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Abstract

This paper focuses on the improvement in the quality of compu-

tation provided by parallelism. The problem of interest is that of

computing the maximum of a nonlinear feedback function in a real-

time environment. We show that the solution obtained in parallel is

asymptotically better than that computed sequentially.
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1 Introduction

The central motivation behind parallelism has always been the speeding up

of sequential computations. Recently, another aspect of parallel computation

was brought to light. It was shown that under some circumstances it is possi-

ble to obtain in parallel solutions to computational problems that are signif-

icantly better than any solutions computed sequentially. This phenomenon

was demonstrated, in a real-time environment, for problems in combinatorial

optimization, cryptography, numerical computation, and statistical analysis

[5, 6, 7].

This paper provides another example of a computation in which the re-
sults arrived at in parallel o�er an asymptotic improvement over their se-

quential counterparts. Speci�cally, we consider the problem of computing
the maximum value of a nonlinear feedback function over a given interval.

The ratio of the parallel solution to the sequential one is superlinear in the
number of parallel processors. The computation we describe falls within the
real-time paradigm. Here, the data needed to solve a problem are received

on-line and the results of the computation are to be delivered by a certain
deadline.

The remainder of this paper is organized as follows. Some background

material relative to real-time computation and models of computation is pre-
sented in Section 2. The application illustrating the ability of parallel com-
puters to obtain solutions of higher quality than possible sequentially is the

subject of Section 3. Concluding remarks are o�ered in Section 4.

2 Background

In this section we introduce the real-time paradigm as well as the models of

computation used in this paper. Henceforth, we adopt the standard de�nition

of time unit , that is, the unit traditionally used to measure the running time

of an algorithm [1, 12, 24, 36]: A time unit is the length of time required by a

processor to read a datum from memory, perform a constant-time operation

(such as adding two numbers), and write a datum to memory.

2



2.1 Real-Time Computation

The prevalent paradigm of computation, to which everyone who uses com-

puters is accustomed, is one in which all the data required by an algorithm

are available when the computer starts working on the problem to be solved.

A di�erent paradigm is real-time computation. Here, not all inputs are given

at the outset. Rather, the algorithm receives its data (one or several at a

time) during the computation, and must incorporate the newly arrived in-

puts in the solution obtained so far. Often, the data-arrival rate is constant;

speci�cally, N data are received every T time units, where both N and T

are �xed in advance.
A fundamental property of real-time computation is that certain opera-

tions must be performed by speci�ed deadlines. Thus, one or more of the

following conditions may be imposed:

1. Each received input (or set of inputs) must be processed within a certain
time after its arrival.

2. Each output (or set of outputs) must be returned within a certain time
after the arrival of the corresponding input (or set of inputs).

Thus, for example, it may be crucial for an application that each input be
operated on as soon as it is received. Similarly, each partial solution (as well
as the �nal one) may need to be returned as soon as it is available [31, 39, 55].

It is helpful to note here that, when no deadlines are imposed, computations
for which inputs arrive while the algorithm is in progress are referred to as
on-line [26, 32, 34, 35], incremental [20, 21, 48, 58], dynamic [10, 11, 66],

and updating [19, 22, 27, 37, 52, 53, 61, 65]. It is also important to note

that our de�nition, while striving to be as general as possible, is particularly

suitable for our purposes in this paper. Many other de�nitions exist; see, for

example, the various interpretations of the notion of real time provided in
[9, 41, 64].

2.2 Models of Computation

Two models, one sequential and one parallel, are applied to the solution of

the various real-time computational problems studied in this paper. At the

outset we state explicitly the following basic assumption: The analyses in this

paper assume that all models of computation are the fastest possible (within
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the bounds established by theoretical physics). Speci�cally, no machine exists

that is faster than the sequential computer of Section 2.2.1, and similarly no

parallel computer exists whose processors are faster than the processors of

the parallel computer of Section 2.2.2. This is the fundamental assumption

in parallel computation. One should also keep in mind here that the length

of a time unit is not an absolute quantity. Instead, the duration of a time

unit is de�ned in terms of the speed of the processors available (namely,

the single processor on the sequential computer and each processor on the

parallel machine).

2.2.1 Sequential Model

This is the conventional model of computation used in the design and analysis

of sequential (or serial) algorithms. It consists of a single processor equipped
with a random-access memory to which the processor can gain access for
the purpose of reading and writing. The processor has some local registers

for intermediate results, a control memory to store its program, and some
circuitry to perform arithmetic and logical operations. It also has input and

output devices for communication with the outside world. During each cycle
of the computation, the processor executes one instruction from its program:
It fetches a datum from memory, performs an operation on it, and stores the

result back in memory.

2.2.2 Parallel Model

Our chosen parallel model is the pipeline computer, shown in Fig. 1 [1]. In
this model, n processors, denoted by P1, P2, : : : , Pn, are connected to one

another by (one-way) communication links such that:

1. P1 receives its input from (and only from) the outside world.

2. Pi receives its input from (and only from) Pi�1, 2 � i � n.

3. Pi sends its output to (and only to) Pi+1, 1 � i � n� 1.

4. Pn sends its output to (and only to) a memory or a communications
channel.

Data travel from P1 to Pn, with Pi beginning to operate only when it

receives input, 1 � i � n. Each processor is of the type described in Section
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Figure 1: Parallel computer.

2.2.1. It can be argued that the pipeline computer is the weakest of all models

of parallel computation in which the processors have some means of commu-

nicating among themselves. Nonetheless this model, with its rudimentary
communication paths, is perfectly suitable when solving the real-time com-
putational problems of this paper. This is demonstrated in Section 3, where

it is shown that the pipeline computer a�ords a parallel algorithm that is
signi�cantly better than a sequential one.

3 Maximizing Nonlinear Feedback Functions

Let f be a function of some real (or complex) variables. It is frequently
necessary to �nd an optimal value of f , subject to a number of conditions.

Here, f is called the objective function and the conditions are known as the
constraints. The optimal value is typically a maximum or a minimum of f
satisfying the constraints. Often, when the exact maximum (or minimum)

is di�cult to obtain, an approximation of the optimal value is computed
[40, 51].

Evidently, we are interested here in �nding the optimal value of f in a
real-time setting. Our purpose is to demonstrate the ability of a parallel

algorithm to do better than the best sequential algorithm when computing

the maximum of a nonlinear feedback function in real time. In this context,

a better solution is one that is closer to maximum.

The computational paradigm used in this section is presented in Section

3.1 along with a de�nition of the speci�c problem to be solved. Sequential

and parallel solutions and their analyses are developed in Sections 3.2, 3.3,

and 3.4, respectively.
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3.1 Real-Time Maximization

We begin by describing the speci�c computation chosen to illustrate our

point. For ease of exposition, the objective function to be maximized, as well

as the constraints, are kept as simple as possible. Thus, the computational

problem to be solved calls for �nding the maximum of a function of a single

real variable, in a given range.

The function to be maximized is �rst presented. The real-time compu-

tational environment and the conditions under which the solution is to be

obtained are then introduced.

3.1.1 Nonlinear Feedback Functions

The functions of interest in this paper and whose maximum is to be found
in a given range are called nonlinear feedback functions. In some contexts,

they are known as aperiodic, chaotic, and complex functions [18, 23, 25, 29,
33, 42, 43, 67]. These functions are typically de�ned recursively as follows.

Let x0 be a real and n a positive integer. Thus, a sequence of real numbers

x1; x2; : : : ; xn is obtained from the relation:

xi+1 = f(xi
b; i; n); for b > 1 and all i � 0: (1)

Here, f combines xi
b and the constant n with various multiplicative and

additive terms, as well as other simple arithmetic functions. Given f , x0,

and n, it is required to �nd the largest of x1; x2; : : : ; xn.

Example 3.1 One example of such a function, which will prove particularly
useful to our subsequent analysis, is:

xi+1 =

��
bxic + (�1)i+1(i + 1)

�2u
mod (n + (�1)i+1)v

�w=v
(2)

for i � 0, and positive integers u, v, and w, with w > 1.

Suppose for illustration that u = 1, v = 2 and w = 3. We have:

xi+1 =
h
(bxic+ (�1)i+1(i+ 1))

2
mod (n + (�1)i+1)2

i3=2

for i � 0.
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Taking, for instance, x0 = 14:0 and n = 10, we get: x1 = 18:520259,

x2 = 225:06221, x3 = 216:0, x4 = 0:0, x5 = 125:0, x6 = 1000:0, x7 = 216:0,

x8 = 742:54158, x9 = 64:0, x10 = 172:60069.

In other words, the xi values oscillate unpredictably, and that particular

xi achieving the maximum cannot be guessed in advance. The only way to

�nd the largest xi is to compute x1; x2; : : : ; xn. 2

For the purposes of this paper we make the following assumptions:

1. The objective function is of the form given in Equation (1).

2. The function f to be maximized consists of a constant number of terms

(i.e., f can be expressed using no more than a certain number of sym-
bols �xed in advance). Similarly, each of x0 and n �ts in a constant

number of words in memory. It is to be noted, as a consequence, that
the optimization problem to be solved, being de�ned by f , x0, and n,
has a constant size formulation.

3. Each of x1; x2; : : : ; xn (and, consequently, the maximum value of f) also
�ts in a constant number of words. This assumption and the previous

one together imply that the size of f; n; xi, i � 0, and the current
maximum is a constant multiple of the word size in bits. Therefore,
this quadruple can be transmitted and received in a constant number

of time units.

3.1.2 Computing the Maximum in Real Time

The speci�c problem to be solved in this section is de�ned as follows:

1. A computer system receives a stream of input in real time. These

inputs represent the data of an optimization problem.

2. Time is divided into intervals. Each interval is T time units long, where

T is a constant.

3. At the beginning of the jth time interval, j > 0, an objective function
f j is received, together with a pair of constraints Cj = (xj0; n

j).
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4. It is required that the pair (f j; Cj) be processed as soon as it is received

and that the maximum value of xj1; x
j

2; : : : ; x
j

n
(or an approximation of

it) subject to Cj be produced as output as soon as it is computed. Fur-

thermore, one output must be produced at the end of each time interval

(with possibly an initial delay before the �rst output is produced).

5. Computational Assumption. In one time interval a processor can

(a) Read f j; nj; x
j

i , and the current maximum,

(b) Compute xji+1 and the new maximum, and

(c) Output f j; nj; xji+1, and the new maximum.

We now provide sequential and parallel solutions to this problem. This

is followed by a comparative analysis.

3.2 Sequential Solution

A function f j and a pair of constraints Cj are received at the beginning of the
jth time interval. These must be processed and the required maximum (or an

approximation thereof) must be produced before the new function f j+1 and
the new pair of constraints Cj+1 are received (and demand to be processed) at

the beginning of the (j+1)st time interval. A sequential computer, by de�ni-
tion, has only one processor. Conforming to the computational assumption,
in one time interval, the processor

1. Receives f j, xj0, and nj,

2. Computes xj1 using x
j

0, n
j, and the de�nition of f j, and

3. Returns xj1 as the required maximum.

Note here that xj1 is not guaranteed to be the maximum of xj1; x
j

2; : : : ; x
j

n
,

as speci�ed by the problem de�nition. Since the sequential computer cannot

compute xj2; x
j

3; : : : ; x
j

n
before the pair (f j+1; Cj+1) is received, it returns the

only approximation of the maximum that it can obtain.
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3.3 Parallel Solution

On a pipeline computer with n processors, P1, P2, : : :, Pn, processor P1

is in charge of reading new inputs, while Pn is designated to produce the

output. Therefore, at the beginning of the jth interval, P1 receives (f
j; Cj).

It computes xj1 and (for lack of another value with which to compare it) calls

it the current maximum. It then sends the quadruple (f j; xj1; n
j, current

maximum) to P2. The jth time interval has now ended and the (j + 1)st

commences. While P1 is reading a new input, P2 receives the quadruple sent

by P1. It computes xj2, compares it with current maximum, updates the latter

if necessary, and sends the new quadruple (f j; xj2; n
j, current maximum) to

P3. This continues, with processor Pk computing x
j

k
during time interval

j+k� 1, j > 0, k � 1. The maximum of xj1; x
j

2; : : : ; x
j

n
is produced by Pn at

the end of the (j + n� 1)st time interval. One time interval later, that is, at
the end of the (j + n)th time interval, Pn produces as output the maximum

of xj+11 ; x
j+1

2 ; : : : ; xj+1
n

.

3.4 Analysis

For de�niteness, suppose that the function f j is of the form given by Equation

(2). It is clear that, for this function, the ratio of xj1 to the maximum of xj1, x
j

2,
: : :, xj

n
could be O(1=nw), in the worst case. Since the sequential computer

returns xj1 as the maximum, while the parallel computer obtains the exact

maximum, using n processors instead of one yields an O(nw) improvement
in the quality of the solution.

4 Conclusion

Parallelism was invented in order to speed up computations. Today, the

principal purpose for using parallel computers remains the execution of com-

putations that are too slow when performed sequentially. The overwhelming

majority of theoretical and empirical analyses of parallel algorithms use the
speedup provided by these algorithms as a measure of their goodness.

Another justi�cation for using parallel computers, however, is the quality

of the solution obtained by a parallel algorithm. It was shown in this paper
that for the problem of computing (in a real-time environment) the maximum

of a nonlinear feedback function over a given range, a parallel computer can
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deliver a solution that is better than any solution computed sequentially. In

the worst case (from the point of view of sequential computation), the ratio

of the solution obtained by the parallel algorithm to that obtained by the

best possible sequential algorithm is superlinear in the number of processors

used. It is especially interesting to note in this regard that this e�ect would

certainly be magni�ed if the output of each computation were to be fed as

input to the next computation (namely, if the maximum of xj1; x
j

2; : : : ; x
j

n

were to serve as the initial value x
j+1

0 ).

As pointed in [1], many computational problems are inherently parallel :

If the available number of processors is smaller than the number of processors
required to solve one of these problems (even if the di�erence is one proces-
sor), then the running time of the parallel algorithm is no better than that

of the best sequential algorithm for the same problem [1]. Some problems,
by contrast, are believed to be inherently sequential: No e�cient parallel

algorithm is known for solving any of these problems [30]. Real-time compu-
tation allows a di�erent look at (apparently) inherently sequential problems.
Suppose that a problem can be solved optimally in n (consecutive) time

units. Further, let a new such problem be received by some computer system
every time unit. The computer system is to process each new problem as

soon as it arrives and produce its solution no later than n time units after
receiving the problem. (These conditions are not unlike those established in
Sections 3.1.2.) The parallel pipeline computer of Section 2.2.2 uses n pro-

cessors to solve m such problems in (m� 1) + n time units. After an initial
delay of n time units, an answer is produced every time unit. The parallel
computer, therefore, meets the requirements of the problem. Furthermore,

these computations (supposed to be inherently sequential) now seem to re-

quire constant time. On the other hand, it is clear (and paradoxical) that a

sequential computer is hopelessly inadequate to solve these problems.
Other computational settings need to be explored for further measures

to evaluate parallel algorithms. A candidate paradigm is one in which the

data needed by an algorithm can be acquired from one of several sources.
Each source holds a set of inputs su�cient by itself to solve the problem at

hand. The inputs held by one particular source lead to a solution that is
`better' than any solution reached by using data from another source. At

any given time, a single processor can acquire data from exactly one source.

Furthermore, a source that is not selected for providing input to the algorithm
ceases to exist (and its data can no longer be retrieved). In this paradigm, a
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sequential computer can �nd the best solution with probability 1=n, where

n � 1 is the number of sources. A parallel computer with n processors, on the

other hand, assigns one processor to each source, and is therefore guaranteed

to arrive at the best solution.

A variant to the paradigm described in the previous paragraph is one in

which all sources need to be monitored simultaneously in order to obtain the

best solution. Here, using a parallel computer with as many processors as

there are sources (namely, n) is the only guarantee of success. This remains

true even if|contrary to the basic assumption articulated at the beginning

of Section 2.2|we allowed the sequential computer to use a processor that
is n times faster than each of the processors on the parallel computer. When
n = 2, a colorful illustration of the paradigm is the pursuit and evasion on

a ring example presented in [1]. In this version, an entity A is in pursuit of
another entity B on the circumference of a circle, such that A and B move at

the same speed; clearly, A never catches B. Now, suppose that two entities
C and D are in pursuit of entity B on the circumference of a circle. Each
of C and D moves at 1=k the speed of A (and B), where k is a positive

integer larger than 1. In this case, C and D always catch B. The present
paradigm is another instance of inherently parallel problems in which it is

the parallelism o�ered by the parallel computer that matters, rather than its
speed [17]. Do other computational paradigms exist in which it is possible
for parallel computers to obtain better solutions to computational problems

than sequential ones?
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