
Technical Report No. 99-431

Parallel Maximum Sum Algorithms on Interconnection Networks�

Ke Qiu

Jodrey School of Computer Science

Acadia University

Wolfville, Nova Scotia, Canada

Selim G. Akl

Dept. of Comp. & Info. Sci.

Queen's University

Kingston, Ontario, Canada

Abstract

We develop parallel algorithms for both one-dimensional and two-dimensional versions of the maxi-

mum sum problem (or max sum for short) on several interconnection networks. These algorithms are all

based on a simple scheme that uses pre�x sums. To this end, we �rst show how to compute pre�x sums

of N elements on a hypercube, a star, and a pancake interconnection network of size p (where p � N)

in optimal time of O(N
p
+ log p). For the problem of maximum subsequence sum, the 1-D version of

the max sum problem, we �nd an algorithm that computes the maximum sum of N elements on the

aforementioned networks of size p, all with a running time of O(N
p
+ log p), which is optimal in view

of the trivial
(N
p
+ log p) lower bound. When p = O(N

logN
), our algorithm computes the max sum in

O(logN) time, resulting in an optimal cost of O(N). This result also matches the performance of two

previous algorithms that are designed to run on PRAM.

Our 1-D max sum algorithm can be used to solve the problem of maximum subarray, the 2-D version

of the general max sum problem. In particular, on the three interconnection networks mentioned above,

our parallel algorithm �nds the maximum subarray of an N �N array in time O(logN) with O(N3

logN
)

processors, once again, matching the performance of a previous PRAM algorithm. Note that the cost of

the algorithm is O(N3), the same asymptotic time as the currently best known sequential algorithm.

Keywords: interconnection networks, hypercube, star graph, pancake graph, max subsequence sum prob-
lem, pre�x sums.

1 Introduction

The problem of maximum sum has 1-D and 2-D versions. For the 1-D version, given a sequence of N
numbers x0, x1, ..., xN�1, the maximum subsequence sum (also referred to as the maximum sum subsequence

sometimes) problem is to �nd two indices a and b, where a � b, such that
P

b

i=a xi is the largest among all such
subsequences. Obviously, the subsequence itself that leads to the maximum sum is not necessarily unique.
For simplicity, we are only concerned with �nding the maximum sum, instead of one actual subsequence
that results in the sum. It is a simple matter of bookkeeping if we do want one actual subsequence. In the
more general 2-D version, given an N �N array, we want to �nd a rectangular subarray with the maximum
sum among all subarrays. The 2-D version has applications in pattern recognition and is also referred to as
the maximum subarray problem.

Sequentially, the maximum subsequence sum problem can be solved in O(N) time (e.g., see [3, 8, 13]).
Typically, the sequential algorithm performs exactly one pass over the input and executes a constant number
of constant-time operations for each xi (see, for example, the elegant one-pass algorithm presented in [13]).
Parallel algorithms have also been found for the PRAM model. In [10] and [14], it is shown that the
problem can be solved on the EREW PRAM with O(N= logN) processors in O(logN) time. An ERCW
PRAM algorithm, using a di�erent approach but with the same performance, is given in [3]. An O(1) time
algorithm is also given in [3] that runs on a BSR model with N processors.

�This research is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC)

1

For the maximum subarray problem, an O(N3) sequential algorithm exists [6]. An O(logN) time PRAM
parallel algorithm is given in both [10] and [14] using O(N3= logN) processors.

In this paper, we develop several parallel algorithms for both versions of the max sum problem that run
on interconnection networks, in particular, the hypercube, the star, and pancake networks. For the maximum
subsequence sum problem, all the algorithms are optimal in view of the lower bounds that we establish on
the corresponding networks (Note that they are optimal in the sense that no faster algorithm exists for the
corresponding network because of the inherent constraint such as the network diameter and the number of
elements held in each processor. This optimality is di�erent from the usual cost-optimality, where the cost
of a parallel algorithm is de�ned to be the product of time and the number of processors used) while some
of them are actually cost-optimal. For the maximum subarray problem, the performance of our algorithm
matches those of the ones given in [10] and [14] which run on a PRAM.

Because our parallel algorithm for solving the problem of maximum subarray on the given three inter-
connection networks is a natural extension of our algorithm for the maximum subsequence sum, emphasis
will be placed on the latter. Consequently, we organize the paper as follows. In Section 2, we �rst present
another O(N) sequential algorithm based on the idea of pre�x sums. This algorithm is the one on which all
our parallel algorithms are based. In Section 3, we use hypercubes to show general schemes for computing
pre�x sums and the maximum subsequence sum. Speci�cally, we show that on an n-cube (where the number
of processors p is 2n):

1. on a �ne-grained hypercube where each processor holds one input element, the maximum subsequence
sum of a sequence of N = p elements can be solved in O(logN) time (straightforward implementation
of our sequential algorithm). This performance matches the trivial
(logN) lower bound (which is the
diameter of the hypercube with N nodes).

2. on a coarse-grained hypercube where each processor holds O(N=p) elements, both the pre�x sums
and the maximum subsequence sum can be solved in O(N=p + log p) time, once again matching the

(N=p+ log p) lower bound that will be established.

Section 4 discusses how we can extend the algorithms to the star and pancake interconnection networks, two
relatively new topologies for interconnecting processors in a parallel computer, so that the above two results
also hold. Our results for the star and pancake graphs are interesting, considering the fact that, unlike a
hypercube whose degree is logarithmic in terms of the total number of nodes, both stars and pancakes have
sub-logarithmic degree. Section 5 discusses how we can solve the problem of maximum subarray on the
networks using the results we developed earlier. Section 6 concludes the paper.

2 A Simple Sequential Algorithm

Given elements x0, x1, ..., xN�1, and an associative binary operator�, the pre�x sums problem is to compute
sj =

P
j

i=0 xi, for 0 � j � N � 1. For our purpose, we assume that the xi's are numbers and the operator
� is the regular addition operation.

If
P

b

i=a xi is a maximum subsequence sum, where 0 � a � b � N �1, then clearly sb�sa�1 is the largest

among all sj�si, for �1 � i < j � N�1, where s�1 is de�ned to be 0. This is because
Pb

i=a xi = sb�sa�1.
This observation immediately leads to a maximum subsequence sum algorithm described below. The main
idea is to �nd, for each pre�x sum, the smallest pre�x sum preceding it, then compute the di�erence between
the two quantities. The largest of all these di�erences is the maximum sum.

1. Compute the pre�x sums sj =
P

j

i=0 xi, for 0 � j � N � 1.

2. For each j, 0 � j � N � 1, �nd an index ij , where �1 � ij � j� 1, such that sij is the smallest among
all such sk's, �1 � k � j � 1, where s�1 = 0. Namely, sij = min�1�k�j�1 sk.

3. Now that we have N pairs (s0; si0), (s1; si1), ..., (sN�1; siN�1
), we can compute max0�j�N�1(sj � sij),

which is the maximum sum. If for some k, sk � sik = max0�j�N�1(sj � sij), then one maximum
subsequence is xik+1, xik+2, ..., xk .

2

Clearly, the above algorithm can be implemented in linear time. One possible implementation is given
as follows, where for any j, 0 � j � N � 1, current-min has the value min(s�1; s0; s1; :::; sj�1) and s�1 = 0.

current-min 0
index -1
s�1 0
for j = 0 to N � 1 do

sj sj�1 + xj
ij index
if sj < current-min then

index j
current-min sj

MaxSubsequenceSum max0�j�N�1(sj � sij).

This algorithm needs two for loops, one for �nding the smallest pre�x sum preceding any given pre�x
sum value, and one for �nding the largest of all di�erences between a pre�x sum and its corresponding
smallest preceding pre�x sum.

It is not hard to see that we can actually implement our algorithm in one pass, just like previous sequential
algorithms, as follows. However, our subsequent parallel algorithms are based on the �rst version because it
is easier to understand, more straightforward, and easier to parallelize.

current-max-sum x0
current-min min(0; x0)
s0 x0
for j = 1 to N � 1 do

sj sj�1 + xj
current-max-sum max (current-max-sum, sj - current-min)
current-min min (current-min, sj)

where current-max-sum contains the maximum subsequence sum for the subsequence x0, x1, ..., xj . When
the algorithm terminates, variable current-max-sum has the value of the maximum sum for the original
sequence.

3 A General Scheme: Solving Maximum Subsequence Sum Prob-

lem on a Hypercube

3.1 Maximum Subsequence Sum on a Fine-Grained Hypercube

Given sequence x0, x1, ..., xN�1, our job is to �nd the maximum subsequence sum on a �ne-grained hypercube
of size p = N , where each processor (node) Pi holds one number xi from the sequence.

A hypercube of dimension n, denoted Qn, with p processors P0, P1, ..., Pp�1, where p = 2n, is de�ned as
follows. Let in�1in�2 � � � ij+1ijij�1 � � � i1i0 be i's binary representation. Processor Pin�1in�2���ij+1ij ij�1���i1i0 is
connected to processor Pin�1in�2���ij+1

�ij ij�1���i1i0
along dimension j for 0 � j < n, where �ij is the complement

of ij . Therefore, each processor has n neighbors along dimensions 0, 1, ..., n � 1. The n-dimensional
hypercube is also referred to as an n-cube.

One of the many important properties of the n-cube is that it can be constructed recursively from lower
dimensional cubes. More precisely, consider two identical (n�1)-cubes whose vertices are numbered likewise
from 0 to 2n�1 � 1. By joining every vertex of the �rst (n � 1)-cube to the vertex of the second having
the same number, one obtains an n-cube. Conversely, separating an n-cube into the subgraph of all the
processors whose leading bit is 0 and the subgraph of all the processors whose leading bit is 1, the two
subgraphs are such that each node of the �rst is connected to one node of the second along dimension n� 1.
If we remove the edges between these two graphs, we get two disjoint (n�1)-cubes. For convenience, we call
the �rst Qn�1 the left sub-cube, and the second the right sub-cube. In this case, we say that the n-cube has

3

been decomposed into two Qn�1's. Note that the splitting suggested above gives privilege to the leading bit
but there is no particular reason for this. Since an n-cube has n dimensions, the splitting can be done along
any of these n dimensions. A detailed treatment of hypercubes can be found in [9].

It can be easily seen that a trivial lower bound for the problem of computing the maximum sum on a
hypercube is
(log p) =
(n) because log p is the diameter of the n-cube. It is straightforward to parallelize
our sequential algorithm on the hypercube as follows.

Each processor Pi, 0 � i � N�1, holds three variables si, vi1 , and vi2 where si is the pre�x sum
Pi

j=0 xj ,
vi1 = min�1�j�i�1 sj , the smallest pre�x sum preceding si, and vi2 = min�1�j�i sj = min(vi1 ; si). As we
did earlier, de�ne s�1 = 0. Clearly, the maximum subsequence sum is max0�i�N�1(si � vi1).

Pre�x sums can be computed on an n-cube in O(log p) = O(n) time easily (see, for example, [7]). Similarly,
max0�i�N�1(si � vi1) can be found in O(log p) time because each Pi can compute si � vi1 in O(1) time and
the maximum of these N di�erences can be found in O(log p) time. We now describe how to compute, for
each i, vi1 and vi2 , assuming that pre�x sums si's have been computed and stored in processor Pi's.

The algorithm falls into the ASCEND class that is standard for hypercube algorithms [11] in that we
combine the results from two sub-cubes of dimension k to form the result for a sub-cube of dimension k+1, k
= 0, 1, ..., n� 1. Initially, for each 0 � i � N � 1, vi1 0, and vi2 min(0; si). Assume that at some stage
of the algorithm we have two sub-cubes of dimension k such that each processor Pi in the left sub-cube has
a value for vi1 and vi2 , respectively. Also, the two sub-cubes are connected along links on dimension k. Let
the processors in the left sub-cube be Pl, Pl+1, ..., Pi�1, Pi, ..., Pl+2k�1, then vi1 is the value of the smallest
pre�x sum among all pre�x sums stored in the left sub-cube up to and including si�1: vi1 = minl�j�i�1 sj ,
and vi2 is the smallest pre�x sum in the entire sub-cube: vi2 = minl�j�l+2k�1 sj . Let Pj be a processor in
the right sub-cube who is a neighbor of Pi along dimension k, i.e., j = i + 2k. The variables vj1 and vj2
are de�ned similarly. In order to combine the two k-cubes into a (k +1)-cube, processors in both sub-cubes
communicate with their k-dimensional neighbors: Pi $ Pi+2k .

1. Pi: vi2 min(vi2 ; vj2);

2. Pj : vj2 min(vi2 ; vj2);
vj1 min(vi2 ; vj1);

This combining procedure takes constant time and is done exactly n = log p times (recall that p = N),
starting from sub-cubes of size 0. When the algorithm terminates, it can be easily seen that for Pi, we have
vi1 = min0�j�i�1 sj . The time for the entire computation for �nding the maximum sum is therefore O(log p)
= O(logN).

3.2 Maximum Subsequence Sum on a Coarse-Grained Hypercube

For ease of presentation and without loss of generality, we assume that N is a multiple of p in this section. In
a coarse-grained hypercube, each processor Pi stores N=p elements xi(N=p), xi(N=p)+1, ..., xi(N=p)+((N=p)�1).

Because of the facts that the diameter of the hypercube of size p is log p and that each processor has
O(N=p) elements, a trivial lower bound for the problem of computing the maximum subsequence sum on
the hypercube is
(N=p+ log p). In the following, we present an algorithm whose performance matches this
lower bound.

The algorithm for the coarse-grained hypercube can be stated as follows.

1. Compute pre�x sums (so that Pi contains pre�x sums si(N=p), si(N=p)+1, ..., si(N=p)+((N=p)�1). We
denote these sums as si0 , si1 , ..., si(N=p)�1

, for ease of presentation.

2. Each processor has two variables vi1 and vi2 as de�ned earlier for the �ne-grained hypercube algorithm.
Initially, vi2 min(0; si0 ; si1 ; :::; si(N=p)�1

) and vi1 0.
Run the �ne-grained hypercube algorithm (with vi1 and vi2) so that when it terminates, each processor
knows vi1 , the smallest pre�x sum among all the pre�x sums stored in processors P0, P1, ..., Pi�1, i.e.,
vi1 = min(0; s0; s1; :::; si0�1).

3. Each processor Pi does the following:
For each of its pre�x sums sik , where 0 � k � N=p� 1, �nd tik min0�j�k�1(0; sij). (This is similar

4

to our sequential maximum sum algorithm, where for each pre�x sum we �nd the smallest preceding
pre�x sum residing in the same processor).
Then for each sik , �nd dik min(tik ; vi1). That is, each pre�x sum sik knows its smallest preceding
pre�x sum dik = min(0; s0; s1; :::; sik�1).
Now �nd mi max(si0 � di0 ; si1 � di1 ; :::; sidN=pe�1

� didN=pe�1
).

4. Finally, maximum sum max0�i�p�1mi.

Both Steps 2 and 4 take O(log p) time while Step 3 needs O(N=p) time. In the next subsection, we
show that Step 1 needs no more time than O(N=p + log p) to compute pre�x sums on a coarse-grained
hypercube. Thus, the running time required for the coarse-grained maximum subsequence sum algorithm
for the hypercube of size p is O(N=p + log p), optimal in view of the
(N=p + log p) lower bound. When
p = N= logN), that is, each processor holds logN numbers, our algorithm runs in O(logN) time. Note that
this result is the same as those of the algorithms in [10] and [14], which run on a PRAM.

3.2.1 Computing Parallel Pre�x Sums

In this subsection, we discuss the problem of computing pre�x sums on any coarse-grained interconnection
network.

Given elements x0, x1, ..., xN�1, stored in processors P0, P1, ..., Pp�1 in a parallel computer with p
processors, where N � p, such that Pi contains elements xi(N=p), xi(N=p)+1, xi(N=p)+2, ..., xi(N=p)+((N=p)�1),
for 0 � i � p� 1, with the processors ordered such that Pi � Pj if i < j, and an associative binary operator
�, the parallel pre�x problem with respect to the processor ordering is to compute all the pre�x sums sj =Pj

i=0 xi, 0 � j � N � 1. Note that operation in
P

is �, not necessarily the regular arithmetic operator
+. At the end of the computation we require that processor Pi contain si(N=p), si(N=p)+1, si(N=p)+2, ...,
si(N=p)+((N=p)�1), for 0 � i � p� 1.

As usual, we assume that in O(1) time, a processor can send or receive one datum to or from one of its
neighbors. Under this assumption, a lower bound for the problem of computing pre�x sums is
(N=p+log p).
To see this, computing N=p pre�x sums within each processor takes
(N=p) time, while
(log p) time is
needed just to send any element in node P0 to all the processors in the network in order to compute all
pre�x sums correctly since the problem of broadcasting one message on any network with P processors has
a lower bound
(log p) [2].

In what follows, we describe a generic parallel pre�x algorithm for any parallel computer with P proces-
sors. The idea of the algorithm is simple. After Phase 1, each processor has the total sum of all the elements
stored in that processor. In each step in Phase 2, processor Pi and Pi+2l (in the last step, it is possible that
processor Pi+2l is non-existent) exchange their total sums. Pi \adds" the total sum just received to its own
total sum and makes it the new total sum, while Pi+2l does the same in addition to storing the total sum

received from Pi in its memory. After Phase 2, each processor has all the necessary data to compute the
�nal pre�x sums. The algorithm is given as follows:

� Phase 1. For each processor Pi, 0 � i � p � 1, containing elements y0, y1, ..., yN=p�1, compute in

parallel
Pk

j=0 yj , for 0 � k � N=p� 1. Denote the total sum
PN=p�1

j=0 yj by
P

i
.

� Phase 2. For l=0 step 1 until dlog pe-1:
for each pair Pi and Pi+2l , (that is, in the �rst step (l = 0) we pair P0 with P1, P2 with P3, and so on.
In the second step (l = 1), we pair P0 with P2, P1 with P3, and so on. And in general, in the l + 1st

step, P0 is paired with P2l , P1 is paired with P1+2l , P2 is paired with P2+2l , and so on), Pi receives
the total sum T2 of Pi+2l , Pi+2l receives the total sum T1 of Pi, both Pi and Pi+2l replace their total
sum with T1 � T2, Pi+2l also stores T1 in its local memory for later use.

� Phase 3. Do in parallel, for 0 � i � p� 1, Pi computes total sums T of all stored values, and \adds"
(using �) it to the partial pre�x sums already computed in Phase 1: (

Pk

j=0 yj)�T for 0 � k � N=p�1.

The following example illustrates the above algorithm where p = 8 and N = 24,
P

i
denotes the total

sum of all the elements stored in processor Pi, and
P

i�j
denotes the total sum of all the elements stored

5

Table 1: The Initial Con�guration

P0 P1 P2 P3 P4 P5 P6 P7
x0 x3 x6 x9 x12 x15 x18 x21
x1 x4 x7 x10 x13 x16 x19 x22
x2 x5 x8 x11 x14 x17 x20 x23

Table 2: Con�guration After Phase 1

P0 P1 P2 P3 P4 P5 P6 P7
x0 x3 x6 x9 x12 x15 x18 x21
x1 x4 x7 x10 x13 x16 x19 x22
x2 x5 x8 x11 x14 x17 x20 x23
x0 � x1 x3 � x4 x6 � x7 x9 � x10 x12 � x13 x15 � x16 x18 � x19 x21 � x22P

0 =
P

1 =
P

2 =
P

3 =
P

4 =
P

5 =
P

6 =
P

7 =P2

j=0 xj
P5

j=3 xj
P8

j=6 xj
P11

j=9 xj
P14

j=12 xj
P17

j=15 xj
P20

j=18 xj
P23

j=21 xj

in processors Pi, Pi+1, ..., Pj . Table 1 shows the initial con�guration. The status of each processor after
Phase 1 is shown in Table 2. The purpose of Phase 2 is to compute all data needed to compute pre�x
sums correctly. For example, in Step 2, Processor P1 receives

P
2�3 from P3, \adds"

P
2�3 to its old total

sum
P

0�1 it already has, and stores the new sum
P

0�3 in place of the old total sum, while P3 receivesP
0�1 from P1, stores it, and \adds" it to

P
2�3 it already has to get

P
0�3, which is stored as its new total

sum. The contents of each processor after Steps 1, 2, and 3 of Phase 2 are given in Tables 3, 4, and 5,
respectively. After Phase 2, each processor has all necessary data to compute the �nal result. For example,
P7 now contains x21, x22, x23, x21�x22,

P
0�3,
P

4�5,
P

6, and
P

7. Then in Phase 3, all P7 has to do is to
compute

P
0�3�

P
4�5�

P
6 and \add" it to x21, x21 �x22, and x21�x22�x23 (this is

P
7). The contents

of all the processors are shown in Table 6, which are all required pre�x sums.
As for the time complexity, Phase 1 takes O(N=p) time as there are N=p elements stored in each pro-

cessor. Phase 2 takes O(Ccomm log p) time, where Ccomm is the cost of transmitting total sums between
two processors in each step in the given communication pattern (ASCEND) in Phase 2. Phase 3 requires
O(N=p + log p) time where O(log p) is used to add all necessary data (there are at most dlog pe of them)
obtained from Phase 2 and O(N=p) is used to add this sum to each of N=p pre�x sums computed in Phase

1. The total time required is therefore O(N=p+ Ccomm log p).
For a hypercube of any size, this Ccomm = O(1). Therefore, the total time required to compute pre�x

sums of N elements on a hypercube of size p is O(N=p+log p). This results means that when p = N= logN),
and each processor holds logN numbers, the pre�x sums can be computed in O(logN) time, resulting in an

Table 3: Con�guration After Step 1 of Phase 2

P0 P1 P2 P3 P4 P5 P6 P7
x0 x3 x6 x9 x12 x15 x18 x21
x1 x4 x7 x10 x13 x16 x19 x22
x2 x5 x8 x11 x14 x17 x20 x23
x0 � x1 x3 � x4 x6 � x7 x9 � x10 x12 � x13 x15 � x16 x18 � x19 x21 � x22P

0

P
1

P
2

P
3

P
4

P
5

P
6

P
7P

0�1

P
0

P
2�3

P
2

P
4�5

P
4

P
6�7

P
6P

0�1

P
2�3

P
4�5

P
6�7

6

Table 4: Con�guration After Step 2 of Phase 2

P0 P1 P2 P3 P4 P5 P6 P7
x0 x3 x6 x9 x12 x15 x18 x21
x1 x4 x7 x10 x13 x16 x19 x22
x2 x5 x8 x11 x14 x17 x20 x23
x0 � x1 x3 � x4 x6 � x7 x9 � x10 x12 � x13 x15 � x16 x18 � x19 x21 � x22P

0

P
1

P
2

P
3

P
4

P
5

P
6

P
7P

0�3

P
0

P
0�1

P
2

P
4�7

P
4

P
4�5

P
6P

0�3

P
0�3

P
0�1

P
4�7

P
4�7

P
4�5P

0�3

P
4�7

Table 5: Con�guration After Step 3 of Phase 2

P0 P1 P2 P3 P4 P5 P6 P7
x0 x3 x6 x9 x12 x15 x18 x21
x1 x4 x7 x10 x13 x16 x19 x22
x2 x5 x8 x11 x14 x17 x20 x23
x0 � x1 x3 � x4 x6 � x7 x9 � x10 x12 � x13 x15 � x16 x18 � x19 x21 � x22P

0

P
1

P
2

P
3

P
4

P
5

P
6

P
7P

0�7

P
0

P
0�1

P
2

P
0�3

P
4

P
0�3

P
6P

0�7

P
0�7

P
0�1

P
0�7

P
0�3

P
4�5

P
0�3P

0�7

P
0�7

P
0�7

P
4�5P
0�7

Table 6: Con�guration After Phase 3, The Final Result

P0 P1 P2 P3 P4 P5 P6 P7
x0 x3 x6 x9 x12 x15 x18 x21
x1 x4 x7 x10 x13 x16 x19 x22
x2 x5 x8 x11 x14 x17 x20 x23P0

j=0 xj
P3

j=0 xj
P6

j=0 xj
P9

j=0 xj
P12

j=0 xj
P15

j=0 xj
P18

j=0 xj
P21

j=0 xjP1

j=0 xj
P4

j=0 xj
P7

j=0 xj
P10

j=0 xj
P13

j=0 xj
P16

j=0 xj
P19

j=0 xj
P22

j=0 xjP2

j=0 xj
P5

j=0 xj
P8

j=0 xj
P11

j=0 xj
P14

j=0 xj
P17

j=0 xj
P20

j=0 xj
P23

j=0 xj

7

optimal cost of O(N).

4 Extensions to Stars and Pancakes

The star and pancake networks were proposed to be attractive alternatives to the hypercube topology for
interconnecting many processors in a parallel computer, and compare favorably with it in several aspects
[1, 2]. For example, an n-star or n-pancake has p = n! nodes, but both their degree and diameter are
O(n), i.e., sub-logarithmic in the number of vertices, while a hypercube with O(n!) vertices has a degree and
diameter of O(log(p)) = O(n log n), i.e., logarithmic in the number of vertices.

In this section, we study the problems of computing parallel pre�x sums and �nding the maximum
subsequence sum on the star and pancake networks. Speci�cally, parallel algorithms are presented which
solve both problems for an input sequence of N elements on a star or pancake network with p processors in
time O(N=p+ log p), where N � p. Both algorithms are optimal in view of the
(N=p+ log p) lower bound.
On a �ne-grained model where N = p, the time becomes O(log p), also optimal.

We will �rst introduce the two networks. We then see how our general schemes developed in Section 3
can be extended to run on these two networks, using a special routing algorithm.

Let Vn be the set of all n! permutations of symbols 1, 2, ..., n. For any permutation v 2 Vn, if we
denote the ith symbol of v by v(i), then v can be written as v(1)v(2) � � � v(n). A star interconnection

network on n symbols, Sn = (Vn; ESn), is an undirected graph with n! vertices, where each vertex v is
connected to n � 1 vertices which can be obtained by interchanging the �rst and ith symbols of v, i.e.,
(v(1)v(2) � � � v(i � 1)v(i)v(i + 1) � � � v(n); v(i)v(2) � � � v(i � 1)v(1)v(i + 1) � � � v(n)) 2 ESn , for 2 � i � n. We
call these n� 1 connections dimensions. Thus each vertex is connected to n� 1 vertices through dimensions
2, 3, ..., n. Sn is also called an n-star. Fig. 1 shows S4.

1234 4231

2431

3421

3241

2341

4321

3214 2134

31242314

1324

24133412

4312

1342

3142

4132

1432 1423

4123

2143

1243

4213

a

a

c

c

d

d b

b

Figure 1: A 4-Star S4

A pancake interconnection network on n symbols, Pn = (Vn; EPn), is an undirected graph with n! vertices,
where each vertex v is connected to n� 1 vertices which can be obtained by ipping the �rst i symbols of v,
i.e., (v(1)v(2) � � � v(i � 1)v(i)v(i + 1) � � � v(n); v(i)v(i � 1) � � � v(2)v(1)v(i + 1) � � � v(n)) 2 EPn , for 2 � i � n.
The dimensions for Pn are de�ned similarly. Pn is also called an n-pancake. Fig. 2 shows P4. Both Sn and
Pn are in the family of Cayley graphs [1]. Since the following discussion and results apply to both networks,
we henceforth use Xn to denote either Sn or Pn.

Let m1 and m2 be two distinct symbols from f1; 2; :::; ng. We use the notation m1 �m2 to represent a
permutation of f1; 2; :::; ng whose �rst and last symbols are m1 and m2, respectively, and * represents any
permutation of the n� 2 symbols in f1; 2; :::; ng � fm1;m2g. Similarly, m1� is a permutation of n symbols
whose �rst symbol is m1, and �m2 is a permutation of n symbols whose last symbol is m2.

Let Xn�1(i) be a sub-graph of Xn induced by all the vertices with the same last symbol i, for some
1 � i � n. It can be seen that Sn�1(i) is an (n�1)-star and that Pn�1(i) is an (n�1)-pancake, both de�ned
on symbols f1; 2; � � � ; ng � fig. It follows that Xn can be decomposed into n Xn�1's: Xn�1(i), 1 � i � n

8

1234 4321

3214

2314 3124

2134

1324

3421

2431

2341

3241

4231

1423

2413

2143

1243

4213

4123

3142

4132

1432

3412

4312

1342

a

a

b

b

Figure 2: A 4-Pancake P4

[1, 2]. For example, S4 in Fig. 1 contains four 3-stars, namely S3(1), S3(2), S3(3), and S3(4), by �xing the
last symbol at 1, 2, 3, and 4, respectively. Pn can also be decomposed similarly.

4.1 Parallel Maximum Subsequence Sum Algorithms on Stars and Pancakes

Even though Xn has a diameter of O(n) = o(log p), it is not hard to see that a lower bound for both the pre�x
sums and the max sum algorithms is still
(log p) = O(n logn) on a �ne-grained model, and
(N=p+ log p)
on a coarse-grained model. This is so simply because just to add all p numbers (with each processor holding
one number) requires a time of at least
(log p).

As mentioned earlier, most hypercube algorithms are of the type ASCEND or DESCEND, or some varia-
tion thereof [11]. Those hypercube algorithms that fall in this class can be further divided into two sub-classes
according to whether or not they preserve the ordering of the processors while ascending or descending, i.e.,
whether or not a processor ranked kth in one sub-cube has to communicate with a processor also ranked kth

in another sub-cube. Examples of algorithms in the �rst sub-class are Batcher's bitonic merging and sorting
algorithms [5] as implemented on the hypercube. Algorithms that belong to the second sub-class include
broadcasting and pre�x sums computation. We will describe a routing algorithm called GROUP-COPY
later which allows us to route data among di�erent sub-stars and pancakes in a certain fashion (although not
order-preserving) in constant time. This routing algorithm allows one to perform recursive doubling/halving
[3] on Xn easily. The general scheme G for recursive doubling on Xn can be stated as follows, where G is
whatever the algorithm being used to solve a problem.

G(Xn)
for all i, 1 � i � n, do in parallel G(Xn�1(i))
for i = 1 to dlogne do

starting from Xn�1(1), arrange all Xn�1's into groups of 2i consecutive Xn�1's.

within each group are two subgroups, each with 2i�1 Xn�1's, these two
subgroups communicate with each other using the routing
GROUP-COPY in order to do necessary work.

Of course, care must be taken as n is not necessarily a power of 2. The time required is t(n) = t(n� 1) +
O((Ccomm+Cwork) logn) with the solution t(n) = O((Ccomm+Cwork)n logn) = O((Ccomm+Cwork) log p),
where Ccomm and Cwork are costs for communication and work, respectively. Later on we will see that
Ccomm = O(1). Also, since only constant number of operations are performed after each communication
step (normally a few arithmetic operations such as addition) for all of our algorithms, Cwork = O(1). It is
obvious that using the routing and the above general scheme, we can directly implement on the star and
pancake networks any algorithm for the hypercube that is in the second sub-class, using asymptotically the

9

same number of processors and with no asymptotic time loss. Note that this is an improvement since the
star and pancake networks are weaker computational models compared with the hypercube (due to their
smaller degree). The pre�x sums algorithm in the previous subsection is one such typical example. There
are a host of other basic data communication algorithm that also fall into the the second sub-class, including
pre�x sums computation and �nding max/min [12].

In order to extend all of our hypercube maximum subsequence sum algorithms (both �ne and coarse-
grained models), all we need to do is to be able to compute pre�x sums (both models), to �nd maximum of
elements stored in Xn, and to do general recursive doubling. All of the above can be done using our general
scheme and the routing algorithm.

We now briey describe how pre�x sums computations can be done in times O(log p) = O(n log n)
(�ne-grained) and O(N=p+ log p) (coarse-grained), respectively.

We �rst de�ne the processor ordering. In Xn, let r denote the processor associated with the vertex
a1a2:::an and q denote the processor associated with the vertex b1b2:::bn. The ordering, �, on the processors
is de�ned as follows: r � q if there exists an i, 1 � i � n, such that aj = bj for j > i, and ai < bi. In
other words, the processors are ordered in reverse lexicographic order (i.e., lexicographic order if we read
from right to left). If r � q, we say that r precedes q. The rank r(u) of a vertex u is the number of vertices
v such that v � u, i.e., r(u) = jfvjv � u; v 2 Vngj. Clearly, 0 � r(u) � n!� 1.

By this de�nition, we can write the n! processors in Xn as Pi, 0 � i � n!� 1, such that Pi � Pj if i � j.
For example, the six nodes of X3 are labelled as follows:

P0 = 321, P1 = 231, P2 = 312, P3 = 132, P4 = 213, P5 = 123

We �rst take a look at the �ne-grained version. Suppose that we have computed pre�x sums for two
groups of sub-structures as follows:

Group 1 : Xn�1(i) � � � � � � � � �Xn�1(i+ k)
Group 2 : Xn�1(i+ k + 1) � � �Xn�1(i+ 2k + 1)

and that each processor holds two variables s and t, for storing the partial pre�x sum computed so far and
the total sum of values in the group it is in, respectively. Let the total sum in Group 1 be t1 and the total
sum in Group 2 be t2. We �rst use GROUP-COPY (the description of which is given next) to send t1 to
every processor in Group 2, and t2 to every processor in Group 1, then the pre�x sums in processors in
Group 1 remain the same, while the pre�x sum s in a processor in Group 2 becomes s� t1. The total sum
for all the processors in both groups becomes t1 � t2. All these steps can be accomplished in O(1) time.
When a group contains only one Xn�1, the algorithm is called recursively. Let t(n) be the time complexity
of the algorithm, then t(n) = t(n� 1) +O(logn) = O(n logn) = O(log p), which is optimal.

The maximum and the minimum of n! values stored one per node in Xn can also be found in O(n log n)
= O(log p) time by letting the binary associative operation in the pre�x sums algorithm be max and min,
respectively.

The implementation of the coarse-grained hypercube pre�x sums algorithm on Xn is straightforward. In
Phase 1 each processor in Xn simply computes the pre�x sums of its own elements. In Phase 2, we �rst
recursively run Phase 2 in each Xn�1(i) in parallel, for 1 � i � n, then all that remains to be done is to
treat each Xn�1(i) as one processor (since all the processors in Xn�1(i) contain the same set of data with
the exception of their original elements) and execute each step of Phase 2. Phase 3 on Xn is exactly the
same as before.

As for the running time of the coarse-grained parallel pre�x sums algorithm on Xn, Phase 1 takes O(N=p)
time. Let t(n) be the time required to implement Phase 2 on Xn, then

t(n) = t(n� 1) +O(Ccommdlogne)

= O(Ccomm log(n!)):

By our routing algorithm, Ccomm is a constant, thus t(n) = O(log(n!)) = O(log p). Phase 3 takes O(N=p+
log p) time for the same reason given before. Therefore, the total time required to compute all the pre�x
sums on Xn is O(N=p+ log p), matching the lower bound.

10

The key routing algorithm used is an algorithm we developed in [4] that can route data between any
two groups of Sn�1's. This routing algorithm can be described as follows. Consider the following problem:
Given Xn�1(i), and Xn�1(j), with i 6= j, it is required to exchange the contents of the processors in Xn�1(i)
with the processors in Xn�1(j). By \exchanging the contents of Xn�1(i) with Xn�1(j)" we mean that the
content of each processor in Xn�1(i) is exchanged with the content of a processor in Xn�1(j) such that no
two processors in Xn�1(i) exchange their contents with the same processor in Xn�1(j). This task can be
accomplished in O(1) time by a procedure called COPY [4]:

Procedure COPY (i; j)

1. do in parallel for all vertices �i, �j
send content to neighbor along dimension n

2. do in parallel for all edges (i � k; j � k), such that k 6= i; j,
exchange contents between i � k and j � k.

3. do in parallel for all vertices i � k, j � k, k 6= i; j
send content to neighbor along dimension n. 2

The above routing can be extended as follows. Let I : i1; i2; :::; il and J : j1; j2; :::; jl be two sequences
from f1; 2; :::; ng such that no two elements of I are equal, no two elements of J are equal, and fi1; i2; :::; ilg
\ fj1; j2; :::; jlg = ;. It is desired to exchange the contents of Xn�1(im) with Xn�1(jm), in parallel, for
1 � m � l. This task can also be achieved in constant time by a procedure called GROUP-COPY [4].

With the above algorithms (the general scheme for recursive doubling, pre�x sums, and �nding max/min),
it is not hard to see that all of our hypercube algorithms for the maximum subsequence sum can be extended
to run on both Sn and Pn without asymptotic time loss. That is, on a �ne grained Xn, the running time is
O(log p), and on a coarse-grained Xn, it is O(N=p+ log p), both optimal.

5 Parallel Algorithm for Finding Maximum Subarray

A parallel algorithm to solve the problem of maximum subarray can be easily found using pre�x sums
computation and our our maximum subsequence sum algorithm already developed. The idea of this algorithm
is from [10] and is outlined below.

Given matrix A = (aij)N�N , for each pair (i; j), where 1 � i � j � N , we �nd the maximum subarray

with max value Sij , i.e., Sij = max1�l�m�N
Pj

s=i

Pm

t=l ast. We then �nd the largest one among all such
sums max 1 � i � j � NSij , which is the sum of the maximum subarray in the original N �N array.

One possible implementation is as follows. Initially, N processors are assigned for each column k and
the pre�x sums of these N numbers a1k, a2k, ..., aNk in column k can be found in O(logN) time. The sum
of elements on column k that are between rows i and j sijk = aik + ai+1;k + ... + ajk is then simply the
di�erence between 2 pre�x sums (a1k + ... + ajk) - (a1k + ... + ai�1;k), which can be computed in constant
time. Now, for the given i and j, we have N sums sij1, sij2, ..., sijN , and the maximum subarray Sij is
simply the maximum subsequence of the sequence sij1, sij2, ..., sijN , which can be obtained in O(logN)
time with N processors.

Note that pre�x sums of each column needs to be computed only once, requiring O(logN) time and
N2 processors. Finding Sij requires N processors and O(logN) time. Since we have to execute the above
procedure for each of O(N2) pairs of i's and j's, we have an algorithm that uses O(N3) processors to solve
the maximum subarray in O(logN) time. This algorithm has a cost of O(N3 logN).

An improvement can be made immediately because (1) pre�x sums of N numbers can be computed in
O(logN) time with p = N= logN processors; and (2) maximum subsequence sum problem can be solved
in O(logN) time, also with p = N= logN processors. This implies that the problem of maximum subarray
can be solved in O(logN) time with O(N2 �N= logN) processors. The cost now becomes O(N3), the time
required for the currently best known sequential algorithm. In addition, this result matches those of the
PRAM algorithms given in [10] and [14]. It is trivial to see that the above algorithm works on PRAM as
well as hypercubes, stars, and pancakes.

11

Similar to what we did earlier, we can make our algorithm more general in that (1) p processors can be
assigned to each column when computing pre�x sums initially; and (2) p processors can be used to solve
the maximum subsequence problem for each pair (i; j), all with a time of O(N=p + log p). Therefore, the
algorithm runs in time O(N=p+ log p) with O(N2p) processors.

6 Conclusion

Algorithms are developed to solve the maximum sum problem on several interconnection networks. These
algorithms are all based on a simple linear sequential algorithm that uses pre�x sums. We �rst showed
how to compute pre�x sums of N elements on a hypercube, a star, and a pancake interconnection network
of size p (where p � N) in optimal time of O(N

p
+ log p). We then found algorithms that compute the

maximum subsequence sum of N elements on the aforementioned networks of size p, all with a running
time of O(N

p
+ log p), optimal in view of the trivial
(N

p
+ log p) lower bound. For the �ne-grained model

where each processor holds one element, the algorithms for all three interconnection networks have a time
complexity of O(log p) = O(logN), also optimal. Our results for the star and pancake graphs are interesting,
considering the fact that, unlike a hypercube whose degree is logarithmic in terms of the total number of
nodes, both stars and pancakes have sub-logarithmic degree. In addition, when p = N= logN , the problem
can be solved in O(logN) time. The cost of the algorithm is therefore O(N), which is optimal. Also, this
performance matches that of a previous algorithm which is designed to run on a PRAM machine.

For the problem of maximum subarray, our algorithm for the three interconnection networks has a running
time of O(logN) using O(N3= logN) processors, which, once again, matches the results given in [10] and
[14], which are for a much stronger PRAM.

References

[1] S.B. Akers and B. Krishnamurthy, \A Group Theoretic Model for Symmetric Interconnection Networks,"
IEEE Transaction on Computers, Vol. c-38, No. 4, April 1989, pp. 555-566.

[2] S.B. Akers, D. Harel, and B. Krishnamurthy, \The Star Graph: An Attractive Alternative to the n-
cube," Proc. International Conference on Parallel Processing, St. Charles, Illinois, August 1987, pp.
393-400.

[3] S.G. Akl, Parallel Computation: Models and Methods, Prentice Hall, Upper Saddle River, New Jersey,
1997.

[4] S.G. Akl and K. Qiu, \A Novel Routing Scheme on the Star and Pancake Networks and Its Applications,"
Parallel Computing, 19, 1, 1993, pp. 95-101.

[5] K.E. Batcher, \Sorting Networks and Their Applications," AFIPS Conf. Proc. SJCC, 32, Washington,
D.C., Thompson Books, 1968, pp. 307-314.

[6] J. Bentley, \Programming Pearls: Solutions for September's Problem," Communications of the ACM,
27, Nov. 1984, pp. 1090-1092.

[7] M. Cosnard and D. Trystram, Parallel Algorithms and Architectures, International Thomson Computer
Press, London, 1995.

[8] D. Gries, \A Note on the Standard Strategy for Developing Loop Invariants and Loops," Sci. Compu.

Programming, 2, 1982, pp. 207-214.

[9] F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes, Mor-
gan Kaufman Publishers, San Mateo, California, 1992.

[10] K. Perumalla and N. Deo, \Parallel Algorithms for Maximum Subsequence and Maximum Subarray,"
Parallel Processing Letters, Vol. 5, 1995, pp. 367-373.

12

[11] F.P. Preparata and J. Vuillemin, \The Cube-Connected Cycles: A Versatile Network for Parallel Com-
putation," Communications of the ACM, Vol. 24, May 1981, pp. 300-309.

[12] K. Qiu, S.G. Akl, and H. Meijer, \On Some Properties and Algorithms on the Star and Pancake
Interconnection Networks," Journal of Parallel and Distributed Computing, 22, 1994, pp. 16-25.

[13] M.A. Weiss, Data Structures and Algorithm Analysis, The Benjamin/Cummings Publishing Company,
Inc., Redwood City, California, 1994.

[14] Z. Wen, \Fast Parallel Algorithms for the Maximum Sum Problem," Parallel Computing, 21, 1995, pp.
461-466.

13

