Parallel Frequent Set Counting

D.B. Skillicorn
skill@cs.queensu.ca

December 1999
External Technical Report
ISSN-0836-0227-
1999-434

Department of Computing and Information Science
Queen’s University
Kingston, Ontario, Canada K7L 3N6

Document prepared December 17, 1999
Copyright (©1999 D.B. Skillicorn

Abstract

Computing the frequent subsets of large multi-attribute data is both computation-
and data-intensive. The standard parallel algorithms require multiple passes through
the data. The cost of data access may easily outweigh any performance gained
by parallelizing the computational part. We address three opportunities for perfor-
mance improvement: using an approximate algorithm that requires only a single
pass over the data; statically partitioning the attributes to provide rudimentary
load- and storage-balancing; and using a probabilistic technique to avoid generat-
ing most of the lattice of subsets implied by each object’s data. The computation
required is only slightly larger than levelwise algorithms, but the amount of data
access is much smaller.

Parallel Frequent Set Counting

D.B. Skillicorn
skillQcs.queensu.ca

Abstract: Computing the frequent subsets of large multi-attribute data is
both computation- and data-intensive. The standard parallel algorithms require
multiple passes through the data. The cost of data access may easily outweigh
any performance gained by parallelizing the computational part. We address three
opportunities for performance improvement: using an approximate algorithm that
requires only a single pass over the data; statically partitioning the attributes to
provide rudimentary load- and storage-balancing; and using a probabilistic tech-
nique to avoid generating most of the lattice of subsets implied by each object’s
data. The computation required is only slightly larger than levelwise algorithms,
but the amount of data access is much smaller.

1 Problem Setting

The problem of finding frequent sets is a basic component of several standard
data mining algorithms such as association rules [10] and episodic data analysis
[8]. We assume that the data are given as a binary array whose n rows represent
objects, and whose m columns represent attributes. A 1in the array at position
(i,7) denotes that object i has attribute j. In most practical problems, the
array is sparse.

The problem is this: find those subsets of the attributes that occur to-
gether in rows more often than some given frequency, called the support. Such
subsets are called the frequent sets in the data. Since a typical array may
have billions of rows and hundreds or thousands of attributes, the problem is
difficult because of the amount of computation required, the size and effort
involved in examining the data, and the fact that even sets of modest size
have large numbers of subsets. Because of the sparseness of the data, lower
frequency bounds (supports) are typically less than 1% and the likelihood of
a subset of size more than a fraction of the total number of attributes being
frequent is small.

The standard algorithms for this problem exploit the insight that a set
can only be frequent if all of its subsets are frequent. Accordingly, they first
generate sets of size 1, make a pass through the array to determine which of
these are frequent, and then use these to generate those sets of size 2 which
could potentially be frequent. This process is repeated for sets of increasing

size. If the largest frequent set is of size [then this algorithm executes [+
1 phases and makes [+ 1 passes through the array. Such algorithms have
been called levelwise. In practice, it is these repeated accesses to the data
that limit the performance of the algorithm. (In some applications, the large
number of potentially frequent sets of small size (2 or 3) also creates a storage
management performance bottleneck.)

Sequential levelwise algorithms for finding frequent sets have been well
studied [1,9], although performance increase of two orders of magnitude have
been recently reported by clever strategies for representing and generating
large candidates from smaller ones [7]. These algorithms are relatively straight-
forward to parallelize, although a number of different strategies have been used
to reduce the extra communication that arises from parallelizing storage ma-
nipulation in the sequential case [5].

We show that approximate sampling algorithms can be adapted to compute
most frequent objects, reducing the data access required to a single pass.
However, it is also critical to exploit the levelwise property for otherwise the
work of generating and considering subsets that a levelwise algorithm would
never build could outweigh the performance gains from reduced access. We
also show that there exists a simple static allocation scheme that can be used
to avoid the storage problems caused by the fact that there are many small
subsets of a set of substantial size, and they are inherently more likely to be
frequent than larger subsets.

2 Approximate Frequent Set Counting

Gibbons and Matias [4] have designed two sequential approximate sampling
algorithms that can be adapted for frequency counting. Their chief attraction
is that they require only a single pass through the dataset, and hence are much
faster than levelwise algorithms. They compute approximate (bounded error)
frequencies.

Both algorithms assume a limited memory windows for accumulating sam-
ples. When counting frequencies, it is more important to ensure that all suffi-
ciently frequent objects remain in the sample than to limit the window size. It
is straightforward, however, to adapt their algorithms to achieve this behavior.

For the time being, let us consider a simpler problem than frequent set
counting, in which the data is simply a list of object identifiers, and we wish
to identify those objects that occur at least as frequently as the given support.

A concise sample is a uniformly random sample in which the probability

of occurrence of each object in the list is 1/7. In the obvious way, we actually
store such a sample by replacing multiple occurrences of the same object with
its identifier and its multiplicity. However, in algorithm descriptions, each
occurrence is treated as a unique object. A concise sample may be maintained
incrementally using the following algorithm:

T:=1
for all ¢ in the dataset
with probability 1/7
add t to the window (new entry or increment counter)
if window overflows
7' := 1 xfactor
for each (unique) s in the window
remove it with prob 7/7’
Ti=1

This algorithm maintains a uniformly random sample; and the costs of
insertion and increasing the threshold can be amortized so that the expected
time per insert is O(1).

Gibbons and Matias also define a slightly more accurate sample called a
counting sample. Here, once an object is added to the window, any further
occurrences of that object in the list are noticed (that is, its count is incre-
mented). The incremental insertion algorithm is:

T:=1
for all ¢ in the dataset
if ¢ already in the window
increment its count
else
add ¢ to the window with prob 1/7
if window overflows
7' = Txfactor
for each s in the window
flip a biased coin, decrementing the count on each
tails, until a head is flipped.
Ti=7

Notice that there is a lookup of the window for every element of the list.
Thus this algorithm is more expensive than that for building a concise sample,
but the expected time per insertion is still O(1).

The counts in a counting sample are underestimates of the actual frequency
of occurrence, since some early occurrences have been missed. More accurate
counts can be computed by adding a compensation factor (=~ 0.4187 — 1) to
each count.

For a counting sample, any object that occurs with frequency no less than
T is expected to be in the sample. In fact, the probability that an object which
occurs f times will be in the sample is 1 — (1 — 1)/ [4].

There is a simple way to postprocess counting sample values to get concise
sample values without any further access to the data.

These algorithms were designed to compute a sample assuming a fixed
window size. For frequent object counting, we are less concerned with mem-
ory bounds, and more concerned with ensuring that all sufficiently frequent
objects remain in the sample. Accordingly, both algorithms can be modified
to increase the window size when increasing the threshold would cause the
removal of objects that appear to be frequent so far. Here is the modified
logic:

if window overflows
if all window entries needed
(i.e. relative freqs > a:x support)
window size := window size + increment
else
increase 7 as before

The window size is increased only if the relative frequency of all of the
elements in the window is large enough that they might be frequent. The
choice of an appropriate @ (0 < a < 1) for this decision is arbitrary. It
has no influence on the correctness of the algorithm; it only avoids removing
data which is highly likely to be reinserted. Whereas 7 is increased by a
multiplicative factor, the window size is increased only by an additive factor.

3 Parallel Versions of Approximate Counting

We now turn to parallelizing approximate frequency counting. The difficulty is
that, if the array is partitioned and each partition sent to a different processor,
then the distribution of objects in one processor may be quite different from
that in another.

There are theoretical reasons to expect that this is unlikely, provided that
the partitioning is done randomly, rather than by simply partitioning the array

4

into p segments by rows. For example, the technique of bagging uses small
samples from a dataset to generate predictors [2]. Small ensembles of such
predictors commonly outperform a single predictor determined from the whole
dataset. Frequent set counting can be regarded as a form of bagging in which
each processor generates a predictor for the most frequent elements in the
array.

It is straightforward to parallelize the computation of concise samples:

partition data randomly across p processors
forall p do
T, =1
for all ¢ in the processor’s partition of the data
execute the sequential algorithm
total exchange of the values of 7,
forall p do
compute maxr7 := maximum of the 7,
remove each sample in the window with prob 7/mazt
merge the windows into a single concise sample
remove all entries whose relative frequency,
f/ | total sample size |,
is less than the support

The random allocation of data to processors ensures that the union of
the concise samples built by each processor, after their 7 values have been
normalized to the largest, is also a uniformly random sample.

It is less obvious that the same strategy can be used to parallelize the
building of a counting sample. The problem is that a particular object may
occur infrequently in one particular data partition, it may be culled from the
window on that processor, and there is no reasonable way to account for its
missing count in the global total over processors. The solution is to use concise
samples to determine when and how to expand the window on each processor
(preserving the uniform randomness of the sample), but use the results of a
counting sample as the final frequencies (exploiting their greater accuracy).
There are two ways to do this:

e Use both a concise and a counting frequency within the window. This
increases the storage requirement for the window by 50%, but makes the
program logic simple.

partition data randomly across p processors
forall p do
T, =1
for all ¢ in the processor’'s partition of the data
if t already present in the sample then
increment its count in the counting sample
with probability 1/7,
increment its count in the concise sample
else
with probability 1/7,
add t to the concise sample
if window overflows
adjust as in the extended concise sample algorithm
total exchange of the values of 7,
forall p do
compute maxr7T := maximum of the 7,
remove each sample in the window with prob 7/mazt
adjust each counting sample count by the compensation term
merge the windows into a single counting sample
remove all entries whose count < support X n

Figure 1: Pseudocode for a parallel counting sample algorithm.

e Use only a counting frequency but convert counts to concise sample
frequencies when increasing the threshold and deciding which elements
to evict from the window. This requires no extra storage, but requires
extra computation (time proportional to the frequency of each entry).

Pseudocode for the first solution can be seen in Figure 1. It can be seen that
the counting sample algorithm returns exactly the same objects in the sample
as the parallel concise sample algorithm, but the frequencies it reports will be
more accurate.

Both of these parallel techniques compute the same results as the sequential
versions of Gibbons and Matias. An implementation using data small enough
to allow complete counts to be maintained has been used to check that the

answer returned are indeed correct.

4 Exploiting Hierarchical Structure

So far, we have considered only the problem of counting the frequencies of
single objects. However, for the frequent set problem we wish to count the
frequencies of subsets of each row. A row of the array with with, say, a
hundred non-zero entries denotes 2'%° possible subsets of the attributes, all of
which might potentially be frequent. Each row of the table could, in the worst
case, require an amount of computation exponential in m.

If each of these subsets is treated as a single object in the algorithms of the
previous two sections, then it is not clear that the performance of these single-
pass algorithms will be better than levelwise techniques. Levelwise algorithms
rarely generate or consider large subsets because this can only happen if all
of the smaller subsets are frequent. Since a set of size k has k subsets of size
k — 1 and they must all be frequent, this becomes increasingly unlikely.

A naive implementation of the algorithms described in the previous sec-
tion would treat all subsets equally, no matter their size, and this generates an
unacceptable large amount of work. Intuitively, there is no point in even con-
sidering subsets of size, say, 50 for sampling since they are extremely unlikely
to be frequent. The lattice structure of subsets must be exploited to reduce
the computation per row of the array to acceptable levels.

Recall that the probability that a set that is actually frequent is missing
from a concise sample is 1/7. Consider a set of size k, with k subsets of size
k — 1. When we come to consider adding the set to the sample, some of its
subsets may already be in the sample, and some may not. If all of its subsets
are present, then it has the same chance of being frequent as any other set and
should be added to the sample with probability 1/7. If only j of its subsets are
present (j < k) then we intuitively expect that we should be less likely to add
it. The chance that the missing j subsets are frequent (and so our candidate
set could be) but not in the sample is

&)

so the new set should be added with probability

1\ U+D)
(%)

7

Thus large subsets are inherently less likely to be added to the sample, depend-
ing on the presence or absence of their own subsets. (Note that the sample is
now a stratified uniformly random sample.)

This new strategy does not, however, reduce the amount of work required
to generate and test the subsets denoted by each row of the array. It simply
makes it unlikely that the larger subsets will be added to the sample. The
work required to decide whether or not a subset is to be added is substantial
regardless of which way the decision goes.

The chance of missing a large subset by failing to consider it for inclusion
when j of its subsets are not present in the sample is

1\J
" (2)
T
while the chance of missing a frequent set altogether is 1/7. Choosing the
value of 7 that makes these two equal makes it as likely to make an error by
ignoring a large subset as by using a probabilistic insertion technique at all.
Call this value [.

Each row of the array is therefore processed in the following levelwise fash-
ion. The lattice of sets of increasing size is generated one level at a time. Fach
set is considered for inclusion with probability (1/7)@*+!) where z is the num-
ber of its direct subsets missing from the sample. As a side-effect of using a
counting sample, the presence in the sample of each potential set is checked, so
that there is no additional overhead in determining which of a set’s subsets are
already present. Sets which are missing more than [of their direct subsets are
not considered for inclusion in the sample. Hence the lattice extends beyond
the region of sets already in the sample only with low probability; and large
subsets are unlikely to be considered at all.

The insertion process for each row of the array therefore grows a lattice
based on the non-zero entries of the row. However, only a small fraction of the
potential lattice will be built in general. It will extend as far as sets that are in
the sample, and a little further with probabilities that diminish exponentially.

Gibbons and Matias report that 7 reached magnitudes of 1000 in their
experiments, so that the probability of large sets being considered for inclusion
when their subsets are not already included quickly becomes small, even for
large arrays. The amount of the subset lattice constructed is not much larger
than that used by levelwise algorithms. Thus the computation required for
the new algorithm is only slightly greater than that of a levelwise algorithm.

Notice that all of the clever data structuring and incremental construction

techniques used in sequential levelwise algorithms can be immediately applied
to the parallel case [7].

5 Handling Large Results

One of the drawbacks of counting frequent sets is that the size of the answer
can itself be too large to fit into memory. When the data has 1000 attributes,
the number of subsets of small size (say 1,2,3,4) is large, and these sets are
more likely to be frequent than larger subsets. Levelwise algorithms need only
keep subsets of the current and previous sizes, but may still run into memory
problems.

Here we describe a static partitioning technique that can be used to allocate
work to processors in a reasonably balanced way. The idea can be used as a
simple parallelization for sequential levelwise algorithms also.

Suppose that we want to execute the parallel algorithm described in Sec-
tion 3. Use a set of p.q processors divided into p clusters each of size ¢ (¢ odd).
Divide the attributes into ¢ groups.

We illustrate the technique for ¢ = 5. Consider one cluster of ¢ processors
which has as its data a subset of the rows of the data array. Each processor
is responsible for building subsets whose attribute members come from the
regions described below, and for accumulating frequencies for such subsets:

Processor | Regions

A, AB, AC, ABC, ABD, ABCD
B, BC, BD, BCD, BCE, BCDE
C, CD, CE, CDE, CDA, CDEA
D, DE, DA, DEA, DEB, DEAB
E, EA, EB, EAB, EAC, EABC

Ui W N =

Each processor must pass on some of its computed frequencies as shown in
Figure 2.

The allocation of regions to processors is based on cyclically shifting dif-
ference sets. There are four non-zero differences modulo 5. The pair AB
covers +1 and -1, while AC covers +2 and -2 (mod 5). Hence a cyclic shift
of these pairs produces all pairs of 5 elements. Similarly, the triples ABC and
ABD have different patterns of differences and hence their cycles are disjoint.
Furthermore, each particular difference occurs three times, so that each pair
appears exactly the required three times as part of a different triple. This

P1 A ABCD
P2 B BC, BD
P3 C CD, CE
P4 D DE, DA
P5 E EA, EB

Figure 2: Data flow of partitioned algorithm (only showing communication to
Processor 1)

technique can be extended to any odd value of ¢ (a counting argument shows
that it cannot work for ¢ even).

Note that the sets of regions are independent of the sets of attributes being
considered for frequency. The table below shows a typical row of the data array,
and its allocation to 5 processors:

Proc A B C D E
Attr | 1|2 415 718191011 |12|13(14] 15
Val Ol1]1]0|1]1]0]1]0] 1 1 1 0 1 1

In this allocation, Processor A is responsible for maintaining the window of
frequencies for all subsets containing only the attributes 1-3; subsets containing
attributes from both 1-3 and 4-6; subsets containing attributes from both 1-3
and 7-9; subsets with members from each of 1-3, 4-6, 7-9; subsets with members
from each of 1-3, 4-6, 10-12; and subsets with members from each of 1-3, 4-6,
7-9, and 10-12.

Because this allocation is static and data-independent, there is no way
to guarantee load balancing except by appeal to the law of large numbers.
It might be argued that some attributes are more frequent than others. If
this is known, then the information can be exploited by allocating columns to
processors so that a prior: frequent attributes are spread evenly.

The communication requirements between stages are evenly balanced in
the sense that each processor sends and receives messages from an equal-sized
segment of the attributes. This is known experimentally to produce good
performance on typical parallel architectures [3,6] provided that the order of
message transmission is scheduled to avoid collisions at the receivers (easy in

10

this setting). Note that each of the ¢ processors could itself be replicated ¢ — 1
times and the data flow diagram of Figure 2 implemented by a pipeline of
processors, giving further potential speedup.

If we regard the p sets of ¢ processors each as forming a grid, with an
identifier of the form (i,7),1 < i < p,1 < j < ¢, then the processors whose
second coordinates are the same are accumulating frequencies for the same
subsets of the attributes. After the pass through the data, each set of such
processors resolves their frequencies and produces part of the answer. The
complete answer is the disjoint union of these p partial answers, so that no
processor need have enough memory to hold the complete solution.

Note that this static allocation technique can be used as a simple paral-
lelization strategy for conventional levelwise algorithms also.

6 Conclusions

Effectively computing the frequent sets from a binary array of object-attribute
data requires exploiting three opportunities:

1. Parallelism over the rows of the array. We have shown how to do this
using a parallel form of the Gibbons-Matias approximate sampling tech-
niques.

2. Parallelism over the columns of the array. We have shown how to use a
static work-partitioning technique to do this.

3. Avoiding the computation of the entire lattice of subsets implied by the
non-zero entries of each row of the data array. We have shown how to
do this by reducing, and eventually eliminating, the probability of inclu-
sion of a large subset unless its own immediate subsets are potentially
frequent.

The resulting algorithm makes minimal data accesses, requiring only one pass
over the data array. Its communication demands are modest, consisting of
balanced exchanges of <subset identified, count> pairs. These are passed be-
tween members of each cluster of ¢ processors in a dataflow fashion during
the computation of the lattice grown from each row of the data array, and
exchanged between clusters at the end of the algorithm to compute the final
count totals. Both of these communication requirements are, in some sense,
unavoidable: complete lattices do not have small bisection widths so we cannot

11

avoid the former communication by clever allocation; and communication to
get the final answer is similarly unavoidable. The computational requirements
are not much greater than those of levelwise algorithms; the chief difference
being that the algorithm described here must extend the lattice of subsets
beyond the point where a levelwise algorithm would stop. However, the prob-
ability of doing so is a power of a value (1/7) that tends to become small, so
this represents only a small amount of extra work (concentrated in the early
stages of the algorithm when 7 is small. For all but the smallest data sets, ac-
cessing the data is the performance bottleneck. The algorithm presented here
is an improvement over both existing sequential levelwise algorithms, and their
parallelized forms.

References

[1] R. Agrawal and J. Shafer. Parallel mining of association rules: Design, im-
plementation and experience. Technical Report RJ10004, IBM Research
Report, February 1996.

[2] L. Breiman. Bagging predictors. Machine Learning, 24:123-140, 1996.

(3] S.R. Donaldson, J.M.D. Hill, and D.B. Skillicorn. BSP clusters: High-
performance, reliable, and very low cost. Technical Report Technical
Report PRG-TR-5-98, Oxford University Computing Laboratory, 1998.

[4] P.B. Gibbons and Y. Matias. New sampling-based summary statistics for
improving approximate query answers. In Proceedings of ACM Conference
on the Management of Data, pages 331-342, 1998.

[5] E.H. Han, G. Karypis, and V. Kumar. Scalable parallel data mining for
association rules. In Proceedings of ACM Conference on the Management
of Data, pages 277288, 1997.

(6] J.M.D. Hill and D.B. Skillicorn. Lessons learned from implementing BSP.
In High-Performance Computing and Networks, Springer Lecture Notes
in Computer Science Vol. 1225, pages 762—771, April 1997. Also appears
as Oxford University Computing Laboratory Technical Report TR-96-21.

(7] Z. Hu, W.-N. Chin, and M. Takeichi. Calculating a new data mining al-
gorithm for market basket analysis. In Second International Workshop on
Practical Aspects of Declarative Languages (PADL’00), Lecture Notes in

12

Computer Science, Boston, Massachusetts, January 2000. Springer Ver-
lag.

[8] N. Lesh, M. Zaki, and M. Ogihara. Mining features for sequence classi-
fication. In 5th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), San Diego, CA, August 1999.

[9] H. Toivonen. Discovery of frequent patterns in large data collections.
Technical Report A-1996-5, Department of Computer Science, University
of Helsinki, 1996.

[10] M. Zaki. Parallel and distributed data mining: A survey. IEEE Concur-
rency, 7(4):14-25, October—December 1999.

13

