
Technical Report No. 99-429

On the Power of Real{Time Turing Machines: k

Tapes Are More Powerful than k � 1 Tapes�

Stefan D. Bruda and Selim G. Akl

Department of Computing and Information Science

Queen's University

Kingston, Ontario, K7L 3N6 Canada

Email: fbruda,aklg@cs.queensu.ca

July 9, 1999

Abstract

We show that, for any integer k, there is at least one language which is

accepted by a k-tape real{time Turing machine, but cannot be accepted

by a (k � 1)-tape real{time Turing machine. We show therefore that

the languages accepted by real{time Turing machines form an in�nite

hierarchy with respect to the number of tapes used.

1 Introduction

The real{time Turing machines were introduced in [19]. They, and the languages

accepted by them, called real{time de�nable languages, were further studied in

many papers, e.g., [11, 15, 17, 18]. The model used is a deterministic one,

but nondeterministic extensions were also studied, like the real{time Turing

machines with restricted nondeterminism [12], and nondeterministic real{time

Turing machines [7] (the languages accepted by the latter model being called

quasi{real{time languages).

Despite the many researchers that studied these machines, one problem is, to

our knowledge, still open, namely whether an addition to the number of tapes of

a real{time Turing machine increases its computational power. A partial answer

was given in [15], where it is shown that a 2-tape real{time Turing machine is

strictly more powerful than a 1-tape one. We address in this paper the general

�This research was supported by the Natural Sciences and Engineering Research Council

of Canada.

1

problem. We show that, indeed, for any integer k, a k-tape real{time Turing

machine is strictly more powerful than a (k � 1)-tape one.

We present in the next section a concise introduction to real{time Turing

machines and real{time de�nable languages. Then, in section 3, we show that

real{time Turing machines form an in�nite hierarchy with respect to the number

of tapes used. We conclude in section 4.

2 Real{Time Turing Machines

Given some alphabet A, the set Ak is de�ned recursively by

A1 = A

Ai = A�Ai�1; i > 1:

We assume that the reader is familiar with the concept of Turing machine,

therefore we do not de�ne the terms that are usually covered in a textbook on

such a subject (e.g., [13]). A Turing machineM is said to accept some language

L if, for any input string w, M stops (that is, M reaches the halt state h) i�

w 2 L [13]. The empty word is denoted by �.

We will use the de�nition of real{time Turing machines presented in [17]:

De�nition 2.1 [17]

1. For some constant k, k � 1, an on{line Turing machine is a deterministic

(k + 1)-tape Turing machine (with k working tapes and one input tape)

M = (Kp;Ka;�;W; �; s0), where Kp [Ka is the set of states, not con-

taining the halt state h, s0 is the initial state, � is the input alphabet, W

is the alphabet of working symbols, containing the blank symbol #, and

� is the state transition function, � : (Kp � � �W k) [(Ka �W k) �!

(Kp [Ka [fhg) � (fR;L;Ngk �W k). The head on the input tape is

allowed to move only on the right.

A con�guration of an on{line k-tape Turing machine is an (k + 2)-tuple

C = (q; t; x1a1y1; : : : ; xkakyk), where q is a state, t 2 �� is the (not yet

considered) content of the input tape, for any i, 1 � i � k, xiaiyi is the

content of the i-th working tape, and ai is the symbol that is currently

scanned by the head of tape i. If a con�guration C1 yields to other con-

�guration C2, we write C1 `M C2. As usual, `�M denotes the transitive

and reexive closure of `M .

The set of states is divided into two subsets: the set of polling states Kp

and the set of autonomous states Ka. All the states that lead to h in one

step are polling states, and the initial state is a polling state. In addition,

the relation `M has the following property: if q 2 Kp, q
00 2 Ka, and

q0 2 Kp [Ka, then

2

(q; abv; x1; : : : ; xk) `M (q0; bv; x01; : : : ; x
0

k);

(q00; abv; x1; : : : ; xk) `M (q0; abv; x01; : : : ; x
0

k);

(q; �; x1; : : : ; xk) `M (h; �; x01; : : : ; x
0

k):

M accepts the input w i� (s0; w; x1; : : : ; xk) `
�
M (h; �; x1; : : : ; xk), where

� > 0 is called the running time of M on w.

2. A real{time Turing machine is an on{line Turing machine for which Ka =

;. A language accepted by such a machine is called a real{time de�nable

language.

2

In other words, an on{line Turing machine has a unidirectional input tape.

Therefore, it has no knowledge about further input data. Between reading two

input symbols, such a machine is allowed to go into a number of autonomous

states, where it performs some work without considering any input. In addition

to these requirements, a real{time Turing machine has no autonomous state, it

being forced to consume an input datum at every step.

De�nition 2.2 A nondeterministic real{time Turing machine is a machine that

is identical to the one de�ned in de�nition 2.1, except that � � ((Kp � � �

W k) [(Ka �W k)) � ((Kp [Ka [fhg)� (fR;L;Ngk �W k)). The languages

accepted by nondeterministic real{time Turing machines are called quasi{real{

time languages [7]. 2

3 k Tapes Are More Powerful than k � 1 Tapes

In the following, given a word u, ur denotes the reversal of u. For a �xed k and

given some alphabet �, and two symbols $ and @, $;@ 62 �, let us consider the

language

L = f$w1$w2$w3$:::$wk@u
rjw1; : : : ; wk; u 2 ��;

there is some i, 1 � i � k, such that u = wig: (1)

Given a word w in L, we assume that it has the form w =

$w1$w2$w3$:::$wk@u
r. We also denote by wij the j-th symbol of the sub-

word wi, 1 � i � k, and by urj and uj the j-th symbol of ur and u, respectively.

The length of some word x is denoted by jxj.

Lemma 3.1 There is a k-tape (not counting the input tape) deterministic real{

time Turing machine, with the working alphabet � [f$;@g that accepts L.

3

Proof. Such a machine M works as follows. While reading the input w, it

writes each subword $wi, 1 � i � k, on tape i. That is, it starts by writing the

initial $ symbol on the �rst tape. Then, when the head on the input tape reads

some symbol wij , M writes wij on its i-th tape, and advances that tape's head

on the right. When the $ symbol that terminates the subword wi is read, M

moves the head of tape i one cell left, and, at the same time, writes $ on the

tape i+ 1. Clearly, writing the word wi requires precisely jwij time.

After the @ symbol is read,M starts comparing simultaneously the currently

read symbol uj with the subwords stored on each of its k tapes. For any tape i,

if uj = wij , then the machine advances the head of tape i one cell left; otherwise,

it writes @ on tape i, and never moves the head of that tape. This step also

takes juj time.

At the end of the input, on a tape i for which u = wi, it is clear that

the head advances each time an input symbol is read, and when the input is

exhausted, the head points to the initiating $ sign. On the other hand, assume

that juj > jwij. Then, after exhausting the word wi, M eventually compares

$ with some symbol in �, which are obviously di�erent. Then, it writes @ on

tape i and never moves that head. Analogously, if juj > jwij, then the head

points to some symbol from wi when the end of the input is reached, which is

not $. Finally, on those tapes i where there is a j such that uj 6= wij , M writes

@ and never moves the head. Therefore, at the end of the input, M accepts the

input i� the head of at least one tape points to a $ sign. As shown above, this

happens i� there is some subword wi such that u = wi.

Moreover, it is clear that M reads one input symbol in each state, therefore

M is a real{time Turing machine. 2

Lemma 3.2 There is no (k�1)-tape (not counting the input tape) deterministic

real{time Turing machine that accepts L, even if the working alphabet of M is

(� [f$;@g)k
0

for some k0 that depends on k.

Proof. Assume that there exists such a machine, and denote it by M . M

has k � 1 tapes but there are k subwords wi. However, all the subwords have

to be stored somewhere, since u can match either of them. Therefore, there is

some tape i that contains two subwords wl and wm, l < m. Let o = jwlj and

p = jwmj.

Assume now that these words are stored such that the symbols wlo and wmp

are not stored in the same cell on tape i, and, when ur1 is read, the head on

tape i points to wlo. But then, u cannot be compared with wm in real{time,

since M has to spend some time moving the head to the cell containing wmp

without consuming any input. Clearly, this is not possible if all the states of M

are polling states.

That is, the only con�guration of the tape i immediately before ur is read,

and conforming to which M is still able to compare the word u with both wl

and wm in real{time, has the following form, where each tape cell stores a tuple

of two symbols:

4

wl1 wl2 wl(o�1) wlo

� � � wmj wm(j+1) � � � wm(p�1) wmp � � �

Here, we showed the case p > o, but the format is similar for the other cases.

In such a con�guration, by slightly altering the machine built in the proof of

lemma 3.1, we can construct a machine M that can readily compare u with all

the subwords wi, 1 � i � k.

However, this case is impossible to achieve in real{time. Indeed, for reaching

such con�guration on tape i, after writing wl and before beginning writing wm,

M has to move the head on that tape p cells left. But for any value of l and

m, one can �nd an input word such that
P

l<j<m
jwj j < p. But in this case M

simply has no time to move p times the head on tape i.

Therefore, there are input words in L that cannot be accepted in real{time,

and hence we completed the proof. 2

Lemma 3.3 There is a one-tape (not counting the input tape) nondeterministic

real{time Turing machine that accepts L.

Proof. The machine nondeterministically guesses that subword wj that

matches u, writes it on its working tape, and then compares u with the stored

subword. 2

The main result of our paper follows immediately from lemmas 3.1, 3.2,

and 3.3:

Theorem 3.4 For any integer k, there is at least one (quasi{real{time) lan-

guage which is accepted by a k-tape real{time Turing machine, but cannot be

accepted by a (k � 1)-tape real{time Turing machine. The languages accepted

by k-tape real{time Turing machines form therefore an in�nite hierarchy with

respect to k. 2

4 Conclusions

We showed in this paper that, for any integer k, a k-tape real{time Turing

machine is strictly more powerful than a (k � 1)-tape one. We actually began

thinking about this problem as a result of a challenge that was o�ered to one

of the authors [16]:

Can one �nd any problem that is solvable by an algorithm that uses

k processors, k > 1, and is not solvable by a sequential algorithm,

even if this sequential algorithm runs on a machine whose processor

is k times faster than each of the k processors used by the parallel

implementation?

5

There are some noteworthy results in the area of parallel algorithms for

real{time computations [2, 3, 4, 5, 6, 8, 9, 10, 14], but none appears to address

the above challenge. A positive answer to the question for k = 2 is provided

by (a slightly modi�ed version of) the pursuit and evasion on a ring example

presented in [1]. In this version, an entity A is in pursuit of another entity B

on the circumference of a circle, such that A and B move at the same speed;

clearly, A never catches B. Now, if two entities C and D are in pursuit of entity

B on the circumference of a circle, such that each of C and D moves at 1=x the

speed of A (and B), x > 1, then C and D always catch B. A computational

analog of this example consists of two streams of input, both of them having

to be monitored in order to solve a problem. Thanks to parallelism, two (slow)

processors C and D operating simultaneously invariably succeed in completing

the computation, whereas a single processor A which is twice as fast as either

C or D always fails. This example can be easily extended to cases where k > 2.

Of course, a lot depends on one's de�nition of the word \solvable". Thus,

if one replaces \algorithm" by \Turing machine" and \processor" by \tape"

(since this is the only thing in a Turing machine that can grow as desired), then

theorem 3.4 also represents a positive answer to the above challenge. Indeed,

even if we restrict the working alphabet of a k-tape real{time Turing machine

to the input alphabet �, but allow the one-tape Turing machine to use �k
0

as

working alphabet, k0 � k, hence giving to the unique working tape a k0-fold

improvement in performance, the one-tape Turing machine is still not able to

handle the acceptance of the language described in equation (1).

Granted, it is questionable whether a k-tape Turing machine is equivalent in

some sense to a k-processor machine. Therefore, we conclude this paper with a

new challenge: Either prove or disprove the mentioned equivalence (between a

multi{processor machine and a multi{tape Turing machine). However, even if

the two models of computation are found not to be equivalent, they still share

some properties, since both of them model parallel computations. Then, an

alternate question to the one above is: do they share the property of forming

in�nite hierarchies? That is, is there a (nontrivial) in�nite hierarchy, this time

with respect to the number of processors on a multi{processor abstract machine,

which is similar in spirit to the hierarchy found in this paper for the real{time

Turing machines?

References

[1] S. G. Akl, Parallel Computation: Models and Methods, Prentice-Hall,

Upper Saddle River, NJ, 1997.

[2] , Secure �le transfer: A computational analog to the furniture mov-

ing paradigm, Tech. Rep. 99-422, Department of Computing and Infor-

mation Science, Queen's University, Kingston, Ontario, Canada, 1999.

http://www.qucis.queensu.ca/~akl/techreports/furniture.ps.

6

[3] S. G. Akl and S. D. Bruda, Real-time optimization: Beyond speedup, to

appear in: Parallel Processing Letters, 9 (1999). For a preliminary version

see http://www.cs.queensu.ca/~akl/techreports/beyond.ps.

[4] , Real-time cryptography: Beyond speedup II, Tech.

Rep. 99-423, Department of Computing and Information Sci-

ence, Queen's University, Kingston, Ontario, Canada, 1999.

http://www.cs.queensu.ca/~akl/techreports/realcrypto.ps.

[5] , Real-time numerical computation: Beyond speedup III,

Tech. Rep. 99-424, Department of Computing and Information

Science, Queen's University, Kingston, Ontario, Canada, 1999.

http://www.cs.queensu.ca/~akl/techreports/realnum.ps.

[6] S. G. Akl. and L. Fava Lindon, Paradigms admitting superunitary be-

haviour in parallel computation, Parallel Algorithms and Applications, 11

(1997), pp. 129{153.

[7] R. V. Book and S. A. Greibach, Quasy{realtime languages, Mathemat-

ical Systems Theory, 4 (1970), pp. 97{111.

[8] S. D. Bruda and S. G. Akl, On the data-accumulating

paradigm, in Proceedings of the Fourth International Conference

on Computer Science and Informatics, Research Triangle Park,

NC, October 1998, pp. 150{153. For a preliminary version see

http://www.cs.queensu.ca/~bruda/www/data accum.

[9] , The characterization of data-accumulating algorithms, in Pro-

ceedings of the International Parallel Processing Symposium, San

Juan, Puerto Rico, 1999, pp. 2{6. For a preliminary version see

http://www.cs.queensu.ca/~bruda/www/data accum2.

[10] , A case study in real-time parallel computation: Correct-

ing algorithms, in Proceedings of the Midwest Workshop on Par-

allel Processing, Kent, OH, 1999. For a preliminary version see

http://www.cs.queensu.ca/~bruda/www/c-algorithms.

[11] P. C. Fischer, Turing machines with a schedule to keep, Information and

control, 11 (1967), pp. 138{146.

[12] P. C. Fischer and C. M. R. Kintala, Real-time computations with

restricted nondeterminism, Mathematical Systems Theory, 12 (1979),

pp. 219{231.

[13] H. R. Lewis and C. H. Papadimitriou, Elements of the Theory of Com-

putation, Prentice-Hall, Englewood Cli�s, NJ, 1981.

[14] F. Luccio and L. Pagli, Computing with time{varying data: Sequential

complexity and parallel speed{up, Theory of Computing Systems, 31 (1998),

pp. 5{26.

7

[15] M. O. Rabin, Real time computations, Israel Journal of Mathematics, 1

(1963), pp. 203{211.

[16] D. Rappaport, Private communication.

[17] A. L. Rosenberg, Real-time de�nable languages, Journal of the ACM, 14

(1967), pp. 645{662.

[18] , On the independence of real-time de�nability and certain struc-

tural properties of context-free languages, Journal of the ACM, 15 (1968),

pp. 672{679.

[19] H. Yamada, Real-time computation and recursive functions not real-time

computable, IRE Transactions on Electronic Computers, EC-11 (1962),

pp. 753{760.

8

