
Strategies for Parallel Data Mining

D.B. Skillicorn

skill@cs.queensu.ca

May 1999

External Technical Report

ISSN-0836-0227-

1999-426

Department of Computing and Information Science

Queen's University

Kingston, Ontario, Canada K7L 3N6

Document prepared May 10, 1999

Copyright c
1999 D.B. Skillicorn

Abstract

We present a set of cost measures that can be applied to parallel algorithms to predict their

computation, data access, and communication performance. These measures make it possible to

compare di�erent possible parallel implementation strategies for data mining techniques without

the necessity to benchmark each one. We give general cost expressions for three common paral-

lelizing strategies, and show how to instantiate these cost expressions for a particular technique,

neural networks.

Keywords: cost measurement, parallelization, complexity, association rules, neural net-

works, genetic algorithms.



1 Introduction

The role of parallel computing in successful data mining is still an open question. Data

mining algorithms are expensive, with high demands for computation and data access. It is

plausible that the more sophisticated the algorithm, the greater the commercial advantage,

so the demand for computation is likely to grow; the rate of growth of data stored online

suggests that the demand for data access is likely to grow as well. Parallel computing seems

to have a natural role to play since parallel computers are good at large computations, and

also good at handling large volumes of data.

On the other hand, data mining may not turn out to be as hard as it looks. For example, if

sampling from a large dataset provides results as good, or almost as good, as those obtained

by using the entire dataset, then high-performance computation and data access may be

unnecessary. Furthermore, the bottleneck in sequential data mining is access to disk storage.

Parallel computers with multiple striped disks have an advantage here, but few parallel

computers scale up the performance of their disk access system as fast as their computational

power (or their price). The cost/bene�t trade-o� may not favor parallel computing in the

long run.

Parallel computing thus has considerable potential as a tool for data mining, but it is not

yet completely clear whether it represents the future of data mining.

Some idea of how parallel computing is already being used for data mining can be obtained

by examining the uses to which the world's largest supercomputers are put. The number of

`industrial' users in the TOP500 list [13] increased from 153 (Nov'97) to 207 (Nov'98). The

names of some of the organizations who use these systems suggest that some, at least, are

being used for data mining (data mining success stories tend not to be publicized).

Commercial applications in TOP500

Rank Owner

64 State Farm

79 Charles Schwab

91 Oracle/IBM

117 Chase Manhattan

119 Sears

173-6 Commerzbank

178-9 Deutsche Morgan Grenfell

206 Prudential

211 Lexis Nexis

224 SMVG Bern

Designing and implementing parallel programs is expensive. Data mining algorithms

could be parallelized in many di�erent ways. It is impractical to test all of these by build-

ing implementations and comparing them. Fortunately, practical complexity measures for

parallel programming are rapidly maturing. We show how to assess di�erent paralleliza-

tion strategies using such cost measures. The search space of e�ective parallel data mining

algorithms is greatly reduced by using high-level cost analysis.

1



Section 2 presents di�erent parallelization strategies and discusses their performance

intuitively. Section 3 introduces a robust set of cost measures that can be used to predict

the performance of an algorithm across platforms. In Section 4 we review some standard

data mining algorithms. In Section 5, we give an abstract sequential cost expression for such

algorithms. In Section 6, we describe and cost several di�erent techniques for parallelizing

data mining algorithms. In Section 7, we give a detailed example of how these techniques

work for neural networks, and in Section 8 explore a double speedup phenomenon that occurs

in some algorithms.

2 Strategies for parallelizing data mining algorithms

A typical data mining application starts from a dataset describing interactions between

customers and an organization. For concreteness, let us suppose that this dataset is a table

with n rows and m columns. Each column describes a speci�c possible interaction (`buying

apples') and each row describes a set of interactions that occurred together (`one visit to a

supermarket').

The output of the data mining algorithm is some information distilled from this data.

The results may be:

� A set of concepts (i.e. predicates) about the interactions (`80% of customers buy

apples and tuna on the same visit'). Algorithms that produce concepts are said to be

transparent, since the concepts are usually intelligible in organizational terms.

� A set of model parameters. These are typically used to build classi�ers that, for

example, can distinguish pro�table from unpro�table customers. Algorithms of this

kind are said to be opaque, since it is not usually clear why the classi�er computes the

answers it does.

We will speak as if the results of data mining were concepts, but it makes no di�erence to

the conclusions we draw.

The size of the datasets used for data mining can be very large. A dataset might contain

information about 109 customer interactions, each involving perhaps 1000 attributes.

Parallel data mining requires dividing up the work, so that processors can make useful

progress towards a solution as fast as possible. The question is how to do this division of

labor. Clearly, it is a good idea to divide up the computation; but it is equally, and sometimes

more, important to divide up the accesses to the dataset, and to minimize communication

between the processors while they are working. In data mining applications, we want to

minimize the resources spent developing concepts that seem to be valid locally, based on

the limited amount of data available to each processor, but are not valid globally. A good

technique is a balancing act between local, speculative, computation which may turn out to

be wasted, and expensive, but reassuring communication.

There are three basic strategies for parallelizing data mining algorithms. They are:

1. Independent Search. Each processor has access to the whole dataset, but each heads

o� into a di�erent part of the search space, starting from a randomly-chosen initial

position.

2



2. Parallelize a sequential data mining algorithm. There are two common variants.

In the �rst, the set of concepts is partitioned across processors, and each processor ex-

amines the entire dataset to determine which of its local concepts is globally correct.

Because generating new concepts usually requires knowing which smaller or simpler

concepts are correct, processor must regularly exchange information about their con-

cepts. In the second, the dataset is partitioned by columns, and each processor com-

putes those partial concepts that hold for the columns it can see. Once again, regular

exchanges are needed to determine which partial concepts can be �tted together to

make globally-correct concepts.

3. Replicate a sequential data mining algorithm. Each processor works on a par-

tition of the dataset (by rows) and executes (more or less) the sequential algorithm.

Because the information it sees is only partial, it builds entire concepts that are locally

correct, but may not be globally correct. We call these approximate concepts. Proces-

sors exchange these approximate concepts, or facts about them, to check if they are

globally correct. As they do so, each learns about the parts of the dataset it cannot

see.

There are, of course, many other possibilities and combinations, but these three distinguish

the main lines of attack.

Independent search is a good strategy when the desired output is one optimal solution,

so it works well for minimization problems. The parallelized approaches have attracted

most attention, because applying parallel computing seems to require a parallel algorithm.

However, both variants have their problems. The �rst requires each processor to access

the entire dataset. Access to terabyte datasets is slow compared to processor speeds, and

growing relatively slower, so we can a�ord to do a lot of computation to avoid such accesses.

The information exchanged between processors also tends to be large; typically the concepts

themselves. The second of the parallelized approaches su�ers because partial concepts can

often not be extended to become complete concepts; many more facts are true about a few

attributes than can be true globally, and it is hard to winnow these quickly enough. (Of

course, if we knew which attributes `belonged' together we could assign these to the same

processor and get good results { but it is exactly this that we want to discover.)

The replicated approach is not particularly novel, but it is often the best way to add

high performance to a data mining application. It has two signi�cant advantages: the

dataset is partitioned so the access cost is spread across processors; and the data that

must be exchanged between phases is often much smaller than the concepts themselves,

so communication is cheap. It is still possible to generate local concepts that do not hold

globally, but the fact that they must be internally consistent, as well as consistent with the

local subset of the dataset means that this does not happen often.

The results of a data mining algorithm can sometimes be larger than its input dataset

(although surely the interesting results are not). It follows that the concept set can be

extremely large, at least at intermediate stages of the algorithm. When this happens, the

replication approach will not perform so well, because it requires each processor to store the

whole of the current concept set.

This analysis is based on intuitions about the inherent costliness of communication and

3



data access. We will make these intuitive ideas formal; but �rst we must de�ne a realistic,

but tractable, way of measuring the costs of computation, communication, and data access.

3 Parallel Complexity Theory

Standard parallel complexity theory is based on the PRAM, an abstract architecture with a

single shared memory, accessible in constant time. It is the programmer's responsibility to

ensure that no two processors access the same location simultaneously. Real architectures

must pay some penalty for accessing locations that are distant, whether they are physically

shared-memory or distributed-memory. The requirement that programmers prevent inter-

ference is too strong so, in practice, architectures allow arbitrary access patterns to appear

in programs, and pay some overhead at run-time to prevent con
icting accesses. Both la-

tency costs (the costs of accessing at a distance) and con
ict costs (preventing simultaneous

accesses) cause large discrepancies between the theoretical costs of the PRAM model and

those observed when programs run on real machines.

Furthermore, the PRAM model cannot even act as an approximation to or foundation

for a more accurate cost model. It is not, in general, possible to tell when the PRAM model

is going to be in error, because it depends on details of the memory access pattern and

target architecture's network. Worse still, errors, when they occur, can be polynomial in the

problem size (rather than the constant factor errors of sequential complexity theory).

A parallel complexity measure that is correct to within a constant factor is needed. There

are two important aspects to choosing such a measure. First, it must take into account costs

associated with the memory hierarchy. This issue arises in sequential cost modelling as well,

but only for a relatively small subclass of memory-bound or out-of-memory algorithms whose

execution time is not dominated by the number of instructions they execute. In a parallel

setting, a much greater proportion of programs use signi�cant amounts of memory, so getting

this right is more critical.

Second, a measure must accurately re
ect the costs of communication, whether explicitly,

as in message-passing programs, or implicitly, as in shared-memory programs. What makes

costing communication di�cult is that it is highly non-linear: the cost of sending a message

in an empty network is very di�erent from the cost of sending it in a heavily-loaded network.

The reason, of course, is congestion; when a network is busy, a given message has a much

greater chance of being blocked by other tra�c during its trip. Experimental studies [5] show,

however, that congestion in parallel computers almost always happens at the boundaries of

the network, rather than in the middle. In other words, the problem is getting into, and

even more getting out of, the network. When multiple messages arrive at a processor, it can

only extract one of them at a time; the others block back in the network.

Accurate measures of communication performance can be obtained if we assume that the

network is always in a heavily-loaded state. The worst non-linearities occur at intermediate

loads. For then a message may encounter other messages, and take a long time, but it may

also be lucky and travel straight through. When the network is busy, all messages encounter

other messages, and the e�ects on individual delivery times average out. If every processor

sends messages to random destinations, it is possible to determine expected delivery times

with small variance. This forms the basis for a robust measure of communication performance

4



which will be valid as long as communication always takes place when the network is busy;

this will be true if processors interleave computation phases with communication phases in

rough synchrony. It is convenient to capture network performance in terms of the network's

permeability (called g), in units of time per byte delivered.

As we mentioned earlier, it is the link between processor and network that is the actual

bottleneck. Thus if all processors begin sending data, it will be the processor that sends

or receives the most data that will take the longest to �nish. If each processor i sends or

receives hi bytes, then an accurate estimate of the cost of a communication phase will be

the maximum of the hig's.

This assumes that all processors spend all of their time communicating, and not all pro-

grams have that behavior. However, many data mining algorithms do, at least approximately.

They are structured in a number of phases, each of which involves a local computation, fol-

lowed by an exchange of data between processors. The cost of such a phase is described by

an expression of the form:

cost = MAX
processors

wi + MAX
processors

hi g

where wi is the number of instructions executed by processor i.

This cost model is derived from BSP [11] where its fundamental accuracy has been veri�ed

over a wide range of applications. (BSP enforces this alternating computation/communication

structure on programs, and works to reduce the e�ective value of g, but that doesn't a�ect

the basic point.) Notice that both terms are the in the same units, time. This avoids the

need to decide how to weight the cost of communication relative to computation, and makes

it possible to compare algorithms with di�erent mixes of computation and communication.

We have not yet addressed the issue of compute-bound versus memory-bound computa-

tions. The hard situation to model is when the time taken for computation is close to that

required for memory access, for then it is hard to predict which will dominate. A detailed

cost model is required and the precise interactions of instructions and cache may be critical.

In most data mining applications it is straightforward to tell when computation will domi-

nate memory access, and the memory access pattern is typically a single pass through the

dataset on each phase whose cost is predictable.

The cost model presented above is likely to produce accurate estimates of running times

on existing parallel computers. However, for comparing di�erent algorithms, its absolute

accuracy is not as important as its relative accuracy. And here we can have high con�dence,

because the model is based on counting: instructions executed, and bytes communicated.

For most data mining applications, di�erent parallelization strategies will execute approx-

imately the same number of instructions. The aspect that separates them is how much

communication they do. And clearly an algorithm that communicates more is going to be

more expensive regardless of the details of how that communication is costed.

Because the cost model depends only on high-level properties of algorithms, it can be

applied to an algorithm in the abstract. So we can compare di�erent parallelization strategies

without having to develop di�erent implementations and benchmarking them against each

other (provided that the costs are clearly di�erent). In particular, strategies that are likely

to be unproductive can be ruled out cheaply.

5



4 Data Mining Algorithms

Many data mining techniques have been investigated. We will concentrate on three:

� Association rules [12]

� Neural networks [3]

� Genetic algorithms [4]

Other techniques that are often used are decision trees [8], inductive logic programming [7],

and singular value decomposition (especially for text, where it is known as latent semantic

indexing) [2].

4.1 Association Rules

Association rules were one of the earliest data mining algorithms. Given a dataset, a support

s, and a con�dence c, the �rst step of the algorithm is to �nd all of the frequent sets, those

subsets of the attributes that appears in at least s of the rows of the dataset.

Using these, rules of the form

A;B;C ) D

are computed from frequent sets fA;B;C;Dg provided that they have su�cient con�dence,

that is
support offA;B;C;Dg

support offA;B;Cg
� c

Most algorithms make use of the insight that a set can only be frequent if all of its

subsets are frequent. The frequent sets can therefore be computed by alternately generating

candidate sets of a certain size, checking which of the candidates was in fact frequent by a

pass through the dataset, then using the surviving candidates to generate candidates of size

one greater. Thus the algorithm goes in phases, each computing a candidate set of size i,

and then pruning it using a pass through the dataset.

The output of an association rule algorithm is a set of rules capturing information about

how likely it is that certain patterns of attributes occur with other attributes in customer

transactions. This is an example of a transparent algorithm.

4.2 Neural networks

In contrast, neural network data mining algorithms are opaque. The result of training a

neural network is a black box which is capable of answering interesting questions (\is this

person a good candidate for a mortgage") but not of explaining why it gives the answers it

does.

A neural net consists of layers of units which sum their inputs and transmit an output if

the weighted sum exceeds a threshold. There are many di�erent possible arrangements, but

we will assume the most general, that the output of a node in one layer is connected to the

inputs of all nodes in the following layer, and that each edge has an associated weight.

6



Neural networks are trained by presenting each row of the dataset to the inputs, com-

paring the resulting net output to that desired and using the di�erence as an error that is

propagated back through the network, altering the internal weights. (Again, there are many

variants.)

The dataset is usually fed to the network many times; each one is called an epoch.

4.3 Genetic algorithms

Genetic algorithms �nd concepts using a computational analogy to Darwinian evolution. An

initial population of concepts is generated randomly. The �tness of each concept is evaluated

by how well it describes the dataset. Those concepts that `survive' (that is, are su�ciently

�t) remain in the concept set, where they are replicated according to their �tness, allowed to

mutate randomly, and allowed to crossover by exchanging parts of their substructure. The

new concept set is then evaluated for �tness, and the process repeats.

The strength of genetic algorithms is that they are not dependent on the problem struc-

ture; their weakness is that it is hard to know when to stop the process. In practice, most

algorithms seem to stop when there is little change in the concept set, or after some �xed

number of iterations.

5 Costing sequential data mining algorithms

The algorithms described in the previous section all have the property that their global

structure is a loop, building more accurate or more detailed concepts from those of previous

iterations. Suppose that this loop executes ks times, and generates � concepts. We can

describe the sequential complexity of this algorithm by a formula:

costs = ks [STEP (nm; �) + ACCESS(nm)]

where STEP gives the cost of a single iteration of the loop, and ACCESS is the cost of

accessing the dataset once. STEP depends on � as well as nm since it is possible for the set

of derived concepts to be larger than the input.

6 Parallel Complexity

We can now construct similar cost expressions for the parallelization strategies discussed

above.

6.1 Complexity of Independent Search

The independent search strategy is straightforward: do not partition the data; instead ex-

ecute the same algorithm p times, using some randomization technique to direct each to a

di�erent part of the search space of concepts.

7



For genetic algorithms, an independent search approach requires running multiple copies

of the sequential algorithm from di�erent random starting chromosomes. The best descrip-

tion is selected at the end. This is computational equivalent of evolution to �ll equivalent

niches.

The cost of an independent search strategy algorithm has the form

costi = ki [STEP (nm; �) + ACCESS(nm)] + �pg + �

Here ki is the number of iterations of the whole program, STEP and ACCESS are the

costs of the algorithm and its data accesses as before, �pg is the cost of sharing the answers

among the processors at the end, and � is the cost of computing the best solution. It is clear

that this approach only makes sense if we have a reason to expect that ki � ks=p, which is

characteristic of searching for a single optimum.

6.2 Complexity of Parallelized Algorithms

The basic structure of these algorithms is:

� Partition the initial concepts into p subsets.

� Repeat

{ Execute a special variant of a data mining algorithm on the entire dataset or

perhaps a segment of it, and the current partial set of concepts, to derive a new

partial set of concepts.

{ Exchange the partial concepts with other processors, deleting concepts that are

not globally correct.

For genetic algorithms, a partial concept parallelization approach divides the chromo-

somes into pieces and assesses the �tness of each piece against the relevant features (columns)

of the dataset. The total �tness of a chromosome depends on the �tness of its pieces.

For association rules, the partial concept parallelization approach is called the Data

Distribution technique. The possible frequent sets are partitioned across the processors, and

the entire dataset is examined by each processor. (For practical reasons, the dataset is usually

divided into p pieces which are circulated by each processor in turn.) A partitioned-concept

parallelization approach called Candidate Distribution has also been investigated.

The cost of a parallelized algorithm has the form

costp = kp [SPECIAL(n;m; r=p) + ACCESS(n;m) + EXCH(n;m; r; p)g +RES(n;m; r; p)]

when the concept set is partitioned, and

costp = kp [SPECIAL(n;m=p; r) + ACCESS(n;m=p) + EXCH(n;m; r; p)g +RES(n;m; r; p)]

when the concepts themselves are partitioned. SPECIAL is the complexity of a single step

of the special algorithm, EXCH is the cost of exchanging the partial concepts, and RES is

the cost of resolving the partial concepts or partial concept set into a consistent set.

8



6.3 Complexity of Replicated Algorithms

The basic structure of these algorithms is:

� Partition data into p subsets, one per processor.

� Repeat

{ Execute (some variant of) the sequential algorithm on each subset.

{ Exchange information about what each processor learned with the others.

For the frequent set part of association rule computation this means: partition the dataset

among the processors; compute candidate sets locally and measure their support in the local

partition; exchange these support values and compute the total support for each candidate;

and repeat. Notice that each processor keeps the same candidate sets and replicates the

computation of new candidate sets from old; but the volume of data exchanged is very small

{ integers.

A genetic algorithm replicated implementation has a similar structure. Each processor

has a subset of the dataset and a full set of the current concepts. Each measures the local

�tness of the concepts against its partition, and exchanges this data with all of the other

processors to compute the global �tness. The next generation of concepts is computed based

on this universally-known �tness (perhaps requiring some small data exchanges if crossover

is permitted across processors).

The cost of a replicated algorithm has the form

costr = kr

�
STEP (nm=p; r) + ACCESS(nm=p) + rpg +RES(rp)

�

where kr is the number of iterations required by the parallel algorithm, r is the size of the data

about approximate concepts generated by each processor, rpg is the cost of a total exchange

between the processors of these approximate concepts, and RES(rp) is the computation cost

of using these approximations to compute better approximations for the next iteration.

It is reasonable to assume that

STEP (nm=p; r) = STEP (nm; r)=p

and

ACCESS(nm=p) = ACCESS(nm)=p

so we get

costa � costs=p+ kr(rpg +RES(rp))

In other words, we get a p-fold speedup, except for an overhead term, provided ks and kr
are of comparable size.

Exchanging results frequently often improves the rate at which concepts are derived so

for some algorithms kr � ks. This gives a \double" speedup

costa =
kr

ks

costs

p
+ overhead

We will discuss this phenomenon in Section 8.

9



6.4 Comparisons

The relative costs of these di�erent performance improvement strategies depends on:

� the number of the iterations of the basic loop structure (the relative size of the ks);

� the amount of data that must be accessed during each iteration;

� the amount of communication that must take place among the processors.

It is hard to be dogmatic about the number of iterations required in general. For some

algorithms, it will be the case that kr � kp. Thus there may not be much to choose between

parallelized and replicated algorithms on this basis. The relative performance of independent

search is sensitive to problem structure; for minimization problems ki may be much smaller

than any of the other ks; for other problems it may be that ki � ks.

For data access, independent search su�ers from the drawback that the entire dataset

must be accessed by each processor. Parallelized algorithms have the potential to require

access to all n rows, but only m=p columns of each, the same nm=p access that replicated

algorithms require. However, all of the parallelized algorithms known to me require much

more data than this, usually all nm values. This makes parallelized algorithms much more

expensive.

For communication, independent search is a clear winner since only a single global com-

munication is required at the end to determine the best solution. Both parallelized and

replicated algorithms communicate at the end of every phase. However, parallelized algo-

rithms tend to have to transmit (parts of) concepts while replicated algorithms tend to have

to transmit only facts about concepts which are much smaller. For the same reason, the

resolution between concepts required by replicated algorithms is typically less work than for

parallelized algorithms.

Thus, although it is not possible to say that one strategy is the best overall, there is

a strong tendency for replicated strategies to be better than parallelized strategies. The

high-level cost expressions for each strategy can be easily instantiated for particular data

mining techniques to give a more re�ned basis for decision.

For example, several of these strategies have been implemented for computing association

rules. The replicated approach is called Count Distribution [1]. It has been shown to

outperform two other techniques provided that the candidate sets can be kept in memory:

Data Distribution, in which the candidate set is partitioned, and the dataset circulated

among the processors; and Candidate Distribution, in which the candidate set and dataset

are both partitioned. The reasons are exactly those that the cost expressions make plain:

the two poorer techniques require much greater data access and communication than Count

Distribution.

However, frequent set calculation is one of those cases where the intermediate results

can be larger than the dataset (since the frequent sets are elements of the powerset of the

attributes). Scalability therefore becomes an issue. Count Distribution has the drawback

that it requires all of the candidates to be stored at every processor.

In the next section, we illustrate the use of cost expressions by doing a detailed analysis of

the relative costs of neural net training using di�erent performance improvement techniques.

10



7 Detailed Example { Neural networks

To make these cost expressions more concrete, we turn now to neural networks, where we

will display more detailed cost expressions and compare them. It becomes very clear that

replicated approaches are much more e�ective than the others for data mining algorithms

with these general characteristics [10].

Consider a neural network with l layers, and m neurons per layer, with full connections

from each layer to the next and preceding layers. The number of weights (one per connection)

is W = lm2. The number of examples in the dataset is n.

A replicated approach to learning is exemplar parallelism { each processor trains an

identical initial network on a pth fraction of the examples. At the end of each epoch, that

is when all rows of the dataset have been processed by some processor, processors exchange

their error vectors and combine them (deterministic learning). This continues for su�cient

epochs to ensure convergence.

The cost for a single training epoch is:

CEP = n(AW )=p+W (p� 1)g

where A is a constant that depends on the particular training algorithm. The �rst term

is the cost of computation: a constant number of weight adjustments for each row of the

dataset (a term of size nW ), divided equally among the processors. The second term is

the cost of communication: the total exchange of sets of errors (one per weight) among the

processors.

Parallelized approaches have each processor responsible for some subset of the neurons.

A natural starting place is to assume that each processor is responsible for some rectangular

block of neurons. Even very simple analysis of this possibility makes it clear that blocks that

are the full width or depth of the neural network save communication. The cost when the

network is divided into layers (layer parallelism) is

CLP = [(n� 1) + 2(l � 1)]

"
AW

p
+ 2mg

#

for a single epoch. When a network is divided into columns (column parallelism), the cost is

CCP = n

"
AW

p
+ (2m+ (m�

m

p
)(l � 1))g

#

Layer parallelism is a form of concept set partitioning, while column parallelism is direct

concept partitioning, since each processor is responsible for a subset of the inputs.

Notice that the computation term is about the same magnitude for all of these approaches

as for exemplar parallelism (except for an added term which arises from the initial �lling

and emptying of the pipeline when there are layers). However, the communication term now

contains a factor of size n, which is far the biggest term present in data mining applications.

As a result, these techniques perform poorly even for quite small datasets.

An alternative approach is to allocate neurons randomly to processors. Not surprisingly,

this approach is worse than either of those above. Its cost is

CNP = [(n� 1) + 2(l � 1)]

"
AW

p
+

2Wl

p
g

#

11



The argument here is an information-theoretic one, and so is not sensitive to variations

in the precise neural net training technique, nor to architectural variations. The only ex-

ception are architectures for which the assumption about communication costs do not hold.

For example, Kumar, Shekhar, and Amin [6] give a neural net parallelization that exploits

carefully-scheduled, point-to-point communication in a mesh and is faster than the layer par-

allelism expression above would suggest. However, such techniques require special-purpose

hardware, rather than the o�-the-shelf hardware that is the norm today.

There have been many proposals for neural net parallelization that use even �ner par-

titioning, including even partitioning the edge set across processors. It is clear from the

formulae above that this can only increase the cost of communication.

8 Double Speedup

The interesting phenomenon of double speedup occurs in exemplar parallel training of neural

nets. Each processor learns, in a condensed way, what every other processor has learned

from its data, whenever communication phases take place. This information has the e�ect of

accelerating its own learning and convergence. The overall e�ect is that kr is much smaller

than ks would have been, and this in turn leads to a double speedup.

We have described exemplar parallelism so far as if it used deterministic learning, where

an error vector is generated only after the entire dataset has been seen by some processor.

There is an alternative, batch learning, in which error vectors are computed and exchanged,

after some subset, called a batch, of the entire dataset has been processed. Notice that each

processor sees only a pth fraction of each batch.

If each batch is su�ciently large, the error vectors computed by each processor are good

approximations to the deterministic error vector, but they have required much less processing

to discover. The result is that each processor makes progress based on the work of all

processors during the processing of a batch.

The number of epochs required to achieve a given level of convergence as a function of

batch size has the shape shown below:

Batch size

Number
of

epochs

B
0

As batch sizes get smaller, the total number of epochs required for convergence gets smaller

as each processor gets error information more frequently. When the batch size reaches some

12



size bound, however, the error information becomes less accurate and hence less helpful, and

the e�ect disappears. This general behavior has been veri�ed experimentally for a number

of datasets [9].

Let B be the batch size and b = n=B be the number of batches in each epoch. The total

cost of exemplar parallelism training for E epochs is

Ctotal

EP = E

"
nAW

p
+ b(p� 1)Wg

#
(1)

In the range where convergence depends linearly on B, we can write E = c=b, for some

constant c and get:

Ctotal

EP =
c

b

nAW

p
+ c(p� 1)Wg (2)

Minimizing the overall cost requires minimizing the computation term, by making b as large

as possible, that is b = n=B0. The value of this b on the denominator is often �20, so

speedups are signi�cant even when p is small.

Note that it does not follow that, because an application exhibits double speedup, it

will necessarily be solvable by sampling. The information that, shared among processors,

improves overall completion may not be accurate; it need only be helpful. It will often be

of the character of a hint rather than an answer; but hints, as we know, can often reduce

searches dramatically.

9 Conclusions

The best way to reap the bene�ts of the performance of parallel computers for data mining

problems is not obvious. Implementing many di�erent parallel variants of each data mining

algorithm and benchmarking them is an expensive and unattractive way to decide which

approach is best. We have shown that cost measures based on counting computations, data

accesses, and communication allow algorithms to be compared in the abstract. While these

cost measures cannot be expected to be completely accurate, they are expressive enough to

rule out some possibilities.

We have developed cost expressions for three general implementation strategies and sug-

gested that replication is both the simplest and likely to be the best performing. We have

illustrated how these general cost expressions can be instantiated for particular data min-

ing techniques, using the example of neural networks. Here it is very clear that replicated

implementation outperforms other parallelized techniques.

References

[1] R. Agrawal and J. Shafer. Parallel mining of association rules: Design, implementation

and experience. Technical Report RJ10004, IBM Research Report, February 1996.

[2] M.W. Berry, S.T. Dumais, and G.W. O'Brien. Using linear algebra for intelligent infor-

mation retrieval. SIAM Review, 37(4):573{595, 1995.

13



[3] C. Bishop. Neural networks for pattern recognition. Oxford University Press, 1995.

[4] D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley, 1989.

[5] Jonathan M. D. Hill, Stephen Donaldson, and David Skillicorn. Stability of communica-

tion performance in practice: from the Cray T3E to networks of workstations. Technical

Report PRG-TR-33-97, Oxford University Computing Laboratory, October 1997.

[6] V. Kumar, S. Shekhar, and M. Amin. A highly parallel formulation of backpropagation

in hypercubes. IEEE Transactions of Parallel and Distributed Systems, 5, No.10:1073{

1091, October 1994.

[7] S. Muggleton. Inverse entailment and Progol. New Generation Computing Systems,

13:245{286, 1995.

[8] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan-Kaufmann, 1993.

[9] R.O. Rogers. Data mining with parallel neural networks: Bulk synchronous parallelism

and the optimality of batch learning. Master's thesis, Department of Computing and

Information Science, Queen's University, 1997.

[10] R.O. Rogers and D.B. Skillicorn. Using the BSP cost model for optimal parallel neural

network training. Future Generation Computer Systems, 14:409{424, 1998.

[11] D.B. Skillicorn, J.M.D. Hill, and W.F. McColl. Questions and answers about BSP.

Scienti�c Programming, 6(3):249{274, 1997.

[12] H. Toivonen. Discovery of frequent patterns in large data collections. Technical Report

A-1996-5, Department of Computer Science, University of Helsinki, 1996.

[13] Top500 list. In Supercomputing '98, November 1998. www.netlib.org/benchmark/

top500.html.

14


