi-replicated architecture are also found in the JSDT [19],

Jupiter [84], Promondia [53], the DOLPHIN system [107], Bentley's system for air

tra�c control [11], and Neil Stephenson's �ctional Metaverse [106].

4. Distribution Architectures 36

4.6 Flexible Systems

Systems and toolkits supporting architectural styles like those discussed in section 3

must ultimately map the programmer's design to a distributed architecture. For

the most part these toolkits either provide a single distribution architecture for all

applications (e.g., centralized, as in Rendezvous) or require the programmer to mix

code reecting distribution decisions with code reecting application functionality

(e.g., as in GroupKit). Systems supporting exible distribution express application

semantics separately from application distribution. This allows the programmer

to �rst implement the required functionality, then adjust the run time distribution

architecture to suit application needs. Two systems supporting exible distribu-

tion are the GroupEnvironment (GEN) [86] and Clock (see section 3.4). Dourish's

Prospero system was originally intended to incorporate exible distribution [45] but

this goal was later eliminated in favour of providing a novel, exible, consistency

maintenance mechanism [46, 47].

GEN provides exible distribution policies via an open implementation strat-

egy [73]. A toolkit with an open implementation provides the developer with access

both to the usual application programmer interface (API) and to a meta-interface

o�ering principled control over elements of the toolkit's implementation. This al-

lows the developer to extend or modify the toolkit's API and to alter the internal

function of the toolkit in a constrained fashion. In GEN the aspects of the toolkit

which are exposed via the meta-interface are those concerning distribution.

The GEN toolkit includes default implementations for replicated and centralized

distribution architectures. In [86], O'Grady demonstrates that the toolkit can be

extended via the meta-interface to provide for selective routing of messages, object

migration, and optimistic consistency maintenance schemes. GEN was an experi-

mental prototype and is no longer maintained. However, the most recent version

of GroupKit incorporates a restricted version of GEN's meta-interface for the man-

agement of its environments [94].

In Clock, distribution exibility is provided by the addition of annotations to

the ClockWorks architecture diagrams [115, 116]. These annotations act as hints

to the Clock run time system and allow the programmer to specify the location of

the client/server split, the caching policy to be used by the clients, the concurrency

control algorithm to be applied, and which shared ADTs can be safely replicated

to user sites. The annotations are guaranteed to preserve Clock's formally de�ned

semantics [56], although they necessarily a�ect application behaviour under di�erent

failure scenarios.

A ClockWorks diagram with no annotations will be implemented using Clock's

default centralized distribution architecture. Those designs including an indication

of the client/server split will be implemented using a variant of the semi-replicated

architecture; exactly which one will depend on the other annotations selected. Mod-

ifying the annotations provides a safe and simple mechanism for experimenting with

di�erent distribution strategies.

The main di�erence between the GEN and Clock approaches is that GEN allows

the application developer program-level control over the application's distribution

4. Distribution Architectures 37

architecture, while Clock allows the developer to select from distribution options

already present in the Clock run time system. Whether GEN's exible but complex

strategy is an advantage over Clock's simple but constrained one remains an open

issue.

4.7 Dynamic Systems

Most groupware systems, including the exible systems discussed above, demand

that the developer choose the system's distribution architecture at design time.

This requires that the developer make assumptions about such characteristics of

the run time environment as the number, capabilities, and relative usage costs of

the system's user and server sites; the sites' interconnection topology; the network

bandwidths and latencies between them; and the variability of any of these factors

over time.

It seems unlikely that any one distribution architecture can be appropriate for all

circumstances. This has motivated suggestions that the distribution architecture of

a groupware system should be chosen at run time and adjusted dynamically during

the interactive session [45, 64, 86, 114]. Adjustments could include dynamic repli-

cation or centralization of state or processes at either a coarse- or �ne-grained level.

Research into migratory applications [16, 68, 69], which allow executing processes

to be relocated transparently across a network, suggests that such an approach may

be viable. We are unaware of any groupware system that dynamically adjusts its

distribution architecture at run time in the full sense suggested here; however, two

systems which do provide a restricted sort of dynamic distribution are Chung and

Dewan's enhanced XTV [25] and the Visual Obliq system [13, 14].

Enhanced XTV supports collaboration transparent applications using the cen-

tralized architecture shown in �gure 13(a), with one of the client machines doubling

as the application server. The system allows the server to migrate from one client

to another, either to optimize responsiveness for the client that \has the oor", or

to account for session changes such as the pending shut down of a server machine.

An obvious mechanism for server migration would be to save and ship a binary

image of the running application; unfortunately this is not generally possible under

Unix. Instead, enhanced XTV relies on a sophisticated event logging and playback

mechanism to synchronize the new server with the existing session.

Visual Obliq allows the construction of collaboration aware distributed applica-

tions by direct manipulation. It is based on Cardelli's Obliq distributed program-

ming language [22], in which objects have locations but computation can roam the

network. Obliq provides a mechanism for the atomic replication and relocation of

objects to new sites. Visual Obliq uses this facility to initialize the user interface of a

groupware application at a server site and ship it to the user site where it continues

executing [13]. The actual distribution architecture of an executing Visual Obliq

application is roughly the semi-replicated architecture of �gure 16(a). Collaboration

aware Java applets (e.g., [81]) operate in an analogous fashion.

In [14], Visual Obliq is extended to allow complete graphical applications to

migrate from one computer to another. However, the implementation speci�cally

4. Distribution Architectures 38

excludes migratory multi-user applications, for which connectivity would need to

be maintained during migration. How best to address this issue remains an open

research question.

4.8 Object-based Distribution

The four distribution architectures presented in sections 4.2 through 4.5 are all

rather large-grained and based on a classic client/server computing model. Several

recent systems are based instead on �ne-grained, distributed object models. These

include DECAF [108], AMF-C [110], and TeleComputing Developer (TCD) [4].

DECAF is a variant of MVC which includes combined view-controllers (views),

models, and transactions. Transactions are created by views whenever updates are

to be performed. DECAF views and transactions are always found at user sites, but

the models they interact with may be arbitrarily distributed. An application will

consist of many views, and a single view may be attached to many models at many

locations. Further, models may be arbitrarily replicated and connected to one an-

other via synchronizing replica relationships. DECAF provides atomic transactions

and replica synchronization using a distributed consistency maintenance algorithm,

which is briey discussed in appendix A.

Tarpin-Bernard et al. argue that AMF-C (described in section 3.9) is an ideal

candidate for distributed groupware implementations since its facet boundaries pro-

vide natural \fragmentation points". These allow individual agents to be split across

network boundaries. Each AMF-C agent may have one of the four distribution ar-

chitectures already discussed, and a complete agent system may have an arbitrarily

complex mix of these.

The TCD system provides a distribution architecture (called Dragony) for sys-

tems designed in the Clock architectural style. It extends Clock's exible distribu-

tion mechanism by allowing each Clock component to incorporate a separate caching

and consistency maintenance strategy [119]. Dragony also allows each component

in a Clock architecture to be implemented at a separate site, although this is ex-

pected to be rare in practice.

All three of these systems provide the developer with great degree of exibility

in choosing an actual distribution architecture for an application. Guidelines for

e�ectively employing this exibility have yet to be developed.

4.9 Discussion

The general trend in distribution architectures has been from simple to complex.

Earlier systems tended to be either fully centralized or fully replicated. More re-

cent systems have tended to use more complex distribution architectures including

centrally coordinated, variants of semi-replicated, or object-based strategies. Ad-

ditionally, there has been some recent experimentation with exible speci�cation

of distribution architectures and with systems which dynamically recon�gure their

distribution architectures at run time.

The distribution architecture of an application must satisfy a number of con-

icting concerns. Depending on the application, these may include responsiveness,

5. Conclusion 39

owthrough, and consistency (discussed in appendix A); e�ective use of bandwidth

and machine resources; scalability; fault tolerance; provision of persistent stor-

age; accommodation of external resources (e.g., large databases or non-groupware

client/server systems); and support for temporarily disconnected users. No one

distribution architecture will satisfy all concerns for all applications. It therefore

appears likely that exible and dynamic distribution will become necessary as group-

ware systems move out of the research lab and into the mainstream.

5 Conclusion

Architectures represent codi�ed solutions to commonly occurring problems. In this

paper we have presented three classes of such solutions for the problem of develop-

ing groupware: reference models, architectural styles, and distribution architectures.

Each addresses a di�erent problem which must be solved. Reference models suggest

overall structures for groupware systems. Architectural styles provide operational

answers to questions of detailed design. Distribution architectures express the dis-

tribution of computation and state across multiple sites.

Here, we have o�ered only glimpses into the groupware problem domain itself.

Indeed, groupware researchers are still very much in the process of identifying the

key requirements for e�ective groupware systems [58]. As the the problems posed by

these requirements become better understood, the architectural solutions presented

here will necessarily be adapted, extended, and replaced.

Ultimately, we expect that support for groupware applications will be incor-

porated directly into mainstream operating systems, in much the same way that

support for graphical applications has been gradually added over the past �fteen

years. The current challenge is to determine the architectural abstractions and

infrastructure that such support will require.

Acknowledgements

This paper has bene�ted immensely from discussions with Nick Graham, Gary An-

derson, Tore Urnes, and Tim Wright. Germinal Boloix, Stefan Bruda, David Lamb,

Laurie Ricker, J�org Roth, Terry Shepard, and David Skillicorn provided insightful

comments on various drafts. Nick Graham read many, many drafts and provided

signi�cant input and moral support. My thanks to all.

Trademarks

\Slinky" is a trademark of James Industries. \Java", \JFC", \Swing", \Java Shared

Data Toolkit", and \JSTD" are trademarks of Sun Microsystems. \Rendezvous"

is a trademark of Bellcore. \TeamWave Workplace" is a trademark of TeamWave

Software, Ltd. Any other trademarks are the properties of their respective owners.4

4This is my all-time favourite tautology.

A. Consistency Maintenance 40

A Consistency Maintenance

The design of a groupware system typically involves tradeo�s between the desirable

properties of responsiveness, predictability, and consistency. Meeting any two of

these goals is typically straightforward, but it appears impossible to meet all three

without compromise [70]. In this appendix we �rst de�ne these properties, then

present some consistency maintenance strategies for groupware and their e�ects on

responsiveness and predictability.

A.1 De�nitions

Responsiveness. Responsiveness refers to the system's observable reaction to user

input, which must be rapid enough to avoid degrading user performance. For

common tasks such as typing or mouse motion, a total delay of less than 50{

150 milliseconds from input to observation is required [103]. For other tasks

a slower response time may be acceptable.

Predictability. A system is predictable if it faithfully executes actions requested by

the user and provides a reasonable degree of explanation for any other events

occurring in the interface. For example, in a shared editor the disappearance

of a paragraph from one user's display might be \explained" by the fact that

another user was editing in that region. This kind of explanation requires

mutual awareness among users [48], and owthrough of each user's actions to

the other users [44] .

Consistency. There are several types of consistency requirements for distributed

systems [30]. For the purposes of this paper, the most important of these are

update and replica consistency. Update consistency requires that all multi-

valued updates appear as atomic. Replica consistency requires that if a single

data element is replicated, all replicas of it are maintained in an identical

state. A weaker version of replica consistency requires only that all replicas

reach identical states at quiescence. Replica consistency can be seen as a

special form of update consistency, and cache consistency can be seen as a

special form of replica consistency.

Consistency maintenance approaches for groupware can be classed as either pes-

simistic or optimistic. Pessimistic approaches emphasize predictability over respon-

siveness and disallow any action which could potentially violate consistency. Opti-

mistic approaches are motivated by the observation that in groupware systems with

good awareness and owthrough, semantic inconsistencies between user actions will

be quite rare [105]. The optimistic approach therefore emphasizes responsiveness

over predictability and allows inconsistencies to arise, possibly repairing them later.

A.2 Pessimistic Approaches

Most pessimistic approaches to consistency maintenance are based on serialization

and locking. Strict serialization involves globally ordering all updates and requiring

A. Consistency Maintenance 41

that they be executed in order at all sites. In single user applications, serialization

is often su�cient to ensure reasonable application behaviour. However, in multi-

user applications the interleaving of conicting updates can cause inconsistency or

unpredictability. For example, consider two users simultaneously attempting to

move an object in a graphical editor. If one moves the object left while the other

moves it right, serialization alone might result in the object bouncing back and

forth between the two users' cursors. To prevent this, many systems require that

an update process acquire a lock on shared state (in this case the object's position)

before modifying it. Update consistency may also demand that an update process

acquire a lock on all state that is to be read from or written to during an update,

before calculating and applying the modi�cations.

Locking is transaction-based. Each transaction is typically broken down into

three phases: lock acquisition, where the update process requests exclusive access

to a set of objects and the system (eventually) grants or denies it; manipulation of

the objects themselves; and release, where control of the objects is returned to the

system. Locks can be requested explicitly by the user or implicitly by the update

process based on user actions [83].

Lock granularity can signi�cantly impact the user interface behaviour of a group-

ware application. At one extreme, the lock can be imposed at the level of the entire

application. This approach is called oor control by analogy to the \social protocol"

often used in large meetings [18, 102]. Changes in possession of the oor are me-

diated either by a user with special privileges (who \chairs" the session), or by the

current oor holder, or in an ad hoc fashion. At the other extreme, locking can be

performed on the most primitive objects available in the application. This can allow

a high degree of concurrent user interaction, at the expense of possibly-considerable

lock maintenance overhead. Still more concurrency can be provided by separating

locks for reading data from locks for writing to it.

Waiting for locks introduces delay and degrades responsiveness. If the lock is un-

obtainable, or if the lock request must traverse a slow or intermittent network link, or

if the lock granting process is computationally expensive, the observed degradation

can be signi�cant. Several optimistic and semi-optimistic concurrency maintenance

strategies have been proposed to overcome this problem [28, 50, 70, 108, 116]. In

general they allow the user to update local state replicas immediately (optimizing

responsiveness) and then propagate the updates to remote replicas. The challenge is

to ensure that an acceptable degree of consistency and predictability is maintained

in the process.

A.3 Optimistic Approaches

The most optimistic approach to consistency maintenance is not to provide it at all.

Greenberg and Marwood argue that inconsistencies are acceptable in applications

like pixel-oriented shared whiteboards that are intended for informal communication

rather than the production of a common artifact [63]. If two users draw intersecting

lines (say, one red and one blue), that appear in opposite orders on their two white-

boards, then the pixel at the lines' intersection will be red on one board and blue

A. Consistency Maintenance 42

on the other. This kind of inconsistency is unlikely to cause the users any confusion

and can therefore be tolerated. Inconsistencies can also be tolerated where they

can easily be detected and resolved by social protocols acted out by the system's

users [105].

Locking at one semantic level can remove the requirement for consistency main-

tenance at lower levels. In our example of the shared graphical editor, once a lock

on the object's position is obtained the application can move the object without

applying consistency maintenance to each individual motion. If the node's posi-

tion data is locally replicated, this can provide a dramatic improvement in interface

responsiveness [116].

Where some degree of consistency maintenance is required and locking pro-

vides unacceptable performance, a fully or semi-optimistic algorithm may be em-

ployed. Fully optimistic algorithms include the distributed OPerational Transform

(dOPT) [50], the Calculus for Concurrent Update (CCU) [28], and the Optimal

RESponse TimE (ORESTE) algorithm [70]. These allow updates to be made to

local state immediately (providing optimal responsiveness), then propagated to re-

mote replicas for owthrough. The algorithms sacri�ce short term consistency, but

guarantee that all replicas will reach a consistent state at quiescence.

dOPT de�nes a partial order of all operations in the system (roughly, Lamport's

happened before relation [77]) and guarantees that all events in the partial order are

executed in order at all sites. Where two operations o and p are not in the partial

order, dOPT has all sites execute either o0 � p (p followed by o
0) or p0 � o, where o0

and p
0 are transformations of o and p chosen such that o0 �p and p

0 �o have the same

e�ect given the same initial state. CCU, which corrects a subtle aw in dOPT [29],

works in essentially the same way. Both CCU and dOPT require the programmer

to provide a transformation function for every ordered pair of operations possible

in the system. This gives n2 transformation functions for a system with n distinct

operations. Choosing transformations which are both correct and predictable is a

challenging and apparently sometimes unachievable task [84].

ORESTE is based on a total order of all events in the system. Where opera-

tions are determined to have been executed out of order at a site, and the order is

determined to have caused a state inconsistency, that site will \undo" the o�ending

operations and \redo" them in the correct sequence. This requires that all opera-

tions in the system include a mechanism to undo them and that all ordered pairs of

operations be categorized as to whether they conict, safely commute, or mask one

another. The rollback and reapplication of operations in ORESTE can be reected

as unpredictable behaviour in the user interface.

Semi-optimistic algorithms include Clock's eager concurrency scheme [115, 116]

and that of the Distributed, Extensible Collaborative Application Framework (DE-

CAF) [108]. In both of these approaches, update calculations are allowed to proceed

using possibly inconsistent data. Then, before updates are applied, the consistency

of the source data is veri�ed either centrally (in Clock) or by execution of a dis-

tributed algorithm (in DECAF). If an inconsistency is detected, the update may

be restarted or aborted. However, since inconsistencies are rare in practice, these

mechanisms provide considerably higher responsiveness than lock based systems,

A. Consistency Maintenance 43

even allowing for the overhead of multiple transaction retries [116].

In Clock all views are pessimistic; that is, a view only displays the results of

successfully committed updates. In DECAF, views can be either pessimistic or

optimistic. Optimistic views sacri�ce predictability, but provide interface respon-

siveness directly comparable to that of fully optimistic algorithms. DECAF allows

the view display policy to be switched between optimistic and pessimistic at run

time to compensate for changing network conditions [7].

A.4 Conclusion

This appendix has presented a brief overview of consistency maintenance approaches

for groupware. Good starting points for further reading include [63, 75, 82, 119].

B. Visual Notation 44

process

component

state

data flow

object
callback

routing connector

�ôí event sequence

synchronization
cm consistency

maintenance process
u update process
v view process
i input process
r rendering process
s shared state
p private state

user

user
site

server
site

AbbreviationseventE

constraint

call

caching

Figure 18: Key to the visual notation and abbreviations.

B Visual Notation

The visual notation used in this paper is presented in �gure 18 and described in-

formally below. Abbreviations used in the Interlace diagrams of section 4 are also

listed in the �gure.

Data ow. Data ow connectors represent the directed movement of information

between components. The actual type of connection (call, callback, constraint,

etc.) is unspeci�ed. The arrowhead(s) represent the direction(s) of ow.

Call. A call is an explicit procedure call or method invocation, which may have a

returned value. The caller requires knowledge of the calling structure of the

callee. The arrowhead indicates the callee.

Callback. A callback is an anonymous call, registered by the callee with the caller

using some prede�ned mechanism. Callbacks rarely have return values. The

arrowhead indicates the callee.

Constraint. A constraint expresses an automatically maintained relationship be-

tween a source and a target. Changes in the source are propagated to the target

by an underlying constraint maintenance system. Constraints are commonly

found in functional and constraint programming systems. The arrowhead indi-

cates the constraint's target; a double-headed arrow indicates a bi-directional

constraint.

Event. An event is a noti�cation that something of signi�cance has occurred. It

may be transmitted via data ow, call, or callback, and is indicated by deco-

rating an arrow with the event symbol. Whereas a call or callback normally

requires action on the part of the callee, an event may be ignored by the

recipient.

B. Visual Notation 45

Synchronization. Synchronization is an identity relation on replicated state ele-

ments or data streams. Synchronized state elements contain exactly the same

information at quiescence but may diverge when updates are pending. Syn-

chronized data streams transmit identical sequences of information in approx-

imate temporal synchrony. Adapted from [89].

Caching. Caching is a restricted form of synchronization in which only some por-

tion of the shared state is replicated in the cache. Caches serving di�erent

users will typically contain di�erent subsets of the shared state, their contents

will vary over time, and active maintenance of cache coherence is necessary to

support semantically correct application behaviour.

Routing connector. A routing connector encapsulates information about the in-

terconnection topology of the elements it connects and actively routes infor-

mation between those elements. Adapted from [112].

Event sequence. Dynamic behaviour of systems is illustrated using event sequence

numbers to indicate ordering. Adapted from the Uni�ed Modeling Language

collaboration diagram notation [17].

Component. A component may contain processes, state, and objects, and may

have an arbitrarily rich internal structure. Physical devices are also repre-

sented as components.

Object. Objects include encapsulated state, operations which can be invoked on the

state, and a well-de�ned interface to those operations. This includes abstract

data types as well as \objects" in the sense normally meant in discussions

of object-oriented programming languages. Objects may also encapsulate a

concurrent process element, in which case they are agents.

Process. A process element represents some computation performed by the system

based on data represented separately, in either in a state or object element.

Process elements are normally concurrent.

State. State elements store information which is read and updated by separate

process elements.

User. A human (or possibly human-like agent) user of a groupware system.

Server site. A computer which does not interact directly with a user. Adapted

from the Uni�ed Modeling Language \node" notation [17].

User site. A computer, its input and output devices, and at least one user.

References 46

References

[1] H. Abdel-Wahab and M.A. Feit. XTV: A framework for sharing X window clients in
remote synchronous collaboration. In Proceedings of the IEEE Conference on Com-

munication Software: Communications for Distributed Applications and Systems (Tri-
comm '91, Chapel Hill, NC, USA, April), pages 159{167, 1991.

[2] H. Abdel-Wahab, O. Kim, P. Kabore, and J.P. Favreau. Java-based multimedia
collaboration and application sharing environment. In Colloque Francophone sur

L'Ingenierie des Protocoles (CFIP'99), Nancy, France, April 26{29 1999.

[3] Alfred C. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles, Techniques
and Tools. Addison-Wesley, 1986.

[4] G.E. Anderson. Dragony: An implementation-level architecture for synchronous
groupware. Master's thesis, Queen's University, Kingston, Ontario, Canada, January
1999.

[5] K. Arnold and J. Gosling. The Java Programming Language. Addison-Wesley, second
edition edition, 1997. ISBN 0-201-31006-6.

[6] R.M. Baecker, editor. Readings in Groupware and Computer-Supported Cooperative

Work: Assisting Human-Human Collaboration. Morgan Kaufmann Publishers, 1993.
ISBN 1-55860-241-0.

[7] G. Banavar, K. Miller, and M. Ward. Adaptive views: Adapting to changing network
conditions in optimistic groupware. In Proc. Euro-PDS '98, 1998.

[8] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. SEI Series
in Software Engineering. Addison-Wesley, 1998. ISBN 0-201-19930-0.

[9] J. Begole, M.B. Rosson, and C.A. Sha�er. Supporting worker independence in col-
laboration transparency. In Proceedings of the ACM Symposium on User Interface

Software and Technology (UIST '98). ACM Press, 1998.

[10] J. Begole, C.A. Struble, C.A. Sha�er, and R.B. Smith. Transparent sharing of Java
applets: A replicated approach. In Proceedings of the ACM Symposium on User

Interface Software and Technology (UIST '97, Ban�, Alberta, Canada, Oct. 14{17),
pages 55{64. ACM Press, 1997.

[11] R. Bentley, T. Rodden, P. Sawyer, and I. Sommerville. An architecture for tailoring
cooperative multi-user displays. In J. Turner and R. Kraut, editors, Proceedings of

the ACM Conference on Computer-Supported Cooperative Work (CSCW '92, Toronto,
Canada, Oct. 31{Nov. 4), pages 187{194. ACM Press, 1992.

[12] T. Berlage and A. Genau. A framework for shared applications with replicated ar-
chitecture. In Proceedings of the ACM Symposium on User Interface Software and

Technology (UIST '93, Atlanta, GA, USA, Nov. 3{5). ACM Press, 1993.

[13] K. Bharat and M.H. Brown. Building distributed multi-user applications by direct
manipulation. In Proceedings of the ACM Symposium on User Interface Software and

Technology (UIST '94, Marina delRey, CA, USA), pages 71{82. ACM Press, 1994.

[14] K.A. Bharat and L. Cardelli. Migratory applications. In Proceedings of the ACM

Symposium on User Interface Software and Technology (UIST '95, Pittsburgh, PA,
USA, Nov. 14{17), pages 133{142. ACM Press, 1995.

References 47

[15] E.A. Bier and S. Freeman. MMM: A user interface architecture for shared editors on
a single screen. In Proceedings of the Fourth Annual Symposium on User Interface

Software and Technology (UIST '91, Hilton Head, SC, USA, Nov. 11{13), pages 79{86.
ACM Press, 1991.

[16] A. Black, N. Hutchinson, E. Jul, H. Levy, and L. Carter. Distribution and abstract
types in Emerald. IEEE Transactions on Software Engineering, SE-13(1):65{76, Jan-
uary 1987.

[17] G. Booch, J. Rumbaugh, and I. Jacobson. The Uni�ed Modeling Language User Guide.
Object Technology Series. ACM Press/Addison-Wesley, 1999. ISBN 0-201-57168-4.

[18] J. Boyd. Floor control policies in multi-user applications. In Human Factors in Com-

puting Systems: INTERCHI '93 Conference Proceedings (Amsterdam, The Nether-
lands, Apr. 24{29), pages 107{108. ACM Press/Addison-Wesley, 1993.

[19] R. Burridge. Java Shared Data Toolkit User Guide. Sun Microsystems, JavaSoft
Division. Available from http://java.sun.com.

[20] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented
Software Architecture: A System of Patterns. John Wiley & Sons Ltd., 1996. ISBN
0-471-95869-7.

[21] G. Calvary, J. Coutaz, and L. Nigay. From single-user architectural design to PAC*: A
generic software architecture model for CSCW. In Human Factors in Computing Sys-

tems: CHI '97 Conference Proceedings (USA), pages 242{249. ACM Press/Addison-
Wesley, 1997.

[22] L. Cardelli. Obliq: A language with distributed scope. Technical Report 122, Digital
Equipment Corporation, System Research Center, Palo Alto, CA, March 1994.

[23] A. Chabert, E. Grossman, L. Jackson, S. Pietrowicz, and C. Seguin. Java object
sharing in Habanero. Communications of the ACM, 41(6):69{76, June 1998.

[24] P. Chan and R. Lee. The Java Class Libraries, Volume 2: java.applet, java.awt,

java.beans. The Java Series. Addison-Wesley, second edition, 1998. ISBN 0-201-
31003-1.

[25] G. Chung and P. Dewan. A mechanism for supporting client migration in a shared
window system. In Proceedings of the ACM Symposium on User Interface Software

and Technology (UIST '96, Seattle, WA, USA, Nov. 6{8). ACM Press, 1996.

[26] G. Chung, P. Dewan, and S. Rajaram. Generic and composable latecomer accommo-
dation service for centralized shared systems. In Proceedings of the IFIP 2.7 Working

Conference on Engineering for Human-Computer Interaction (EHCI '98, Herkalion,
Crete, September 14{18), 1998. To appear.

[27] G. Chung, K. Je�ay, and H. Abdel-Wahab. Accomodating latecomers in shared win-
dow systems. Project Overviews, IEEE Computer, 26(1):72{74, January 1993.

[28] G.V. Cormack. A calculus for concurrent update. Research report CS-95-06, Univer-
sity of Waterloo, 1995. Available from ftp://cs-archive.uwaterloo.ca.

[29] G.V. Cormack. A counterexample to the distributed operational transform and a
corrected algorithm for point-to-point communication. Research report CS-95-08,
University of Waterloo, 1995. Available from ftp://cs-archive.uwaterloo.ca.

[30] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts and

Design. Addison-Wesley, second edition, 1994. ISBN 0-201-62433-8.

References 48

[31] J. Coutaz. The construction of user interfaces and the object paradigm. In Proceedings
of the European Conference on Object-Oriented Programming (ECOOP '87, Paris,
France), Published as Lecture Notes in Computer Science, No. 276, Springer-Verlag,
pages 121{130. Springer-Verlag, 1987.

[32] J. Coutaz. PAC, an object oriented model for dialog design. In Proc. INTERACT'87,
pages 431{436. Elsevier Science Publishers B. V. (North-Holland), 1987.

[33] J. Coutaz. PAC-ing the architecture of your user interface. In Proceedings of the

DSV-IS'97, Fourth Eurographics Workshop on Design, Speci�cation and Veri�cation

of Interactive Systems, pages 15{32. Springer Verlag, 1997.

[34] T. Crowley, P. Milazzo, E. Baker, H. Forsdick, and R. Tomlinson. MMConf: An
infrastructure for building shared multimedia applications. In F. Halasz, editor, Pro-
ceedings of the ACM Conference on Computer-Supported Cooperative Work (CSCW
'90, Los Angeles, CA, USA, Oct. 7{10), (also in [6]), pages 329{342. ACM Press, 1990.

[35] P. Curtis. The LambdaMOO Programmer's Manual for version 1.8.0p6, March 1997.
Available from ftp://ftp.research.att.com/dist/eostrom/MOO/.

[36] M. Day. What synchronous groupware needs: Noti�cation services. Position pa-
per for the 6th IEEE Workshop on Hot Topics in Operating Systems (HotOS-VI),
1997. Also available as Lotus Workgroup Technologies Technical Report 97-02 from
http://research.lotus.com.

[37] M. Day, J.F. Patterson, J. Kucan, W.M. Chee, and D. Mitchell. Noti�cation service
transfer protocol version 1.0. Technical Report 96-08, Lotus Workgroup Technologies,
November 15 1996. Available from http://research.lotus.com.

[38] P. Dewan. An editing-based characterization of the design space of collaborative
applicaitons. In Proceedings of the 4th Conference on Organizational Computing,

Coordination, and Collaboration, March 1993.

[39] P. Dewan. Multiuser architectures. In Proceedings of the EHCI '95, IFIP Working

Conference on Engineering for Human-Computer Interaction, 1995.

[40] P. Dewan. Architectures for collaborative applications. In M. Beaudouin-Lafon, editor,
Computer Supported Co-operative Work. JohnWiley & Sons Ltd., January 1999. ISBN
0-471-96736-X.

[41] P. Dewan and R. Choudhary. Primitives for programming multi-user interfaces. In
Proceedings of the Fourth Annual Symposium on User Interface Software and Tech-

nology (UIST '91, Hilton Head, SC, USA, Nov. 11{13), (also in [6]), pages 41{48.
ACM Press, 1991.

[42] P. Dewan and R. Choudhary. A high-level and exible framework for implementing
multiuser user interfaces. ACM Transactions on Information Systems, 10(4):345{380,
October 1992.

[43] P. Dewan and R. Choudhary. Coupling the user interfaces of a multiuser program.
ACM Transactions on Computer-Human Interaction, 2(1):1{39, March 1995.

[44] A. Dix. Challenges and perspectives for cooperative work on the Web. In Proc.

ERCIM Workshop on CSCW and the Web, 1996.

[45] P. Dourish. Developing a reective model of collaborative systems. ACM Transactions

on Computer-Human Interaction, 2(1):40{63, March 1995.

References 49

[46] P. Dourish. Consistency guarantees: Exploiting application semantics for consistency
management in a collaboration toolkit. In Proceedings of the ACM Conference on

Computer-Supported Cooperative Work (CSCW '96, Boston, MA, USA, Nov. 16{20).
ACM Press, 1996.

[47] P. Dourish. Open Implementation and Flexibility in CSCW Toolkits. PhD thesis,
University of London, June 1996.

[48] P. Dourish and V. Bellotti. Awareness and coordination in shared workspaces. In Pro-

ceedings of the ACM Conference on Computer-Supported Cooperative Work (CSCW
'92, Toronto, Canada, Oct. 31{Nov. 4), pages 107{114. ACM Press, 1992.

[49] R. Eckstein, M. Loy, and D. Wood. Java Swing. O'Reilly and Associates, 1998. ISBN
1-56952-455-X.

[50] C.A. Ellis and S.J. Gibbs. Concurrency control in groupware systems. In Proceedings

of the ACM Conference on the Management of Data (SIGMOD '89, Seattle, WA,
USA, May 2{4), pages 399{407. ACM Press, 1989.

[51] C.A. Ellis, S.J. Gibbs, and G.L. Rein. Groupware: Some issues and experiences.
Communications of the ACM (also in [6]), 34(1):38{58, January 1991.

[52] B.N. Freeman-Benson and A. Borning. Constraint imperative programming languages
for building interactive systems. In B.A. Myers, editor, Languages for Developing User
Interfaces, chapter 11. Jones & Bartlett Publishers, 1992.

[53] U. Gall and F.J. Hauck. Promondia: A Java-based framework for real-time group
communication on the Web. In Proceedings of the 6th World Wide Web Conference,

(Santa Clara, CA. April 7{11). Elsevier Science Publishers B. V. (North-Holland),
1997.

[54] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-oriented Software. Addison-Wesley, 1995. ISBN 0-201-63361-2.

[55] D. Gar�nkel, B. Welti, and T.W. Yip. HP SharedX: A tool for real-time collaboration.
Hewlett-Packard Journal, pages 23{36, April 1994.

[56] T.C.N. Graham. Declarative Development of Interactive Systems, volume 243 of
Berichte der GMD. R. Oldenbourg Verlag, July 1995.

[57] T.C.N. Graham. The Clock language: Preliminary reference manual. Internal Report,
November 1996.

[58] T.C.N. Graham and J. Grundy. External requirements of groupware development
tools. In Proceedings of the IFIP 2.7 Working Conference on Engineering for Human-

Computer Interaction (EHCI '98, Herkalion, Crete, September 14{18). Kluwer Aca-
demic Publishers, 1998. To appear.

[59] T.C.N. Graham, C.A. Morton, and T. Urnes. ClockWorks: Visual programming of
component-based software architectures. Journal of Visual Languages & Computing,
7(2):175{196, June 1996.

[60] T.C.N. Graham and T. Urnes. Relational views as a model for automatic distributed
implementation of multi-user applications. In Proceedings of the ACM Conference on

Computer-Supported Cooperative Work (CSCW '92, Toronto, Canada, Oct. 31{Nov.
4), pages 59{66. ACM Press, 1992.

References 50

[61] T.C.N. Graham and T. Urnes. Linguistic support for the evolutionary design of soft-
ware architectures. In Proceedings of the 18th International Conference on Software

Engineering (ICSE 18, Berlin, Germany, Mar. 25{29), pages 418{427. IEEE Computer
Society Press, 1996.

[62] T.C.N. Graham, T. Urnes, and R. Nejabi. E�cient distributed implementation of
semi-replicated synchronous groupware. In Proceedings of the ACM Symposium on

User Interface Software and Technology (UIST '96, Seattle, WA, USA, Nov. 6{8),
pages 1{10. ACM Press, 1996.

[63] S. Greenberg and D. Marwood. Real time groupware as a distributed system: Con-
currency control and its e�ect on the interface. In Proceedings of the ACM Conference

on Computer-Supported Cooperative Work (CSCW '94, Chapel Hill, NC, USA, Oct.
22{26), pages 207{217. ACM Press, 1994.

[64] S. Greenberg and M. Roseman. Groupware toolkits for synchronous work. In M.
Beaudouin-Lafon, editor, Computer Supported Co-operative Work. John Wiley & Sons
Ltd., January 1999. ISBN 0-471-96736-X.

[65] I. Greif. Computer-Supported Cooperative Work: A Book of Readings. Morgan Kauf-
mann Publishers, 1988. ISBN 0-934613-57-5.

[66] R.D. Hill. The Abstraction-Link-View paradigm: Using constraints to connect user
interfaces to applications. In Human Factors in Computing Systems: CHI '92 Confer-

ence Proceedings (Monterey, CA, USA, May 3{7), pages 335{342. ACM Press, 1992.

[67] R.D. Hill, T. Brinck, S.L. Rohall, J.F. Patterson, and W. Wilner. The Rendezvous

language and architecture for constructing multi-user applications. ACM Transactions

on Computer-Human Interaction, 1(2):81{125, June 1994.

[68] D. Johansen, R. Renesse, and F.B. Schneider. Operating system support for mobile
agents. IEEE Computer, pages 42{45, September 1989.

[69] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained mobility in the Emerald
system. ACM Transactions on Computers, 6(1):109{133, February 1988.

[70] A. Karsenty and M. Beaudouin-Lafon. An algorithm for distributed groupware ap-
plications. In Proc. 13th International Conference on Distributed Computing Systems

(ICDCS), pages 195{202, 1993.

[71] A. Karsenty, C. Tronche, and M. Beaudouin-Lafon. GroupDesign: Shared editing in
a heterogeneous environment. Usenix Journal of Computing Systems, 6(2), 1993.

[72] R. Kazman, L. Bass, G. Abowd, and M. Webb. Analyzing the properties of user
interface software. Technical Report CMU-CS093-201, Carnegie Mellon University,
October 1993.

[73] G. Kiczales, J. Lamping, C.V. Lopes, C. Maeda, A. Mendhekar, and G. Murphy. Open
implementation design guilelines. In Proceedings of the 19th International Conference

on Software Engineering (ICSE '97, Boston, MA, USA, May 19{23). ACM Press, May
1997.

[74] T. Kindberg, G. Coulouris, J. Dollimore, and J. Heikkinen. Sharing objects over
the Internet: The Mushroom approach. In Proceedings of IEEE Global Internet '96

(Mini-conference at GLOBECOM '96, London, England, Nov. 20{21). IEEE ComSoc,
1996.

[75] Tim Kindberg. Notes on concurrency control in groupware. Unpublished note, avail-
able from the Project Mushroom pages at http://www.dcs.qmw.ac.uk, January 1996.

References 51

[76] G.E. Krasner and S.T. Pope. A cookbook for using the Model-View-Controller user
interface paradigm in Smalltalk-80. Journal of Object-Oriented Programming, 1(3):26{
49, August/September 1988.

[77] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Com-
munications of the ACM, 21(7):558{565, July 1978.

[78] K.A. Lantz. An experiment in integrated multimedia conferencing. In Proceedings of

the ACM Conference on Computer-Supported Cooperative Work (CSCW '86), (also
in [65], pages 533-552), pages 267{275, December 1986.

[79] J.C. Lauwers, K.A. Lantz, and A.L. Romanow. Replicated architectures for shared
window systems: A critique. In Proceedings of the Conference on O�ce Information

Systems (ACM COIS '90, Boston, MA, USA, Apr. 25{27)(also in [6]), pages 249{260.
ACM Press, 1990.

[80] Microsoft Corporation. Microsoft Netmeeting 2.1 Resource Kit, 1997. Available from
http://www.microsoft.com/netmeeting.

[81] D. Mitchell. A component approach to embedding awareness and conversation. In
Proc. WETICE'98. IEEE Computer Society Press, 1998. Also available as Lotus
Research technical report 98-08 from http://research.lotus.com.

[82] J.P. Munson and P. Dewan. A concurrency control framework for collaborative sys-
tems. In Proceedings of the ACM Conference on Computer-Supported Cooperative

Work (CSCW '96, Boston, MA, USA, Nov. 16{20), pages 278{287. ACM Press, 1996.

[83] R.E. Newman-Wolfe, M.L. Webb, and M. Montes. Implicit locking in the Ensemble
concurrent object-oriented graphics editor. In J. Turner and R. Kraut, editors, Pro-
ceedings of the ACM Conference on Computer-Supported Cooperative Work (CSCW
'92, Toronto, Canada, Oct. 31{Nov. 4), pages 265{272. ACM Press, 1992.

[84] D.A. Nichols, P. Curtis, M. Dixon, and J. Lamping. High-latency, low-bandwidth
windowing in the Jupiter collaboration system. In Proceedings of the ACM Symposium

on User Interface Software and Technology (UIST '95, Pittsburgh, PA, USA, Nov. 14{
17), pages 111{120. ACM Press, 1995.

[85] L. Nigay and J. Coutaz. Building user interfaces: Organizing software agents. In Proc.
ESPRIT'91 Conference, pages 707{719, 1991.

[86] T. O'Grady. Flexible data sharing in a groupware toolkit. Master's thesis, University
of Calgary, Calgary, Alberta, Canada, November 1996.

[87] J.K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994. ISBN 0-201-63337-X.

[88] J.F. Patterson. Comparing the programming demands of single-user and multi-user
applications. In Proceedings of the Fourth Annual Symposium on User Interface Soft-

ware and Technology (UIST '91, Hilton Head, SC, USA, Nov. 11{13), pages 87{94.
ACM Press, 1991.

[89] J.F. Patterson. A taxonomy of architectures for synchronous groupware applications.
ACM SIGOIS Bulletin Special Issue: Papers of the CSCW'94 Workshops, 15(3), April
1995.

[90] J.F. Patterson, M. Day, and J. Kucan. Noti�cation servers for synchronous groupware.
In Proceedings of the ACM Conference on Computer-Supported Cooperative Work

(CSCW '96, Boston, MA, USA, Nov. 16{20), pages 122{129. ACM Press, 1996.

References 52

[91] D.E. Perry and A.L. Wolf. Foundations for the study of software architecture. ACM
SIGSOFT Software Engineering Notes, 17(4):40{52, October 1992.

[92] G.E. Pfa� et al. User Interface Management Systems. Eurographics Seminars.
Springer Verlag, 1985.

[93] D. Ramduny and A. Dix. Why, what, where, when: Architectures for co-operative
work on the WWW. In H. Thimbleby, B. O'Connaill, and P. Thomas, editors, Human-
Computer Interaction: 7th International Conference (HCI '97, Bristol, UK), pages
283{301. Springer-Verlag, 1997.

[94] M. Roseman. GroupKit 5.0 Documentation. University of Calgary GroupLab, June
1998. Available from http://www.cpsc.ucalgary.ca.

[95] M. Roseman and S. Greenberg. Building exible groupware through open protocols. In
Proceedings of the Conference on Organizational Computing Systems (ACM COOCS
'93, Milpitas, CA, USA, November). ACM Press, 1993.

[96] M. Roseman and S. Greenberg. Building real time groupware with GroupKit, a
groupware toolkit. ACM Transactions on Computer-Human Interaction, 3(1):66{106,
March 1996.

[97] M. Roseman and S. Greenberg. Simplifying component development in an integrated
groupware environment. In Proceedings of the ACM Symposium on User Interface

Software and Technology (UIST '97, Ban�, Alberta, Canada, Oct. 14{17), pages 65{
72. ACM Press, 1997.

[98] J. Roth and C. Unger:. Dreamteam - a platform for synchronous collaborative appli-
cations. In Th. Herrmann and K. Just-Hahn, editors, Groupware und organisatorische
Innovation (D-CSCW'98), pages 153{165. B.G. Teubner Stuttgart, Leipzig, 1998.

[99] C. Schuckmann. Private electronic mail message, June 15, 1998.

[100] C. Schuckmann, L. Kirchner, J. Schummer, and J.M. Haake. Designing object-oriented
synchronous groupware with COAST. In Proceedings of the ACM Conference on

Computer-Supported Cooperative Work (CSCW '96, Boston, MA, USA, Nov. 16{20).
ACM Press, 1996.

[101] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Disci-

pline. Prentice Hall, 1996. ISBN 0-13-182957-2.

[102] H. Shen and P. Dewan. Access control for collaborative environments. In Proceedings of
the ACM Conference on Computer-Supported Cooperative Work (CSCW '92, Toronto,
Canada, Oct. 31{Nov. 4), pages 51{58. ACM Press, November 1992.

[103] B. Shneiderman. Designing the User Interface: Strategies for E�ective Human-

Computer Interaction. Addison-Wesley, third edition, 1998. ISBN 0-201-69497-2.

[104] G. Singh and M. Green. Automating the lexical and syntactic design of graphical user
interfaces: The UofA* UIMS. ACM Transactions on Graphics, 10(3):213{254, July
1991.

[105] M. Ste�k, D.G. Bobrow, G. Foster, S. Lanning, and D. Tatar. WYSIWIS revised:
Early experiences with multiuser interfaces. ACM Transactions on O�ce Information

Systems (also in [6]), 5(2):147{167, 1987.

[106] N. Stephenson. Snow Crash. Bantam Spectra, 1993. ISBN 0-553-56261-4.

References 53

[107] N.A. Streitz, J. Gei�ler, J.M. Haake, and J. Hol. DOLPHIN: Integrated meeting
support across liveboards, local and remote desktop environments. In Proceedings of

the ACM Conference on Computer-Supported Cooperative Work (CSCW '94, Chapel
Hill, NC, USA, Oct. 22{26), pages 345{358. ACM Press/Addison-Wesley, 1994.

[108] R. Strom, G. Banavar, K. Miller, A. Prakash, and M. Ward. Concurrency control and
view noti�cation algorithms for collaborative replicated objects. IEEE Transactions

on Computers, 47(4):458{471, April 1998.

[109] J. Strout. POO Implementor's Guide, 1998. Available from http://www.strout.net.

[110] F. Tarpin-Bernard, B. David, and P. Primet. Frameworks and patterns for syn-
chronous groupware: AMF-C approach. In Proceedings of the IFIP 2.7 Working

Conference on Engineering for Human-Computer Interaction (EHCI '98, Herkalion,
Crete, September 14{18), September 1998.

[111] F. Tarpin-Bernard and B.T. David. AMF: A new design pattern for complex inter-
active software. In Proceedings of the International Conference on Human-Computer

Interaction (HCI '97), San Franciso. Published as Design of Computing Systems 21

B. Kluwer Academic Publishers, 1997.

[112] R.N. Taylor, N. Medvidovic, K.M. Anderson, E.J. Whitehead Jr., J.E. Robbins, K.A.
Nies, P. Oreizy, and D.L. Dubrow. A component- and message-based architectural
style for GUI software. IEEE Transactions on Software Engineering, 22(6), June 1996.

[113] R.N. Taylor, K.A. Nies, G.A. Bolcer, C.A. MacFarlane, K.M. Anderson, and G.F.
Johnson. Chiron-1: A software architecture for user interface development, mainte-
nance, and run-time support. ACM Transactions on Computer-Human Interaction,
2(2), June 1995.

[114] G.H. ter Hofte. Working Apart Together: Foundations for Component Groupware.
Number 001 in Telematica Instituut Fundamental Research Series. Telematica In-
stituut, Enschede, the Netherlands, 1998. ISBN 90-75176-14-7. Also available from
http://www.telin.nl.

[115] T. Urnes. E�ciently Implementing Synchronous Groupware. PhD thesis, York Uni-
versity, Toronto, Ontario, Canada, 1998.

[116] T. Urnes and T.C.N. Graham. Flexibly mapping synchronous groupware architectures
to distributed implementations. Submitted for publication, 1999.

[117] T. Urnes and R. Nejabi. Tools for implementing groupware: Survey and evaluation.
Technical Report CS-94-03, York University, Canada, May 1994.

[118] The UIMS Tool Devlopers' Workshop. A metamodel for runtime architecture of an
interactive system. SIGCHI Bulletin, 24(1):32{37, 1992.

[119] T.N. Wright. Hierarchical adaptive concurrency control for synchronous groupware
applications. Master's thesis, Queen's University, Kingston, Ontario, Canada, January
1999.

[120] S.H. Zweben, S.H. Edwards, B.W. Weide, and J.E. Hollingsworth. The e�ects of lay-
ering and encapsulation on software development cost and quality. IEEE Transactions

on Software Engineering, 21(3):200{208, March 1995.

