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Abstract

There are few formal de�nitions of real{time problems, and the cur-

rently available de�nitions do not capture all the relevant aspects of such

computations. We propose a new de�nition, and we believe that it allows

a uni�ed treatment of all practically meaningful variants of real{time com-

putations. In order to support our thesis, we also present some important

features of real{time algorithms, namely the presence of deadlines and

the continuous arrival of input data, together with their corresponding

models in our formalism. We believe that this is a �rst step towards a

uni�ed and realistic complexity theory for real{time computation.
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1 Introduction

The area of real{time computations has a strong practical grounding, in do-
mains like operating systems, databases, and the control of physical processes.
Besides these practical applications, however, research in this area is primarily
focused on formal methods and on communication issues in distributed real{
time systems.
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Little work has been done in the direction of algorithms and complexity
theory. In fact, the limited extent of this work is emphasized by the fact that
even a realistic general de�nition for real{time algorithms is missing, although
implicit de�nitions can be found in many places. Some papers have tried to
address this issue, providing abstract machines that model real{time algorithms.
In this context, one can notice the real{time Turing machine, proposed for the
�rst time in [25] and further studied in [13, 21, 23]. Such a formalism o�ers
many insights into the theory of real{time systems, but it fails to capture many
other aspects that are important in practice. Another model is the real{time
producer/consumer paradigm, proposed in [15], which takes into account some
important features, but is suitable for modeling certain real{time systems rather
than for developing a general complexity theory. Finally, the concept of timed
automata is introduced in [8]. The format of languages accepted by such devices
is also presented, together with their closure properties. However, the power
of the language families analyzed in [8] is limited, since there are real{time
problems that cannot be formalized as languages recognizable by memoryless
�nite state models.

Indeed, the domain of real{time systems is very complex, with requirements
varying from application to application. For example, while in some applica-
tions the real{time component is the presence of deadlines imposed upon the
computation, other applications require that input data are processed as soon
as they become available, with more data to come while the computation is in
progress. Variants (and combinations) of these two main requirements are often
present. This complexity of the domain is probably the main obstacle towards
a uni�ed theory.

In this paper, we try to address this issue. We believe that the model
of timed languages proposed in [8] is a powerful tool, but the device used as
acceptor (namely, a �nite automaton) is rather weak. We suggest therefore
an extension of this study. More precisely, we keep most of the important
ingredients in the de�nition of timed languages from [8], but we apply such a
de�nition to a larger extent, suggesting a general model for the acceptors of such
languages. We believe that our construction captures all the practical aspects
of real{time computations, and we support our thesis by showing how two of
the main ingredients of such computations (namely, computing with deadlines,
and input data that are not available entirely at the beginning of computation)
can be modeled using our formalism. We also believe that, starting from the
de�nitions outlined in this paper, a uni�ed complexity theory for real{time
systems can be naturally developed.

We organize the paper as follows. In the next section we brie
y summarize
the notations used through the paper. Then, in section 3, we summarize the
existing de�nitions, emphasizing the points where they fail to capture all the
relevant practical aspects. Then, in section 4 we introduce a new de�nition,
which is more general and more 
exible. We also present here some important
features of real{time algorithms, together with their models in our formalism.
We conclude in the last section.
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2 Notations

Given some �nite alphabet �, the set of all the words of �nite (but not nec-
essary bounded) length over � is denoted by ��. The cardinality of IN, the
set of natural numbers, is denoted by !. Then, the set �! contains exactly all
the words over � of length !. Given two words �1 and �2, �1�2 denotes the
concatenation of them. The length of a word � is denoted by j�j. IR denotes
the set of real numbers.

A general �nite automaton is a tuple A = (�; S; s0; �; F ), where � is the
(�nite) input alphabet, S is a (�nite) set of states, s0 is the initial state, � is
the transition relation, � 2 S � S � �, and F is the set of accepting states,
F � S. When we use �, S, s0, �, and F , we imply the above meaning of these
symbols unless otherwise speci�ed. The accepting condition for an usual �nite
automaton A is as follows: If at the end of the input string, A is in some state
from F , then the input is accepted. Otherwise, the input is rejected.

We assume that the reader is familiar with the concept of Turing machines
[18]. The transition function of the con�gurations of a Turing machine M is
denoted by `M , with the subscript possibly omitted when there is no ambiguity.
As usual, `�M denotes the re
exive and transitive closure of `M .

3 Previous Work

3.1 Real{Time Turing Machines

Probably the �rst work on formalizing the notion of real{time is [25]. Here,
the notion of real{time Turing machine is introduced. Then, the family of
functions/languages that are computed/recognized by such machines is inferred.
This direction is further pursued in [21, 23].

De�nition 3.1 [23]

1. For some constant k, k � 1, an on{line Turing machine is a deterministic
k-tape Turing machine M whose set of states is divided into two subsets:
the set of polling states Kp and the set of autonomous states Ka. All the
states that lead to h in one step are polling states, and the initial state
is a polling state. In addition, the head is allowed to move only on the
right on the input tape, and the relation `M has the following property:
if q 2 Kp, q

00

2 Ka, and q0 2 Kp [Ka, then

(q; uabv; x1; : : : ; xk) `M (q0; uabv; x01; : : : ; x
0

k);

(q00; uabv; x1; : : : ; xk) `M (q0; uabv; x01; : : : ; x
0

k);

(q; uabv; x1; : : : ; xk) `M (h; uabv; x01; : : : ; x
0

k):

M accepts the input w i� (s; w; x1; : : : ; xk) `
�
M (h; �; x1; : : : ; xk), where s

is the initial state and � > 0 is called the running time of M on w.
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2. A real{time Turing machine is an on{line Turing machine for which Ka =
;. A language accepted by such a machine is called a real{time de�nable
language.

2

Brie
y, a real{time Turing machine is an on{line deterministic Turing ma-
chine, whose running time is n, the length of the input word. Note that, con-
forming to a result from [13], given a deterministic on{line Turing machine that
recognizes some language L and whose running time is O(n), one can construct
a real{time Turing machine that recognizes L. A language recognized by a
real{time Turing machine is called real{time de�nable.

Almost the same de�nition, this time in terms of algorithms rather than
Turing machines, can be found in [22]. Here, a linear{time algorithm runs in
O(n) steps on any input of length n. A real{time algorithm is a linear{time
algorithm which has the additional requirement that it spends only O(1) steps
on any input symbol.

Note that the main di�erence between this de�nition and the de�nition in
terms of Turing machines is the absence of the on{line requirement. Therefore,
a real{time algorithm conforming to this de�nition may have access to all the
input data at the beginning of the computation. Moreover, such an algorithm
may skip some input data. However, such a de�nition seems not to be supported
by practice. Indeed, in most of the real{time applications, such as real{time
databases [7, 24], real{time scheduling [14], tracking devices [15], or process
control [17], the input data cannot be skipped. As well, not all of them are
available at the beginning of the computation.

In addition, in the real world, O(1) time for each input datum is not always a
su�ciently strong condition. As an example, take the railroad crossing problem
[17], which consists in the design of a controller that opens and closes a gate at
a railway crossing. The speci�cations of the problem impose precise time limits
on the actions performed by the controller. For example, it is not mentioned
that the gate should close at some constant (but arbitrarily large) time after
the request to close has been issued, but the action has to be completed in some
�xed time span (say, 20 seconds) instead.

3.2 The Real{Time Producer/Consumer Paradigm

Another model for real{time computations is presented in [15]. This model is
based on the producer/consumer paradigm. In such a paradigm, there are two
entities, a producer, that produces messages, and a consumer, that consumes
the produced messages. They communicate through a bu�er, that keeps those
messages that were produced, but not consumed yet. Based on this model,
the real{time producer/consumer paradigm (RTP/C) is introduced. Here, the
producer produces messages at a given rate, and the consumer must consume
the messages at the rate they are produced (the bu�er is thus eliminated). A
real{time system is composed then by a set of such communicating processes,
together with some storage space.

4



The thesis mentioned in [15] is that the RTP/C paradigm applies to a wide
variety of interesting and important real{time applications, where all the data
arriving from the external world must be processed in real{time. However, the
concept of production rate may not be expressive enough in some cases. More
precisely, given the railway crossing problem mentioned above, the main event
is the arrival of a train at the crossing, which does not happen at a speci�ed rate
(in fact, there is a possibility that the train never arrives). Another example
where the RTP/C paradigm is not applicable is the data{accumulating paradigm
(described in section 4.3.2), where the arrival rate varies over time.

3.3 Timed Automata

Finally, a third model of real{time computation is the timed (�nite) automaton
[8]. The theory of such automata starts from the theory of !-automata.

An !-automaton is a usual �nite state automaton A = (�; S; s0; �; F ), whose
accepting condition is modi�ed, in order to accommodate input words of in�nite
length. More precisely, given an (in�nite) word � = �1�2; : : :, the sequence

r = s0
�1
�! s1

�2
�! s2

�3
�! : : :

is called a run of A over �, provided that (si�1; si; �i) 2 � for all i > 0. For such
a run, inf(r) is the set of all the states s such that s = si for in�nitely many i.

Regarding the accepting condition, a B�uchi automaton has a set F � S of
accepting states. A run r over a word � 2 �! is accepting i� inf(r)\F 6= ;. The
acceptance of a Muller automaton on the other hand does not use the concept
of �nal state. For such an automaton, an acceptance family F � 2S is de�ned.
Then, a run r over a word � is an accepting run i� inf(r) 2 F . A language
accepted by some automaton (B�uchi of Muller) consists of the words � such
that the automaton has an accepting run over �.

Another ingredient of the theory developed in [8] is the time sequence. A
time sequence � = �1�2 : : : is an in�nite sequence of positive real values, such
that the following constraints are satis�ed: (i) monotonicity : �i � �i+1 for all
i � 0, and (ii) progress : for every t 2 IR, there is some i � 1 such that �i > t.
Then, a timed !-word over some alphabet � is a pair (�; �), where � 2 �!, and
� is a time sequence. That is, a timed !-word is an in�nite sequence of symbols,
where each symbol has a time value associated with it. The time value associated
to some symbol can be considered the time at which the corresponding symbol
becomes available. A timed !-language is a set of timed !-words.

A clock is a variable over IR, whose value may be considered as being ex-
ternally modi�ed. Given some clock x, two operations are allowed: reading the
value stored in x, and resetting x to zero. At any time, the value stored in x

corresponds to the time elapsed from the moment that x has been most recently
reset. For a set X of clocks, a set of constraints over X , �(X), is de�ned by: d
is an element of �(X) i� d has one of the following forms: x � c, c � x, :d1, or
d1 ^ d2, where c is some constant, x 2 X , and d1; d2 2 �(X).

Starting from these notions, the notion of timed !-regular languages is in-
troduced. A timed B�uchi automaton (TBA) is a tuple A = (�; S; s0; �; C; F ),
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where C is a �nite set of clocks. This time, the transition relation � is de�ned
as � � S�S���2C��(C). An element of � has the form (s; s0; a; l; d), where
l is the set of clocks to be reset during the transition, and d is a clock constraint
over C. The transition is enabled only if d is valued to true using the current
values of the clocks in C.

A run r of a TBA A = (�; S; s0; �; C; F ) over some timed !-word (�; �) is an
in�nite sequence of the form

r = (s0; �0)
�1;�1
�! (s1; �1)

�2;�2
�! (s2; �2)

�3;�3
�! � � � ; (1)

where � = �1�2 : : :, � = �1�2 : : :, �i 2 ff jf : C ! IRg for all i � 0, and the
following conditions hold:

� �0(x) = 0 for all x 2 C,

� for all i � 0, there is a transition (si�1; si; �i; ii; di) 2 � such that (�i�1 +
�i � �i�1) satis�es di, for all x 2 C � li, �i(x) = �i�1(x) + �i � �i�1, and,
for all x0 2 li, �i(x

0) = 0.

The notions of accepting run, and language accepted by a TBA are de�ned
similarly to the case of B�uchi automata.

A timed !-language accepted by some TBA will be called a timed !-regular
language. Note that the name for such languages in [8] is simply timed regular
languages (as well, a timed !-language is denoted by timed language), but we
prefer this terminology for reasons that will become evident in the next section,
where we use both notions of �nite and in�nite timed words.

However, the TBA used in [8] for recognition of timed (!-)languages is not
su�ciently powerful to take into account all the real{time applications. But we
will postpone this discussion till the next section.

4 Timed Languages

While the notion of timed languages is very powerful, the device used for recog-
nition of such languages in [8] (that is, a �nite{state timed automaton) is not
powerful enough to model all the real{time computations that are meaningful
in practice. This is supported by the following immediate result.

Theorem 4.1 There are languages formed by in�nite words (!-languages) that
are not !-regular.

Proof. Let us consider the following language over the alphabet � = fa; b; c; dg:
L = faubxcvdxju; x; v > 0g. It is immediate that L is not regular. Now, consider
the following !-language: L! = fl1$l2$l3$ : : : jli 2 L for any i > 0, and $ 62 �g.

Assume now that L! is !-regular. Then, there is a B�uchi automaton A =
(�; S; s0; �; F ) that recognizes it. Let x be a word in L!, x = x1$x2$x3$ : : :.
Therefore, there is a run r of A over x such that inf(r) \ F 6= ;.
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In the run r, let S1 be the set of all the states that A is into immediately
after parsing a symbol $, and S2 the set of all states A is into immediately
before parsing a symbol $. But then one can construct a �nite automaton A0

that recognizes L: let the initial state of A0 be some s0 62 S; then, the set of
states of A0 is S [ fs0g, the set of �nal states of A0 is S2, and the transition
function of A0 is �, augmented with �-transitions from s0 to each state in S1.

But this is clearly a contradiction, since L is not regular. 2

Corollary 4.2 There are timed !-languages that are not (timed) !-regular.

Proof. Simply attach to each word in the language L! a time sequence
� = �1�2 : : :, such that �1 = 0, and �i+1 � �i = 1 for any i � 1. 2

Note that the language L! built in the proof of theorem 4.1 is not uninterest-
ing from a practical point of view. Indeed, it models a search into a database for
a given key: the database is modeled by the word aubxcv , the key to search for
is dx, and the instance that matches the query is simulated by bx. We just found
hence some practical situation which does not pertain to the class of (timed)
!-regular languages.

4.1 A Formal De�nition

Despite the limited scope of the �nite state approach, the concept of timed
languages is a very powerful one. We propose therefore a de�nition that is
similar to the one in [8], but is not restricted to �nite state acceptors.

De�nition 4.1 1. A (�nite) timed word over some alphabet � is a pair
(�#; � 0), where � 2 ��, # 62 �, � is a time sequence, � 0 � � , and j�j+1 =
j� j. A timed language over � is a set of timed words over �.

2. A timed !-word over � is a pair (�; �), � 2 �!, and � is a time sequence.
A timed !-language over � is a set of timed !-words over �.

2

De�nition 4.1 is the same as the de�nition in [8], except that we consider
�nite timed languages as well. However, while the study in [8] restricted itself
to those timed !-languages that are recognized by �nite state acceptors, our
suggestion is that other acceptors (with unbounded storage space) should be
considered. We o�ered a motivation of this by corollary 4.2. In the case of �nite
timed words, a termination time on the recognition process should be imposed.
This is achieved by the presence of a special symbol # appended at the end
of the word, with an associate time stamp �#, which is the deadline for the
recognition process.

In light of the above de�nition, we can also establish the general form of an
acceptor for timed languages. Extending the idea from [8], we de�ne a (general)
acceptor A for timed languages as being composed of a �nite control, an input
device, and a �nite set of clocks, as de�ned in the previous section. The acceptor
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may have access to an in�nite amount of memory. However, only a �nite amount
of this memory should be used in each computation. The �nite state control has
a designated \�nal" state f . In the case of !-languages, a run of A over some
word � is de�ned analogously to the run of a TBA (see equation (1)), except
that the clocks are not updated only at the arrival of a new input symbol, but
at each execution of an elementary operation instead. More precisely, a run of
an acceptor is a sequence of the form

r = s0
�1;�1
�! s1

�2;�2
�! s2

�3;�3
�! � � � ; (2)

where � = �1�2 : : :, � = �1�2 : : :, and s0, s1, : : : are states of the acceptor (s0
being the initial state). The clocks are de�ned as in section 3.3, in the sense
that the only two operations allowed for some clock x is reading of the value
stored in x and resetting x to zero. However, we claimed that the clocks may
be considered externally modi�ed. In the case of TBAs, this condition means
that each time a new symbol appears at the input, the di�erence between the
timestamp of that symbol and the timestamp of the symbol that preceded it
is added to all the clocks, as expressed in the de�nition of a run of a TBA
(see equation (1)). Indeed, since the transitions of a �nite automata can be
considered as taking a time unit to execute, it is enough to update the clocks
at the arrival of a new symbol only. In other words, a TBA can consider every
input at the precise time it arrives. However, when more complex acceptors
are considered, the internal processes for an input symbol may last longer than
the time between the arrival of that symbol and the arrival of its successor.
Therefore, we consider that each clock is incremented each time an elementary
operation is executed. A clock may be reset only at the time some input symbol
is read though.

Then, A accepts the timed language L if, for any input timed word (�#; � 0),
there is a computation of A that reaches the state f at time �# i� (�#; � 0) 2 L.
Analogously, an acceptor A accepts a timed !-language L0 if, for any timed !-
word (�; �), there is a run r of A over (�; �) such that f 2 inf(r) i� (�; �) 2 L0.
In what follows we shall call an acceptor for a timed language timed acceptor,
and an acceptor for a timed !-language a !-timed acceptor.

Even if we discussed here only the notion of timed languages, the extension
for timed problems is immediate. Indeed, a timed problem can be de�ned as
a problem whose possible inputs form a timed language. The de�nition for a
timed !-problem is similar. Concerning the form of a machine that solves an
timed (!-)problem, it is an acceptor for the corresponding timed (!-)language,
except that it is equipped with an output device, where the solution of the
problem eventually becomes available. However, we will allow the machine to
write to the output device only if it's �nite control is in the \�nal" state f .

A �nal note on the set of clocks is in order. In the general case, since the
acceptor has access to an unlimited storage space, the clocks can be stored
here, and no reference to them is necessary. However, the storage space may be
limited. For example, we presented in section 3.3 a special case of such acceptors,
that fall in our general characterization, except that the storage capacity is

8



null. Similarly, one can de�ne timed push{down automata, where the storage
capacity, even if unbounded, has a stack structure, which is not suitable for
storing an arbitrary number of clocks. Therefore, we preferred to treat the
clocks in a special manner, and not make them part of the main memory.

4.2 Timed Acceptors and the On{Line Property

There are few formal de�nitions for on{line algorithms, although this notion is
widely used. We already presented the de�nition from [23], which is given terms
of Turing machines, but it can be easily extended to other models (de�nition 3.1,
item 1).

In other words, an on{line algorithm must process all the input data in the
order they come, without any information on the future data. We will use
this de�nition, except that we drop the requirement conforming to which the
algorithm is deterministic. However, even in this weaker form, the de�nition
is still too restrictive to be useful in our theory of timed languages. Take for
example the language L! from the proof of theorem 4.1. It is clear that an
algorithm that accepts this language is not on{line. Indeed, let the currently
considered part of the input word be : : : $aubxcv. It is clear then that no decision
about the acceptance or rejection of the current string can be made before x d's
have been read.

However, it is easy to see that any acceptor of a timed !-language processes
the input in bundles. More precisely, a bundle is delimited by the moments when
the acceptor reaches the \�nal" state f . Moreover, because of the de�nition of
the accepting run, the number of such bundles is in�nite. Such an algorithm
is not necessarily on{line, but the features are similar, in the sense that the
algorithm is limited in its knowledge about future data to the current bundle
instead of the current datum. We will call such a property pseudo{on{line.
That is, we showed that the de�nition of real{time de�nable languages from
[25] is too restrictive, because of the on{line requirement. We suggest that this
condition should be replaced by the pseudo{on{line one.

4.3 Examples

Our thesis is that the theory of timed languages covers all the practically mean-
ingful aspects of real{time computations, while doing so in a formal, uni�ed
manner.

In particular, note that all the formal models summarized in section 3 can
be considered particular cases of this more general form. More precisely, a real{
time de�nable language is a timed language, where, for an input of length n, the
time values are (�1; �2; : : : ; �n), such that �i � �i+1 is constant for any i. Next,
the RTP/C paradigm can be modeled by creating the time sequence according
to the rate at which the messages are emitted (however, while the RTP/C
model is most suitable for program speci�cation and veri�cation (as mentioned
in [15]), the model of timed languages is more adequate for complexity theoretic
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approaches). Finally, timed automata are obviously a particular case of timed
!-acceptors.

In order to further support our thesis, we will take some meaningful exam-
ples, with practical applications, and we will construct timed !-languages that
model them.

In general, given some problem, we denote the input and the output alpha-
bets by � and �, respectively. We also denote by n and m the sizes of the input
� and of the output o. When a timed !-word is denoted by (�; �), we consider
that � = �1�2 : : :, and � = �1�2 : : :. We consider that �, �, and IN are disjoint.
However, this does not reduce the generality of our constructions, since one can
easily add some special delimiters in the proper places. Nonetheless, the pres-
ence of such delimiters will diminish the clarity of the constructions, hence we
will omit them.

4.3.1 Computing with Deadlines

One of the most often encountered real{time features is the presence of deadlines.
The deadlines are typically classi�ed into �rm deadlines, when a computation
that exceeds the deadline is useless, and soft deadlines, where the usefulness of
the computation decreases as time elapses [16].

For example, a �rm deadline may be expressed as \this transaction must
terminate within 20 seconds from its initiation". By contrast, a soft deadline
may be \the usefulness of this transaction ismax before 20 seconds elapsed; after
this deadline, the usefulness is given by the function u(t) = max� 1=(t� 20)".

Let � be a problem whose instances can be classi�ed into three classes: (i)
no deadline is imposed on the computation; (ii) a �rm deadline is imposed at
time td; (iii) a soft deadline is imposed at time td, and the usefulness function
is u after this deadline, u : [td;1) ! IN \ [max; 0]. We build for each instance
a timed !-word (�; �) over � [ � [ (IN \ [max; 0]) [ fw; dg, w; d 62 � [ � as
follows:

(i) �1 : : : �m = o, �m+1 : : : �m+n = �, �i = w for i > m + n, �i = 0 for
1 � i � m+ n, and �i = i�m� n for i > m+ n.

(ii) �1 2 IN \ [max; 0), �2 : : : �m+1 = o, �m+2 : : : �m+n+1 = �, �i = 0 for
1 � i � m+ n+ 1; if �i < td and i > m+ n+ 1, then �i = i�m� n� 1
and �i = w. Let i0 be the index such that �i = td. Then, for all i � i0,
�i = i0 + b(i� i0)=2c, and

�i =

�
d if i� i0 is even
0 otherwise.

(3)

(iii) This case is the same as case (ii), except that equation (3) becomes

�i =

�
d if i� i0 is even
bu(�i)c otherwise.

(4)
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Let the language formed by all the !-words that conforms to the above de-
scription be L. Basically, a timed !-word in L has the following properties: At
time 0, a possible output and a possible input for � are available. Then, up
to the deadline d, the symbols that arrive are w. After that, each time unit
brings to the input a pair of symbols, the �rst component being d (signaling
that the deadline passed), and the second one being the measure of usefulness
the computation still has (which is 0 for ever when the deadline is �rm). When
a deadline is imposed over the computation (cases (ii) and (iii)), a minimum
acceptable usefulness estimate is also present at the beginning of the computa-
tion. Let then L(�) be the language of successful instances of �, L(�) � L, in
the sense that, an !-word x from L is in L(�) i� some algorithm that solves �,
when processing the input from x, outputs the output from x either within the
imposed deadline (if any), or at a time when the usefulness of the process is not
below the acceptable limit from x.

We are ready to present now an acceptor for L(�). For simplicity, we con-
sider that this acceptor is composed of two \processes", Pw and Pm. Pw is an
algorithm that solves �, which works on the input of � contained in the current
input !-word, and stores the solution in some designated memory space upon
termination. If there is more than one solution for the current instance, then Pw
nondeterministically chooses that solution that matches the proposed solution
contained in the !-word, if such a solution exists. Meantime, Pm monitors the
input. If, at the moment Pw terminates, the current symbol is w, then Pm com-
pares the solution computed by Pw with the proposed solution, and imposes
to the whole acceptor the \�nal" state f if they are identical, or some other
designated state r (for \reject") otherwise.

On the other hand, if at the moment Pw terminates, the current symbol is
d, then the deadline passed. Then, Pm compares the current usefulness measure
with the minimum acceptable one. If the usefulness is not acceptable, then Pm
imposes the state r on the whole acceptor. Otherwise, Pm compares the result
computed by Pw with the proposed solution, and imposes either the state f or
r, accordingly.

Once in one of the states f or r, the acceptor keeps cycling in the same state.
It is immediate that the language accepted by the above acceptor is exactly

L(�), and hence we completed the modeling of computations with deadlines
in terms of !-languages. Note that we assumed here that all the input data
are available at the beginning of computation. However, the case when data
arrive while the computation is in progress is easily modeled by modifying the
timestamps that corresponds with each input data. But this case is covered in
more details by our discussion in section 4.3.2.

4.3.2 The Data{Accumulating Paradigm

The data{accumulating paradigm has been extensively studied in [9, 10, 19,
20]. A data{accumulating algorithm (or d-algorithm for short) works on an
input considered as a virtually endless stream. The computation terminates
when all the currently arrived data have been processed before another datum
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arrives. In addition, the arrival rate of the input data is given by some function
f(n; t) (called the data{arrival law), where n denotes the amount of data that
is available beforehand, and t denotes the time. The family of arrival laws most
commonly used as examples is

f(n; t) = n+ kn
t�; (5)

where k, 
, and � are positive constants. A successful computation of a d-
algorithm terminates in �nite time.

Given a problem � pertaining to this paradigm, we can build the correspond-
ing timed !-language L(�) similarly to section 4.3.1. More precisely, given some
(in�nite) input word � for � (together with a data arrival law f(n; t) and an
initial amount of data n), and a possible output o of an algorithm solving �
with input �, a timed !-word (�; �) that may pertain to L(�) is constructed as
follows: �1 : : : �m = o, �m+1 : : : �m+n = �1 : : : �n, �i = 0 for 1 � i � m+n. Note
that, since both the arrival law and the initial amount of data are known, one
can establish the time of arrival for each input symbol �j , j > n. Let us denote
this arrival time by tj . Also, let i0 = m+ n+ 1. Then, the continuation of the
timed !-word is as follows: for all i � 0, �i0+2i = c (where c is a special sym-
bol), and �i0+2i+1 = �i0+i; moreover, �i0+2i+1 = ti0+i, and �i0+2i = �i0+2i+1� �,
where � is a constant in�nitesimally close to 0.

Now, an acceptor for L(�) has a structure which is identical1 to the one
used in section 4.3.1. More precisely, it consists in the two processes Pw and
Pm. Pw works exactly as the Pw from section 4.3.1, except that it emits some
special signal to Pm each time it �nishes the processing of one input data. Note
that, since any d-algorithm is an on{line algorithm [10], it follows that, once
such a signal is emitted the p-th time, Pw has a (partial) solution immediately
available for the input word �1 : : : �p.

Then, suppose that Pm received p signals from Pw, and it also received the in-
put symbol �i0+2(p�1�i0), but it didn't receive yet the input symbol �i0+2(p�i0).
This is the only case when Pm attempts to interfere with the computation of
Pw. In this case, Pm compares the current solution computed by Pw with the
solution proposed in the input !-word; if they are identical, the input is ac-
cepted, and the input is rejected otherwise (in the sense that either state f or
r is imposed upon the acceptor, accordingly).

Again, once in one of the states f or r, the acceptor keeps cycling in the same
state. It is immediate that L(�) contains exactly all the successful instances of
�, therefore we succeeded in modeling d-algorithms using timed !-languages.

Other related paradigms, like c-algorithms [11, 19, 20] (which are similar
with d-algorithms, except that data that arrive during the computation consist
in corrections to the initial input rather than new input) can be easily modeled
using the same technique.

1
In particular, if there is more than one solution for the current instance, then Pw non-

deterministically chooses that solution that matches the proposed solution contained in the

!-word, if such a solution exists.
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We modeled in sections 4.3.1 and 4.3.2 the two main ingredients that, when
present, impose the real{time quali�er on the problem. This supports our thesis
that the theory of timed languages covers all the practically relevant aspects of
real{time computations.

Note that, even if we considered here only !-languages, �nite timed lan-
guages may be a useful tool too. For illustrating this, let us get back to the
language L! from the proof of theorem 4.1. Here, one can notice that, even if
the words from the language themselves are in�nite, by analyzing portions only
(more precisely, those portions delimited by $ symbols), one can draw conclu-
sions regarding the phenomena that take place. However, there are real{time
problems that probably cannot be modeled as �nite timed languages. Take for
example the theory of d-algorithms where, although any successful computation
considers only a �nite amount of input data, the input itself is in�nite.

Some authors include reactive algorithms as a special class of real{time al-
gorithms. In this view a reactive algorithm is required to respond to the input
without breaking some �xed deadline. This case is obviously covered by the
de�nition we proposed. However, other papers relax this condition [12]. They
continue to ask that the algorithm responds before some deadline, but this dead-
line is not �xed anymore, it being, for example, a function of the length of the
input. Since we didn't constrain the time sequence associated to a timed word
(except for monotonicity and progress conditions), this paradigm can be easily
expressed in terms of timed languages.

5 Conclusions, or Towards a Complexity Theory

of Real{Time Computations

We believe that the notion of timed languages and acceptors as introduced in
section 4 are important tools in developing a complexity theory for real{time
systems, which is simply not present at this time. We presented in this paper a
general de�nition of this class of languages, and we suggested that this de�nition
is powerful enough to model all the practically important aspects of real{time
computations. We also supported our thesis with meaningful examples.

As a �rst step toward the goal of real{time complexity theory, one can study
the hierarchy of timed languages, similar with the Chomsky hierarchy for nor-
mal languages, together with the closure properties and with the corresponding
classes of acceptors. This direction has been initiated in [8], with the study of
timed !-automata, and we suggested in this paper a general form of such an
acceptor.

Nonetheless, we believe that the most interesting direction is the establish-
ment of a complexity theory for real{time systems, based on the de�nition of
timed languages. In general, such a theory takes into account the measurable
resources used by an algorithm, most important being the time and the space.
However, in the real{time environment, time complexity makes little sense, since
in most applications the time properties are established beforehand. But, as
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supercomputing is now a reality, a complexity hierarchy with respect to the
number of processors is a very interesting direction, with promising prospects.
Note that it has been already established that a parallel approach can make
the di�erence between success and failure [6, 9, 10, 11, 20], or can enhance
signi�cantly the quality of solutions [2, 3, 4, 5].

Note that a similar research was started in [21, 23], where the hierarchy was
established with respect to the number of tapes of real{time Turing machines.
However, on one hand, a multitape Turing machine is probably not equivalent
to a multiprocessor device, and, on the other hand, since the real{time domain is
a highly practical issue, we think that the use of models closer to real machines
(e.g., the PRAM [1]) is desirable.
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