
A New Framework for Software Development

D.B. Skillicorn1

Department of Computing and Information Science

Queen's University, Kingston, Canada

skill@cs.queensu.ca

September 1999
External Technical Report

ISSN-0836-0227-
1999-432

Department of Computing and Information Science
Queen's University

Kingston, Ontario, Canada K7L 3N6

Document prepared September 7, 1999
Copyright c1999 D.B. Skillicorn

Abstract

Conventional software development does not allow proper design choices to be made when

abstract machine interfaces are involved. The best design at one level of abstraction does not

necessarily lead to the best design at the next, and subsequent levels. This problem has not

been obtrusive in imperative, sequential programming, but becomes much more signi�cant for

targets such as superscalar processors, FPGAs, and parallel computers.

We suggest a perspective for software development where the goal of each phase is to produce

all potential implementations to be passed to the next phase. We explore the implications of this

simple idea, expressing the process of software design as a sequence of traversals of transformation

spaces between two abstract machines.

1This work was supported by the Natural Sciences and Engineering Research Council of Canada



A New Framework for Software Development

D.B. Skillicorn
Department of Computing and Information Science

Queen's University, Kingston, Canada
skill@cs.queensu.ca

1 Introduction

Software designers rarely write programs in the language of the processor on which these
programs will eventually execute. Instead, a program is written in a programming language,
which is in fact the instruction set of an abstract machine designed to hide the complexity
and variability of the underlying system and hardware. Thus abstract machines, or equiv-
alently programming models, correspond to programming languages. The task of software
design is to translate from one language to another, and hence from one abstract machine
to another.

For imperative sequential programming, the abstract machines are so well-behaved that
we often forget that they are there. For instance, the processor that executes an imperative
program may, in reality, contain a pipeline, may issue instructions out of order, and may
move data between multiple levels of memory, but the abstraction of a processor executing
a single, in-order stream of instructions with constant memory access time is a serviceable
one. The usual cost model counts instructions executed, assuming falsely that oating
point instructions take the same time as �xed point instructions and that memory access
takes constant time, but the model is su�ciently accurate for most purposes. In fact, in
costing programs we usually go further and ignore the constants entirely, concentrating the
calculation of program cost only on loops and recursions.

There have always been some programs for which the standard abstract machine and
cost model are inadequate. For example, designing a program for a memory-bound problem
is di�cult because the standard cost model does not capture the real costs of memory access.
A programmer may choose the wrong algorithm because the memory behavior of the real
machine is not reected in the abstract machine.

Such inadequacies of the abstract machine are becoming increasingly important as pro-
cessors themselves become more sophisticated. Whenever a processor is clever enough to
improve performance other than by across-the-board speedup, some types of programs will
start to behave in ways that the abstract model does not predict. Since programmers are
using this abstract model to make design choices, this leads to performance surprises for
individual programs and, on a larger scale, to poor design.

Building abstract models that accurately reect the properties of parallel computers has
always been di�cult. This is partly because of the extra complexity of modelling a space
dimension, and partly because of the non-linear behavior of communication (because of, for
example, congestion). There are some abstract machines that are reasonably good models
for wide classes of such computers, for example, MPI [2], BSP [5], and Cilk [1].

This paper addresses one of the major de�ciences inherent in the current approach to
software development. Each entity involved in designing a program tries to �nd the best
design for the abstract machine below it, and then passes this design on to subsequent
stages. The problem is that the best design at one level is not necessarily the best starting

1



Speci�cation

Program A

Program B

Implementation B

Implementation A

Cost

Figure 1: A Central Problem: the programmer's best design is not the best design overall

point for design at the next level. We suggest a new view of the development process. This
new view is useful as a mental tool for thinking about the detailed processes involved, but
may also make a di�erence to the practical tools used for software design. This work is
motivated especially by the di�culties of parallel software design. One side-e�ect is the
suggestion of new kinds of abstract machines for parallel computers.

2 A Central Problem

Any computational device is wrapped in a set of layers, each corresponding to an abstract
machine of greater abstraction. A program written for eventual execution on the device
must be translated from a form written for the most abstract of these machines, through
a number of phases, to a form that corresponds directly to the physical machine. Even for
the simple case of an imperative sequential program, there are several phases.

The process begins with a speci�cation must �rst be translated from a speci�cation
language into a high-level programming language by a software developer. The program
must then be translated into \machine language" by a compiler. The machine language
is usually not the actual language of the processor but the instruction set interface of a
family of processors. This machine language program is translated at runtime into a set
of instructions whose ordering and other behavior is potentially quite di�erent from the

sequence of machine instructions produced by the compiler. In some settings, further layers
may be involved: for example, a runtime system may add library code to the program,
perhaps even dynamically.

The goal of the software designer is to produce the program whose eventual execution will
be optimal. In other words, the program tries to drive the abstract machine corresponding
to the programming language so that it will, in turn, drive the next lower abstract machine,
and so on; so that the �nal, lowest-level abstract machine will execute as e�ectively as
possible.

One of the problems that prevents good software design is the inability, in general,
to optimize across abstract machine boundaries. Consider just the upper layers of the
hierarchy of abstract machines. In Figure 1 a programmer has the choice between two
algorithms, Algorithm A and Algorithm B. In the cost model of the programming language,
Algorithm A appears to be the cheaper. Algorithm A is therefore implemented and passed

2



to a compiler. The compiler itself is translating from the abstract machine corresponding
to the programming language to an abstract machine corresponding to the instruction set
of the target processor. It may happen that the cost of translated Program B is less than
that of translated Program A. The compiler is using a di�erent cost model, that of the
instruction set abstract machine, in which optimizations are possible that are not visible
at the programming language interface. The programmer made the right choice, given the
abstract machine visible to her; the compiler did the best job it could translating Program
A; but together they have produced a sub-optimal program.

Of course, the problem could be avoided if the cost implications of the compiler's choices
were visible in the programming language. But the compiler's choices depend on the cost
structure that the runtime system will use to, say, schedule instruction sequences, so all of
this information needs to be available in the programming language as well. It is conceivable
that the hierarchy of abstract machines could be collapsed so that all of the details are visible
to the programmer, but the complexity involved in programming is daunting. Many of the
design choices in modern uniprocessors are made on pragmatic and ad hoc grounds, and
so it would be extremely di�cult to build abstractions that both accurately reected these
choices, and were in fact more abstract.

There is a second complicating factor { the cost of a program also depends on the sizes,
shapes, and sometimes values of two sets of parameters, one for the program, and one for
the target architecture. It will not always be the case that one algorithm is better than
another for all of the possible parameter choices. For example, suppose that Algorithm A
above has cost

(a1f(n) + b1)i

where a1 and b1 are constants that arise from the `structure' of the algorithm, n is the size
of the input, and i is the time to execute an instruction on the target architecture. Further,
suppose that Algorithm B has cost

(a2g(n) + b2)i

The e�ect of the target processor speed on the cost of these two algorithms is relatively
the same, so we routinely discount it in comparing the two costs. (Sadly, this is not the
case with most architectural parameters.) Which algorithm is cheaper depends on the
relative magnitudes of the ai's, bi's and f and g. Usually, there will be some values of n for
which one algorithm will be better, and some for which it will be worse. In the absence of
information about what input sizes will occur, the appropriate algorithm should be chosen
at runtime, which means that both should be implemented. Each algorithm is optimal in
some particular region. If we drew a graph with axes n, i, and cost, the target of our
software development would be represented by the minimal surface in cost space, and the
number of implementations required by the number of distinct minimal regions.

Developing optimal programs therefore requires building multiple implementations for
two reasons: because di�erent implementations will be best for di�erent combinations of
program and target parameters; and because our costs are not su�ciently accurate to be
sure about which implementation is best for a given parameter set anyway. No wonder
software development is hard!

Why has this problem not been more obvious in ordinary software design? In the stan-
dard imperative programming model, there is a fortunate separation between two kinds
of transformations that can be applied to programs. The �rst kind change the order of

3



Speci�cation

Program A

Program B Cost

Figure 2: The Problem for Sequential Programming: the cost di�erence introduced by the
compiler is at most a constant factor.

complexity of the program; the second change only the constants; and these two kinds of
changes can be separated sequentially. In the cost expressions above, one algorithm must
dominate for su�ciently large n, so we use the order convention and ignore optimality for
small values of n. This is useful for developing complexity theory, but its practical useful-
ness depends on whether the input size for the application falls outside the \small" range
or not. Fortunately, for sequential programming, cost expressions are usually simple, and
functions such as logn, n, and n2 have magnitudes that di�er markedly even for small n.
Software developers make transformations of the �rst kind; compilers make transformations
of the second kind. The problem setting becomes as shown in Figure 2. It is still possible
for a programmer to choose the \wrong" design, but the suboptimality can only be by a
constant factor, and we have agreed in the complexity theory to ignore such factors. The
design choice can be poor, but only for executions using \small" data.

This assumes that the underlying processor really is a von Neumann machine, which
was never quite true, and is increasingly false. The problem is encountered as follows:
the compiler has a standard strategy for changing programs in ways that it thinks are
optimizations. When these optimizations do not actually improve program performance,
programmers are forced to write their programs so that the compiler will be unable to
discover these optimizations, and so will translate the way the programmer wanted it to.
Since it is not always easy to tell what sequence of transformations a compiler will apply
and why, this interaction becomes an infuriating one for the program designer.

We have presented this problem as it occurs at the top level of the design hierarchy, but
the same problem repeats at all levels. As we have seen, the programmer cannot tell which
program to write to cause the compiler to generate the best program for the runtime system;
the compiler cannot tell which program to generate to cause the runtime to generate the
best instruction sequence (for example, to hide memory latency); and the runtime cannot
tell which instruction sequence will be best for the issue logic to keep the functional units
busy.

Two trends are increasing the impact of the problem. First, targets are increasingly
variable, both in properties and over time. The boundary between hardware and software
is now quite mobile; an abstract machine that would earlier have been implemented by
hardware may now be a software emulation or an FPGA, and both are far easier to change.
A major motivation for having abstract machines is to insulate the higher-level abstract
machines that software and compilers target from changes in the lower-level machines. We
do not want to have to rebuild the entire sequence of abstract machines every time the

4



lowest-level platform changes.
Second, parallel computing is becoming increasingly important and, as we have already

mentioned, there are few good abstract machines that capture their properties in a way that
can be exploited for software design. At present, parallel programs must almost always be
tuned carefully after they are built to achieve reasonable performance.

These trends mean that far more abstract machines deviate from the von Neumann
model for which an acceptable design methodology exists. For new abstract machines, the
problem of optimizing designs across boundaries is important. The two trends come to-
gether in metacomputing systems, where the goal is to write programs that will execute on
widely-separated, heterogeneous machines whose availability and performance vary contin-
ually. Building abstractions that allow software to be designed for these environments is
challenging indeed.

The consequences of being unable to design across abstract machine interfaces are: lack of
clarity about algorithmic choices, lack of clarity about goals and hence strategy of translation
from one abstract machine to another, and the wasted work that occurs when an odd design
has to be chosen at one level so that the next level will choose a better design. All of these
signi�cantly increase the costs of developing software, and decrease the e�ective performance
of the software when it is developed.

3 Traditional Software Construction

Traditional software construction is regarded as a sequence of phases, the �rst carried out
by a software designer, and the remainder by software tools. In terms of abstract machines,
each phase is a translation from a program written for one abstract machine (the upper
abstract machine) to a program written for another abstract machine (the lower abstract
machine). For example, in sequential programming, a programmer translates a speci�cation
(an extremely abstract kind of program) into a program written in a high-level language. A
compiler translates this program into a machine language program. A runtime system �nds
an execution sequence for this program. Issue logic �nds the best pattern of despatches for
this instruction sequence using a small window of lookahead.

Of course, this process is not usually entirely sequential. A program may be revised after
it has been compiled, or perhaps even after it has been executed. So there is an iterative
component as well.

What is the goal of each of these entities? Each one tries to �nd the translated program
which is best (i.e. cheapest) in the cost model of the lower abstract machine. To do this, it
has access to some kind of transformation or re�nement system that de�nes how programs
may be altered to preserve their meaning while changing their cost. This process may be
formal (a re�nement calculus [3], compiler optimization rules) or informal.

Each entity is constructing a tree, whose root is the upper abstract-machine program.
A branch corresponds to the application of a \rule" which generates a new textual form of
program from the previous one; and each node in the tree corresponds to a new program.

Each phase is �nished when the upper abstract machine program has been translated
entirely into the language of the lower abstract machine, and the cost of the program is
good enough. Conceptually, perhaps, the entity might search for the optimal program, but
this almost never happens in practice. The \best" version found is then passed to the next
phase.

5



The central problem posed in the previous section shows that this process cannot work
well, because the goal of each phase is ill-formed. No entity can know which version of
the program is best to pass to the next phase without knowing what the next phase's
transformation and cost structures are like. This amounts to a complete breach of the
abstraction. Such breaches have been proposed: for example, making compilers aware of
details of processor design and memory hierarchy is an active topic for research [6].

Let us now examine what happens when programs are derived in more detail. For clarity,
we will imagine that this process occurs in quite a formal way. Even when it happens more
informally, the same mechanisms are at work.

There are two underlying pieces of machinery that are essential for program derivation.
The �rst is a set of transformation rules which de�ne when one textual program can be
changed into another form that is semantically equivalent (transformation) or better (re-
�nement). The second is a cost model which gives the cost of each textual form of program,
usually in terms of execution time.

An initial program forms the root of a tree of those programs that can be derived from
it using the allowed transformations. The cost model enables each of these programs to be
assigned a cost. Indeed, the cost model and the transformation system can sometimes be
integrated so that each transformation is labelled with its cost-reducing direction.

Even in a conventional setting, the process of transformation is not straightforward. For
example, simply reducing cost is unlikely to �nd the optimal program. So the tree structure
that results from transformation is not one where the lowest cost forms are at the leaves.
The cheapest program may appear anywhere in the derivation tree.

So why does the development process have this fundamental problem? The reason is
that cost models, for good reasons, do not give a completely accurate picture of the cost
of di�erent textual forms. The process of transformation is really a language translation
problem { we begin with a program (or speci�cation) written in the language of one abstract
machine and we want to �nd a program written in the language of some more concrete
abstract machine. Each of these languages has basic operations, and composition operators.
Let us de�ne the \upper" abstract machine as A and the \lower" abstract machine as B.
The transformation system may contain rules that allow A-programs to be changed into
new A-programs, rules that allow A-programs to be changed into B-programs, and rules
that allow B-programs to be changed into new B-programs. The goal of this stage of the
transformation process is to replace an A-program with the best completely B-program.

The cost model gives the cost of each B operation and the way in which costs behave
under the composition operators of the B language. If these costs and composition properties
were completely accurate, then there would be no di�culty �nding the best B-program. For
example, if the costs of individual operations are quantitative in nature, and these quantities
add across compositions, then B's cost model will be well-behaved. This is why the ordinary
von Neumann cost model is useful; costs are instruction counts. However, if costs depend
on arrangements or if it is possible to cancel work at lower levels, then cost models behave
more erratically. For example, cache behaviour is history-dependent (hence dependent on
arrangement) and so programs that depend on the presence of the cache have costs that
di�er from that predicted by the simple von Neumann cost model.

Let � be a generic composition operator in the language of B, and1 a generic composition
operator in the language of C that implements B. Then rules with the e�ect

B1 �B2 ! C1 1 C2 1 C3 1 C4

6



where B1 ! C1 1 C2 and B2 ! C3 1 C4 will allow well-behaved cost models provided that
1 is additive on costs.

There are four structural problems in the correspondence between abstract machines
that will break accurate cost modelling. First, composition operators in C may not be
additive, a property that I have elsewhere called convexity. For example, in many parallel
computers the cost of communication is highly nonlinear because of congestion. The parallel
composition of two pieces of program may be made cheaper by making one of the pieces
more expensive by reducing its communication rate, and hence reducing congestion. This
makes it impossible to design each of the pieces by minimizing its (local) cost.

Second, there may be specialised implementations of certain compositions ofB-operations,
for example rules of the form

B1 �B2 ! C1

Here the cost of the composition is smaller than the apparent cost of its pieces. Such
specialised cases can always be dealt with by de�ning a new B-operation equivalent to
B1 � B2 and costed appropriately. However, this mechanism is often cumbersome if the
specialised version reects some wider underlying facet of the C-machine. Note that such
rules can exist in more complicated forms such as

B1 �B2 �B3 ! C1 1 C2

as well.
Third, the algebra of C-operations may sometimes be cancellative. For example, there

may be translations of the form
B1 ! C1 1 C2

and
B2 ! C3 1 C4

but C2 and C3 cancel each other out, so that

B1 �B2 ! C1 1 C4

(This can be regarded as a special case of the previous pattern, except that it tends to
be ubiquitous and hence impossible to treat using the special case mechanism.) This kind
of behaviour in C is typical of parallel computers where each operation is preceded and
followed by data communication operations that place data in the memory of processors.
For some compositions of computational operations, the result arrangement of one may be
suitable as the input arrangement of the next, so that these data communication operations
cancel out.

Fourth, some transformations may only be allowed or may have di�erent costs depending
on the context in which they occur. There may be rules of the form

B1 �B2 �B3 ! B1 � C2 �B3

where B2 cannot normally be transformed to C2.
All of these cases will make the cost model inaccurate and therefore make it impossible

to transform an A program to the optimal B program.
Note that a well-behaved transformation system is one that can be represented as a

transformational grammar that is linear-bounded in the cost (rather than the length) of
terms.

7



4 A New Model for Software Construction

It is clear from the discussion above that a process in which each phase passes one best
version of a program to the next phase is inadequate. This is particularly obvious if, at the
early stages of software development, we want to design in a way that is portable. Because
software lasts a long time, some of the target machines for a given piece of software may not
yet have been invented; in this case it is clear that we cannot possibly know what \best"
will mean. In this section, we propose instead to equate a program with all of its versions,
and treat this object as the goal of software design.

We begin with a speci�cation as the central object of interest. A speci�cation describes a
desired computation in some language, and therefore includes, at least implicitly, an abstract
machine as its context. When we talk about a speci�cation in the normal way, this abstract
machine is often a Turing machine or something at that level of abstraction, and we simply
leave it out of our thinking. A speci�cation is one of three kinds:

1. it is infeasible, so that there is no abstract machine operation that will compute it (we
know from the Halting Problem that there are many speci�cations we can express but
not compute, so that there is a gap between the language and the abstract machine
in this case);

2. a speci�cation can be non-executable, that is it is well-de�ned but not a description of a
computation of the implied abstract machine (for example, it might be a (precondition,
postcondition) pair);

3. a speci�cation can be executable, in which case we normally call it a program.

A transformation system provides the connection between the language of an upper
abstract machine and the language of a lower abstract machine. In the space between
two such machines, a speci�cation is considered executable when it written solely in the
language of the lower abstract machine. The goal of the translation process is to alter
the speci�cation, initially written in the language of the upper abstract machine, into the
language of the lower. The \rules" of the transformation system relate one set of syntax to
the other. Note that this need not be a one-way process { it is perfectly reasonable, and
many transformation systems allow it, to transform a program back into a (non-executable)
speci�cation.

We rede�ne the concept of a speci�cation to be equivalent to all of its implementations
(relative to a given abstract machine). For an infeasible speci�cation, this set will be empty.
For a feasible speci�cation, the set will be non-empty, possibly in�nite. The distinction
between a non-executable and executable speci�cation disappears, since a non-executable
but feasible speci�cation nevertheless has one or more equivalent implementations. Another
way to think of this is that a speci�cation is considered equivalent to the entire tree of feasible
programs that can be derived from it using the transformation system. In a natural way,
we also rede�ne the concept of a program to be equivalent to the set of all implementations
derivable from a given speci�cation.

We now restate the transformation process as: given a (member of a) speci�cation, derive
the program that corresponds to it. The starting point for each phase of software design is
a set of upper abstract-machine programs (a speci�cation by our new de�nition); the goal
is to produce the entire set of implementations of that speci�cation in the language of the
lower abstract machine (a program by our new de�nition).

8



Speci�cations

Implementations

Figure 3: A Typical Transformation Space

In the traditional scheme, the goal was to search a tree of speci�cations reachable from
the initial speci�cation and �nd the best executable one. Now the goal is to �nd all of the
executable nodes of the reachability tree and pass these on to the next phase. Note that
the executable nodes are not the leaves of the tree, for transformation does not necessarily
proceed in the direction of either implementability or cost reduction.

This change of viewpoint solves, or perhaps avoids, the problem of optimization across
abstract machine interfaces. The possibility of handing over a suboptimal starting point to
the next phase is eliminated, because all starting points are handed over (at least concep-
tually; we postpone practicalities until later sections). Clearly this process cannot continue
for ever; the processor cannot, in the end, execute more than one implementation of the
program. However, the point at which the single implementation is selected for actual ex-
ecution is as late as possible, when it is �nally clear which one that should be. Of course,
the cost of doing this is that we must somehow keep all of these di�erent implementations
available and pass them around.

Since a phase begins with more than one textual form of speci�cation, and computes a
set of textual forms (implementations) as its result, the structure that must be explored by
a designer is the set of trees, rooted at each element of the speci�cation, and induced by the
available transformation rules. Let us call this a transformation space.

5 Transformation Spaces

A transformation space is the set of paths from each upper abstract machine implementation
(which we now regard as a speci�cation) to a set of lower abstract machine implementations.
Its structure is induced by the available re�nement or transformation rules which allow new
implementations to be built from old ones.

It may be possible to derive a particular (lower abstract machine) program from more
than one speci�cation, but there is no point in doing so. Thus we may eliminate some
transformation paths from the transformation space. Its structure becomes a set of trees,
each rooted by one element of the speci�cation, as shown in Figure 3.

Cost plays a vital, but subtle, role in transformation spaces. Each abstract machine
has some architectural parameters (instruction execution speed, memory latency, number
of processors, and so on). The cost of an implementation on that abstract machine is an
expression in those parameters, as well as some \program structure" parameters. From the

9



perspective of the current transformation space, these program structure parameters are
properties of the initial speci�cation, but in the previous phase they were the architectural
parameters of the upper abstract machine.

Each element of the speci�cation is labelled with a cost expression in terms of the
parameters of the upper abstract machine, and also with a predicate in these parameters
describing when the speci�cation is valid (that is, a precondition). This predicate naturally
arises because the reason for having more than one element of the speci�cation (that is,
more than one implementation for the upper abstract machine) is that each will be best
over a given range of parameter values.

Each executable speci�cation (that is, element of the program, or implementation on the
lower abstract machine) has a cost in terms of both lower abstract machine (\architectural")
parameters, and upper abstract machine (\program structure") parameters. This cost is an
expression, not a value.

The transformation system for a transformation space may provide useful information
about costs; for example, individual transformations may be annotated with the change in
cost they induce, or perhaps only with their cost-reducing direction. However, this does
not by itself help in traversing the transformation space because many good (i.e. cheap)
implementations occur at the end of transformation sequences, some of whose steps are
cost-increasing. See [4] for an extensive discussion of this issue.

It is entirely possible that an element of a speci�cation is redundant in the sense that all
of the implementations that can be derived from it can also be derived from other elements
of the speci�cation. We would like to be able to reect this information at the next higher
level, but this does not seem to be possible unless it has some e�ect on the cost structure.
(This is unsurprising because there is an element of arbitrariness of deciding which of two
paths from a speci�cation element to an implementation to use.)

Sometimes it may be both natural and useful to combine derivations for more than one
lower abstract machine in a single transformation space (for instance, a shared-memory
and distributed-memory parallel program might share some common structure). This is a
natural way to address portability, since a great deal many of the implementations may be
programs for all of the lower abstract machines, and the work of creating them need only
be done once. In this setting, some implementations are part of a program for one lower
abstract machine, some are part of a program for the other, and some are part of both. This
shows that there is in fact a continuum: at one extreme, all implementations are regarded
as part of a single program; at the other, each implementation is regarded as a program
for a particular lower abstract machine that is a specialization of the more-general abstract
machine. This specialization is usually a predicate on architectural parameters (rather than
more qualitative factors such as shared-memory) and is the origin of the predicates on
elements of speci�cations at the next level down. This is illustrated in Figure 4.

With this perspective, the set of transformation spaces itself forms a tree whose nodes
are transformation spaces, and whose edges are abstract machines.

The properties that make a transformation space attractive are exactly those you would
expect: only a small number of transformations possible at each point; only a single way to
do each thing; and simplicity.

10



Speci�cations

Implementations for
one Architecture

Implementations for
another Architecture

Figure 4: Transformation Space for more than one Abstract Machine

6 Using Well-Behaved Cost Expressions

When the interaction of cost measures and transformation systems are well-behaved, that is
none of the problems described in Section 3 occur, the number of implementations required
can be pruned. We have observed that the cost expressions that label each implementation
are functions of upper abstract machine parameters, lower abstract machine parameters, and
constraints on the upper abstract machine parameters. For the sake of illustration, let us
take n to be the upper abstract machine parameter, p the lower abstract machine parameter,
and suppose that, for a particular element of the speci�cation, we have a constraint that
n > 1000. (The speci�cation may consist, say, of two elements, one constrained by n > 1000
and the other by n � 1000.)

Assume for the time being that the cost expressions are linear in n and p. Consider cost
space, with two axes indexed by n and p, and a cost axis. Each implementation corresponds
to a hyperplane in this space. There is a convex hull of minimal surfaces in this cost space,
with each implementation that is cheapest for some values of n and p corresponding to a
facet on this convex hull.

In fact, each hyperplane corresponds to a whole family of implementations with di�erent
values of p say. However, all members of the family have the same cost expression. By
Brent's theorem, we can always rearrange a parallel program with one value of p to give
another with a smaller value of p. In general, therefore, we only need one implementation
on each facet if we can �nd the others by trivial transformations of this kind.

The number of facets of the minimal convex hull cannot exceed the number of imple-
mentations. In practice, we expect many potential implementations not to be part of the
minimal convex hull because their costs exceed other implementations at all points in n-p
space. Further, the greater the restrictions on n and p, the smaller this space is to begin
with.

One approach to program design is therefore to construct this convex hull during the
process of constructing and traversing transformation space, discarding implementations
that are too expensive based on implementations found so far. This a a kind of branch-and-
bound search, complicated by the fact that we cannot prune a branch whose current leaf is
too expensive, because some of its further transforms may still be cheaper.

Of course, many cost expressions will not be linear in the parameters. The number of
\facets" becomes correspondingly larger.

11



The implementation corresponding to each facet has a cost which is then passed down
to the next phase. This cost is a combination of the cost expression and a constraint which
is the union of the constraint inherited from its root speci�cation and the constraint that
de�nes the facet. An interesting, but unexplored, question is whether this constraint should
also include the union of the applicability conditions associated with the transformations
that were applied to generate this implementation.

It may happen that the performance of some abstract machines depends on properties
that are not easily encoded as magnitudes. For example, if a program's behavior depends
on the values, as well as the sizes, of its inputs; or if an architecture has discontinuous
performance based on some switch setting, then the approach outlined in this section will
not work.

In general, we expect that the process of �nding good implementations is simpli�ed if the
number of lower abstract machine parameters is small. It is no surprise that many practical
transformation space tools try to reduce the number of such parameters by assuming that
cost does not depend on them. For example, the PRAM model assumes constant time
memory access to memory from any number of processors, which clearly cannot be true in
practice.

7 Choosing Abstract Machines

In conventional software design, we try to choose abstract machines at the \right" level of
abstraction to try and avoid the problem of optimizing across them. Two strategies are
used. The �rst is to choose the level of abstraction to get monotonicity in the architectural
parameters. This makes it easier to be sure that if one program is better than another
at one level, its implementations will be better than the implementations of the other at
the lower level. As we have seen, imperative sequential programming relies on this kind of
monotonicity. The second strategy is to reduce, in absolute terms, the number of abstract
machines between the software developer and the hardware itself. This is the motivation
for projects that expose all of the details of the processor and memory to the compiler, so
that only one abstract machine boundary has to be crossed. It is also the motivation for
functional programming, where (at least in principle) software developer and compiler see
the same abstract machine and transformation rules, and the software developer can hand
the text of the program o� to the compiler at any point. In fact, the transformation space
and strategy for traversing it are too weak in most functional languages for this to be really
true, so programmers must �nd a good \starting point" from which the compiler can begin.

In our new model of the software design process, there is no penalty in introducing extra
layers of abstraction, since the original problem of crossing the interfaces they create has
disappeared. However, we would like abstract machines to be \thin" in the sense that they
don't provide multiple ways of doing the same thing. This has the e�ect of reducing the
number of \facets", which correspond to the number of implementations in a program.

The ability to add extra abstract machines makes this approach �t naturally with the
skeleton approach to parallel computing, in which it is common to replaces the operation
of a parallel computer with a single machine-wide skeleton that encapsulates a complex
computation.

Notice also that this approach replaces data re�nement by machine re�nement. Ma-
chine re�nement is inherently more attractive since it can be done once, and used by many

12



programs, whereas data re�nement must be done for each program (until truly reusable
libraries become commonplace).

8 Representing Programs

Since a program is now a set of implementations, some thought must be given to the
concrete representation of these programs. There are three levels of di�erence that can
be distinguished between any two implementations making up a program:

� The implementations describe di�erent algorithms. It is hard to be precise about what
constitutes a di�erent algorithm, but it may be useful to separate two algorithms if
insight is required to see that they are functionally equivalent. Keeping di�erent
textual representations would seem to be unavoidable here.

� The implementations describe di�erent arrangements of computation (and memory
access and communication in some settings). Here a single textual representation
can stand for a possibly-exponential number of di�erent arrangements. The single
representation need not necessarily be resolved into the actual best arrangement in
order to be passed to the next phase (a closure in a functional program is an example
of such a representation being passed to another abstract machine). This makes
the creation of some subsets of the implementations of a program lazy, potentially
postponing the choice of arrangement until the choice of the single implementation
to be executed. (Of course, an algorithm with exponential running time may be
required to select the best arrangement from this program representation; however,
this resolution only needs to be done once, rather than at each phase.)

� The implementations describe the same arrangement with di�erent parameter values.
As we have already discussed, we can simply regard these as a single implementation.

It may therefore be possible to keep a much smaller set of explicit representations of imple-
mentations than a simple view would suggest. It is also the case that a given computation
is often textually smaller the more abstract the machine for which it is intended. The
overheads of multiple representations may therefore not be excessive.

9 Building Programs in Pieces

We have talked of software design so far as if it were a monolithic activity. Any practical
software design methodology must also permit programs to be constructed in pieces which
can then be joined together to give a well-behaved single program. This is required so that
large software can be built by di�erent groups, and is also the key to software reuse, for
there is no way to tell the di�erence, at assembly, between program pieces developed by a
separate group today, or taken from a library.

The key to dividing speci�cations and assembling the resulting programs is the provi-
sion of composition operations. Such operations are reected in the transformation system
by the presence of rules that say how to break speci�cations into smaller ones (whose re-
sulting programs will automatically �t back together properly). For example, in sequential
imperative programming, the simplest composition operation is sequential composition (;).

13



The quality of the composition operations available has a strong e�ect on the usability
of an abstract machine. Composition is well-behaved when the amount of program state
involved is small, and the amount of mental state involved is also small. One of the weak-
nesses of message passing is that a single thread cannot be composed with another thread
in a straightforward way, since all the sends and receives must be checked to make sure that
they \match", which actually requires analyzing the data ow of the two threads. No won-
der deadlocked parallel programs are easy to write. Higher-order functional programming
involves compositions where there is signi�cant mental state required, which may partly
explain why imperative programmers often perceive functional programming as di�cult.

A transformation rule that introduces a composition operation can often (but not triv-
ially) be used to generate a rule that introduces residuals. Such laws answer questions about
the di�erence between a speci�cation and an existing implementation { what else is required
to turn the existing implementation into one that satis�es the speci�cation? Such residual
laws allow library programs to be introduced into derivations.

Of course, in this new view, a library program is actually a set of implementations, with
the same upper machine interface. What this view makes clear is that an upper interface is
not su�cient. Each implementation in a library program also have a lower abstract machine
interface, and it is these interfaces which are the basis for selecting which elements of the
library program are actually used in the main derivation. In the conventional view, a library
program is regarded as saying \I can do this", but what it is really saying is \I can do this
on an abstract machine of this kind". The missing information is a kind of precondition,
while the conventional interface as a postcondition.

10 Discussion

The primary goal of the new model presented here is to make it possible to really design
software, that is to make choices between di�erent designs using criteria that reect reality.
One requirement for this is cost models that accurately reect the actual cost of operations.
The imperative sequential model is open to criticism on the grounds that memory cannot
really have constant time latency; the functional sequential model on the grounds that there
are often much more e�cient ways to represent data structures than those in the model; the
PRAM model on the grounds that constant time access to shared memory is not possible
in the real world; and many parallel programming models on the ground that they fail to
account properly for congestion in communication.

However, the issue that we are addressing is a deeper one, which occurs even if cost
modelling were perfect, the inability of a designer at one level of abstraction to see the best
design possible at the next (and subsequent) layers. This problem is pervasive, although little
noticed in conventional sequential software because design can be divided into two phases,
one that alters orders of complexity, and one that only alters constants. Any approach that
insists that a designer's job is to �nd the \best" program and then hand it on to the next
phase is doomed to failure.

We propose an alternative in which, conceptually at least, the outcome of design at each
stage is the set of all implementations that could be optimal for some range of values of the
\program structure" parameters and the \architectural" parameters. This at least makes it
clear what a designer is supposed to be doing; although it is not yet clear whether the idea
can be made practical.

14



It is encouraging that some of these ideas are already present in embryo form in other
contexts. Those who design software for non-traditional hardware and systems, especially
exceptionally variable systems such as FPGAs, have already to be aware that today's best
program may be mediocre tomorrow. In a similar way, software designers for large-scale
heterogeneous systems must build programs that execute on a wide range of di�erent com-
puters, the choice of which may only take place after the program has begun executing.
They must also be prepared for the available resources to change even in mid-execution.
Tunable and adaptive programs are therefore special cases of programs as we have de�ned
them.

References

[1] M. Frigo, C.E. Leiserson, and K.H. Randall. The implementation of the Cilk-5 mul-
tithreaded languages. In ACM SIGPLAN'98 Conference on Programming Language

Design and Implementation, pages 212{223, Montreal, June 1998.

[2] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming. MIT
Press, Cambridge MA, 1994.

[3] C. Morgan. Programming from Speci�cations. Prentice-Hall International, 2nd edition,
1994.

[4] D.B. Skillicorn. Architectures, costs, and transformations. In Constructive Methods

for Parallel Programming, CMPP'98 (associated with Mathematics of Program Con-

struction, pages 1{15, June 1998. Fakult�at f�ur Mathematik und Informatik, Universit�at
Passau, Report MPI-9805.

[5] D.B. Skillicorn, J.M.D. Hill, and W.F. McColl. Questions and answers about BSP.
Scienti�c Programming, 6(3):249{274, 1997.

[6] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank,
P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal. Baring it all to software:
Raw machines. IEEE Computer, pages 86{93, September 1997.

15


