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Abstract

We present a new model, the Networks of Tasks (NOT) model, that allows modules from skeleton-

like languages to be embedded in static task graphs. The model is designed to provide transparent

cost information, so that program designers can accurately predict the execution time performance

of their programs as they assemble them. This is done by using an implementation technique

called work-based allocation which uses adaptivity of the component node programs to execute

the task graph with the same work and communication cost that is visible when the task graph is

assembled. The semantics of NOT programs is simple enough that formal methods for developing

them are straightforward. A re�nement-based calculus for the NOT model is also outlined, and

a law for handling residuals is given.

Keywords: task graph, adaptive computation, heterogeneous computation, program

transformation, cost modelling, formal methods, re�nement calculus.



1 Introduction

Constructing parallel software is made easier and more cost-e�ective if the parallel program-

ming model (that is, the abstract machine to which the programming language is targeted)

has the following properties:

� It is portable so that programs can be written once, but executed on many di�erent

platforms without further modi�cation;

� It is e�ective at using the available resources of target platforms, so that performance

justi�es using parallelism; and

� It is predictable so that the costs (e.g. execution times) of programs can be computed

more directly than by executing them.

Predictable costs are necessary if programs are to be designed, since without them program-

mers cannot make informed choices between di�erent data representations and algorithms

[15]. Without such costs, parallel programming remains a black art, and programs tend to

be based on the �rst plausible design, rather than the best design.

Predictability for costs requires the programming model to have an associated cost model

that is:

� accurate { predicted costs are close to those observed by executing programs;

� simple { only a small number of program and architectural parameters are required to

compute costs;

� monotonic in the architectural parameters { when the machine parameters get better,

programs get faster;

� convex in the program parameters { decreasing the cost of the piece of the program

decreases the cost of the whole program.

Inaccuracy makes a cost model useless, and may even encourage poor designs by misrep-

resenting which parts of programs are expensive. Complexity makes costs inaccessible to

designers, who will therefore not use them. Lack of monotonicity impacts portability, since

a better machine will not necessarily run a particular program faster. Lack of convexity

means that programs must be built as a whole, since a programmer cannot safely conclude

that improving a piece of the program will necessarily improve the entire program.

Convexity is an easy property to achieve for cost models of sequential programs, as these

tend to be additive: the cost of a program is the sum of the costs of its pieces. However, in

a parallel setting, convexity is much more di�cult. For example, congestion is a non-linear

phenomenon of communication networks. Slowing down or postponing the execution of one

part of a program may decrease applied load on the interconnect at a critical moment and

increase the throughput seen by other parts. This may well improve the overall performance.

A programmer can never be sure, in most parallel programming environments, whether it is

a good idea to communicate as early as possible, or at some later time.
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2 Existing Parallel Models

In the past decade, several families of parallel programming models have been developed that

satisfy the requirements outlined in the previous section. They are all based on sequential

composition of building blocks that �ll the `width' of the target platform. The use of se-

quential composition means that the cost of a program is once again a summation: the sum

of the costs of the individual building blocks. For many of these models, the set of available

building blocks is �nite, and so the cost (and implementation) for each can be worked out

in advance. Many such models also allow building blocks to be adaptive, either because

they have accompanying transformation systems which allows for substitution of functional

equals by di�erent implementations; or because blocks can be internally rearranged to use,

say, fewer processors.

Examples of families of models are:

1. Data-parallel languages, in which each processor executes the same instruction on dif-

ferent data associated with each virtual processor [9]. The cost of the parallel program

is the same as that of the (sequential) program executed by each processor.

2. SPMD languages, which relax the precise instruction-by-instruction synchronisation

of data-parallel languages in favour of a more-sporadic synchronisation. However,

each processor executes the same (sequential) program and so the cost of the parallel

program is larger than that of a single sequential program by a predictable overhead

term describing the cost of the necessary synchronisations.

3. Skeleton languages [6], which provide a set of basic internally-parallel operations from

which programs are constructed. There is wide variety of ways in which these basic

operations are chosen, from the categorically-motivated choices of BMF [3], to prag-

matic choice based on particular application domains [7, 13]. Most skeleton languages

provide costs for each skeleton, and program costs are simple sums of these basic costs.

4. Models such as Bulk Synchronous Parallelism (BSP) [18] and Calypso [2] that use

virtual barrier synchronisations to reduce parallel programs to sequential compositions

of supersteps. The content of supersteps can be arbitrary, but their costs can be readily

computed based on local computations and the volume of communication involving

each processor.

These models have been quite successful in certain applications, but they clearly have

some limits. In particular:

� it may be unnatural to express some computations as the single sequence of blocks

that these models require;

� the (virtual) parallelism expressed in the program may be smaller than the parallel

capacity of the target platform, so some processors are necessarily idle;

� the application may have dynamically-varying structure that depends on the values,

not just the sizes, of the input data.

2



In each of these three situations, skeleton-like programming models are ine�ective.

One step towards a solution is to relax the requirement that programs are sequential

compositions of building blocks, and instead allow them to be directed graphs, whose nodes

are blocks as before and whose edges represent the data dependencies that must now be

made explicit. Such graphs are often called task graphs.

In this paper we de�ne a task graph model, the Network of Tasks (NOT) model, explicitly

designed for accurate cost modelling. This constrains choices substantially, but the resulting

model is reasonably expressive. Because the model has a simple semantics, it is also possible

to de�ne a software development methodology for the model, based on extending the Re-

�nement Calculus. In Section 3 we look at the properties of existing task graph models and

languages that are similar to the NOT model. In Section 4 we introduce the NOT model in

detail. In Section 5 we present several implementation techniques that produce a cost model

with the desired properties. In Section 6 we describe a re�nement system for the NOT model

and discuss the issue of graph residuals.

3 The Design Space of Task Graphs

Task graphs are not a new idea. Data
ow programs are examples, although ones in which

the graph nodes are single instructions. We outline the design choices that can be made

in designing task graphs, and compare several existing designs for task graphs as parallel

programming models.

Task graph models and languages tend either to be extensions of data-parallel languages,

adding the capability to introduce tasks; or extensions of task-based languages in which the

nodes become internally parallel. Models tend to re
ect something of their origins in their

design { in particular those of the �rst kind tend to have a distributed view of memory, while

those of the second kind tend to have a shared view of memory.

Here are the design choices for task graphs:

a. How rich a structure is allowed for the graph?

b. What substructures are allowed in the graph?

c. Are cycles permitted, and under what circumstances?

d. What is the memory model?

e. What types of nodes are allowed?

f. Is state maintained between nodes?

g. Is the graph structure static or dynamic?

h. How are edges identi�ed?

i. What is the semantics of edges?

j. What is the implementation strategy?

k. What is the cost model?

Three models of the �rst kind, that is extensions of data-parallel languages that enrich

them with a graph structure, are COLT [12], SkIE [21], and Rauber and R�unger's Task

Graphs [14]. Each of these models allows stateless nodes written in an imperative language,

connected by edges representing variables that are implicitly distributed if the variables
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concerned are non-scalar, and pipelined. The set of graph substructures di�ers slightly:

COLT allows pipelines and farms, while SkIE extends this with a seq and a loop construct.

Task Graphs allow only seq and par constructs. COLT and SkIE use names to associate the

heads and tails of communications, while Task Graphs use position as well. All three models

use a global heuristic to optimise the distribution of data and the choice of implementation

for each node.

Other models have developed from approaches that already incorporate the idea of a

task graph. Bal and Haines [1] give a good survey. One well-known example is Opus [5].

Programs are collections of parallel objects that interact via shared data abstractions which

manage the invocation of remote methods, synchronously or asynchronously. Objects are

statically-allocated, but data are dynamically redistributed at calls. Fx [19, 20] is an exten-

sion of HPF in which subsets of data-parallel code can behave as if they were independent

processes runnning on processor groups. This allows a monolithic data-parallel program to

be decomposed into a hierarchy of smaller data-parallel programs with a graph structure

connecting them. The connections have copy to and from semantics.

4 The Network of Tasks Model

The Network of Tasks (NOT) model extends distributed-memory approaches such as COLT

and SkIE to richer graph structures and uses implementation techniques that permit simple

cost models.

A NOT program is an arbitrary directed graph, acyclic except within certain substruc-

tures. Arbitrary subgraphs may be encapsulated as named objects, but the only e�ect is to

provide a scope for edge names within the subgraph. There is also a loop construct of the

form:

first

block1

while predicate on edge values

block2

Both block1 and block2 may be arbitrary blocks, but block2 has the same edge names as

its inputs and outputs. Edge names in block2 that appear outside the loop construct get

the values produced by the last execution of block2 , the one for which the predicate is false.

Note that block2 is executed repeatedly in its entirety, that is the repetition is at the level

of blocks, not within block2 . The loop construct is semantically equivalent to a path in the

task graph beginning with block1 , and continuing with a sequence of block2 's whose length

is not known at compile time, but whose other properties are. Graph structures are static,

apart from the dynamic behaviour of the loop construct.

Nodes in a NOT graph are arbitrary programs from models discussed in Section 2, and

may be heterogeneous. Each node program must be minimally adaptive, in the sense that

Brent's theorem can be used to reduce its parallelism at the expense of its execution time,

and must provide a cost expression parameterised by the number of processors on which it

executes. Nodes may also describe any deeper adaptivity that they possess, and this may

be used by the NOT implementation system.
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The NOT model assumes a distributed-memory implementation, and no state is retained

between blocks. Programs in the model may be compiled to execute on a single parallel

computer, or may execute on an ensemble of di�erent computers (although it is not intended

for the sort of wide-area computation exempli�ed by the Globus project [8]).

Edges are identi�ed by name, using a single assignment semantics in a textual form of

the graph, or as edges in a visual form of the graph. The data that 
ows along an edge is a

list of variable values, where the variable may be scalar or structured. For simplicity, a set

of edges may be regarded as a single edge, with a bag of lists of values 
owing along it.

There are three types of edges distinguished by the timing of data 
ow:

File of { The whole list of values must exist before any transfer of data takes place.

This is the basic type of edge. The name of the edge may be a simple name, in which

case the output of one node is connected to another directly. The name may also be

a �le name when it appears as a node output, and a URL when it appears as a node

input. This allows intermediate values to remain in existence, as �les, after a program

has terminated; and also allows single programs to be distributed over ensembles of

computers.

Block of { Data is pipelined in blocks of instances, determined either by the compiler

or by the programmer.

Bag of { The ordering of the data is not important, and it may be generated and

consumed in any order (but is available in a pipelined fashion).

Thus a typical program might look like:

graph a in(x,y : file of int(100, 100)) out(t: file of real(100))

prog1 in(x) out(z: file of real(100))

prog2 in(y) out(q: file of real(10))

prog3 in(z,q) out(t)

end

The NOT model does not really address programs whose behaviour is dynamic, since

the task graph structure itself is static, except for the loop construct. There is always a

di�cult trade-o� between dynamic behaviour and cost modelling, since complex decisions

at run-time are hard to model accurately at design time.

5 Implementation

The implementation of the NOT model is motivated by the need for a useful cost model as

well as by concerns with portability and e�ectiveness.

Let us begin by de�ning some terms. Consider the sets of nodes in the graph that are

disjoint in the sense that there is no path connecting any pair of them. Such sets represent

nodes that might be simultaneously active in some execution of the graph. The graph width

is the cardinality of the largest such set. The length of a task graph is the number of layers

(that is, the number of nodes) along the longest path from source to sink.
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Nodes may be adaptive in two senses. There may be di�erent implementations that

capture the functional behaviour of a node. These di�erent implementations often have

di�erent costs, particularly for communication. The NOT model makes these implementation

choices to globally optimise the task graph cost.

The second kind of adaptivity is the tradeo� between processor resources and execution

time of the sort described by Brent's theorem [4]. The nodes of a task graph have a cost

associated with them, expressed in terms of the number of processors available to execute

that node. It is useful to think of these as the vertical (time) cost of the node, given

a (horizontal) number of processors used, and natural to write such nodes in a way that

captures the maximum available parallelism. This is because Brent's theorem gives a generic

way to execute a parallel program on fewer processors than it was designed for, with a

corresponding increase in execution time, so that the total work (product of time taken and

processor used) remains constant. Each set of disjoint graph nodes has a width based on the

sum of the (virtual) parallelism of the nodes it contains. The total width of a task graph is

the largest such sum.

The implementation strategy for a task graph depends on the relationship between the

width of the graph (which corresponds to the available virtual parallelism) and the number

of the processors in the target, p (which is the available physical parallelism).

Roughly speaking, there are three situations:

� If p < graph width then there is little point in trying to exploit intra-node parallelism,

and not even the parallelism of the task graph itself can be fully exploited.

� If graph width < p < total width, then the parallelism of the task graph can be fully

exploited, and there may be some opportunity to exploit intra-node parallelism as well.

In this case, we use work-based allocation as the implementation technique.

� If total width � length < p then it becomes sensible to use pipelining to execute all

nodes of the graph simultaneously. It may also be possible to use farming to increase

the e�ective parallelism of single nodes in the graph, or indeed of the entire graph.

In fact, as we shall see, it is not the total width that is important so much as the e�ective total

width, which is usually smaller and depends on how much slack there is to move computation

forward or backward in the graph, e�ectively reducing the parallelism needed at particular

times.

Of course, these are general guidelines. There are programs in which a single node forms

a bottleneck for which a farm may be useful; and programs with a path on which much of

the computation lies for which pipelining may be useful.

5.1 Implementation for Small p

Increasingly, systems with modest parallelism (p � 4) are becoming available, but tech-

niques for simply and e�ectively programming them are lagging behind. Multithreading,

for example, requires relatively sophisticated understanding of synchronisation and memory

management. There is some attraction to implementing the NOT model in such a way that

it make e�ective use of small-scale parallel systems as well as those with greater parallelism.
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Task graphs express two levels of parallelism: that of the graph itself, and that of the

nodes. When the physical parallelism is small, the overheads of communication dominate. In

this setting, it seems sensible to execute the nodes sequentially, and use the limited parallel

capacity at the level of the graph.

Optimal scheduling of a graph of nodes representing sequential computations is a well-

studied problem [11], and algorithms are typically exponential in the number of nodes in

the graph. In practice, heuristics are used. When the problem is to schedule a graph on a

small number of processors, simple heuristics exist. For example, there are graph drawing

algorithms that produce good layouts for DAGs in time linear in the number of nodes. Such

drawings become schedules by drawing lines through the layout, and using the regions so

produced as processor allocations.

5.2 Implementation for Moderate p

For larger target architectures, it becomes appropriate to exploit both the parallelism within

the task graph nodes, and the parallelism between graph nodes. For this, we use work-based

allocation, a technique that exploits inter-node parallelism �rst, then intra-node parallelism,

and does so in such a way that performance is predictable.

We consider �rst the implementation of task graphs without the loop construct. Every

such graph can be mapped to a series-parallel structure in which the work requirements for

each subgraph can be easily seen. This does not always produce an optimal schedule, but it

produces one whose structure is readily visible at the software level.

When di�erent implementations of each node are possible, �nding the choices which

optimise both total computation and total communication is di�cult. Many approaches

to modelling the cost of communication have been tried. Typically, these are based on a

transmission cost per byte, and perhaps an overhead term for each message. It is hard to

account for the e�ect of congestion on message transit times because it is a global property

that depends on the total applied load. The BSP cost model [18] has been shown to be

accurate over a wide range of real computers and application programs. In this model,

the cost of communication depends on the volume of communication into and out of each

processor. Each parallel computer is characterised by a single parameter, g (in units of

instruction execution times per byte), which measures the permeability of the interconnect

to continuous random tra�c. A node that sends and receives a total of h bytes will be

charged hg (NB in units of instruction execution times) for its communication. The total

communication cost of a set of processors communicating is the maximum of these hg terms.

All of the congestion-like properties are captured in the measurement of g which can be

regarded as the reciprocal of a resistance. In the true BSP model, communication takes

place, in all processors, at the end of supersteps, that is roughly simultaneously. However,

work-based allocation creates a similar situation, since the computation phases of nodes will

tend to complete at similar times. Therefore, the BSP model for communication is likely to

be accurate.

When the variable associated with an edge of the task graph is non-scalar, it will typically

be computed by code that is distributed over the set of processors executing its producer

node, and be destined for the set of processors executing its consumer node. Thus each graph
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edge is in fact a bundle of edges from a set of processors on which the source node is executing

to a set of processors on which the destination node is executing. If the nodes of a task

graph are explicit programs written in some language such as HPF then the distribution of

variables is completely determined by the program, and the exact pattern of data movement

along a bundle of edges is completely determined by this distribution. However, when the

programming language in which the node program is written is based on a model that allows

transformations between semantically-equivalent textual forms, these di�erent forms may

have di�erent distributions for variables that are moved along graph edges. The best form

for a node program can only be computed by including the cost of communication, including

redistributing input and output data structures. This requires (at least) a cost model for

communication along graph edges.

This problem can be solved by using the BSP cost model for communication and a

shortest-path algorithm for searching alternate implementation structures. The paper [17]

shows how to solve the global optimisation problem for the case where the parallel program

structure is a sequence of nodes, each of which might have multiple parallel implementa-

tions, and communication is costed using the BSP cost model. The algorithm produces the

optimum in time polynomial in both the number of nodes in the sequence, and the number

of alternatives for each step. This algorithm can be extended to the graph case.

The basic algorithm works by �nding the shortest path through a graph whose nodes

are alternate implementations of each step, labelled with their costs, and whose edges are

communication patterns necessary to connect di�erent implementations, also labelled with

their costs. Using the BSP cost model means that these costs are in the same units, reducing

the problem to one-dimensional minimisation.

The graph version of the algorithm works, layer by layer, through the graph. Suppose for

simplicity that every one of the n layers of the graph consists of w tasks, and that there are

a alternative implementations of each task. Then there are aw possible con�gurations of the

�rst layer. Each of these con�gurations can be extended to the next layer by choosing one

of the aw possible con�gurations for the next layer. Thus the total cost for the algorithm is

a2wn. This is likely to be a very pessimistic bound in practice. The value of a is likely to be

at most 2 or 3, with many tasks only having one plausible implementation.

Task graphs whose nodes are adaptive in this strong sense of possessing multiple im-

plementations for nodes have now been transformed to a form that is optimal with regard

to these choices. It now remains to transform the task graph as a whole to best use the

available processors.

If all nodes of the graph are regarded as identical, then the graph can be arranged in

layers, beginning with those nodes whose input edges come from outside the graph, then those

nodes whose inputs come only from nodes in the �rst layer, and so on. This arrangement

de�nes the earliest layer for each graph node. Repeating the procedure from the end of the

graph gives an arrangement in which the layer de�ned is the latest layer for each graph node.

Each node is now labelled with its earliest and latest layer.

A node that spans i layers is divided logically into i sequential nodes, each of the original

width and taking an ith fraction of the execution time of the original node. The graph now

consists of nodes in layers. The schedule aims to have each layer complete at the same time.

The node in each layer that takes the longest to complete is the one with the largest
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Figure 1: Task Graph and its Rectangle Form

execution time, and nothing can be done to speed it up because it has been expressed with

maximum available parallelism. Instead, all of the other nodes in the layer are slowed down,

by allocating fewer processors to them than they can take advantage of, so that each �nishes

at about the same time as the slowest. (This will not work out exactly because of rounding

errors.) If the slowest node in a layer takes time t0 then a node with costs p and t will be

reallocated to

p0 =
pt

t0

processors.

The allocation of processors to nodes using this algorithm allows each to complete at the

same time as all of the other nodes whose latest layer in the same as its own. In other words,

the use of p0 processors causes the graph to be executed in real time in the same relative

order as in virtual time. Nodes with a large slack (the di�erence between earliest and latest

layers) tend to be assigned few processors, while those with small slack tend to be assigned

many processors. The work cost of the task graph is the same as the sequential cost (that is,

perfect speedup) as long as no more processors are used than the e�ective maximum width

of the graph.

An example is shown in Figure 1. Each node in the task graph on the left is labelled with

its maximal parallelism and time required for execution (that is, the length of its critical

path). The graph width of this task graph is 3, and the total graph width is 40. The total

amount of computation required is 1000, which is the time that the entire graph would take

to execute sequentially. The rectangle form of the graph is shown on the right hand side of

the �gure. Nodes A and B are both in layer 1, node C spans layers 1 and 2, and nodes D

and E are both in layer 2. From this it can be seen that the maximum e�ective width of the
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graph is 25, and its total execution time using this number of processors is 40. Allocating

any further processors does not reduce the execution time. Brent's theorem can be applied

straightforwardly to the rectangle, so that, for example, 10 processors would be allocated

4,4,2 to the three subrectangles, giving a completion time of 100.

Of course, naively applying this scheme may require very di�erent numbers of processors

in di�erent layers. It is straightforward, however, to incorporate a constraint on the number

of available processors into the algorithm. (Of course, a layer with very little available

parallelism may still underutilise the available processors { but this is unavoidable, and

visible to the programmer.)

In theory, the overall work of the work-based allocation scheme is the same as the total

work of the component nodes, and the total actual execution time is the total work divided

by the number of actual processors available for allocation. This may not work out exactly

because the number of processors allocated to a node must be an integer, and so there will be

inaccuracies because of roundo�. There may also be inaccuracies because of nodes that span

multiple layers. Such nodes are always spread over time, but it may happen that they could

have been executed by spare processors in a particular single layer. Even in the pathological

case, the error is at most a factor of two.

It remains to extend work-based allocation to include the costs of communication. The

reason that this allocation scheme works for computation is that (approximately at least)

the time taken for the computation part is given by

time = work=processors

In other words, as the number of processors is reduced, the time taken grows linearly. The

BSP cost model for communication has the same property. If the volume of communica-

tion into and out of a processor is h for a program with virtual parallelism p, then the

communication cost of a program implemented on p0 processors is roughly

communication cost = h=(p=p0)

Work-based allocation, however, allocates the number of processors for the upstream and

downstream sides of a communication pattern independently. Fortunately, the same scaling

property applies to the fan-out and fan-in independently. The cost of a communication

pattern can be divided into these two costs, the fanout cost allocated to the upstream node,

and the fanin cost allocated to the downstream node. The e�ect is that nodes that involve

a lot of computation, or have heavy communication needs will be allocated more processors,

preserving the layered execution property of work-based allocation.

Separating the input and output cost of communication does introduce a slight problem.

Consider a communication step in which one processor sends messages to p others, and one

processor receives p messages, one from each of the others. The standard BSP cost model

charges pg for such a communication pattern. By separating the cost into fanout and fanin

terms, we increase the apparent communication cost. Thus we must be careful to separate

the costs used as the basis for processor allocation from costs that might be reported to

the programmer, re
ecting the performance seen at execution. (In any case, the BSP cost

model's choice to aggregate the fanout and fanin costs is somewhat arbitrary, and other

variants have been suggested.)
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This scheduling algorithm does not handle loop constructs, since it is static and the

number of iterations of a loop body cannot be known at compile time. The width of the

body node is known, and indeed we only need to choose a communication pattern once since

a loop is a path connecting identical nodes. However, we do not know the total work that

the loop will do, so we do not know how best to allocate processors to it. There are two

approaches to this. The �rst is to use a static estimate of the number of times each loop will

iterate (a compiler writer's rule of thumb is that this is 10). The second is to handle processor

allocation at runtime, rather than during compilation. This has the added advantage that it

allows other dynamic behaviour in the task graph such as node spawning, provided that, as

before, a cost expression is available for each node. The di�culty with dynamic scheduling

is that there is no way of knowing, in advance, which processors will execute which nodes,

so that code must be loaded into many more processors than actually need it.

5.3 Pipelining

Pipelining can improve the performance of a task graph if there are more processors available

than can be used by the e�ective width of the graph. In e�ect, pipelining allows the depth

of the task graph to be used as well. There are two requirements, however, for pipelining to

be practical:

1. The modules at the nodes of the task graph must have semantics that allows them to

work on blocks of data at a time. Roughly speaking, this means that modules must

have an outer loop that can be unrolled into blocks of di�erent sizes. For several of

the models we have discussed, implementations of this kind are possible.

2. There must be enough processors available to allow the entire task graph to be pipelined,

since pipelining the �rst few stages and then reverting to nonpipelined for the remain-

der does not provide any overall performance improvement.

It is reasonable to expect that the cost of a node module becomes

pipelined cost = cost=(block size=�le size)

given the semantics above.

Work-based allocation can still be used to schedule processors for pipelined execution.

Notice that work-based allocation has the property that each `layer' of the task graph �nished

at approximately the same time, by construction. If the same relative allocation of processors

is made, this means that the pipelined versions of each layer will have the same behaviour

as the nonpipelined versions. In other words, the modules in each layer will produce their

next block of outputs at about the same time. Logically speaking, pipelined work-based

allocation allocates processors in the rectangle version of the task graph described previously

using the volume of each rectangle. However, since the lengths of nodes being considered

simultaneously are the same, this is equivalent to allocating them based on e�ective width.

Thus we get the same allocation as in the non-pipelined case.

It is less clear that communication cost modelling remains the same. In our earlier use

of the BSP cost model we ignored any costs due to start-up e�ects (BSP's l term). This is
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not unreasonable when �le of semantics are used for edges, since the total amount of data

moved is large and start-up e�ects accordingly small. In the pipelined setting, the blocks

actually transmitted may be quite small, and start-up e�ects signi�cant. The cost of these

extra e�ects need not a�ect the allocation used, since every message presumably pays the

same penalty on start-up. They will, however, add to the overall cost of the program which

will see a cost of

number of blocks� startup penalty

between each pair of layers.

5.4 Farming

In a sequential composition of modules, farming can be used to balance a pipeline by intro-

ducing parallelism into the slowest module. In our task graph setting, we can instead vary

the performance of a module by increasing or decreasing the number of physical processors

allocated to execute it. However, there is still one situation in which farming can be use-

ful, and that is to increase the virtual parallelism of a module. Using a farm allows us to

get around the limitation of Brent's theorem in a situation where we would like to allocate

more physical processors to a module than its virtual parallelism allows, in order to shorten

the execution time of the layer in which it appears. Once again, there are two necessary

conditions: the semantics of the module must allows its input and output edges to have

bag of semantics; and there must be extra physical processors that could not otherwise be

e�ectively used.

There is one other situation in which farming is commonly used: when the cost of pro-

cessing a block of input varies signi�cantly with the values of that input. At the level of cost

modelling we have been assuming, such cases are not easy to extract since we have assumed

cost expressions that are upper bounds, determinable at compile-time. This use of farming

can be exploited in systems that use exact cost expressions and minimise over every element

of a data stream, but cannot naturally be handled by the sorts of cost model we have been

advocating. There is one exception: it is possible that when a data stream is unpacked from

�le into blocks, the terms of the nested cost expression may have di�erent sizes. A farmed

implementation would enable a maximum (for an upper bound) to be replaced by an average

if the semantics of the module allowed it.

6 Software Development

Very little is known about formal software development in the context of graphs. When

research into data
ow graphs was active, there was not enough interaction with formal

methods researchers to stimulate cross-fertilization.
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6.1 Extending the Re�nement Calculus to Graphs

The Re�nement Calculus [10] is a set of rules for manipulating speci�cations and sequential

programs. Speci�cations are of the form

frame : [precondition; postcondition]

where the frame is a list of the variables that may be altered and the precondition and

postcondition are predicates on these and other variables. A speci�cation is an abstract

computation that, started in a state satisfying the precondition, terminates in a state sat-

isfying the postcondition, altering only variables mentioned in the frame. The calculus is a

set of laws that de�ne when one speci�cation re�nes another. Laws are justi�ed by weakest

precondition reasoning, and so the Re�nement Calculus can be viewed as a packaged form

of weakest precondition software development. Some speci�cations are designated as code,

that is speci�cations that are directly executable, based on the target environment chosen

for the calculus. The Re�nement Calculus is used to transform (by re�nement) a high-level

speci�cation into an executable program. It is important to note that the calculus itself does

not automate any of a derivation. It is possible to derive infeasible programs, even when

feasible ones exist. Rather, the role of the calculus is to reduce the search space of imple-

mentations, guide the developer to regions that are likely to contain good software solutions,

and provide a record of the design decisions made.

The Re�nement Calculus assumes a single, global memory with unlimited read access, so

it is not directly applicable to task graphs. However, the style of the Re�nement Calculus is

useful in developing a new calculus that does apply to graphs. A similar extension has been

used to de�ne a calculus for BSP programs, for instance [16].

Because the NOT model is based on distributed memory, and no state is preserved

between blocks, it is straighforward to construct a re�nement calculus for task graphs (RC-

NOT).

De�nition A graph speci�cation has the form:

inputs; outputs : [pre; post]

where inputs and outputs are bags of lists of variable names in which the names appearing in

inputs are unique, pre is a predicate mentioning only names appearing in inputs, and post is a

predicate.

A graph speci�cation describes an abstract computation that, given values for the variables

appearing in inputs satisfying pre, terminates and produces values for the variables in outputs

satisfying post. A graph speci�cation is feasible if there is a real computation with these

properties.

The basic graph re�nement law is this:

Law[Graph Re�nement] Given a graph speci�cation

inputs; outputs : [pre; post]

a graph re�nement is:

� a partition of inputs into a bag of lists, and a partition of outputs into a bag of lists in

which each variable name appears exactly once;
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� a set, A, of graph speci�cations of the form

ina; outa : [prea; posta]

(a 2 A) connected by a set of directed edges, e, where a directed edge is a list of variables

whose tail is a speci�cation in which e appears as an element of outa or a bag in the

partition of inputs; and whose head is a speci�cation in which e appears as an element of

ina or as a bag of the partition of outputs.

A predicate is associated with each edge in the following way. Any postcondition of a speci�cation

whose output bag consists of i lists can be expressed in the form

^
pred

i
^ pred

where pred i mentions only variables in the ith list, and pred is any other predicate that does not

contain a conjunctive subterm mentioning only variables from a single output list (so the pred i
are as large as possible). The predicate pred

i
is associated with the edge corresponding to list i.

In a similar way, the partition of the predicate pre produces associated predicates for the edges

of inputs.

The set, A, of graph speci�cations must have the following properties:

� the directed edges do not form a cycle;

� the precondition, pre
a
, of each speci�cation is a conjunction of the predicates associated

with the edges for which that speci�cation is the head;

� the conjunction of the predicates associated with each edge in outputs implies post.

This complicated law expresses the fact that a speci�cation can be decomposed into a directed

graph of subspeci�cations, one for each module, and that the preconditions for each module

are whatever is known about the values of its inputs, which in turn are determined by

postconditions of upstream modules. Note that a module cannot know anything about the

relationships of its inputs to other variables whose values it is not sent. This seems realistic for

the kinds of applications we envisage, especially as we view modules as being independently-

derived in some other formalism. It seems to be possible to weaken this restriction to allow

other parts of postconditions to be associated with edges but this introduces messy scope

issues.

Once again, the calculus provides guidance, but does not prevent false steps in derivations.

For example, it is probably a good idea to ensure that pred in postconditions is the simple

predicate true (so that nothing is computed that isn't used), but this is not required by the

calculus.

The following law allows the loop construct to be introduced into a task graph.

Law[Loop introduction] A graph speci�cation

inputs; outputs : [pre; post]

is re�ned by
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first

inputs; out : [pre; inv]

while G

out; out : [inv ^G; inv ^ 0 � varnt < varnt0]

where:

out is a bag of variables that includes output,

G is a predicate on the variables in out,

inv is a predicate such that inv ^ not G! post,

varnt is an expression whose value is obtained by substituting values of variables after

block2 has executed, while varnt0 is the same expression with the values of the

variables as they were before block2 executes.

The predicate G is usually called the guard and determines when the loop terminates. The

expression varnt is usually called the variant and ensures that progress is made by each execution

of block2 .

The loop introduction law assumes �le of semantics for edges. Other extensions are possible:

loops on streams are integral to the language Lucid for example.

A number of other laws for graph speci�cations are required, but they are both technical

and straightforward. For example, both weaken precondition and strengthen postcondition

are necessary.

6.2 Graph Residuals

Software engineers have long hoped for reusable components from which programs could

be built. Progress has been made with the increasing use of object brokers, but Java has

perhaps made reusable components a reality in a new way. Of course, in a sense the libraries

of numerical analysis libraries have meant that much scienti�c programming has reused code

for many decades. In a formal setting, the presence of existing code units means that the

calculus must have some way of capturing the di�erence between a given speci�cation and

the pre-existing module, that is capturing what remains to be done. This is usually called a

residual.

In the NOT setting, what we want to know is: given a speci�cation and an existing

module, what graph structure is required to build a complete computation that satis�es the

speci�cation and uses the existing module. Suppose that we have an existing module A.

Then any graph in which it is used has the structure shown in Figure 2. Note that there

must be at least one edge between regions B and C, since otherwise the graph would contain

a cycle (into and out of A). Given a speci�cation for the entire graph, it is straighforward

to derive the speci�cations for regions B and C. If the speci�cation of A is

inA; outA : [pre
A
; post

A
]

and the overall speci�cation is

inputs; outputs : [pre; post]
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A

B

C

Figure 2: Residual of a given module A

then the speci�cation of B is

inputs; finA; inCg : [pre; preA ^mid]

for an arbitrary predicate, mid, and the speci�cation of C is

foutA; inCg; outputs : [postA ^mid; post]

Note that postA and mid must be variable disjoint, while preA and mid may share variable

names.

7 Discussion

The NOT model is a task graph extension for nodes that may be written in any skeleton-

like programming language provided that a cost expression parameterised by the number of

processors required can be generated. This allows it to be used to glue together heterogeneous

programs written in skeleton languages such as BMF [3], P3L [7], BSP [18], or even HPF.

Unlike other task graph extensions, NOT emphasises performance transparency so that

software developers can reliably predict the performance of their programs from the perfor-

mance of the nodes and the graph structure. This is achieved by using an implementation

strategy that preserves the work (product of processors and time) of the underlying node

programs, and uses the BSP cost model to model to cost of communication.

The relatively simple structure of NOT programs makes it possible to give a re�nement

calculus style set of construction rules by which NOT programs may be derived from spec-

i�cations. Unlike the sequential case, the application of a single rule produces not a single

statement but the entire high-level structure of the NOT program.
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