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Abstract

There are few formal de�nitions of real-time problems, and the currently available de�nitions do not

capture all the relevant aspects of such computations. We propose a new de�nition, and we believe that

it allows a uni�ed treatment of all practically meaningful variants of real-time computations. In order to

support our thesis, we present some important features of real-time algorithms, namely the presence of

deadlines and the continuous, real-time, arrival of input data, together with their corresponding models

in our formalism. Moreover, in order to illustrate the expressive power of our formalism, we also model

aspects from the practical areas of real-time database systems and ad hoc networks. We believe that the

proposed model is a �rst step towards a uni�ed and realistic complexity theory for real-time computation.
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1 Introduction

The area of real-time computations has a strong practical grounding, in domains like operating systems,
databases, and the control of physical processes. Besides these practical applications, however, research
in this area is primarily focused on formal methods and on communication issues in distributed real-time
systems.

Little work has been done in the direction of algorithms and complexity theory. In fact, the limited
extent of this work is emphasized by the fact that even a realistic general de�nition for real-time algorithms
is missing, although implicit de�nitions can be found in many places. Some papers have tried to address
this issue, providing abstract machines that model real-time algorithms. In this context, one can notice
the real-time Turing machine, proposed for the �rst time in [39] and further studied in [22, 34, 36]. Such a
formalism o�ers many insights into the theory of real-time systems, but it fails to capture many other aspects
that are important in practice. Another model is the real-time producer/consumer paradigm, proposed in
[26], which takes into account some important features, but is suitable for modeling certain real-time systems
rather than for developing a general complexity theory. Finally, the concept of timed automata is introduced
in [11]. The format of languages accepted by such devices is also presented, together with their closure
properties. However, the power of the language families analyzed in [11] is limited, since there are real-time
problems that cannot be formalized as languages recognizable by memoryless �nite state models.

Indeed, the domain of real-time systems is very complex, with requirements varying from application to
application. For example, while in some applications the real-time component is the presence of deadlines
imposed upon the computation, other applications require that input data are processed as soon as they
become available, with more data to come while the computation is in progress. Variants (and combinations)
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of these two main requirements are often present. This complexity of the domain is probably the main
obstacle towards a uni�ed theory.

In this paper, we try to address this issue. We believe that the model of timed languages proposed in
[11] is a powerful tool, but the device used as acceptor (namely, a �nite automaton) is rather weak. We
suggest therefore an extension of this study. More precisely, we keep most of the important ingredients in
the de�nition of timed languages from [11], but we apply such a de�nition to a larger extent, suggesting a
general model for the acceptors of such languages. We believe that our construction captures all the practical
aspects of real-time computations, and we support our thesis by showing how two of the main ingredients of
such computations (namely, computing with deadlines, and input data that are not available entirely at the
beginning of computation) can be modeled using our formalism. Then, we direct our attention to two larger
practical areas of real-time computations, modeling important problem from real-time database systems and
ad hoc networks using the proposed formalism. We believe that, starting from the de�nitions outlined in
this paper, a uni�ed complexity theory for real-time systems can be naturally developed.

We organize the paper as follows. In the next section we brie
y summarize the notations used through
the paper. Then, in section 3, we summarize the existing de�nitions, emphasizing the points where they fail
to capture all the relevant practical aspects. Then, in section 4 we introduce a new de�nition, which is more
general and more 
exible. We also present some important features of real-time algorithms, together with
their models in our formalism in sections 5, 6, and 7. We conclude in the last section.

2 Notations

Given some �nite alphabet �, the set of all the words of �nite (but not necessary bounded) length over � is
denoted by ��. The cardinality of IN, the set of natural numbers, is denoted by !. Then, the set �! contains
exactly all the words over � of length !. Given two words �1 and �2, �1�2 denotes the concatenation of
them. The length of a word � is denoted by j�j. IR denotes the set of real numbers.

A general �nite automaton is a tuple A = (�; S; s0; �; F ), where � is the (�nite) input alphabet, S is a
(�nite) set of states, s0 is the initial state, � is the transition relation, � 2 S � S � �, and F is the set of
accepting states, F � S. When we use �, S, s0, �, and F , we imply the above meaning of these symbols
unless otherwise speci�ed. The accepting condition for a �nite automaton A is as follows: If at the end of
the input string, A is in some state from F , then the input is accepted. Otherwise, the input is rejected.

We assume that the reader is familiar with the concept of Turing machines [29]. For a k-tape Turing
machine M , we denote a con�guration of M by a tuple (q; l1a1r1; : : : ; lkakrk), where q is the current state,
and for all i, 1 � i � k, liairi is the current content of tape i, and ai is the symbol contained in the tape cell
currently read by the head of tape i. The transition function of the con�gurations of a Turing machine M is
denoted by `M , with the subscript possibly omitted when there is no ambiguity. As usual, `�M denotes the
re
exive and transitive closure of `M . We denote by #, h, and � the blank symbol, halt state, and empty
word, respectively.

3 Previous Work

3.1 Real-Time Turing Machines

Probably the �rst work on formalizing the notion of real-time is [39]. Here, the notion of real-time Turing
machine is introduced. Then, the family of functions/languages that are computed/recognized by such
machines is inferred. This direction is further pursued in [34, 36].

De�nition 3.1 [36]

1. For some constant k, k � 1, an on-line Turing machine is a deterministic k-tape Turing machine M
whose set of states is divided into two distinct subsets: the set of polling states Kp and the set of
autonomous states Ka. All the states that lead to h in one step are polling states, and the initial state
is a polling state. In addition, the head is allowed to move only to the right on the input tape, and
the relation `M has the following property: if q 2 Kp, q

00 2 Ka, and q0 2 Kp [Ka, then
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(q; uabv; x1; : : : ; xk) `M (q0; uabv; x01; : : : ; x
0
k);

(q00; uabv; x1; : : : ; xk) `M (q0; uabv; x01; : : : ; x
0
k);

(q; u#�; x1; : : : ; xk) `M (h; u#�; x01; : : : ; x
0
k);

for some words xi, x
0
i over the working alphabet of M , 1 � i � k, and a 6= #. In other words, M has

to consume an input symbol each time it is in a polling state, and is not allowed to move the head on
the input tape while in an autonomous state.

M accepts the input w = aw0 i� (s; aw0; x1; : : : ; xk) `
�
M (h;w#; x01; : : : ; x

0
k), where s is the initial state.

2. A real-time Turing machine is an on-line Turing machine for which Ka = ;. A language accepted by
such a machine is called a real-time de�nable language.

2

Brie
y, a real-time Turing machine is an on-line deterministic Turing machine, whose running time is n,
the length of the input word. Note that, conforming to a result from [22], given a deterministic on-line Turing
machine that recognizes some language L and whose running time is O(n), one can construct a real-time
Turing machine that recognizes L. A language recognized by a real-time Turing machine is called real-time
de�nable.

Almost the same de�nition, this time in terms of algorithms rather than Turing machines, can be found
in [35]. Here, a linear-time algorithm runs in O(n) steps on any input of length n. A real-time algorithm is
a linear-time algorithm which has the additional requirement that it spends only O(1) steps on any input
symbol.

Note that the main di�erence between this de�nition and the de�nition in terms of Turing machines is
the absence of the on-line requirement. Therefore, a real-time algorithm conforming to this de�nition may
have access to all the input data at the beginning of the computation. Moreover, such an algorithm may
skip some input data. However, such a de�nition seems not to be supported by practice. Indeed, in most
of the real-time applications, such as real-time databases [10, 37], real-time scheduling [24], tracking devices
[26], or process control [28], the input data cannot be skipped. As well, not all of them are available at the
beginning of the computation.

In addition, in the real world, O(1) time for each input datum is not always a su�ciently strong condition.
As an example, take the railroad crossing problem [28], which consists in the design of a controller that opens
and closes a gate at a railway crossing. The speci�cations of the problem impose precise time limits on the
actions performed by the controller. For example, it is not mentioned that the gate should close at some
constant (but arbitrarily large) time after the request to close has been issued, but the action has to be
completed in some �xed time span (say, 20 seconds) instead.

3.2 The Real-Time Producer/Consumer Paradigm

Another model for real-time computations is presented in [26]. This model is based on the producer/consumer
paradigm. In such a paradigm, there are two entities, a producer, that produces messages, and a consumer,
that consumes the produced messages. They communicate through a bu�er, that keeps those messages that
were produced, but not consumed yet. Based on this model, the real-time producer/consumer paradigm
(RTP/C) is introduced. Here, the producer produces messages at a given rate, and the consumer must
consume the messages at the rate they are produced (the bu�er is thus eliminated). A real-time system is
composed then by a set of such communicating processes, together with some storage space.

The thesis mentioned in [26] is that the RTP/C paradigm applies to a wide variety of interesting and
important real-time applications, where all the data arriving from the external world must be processed
in real-time. However, the concept of production rate may not be expressive enough in some cases. More
precisely, given the railway crossing problem mentioned above, the main event is the arrival of a train at
the crossing, which does not happen at a speci�ed rate (in fact, there is a possibility that the train never
arrives). Another example where the RTP/C paradigm is not applicable is the data accumulating paradigm
(described in section 5.2), where the arrival rate varies over time.
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3.3 Timed Automata

Finally, a third model of real-time computation is the timed (�nite) automaton [11]. The theory of such
automata starts from the theory of !-automata.

An !-automaton is a usual �nite state automaton A = (�; S; s0; �; F ), whose accepting condition is
modi�ed, in order to accommodate input words of in�nite length. More precisely, given an (in�nite) word
� = �1�2; : : :, the sequence

r = s0
�1
�! s1

�2
�! s2

�3
�! : : :

is called a run of A over �, provided that (si�1; si; �i) 2 � for all i > 0. For such a run, inf(r) is the set of
all the states s such that s = si for in�nitely many i.

Regarding the accepting condition, a B�uchi automaton has a set F � S of accepting states. A run r over
a word � 2 �! is accepting i� inf(r)\F 6= ;. The acceptance of a Muller automaton on the other hand does
not use the concept of �nal state. For such an automaton, an acceptance family F � 2S is de�ned. Then, a
run r over a word � is an accepting run i� inf(r) 2 F . A language accepted by some automaton (B�uchi of
Muller) consists of the words � such that the automaton has an accepting run over �.

Another ingredient of the theory developed in [11] is the time sequence. A time sequence � = �1�2 : : : is
an in�nite sequence of positive real values, such that the following constraints are satis�ed: (i) monotonicity :
�i � �i+1 for all i � 0, and (ii) progress : for every t 2 IR, there is some i � 1 such that �i > t. Then, a timed
!-word over some alphabet � is a pair (�; �), where � 2 �!, and � is a time sequence. That is, a timed
!-word is an in�nite sequence of symbols, where each symbol has a time value associated with it. The time
value associated to some symbol can be considered the time at which the corresponding symbol becomes
available. A timed !-language is a set of timed !-words.

A clock is a variable over IR, whose value may be considered as being externally modi�ed. Given some
clock x, two operations are allowed: reading the value stored in x, and resetting x to zero. At any time, the
value stored in x corresponds to the time elapsed from the moment that x has been most recently reset. For
a set X of clocks, a set of constraints over X , �(X), is de�ned by: d is an element of �(X) i� d has one of
the following forms: x � c, c � x, :d1, or d1 ^ d2, where c is some constant, x 2 X , and d1; d2 2 �(X).

Starting from these notions, the notion of timed !-regular languages is introduced. A timed B�uchi
automaton (TBA) is a tuple A = (�; S; s0; �; C; F ), where C is a �nite set of clocks. This time, the transition
relation � is de�ned as � � S�S��� 2C ��(C). An element of � has the form (s; s0; a; l; d), where l is the
set of clocks to be reset during the transition, and d is a clock constraint over C. The transition is enabled
only if d is valued to true using the current values of the clocks in C.

A run r of a TBA A = (�; S; s0; �; C; F ) over some timed !-word (�; �) is an in�nite sequence of the form

r = (s0; �0)
�1;�1
�! (s1; �1)

�2;�2
�! (s2; �2)

�3;�3
�! � � � ; (1)

where � = �1�2 : : :, � = �1�2 : : :, �i 2 ff jf : C ! IRg for all i � 0, and the following conditions hold:

� �0(x) = 0 for all x 2 C,

� for all i � 0, there is a transition (si�1; si; �i; ii; di) 2 � such that (�i�1 + �i � �i�1) satis�es di, for all
x 2 C � li, �i(x) = �i�1(x) + �i � �i�1, and, for all x

0 2 li, �i(x
0) = 0.

The notions of accepting run, and language accepted by a TBA are de�ned similarly to the case of Muller
automata.

A timed !-language accepted by some TBA will be called a timed !-regular language. Note that the
name for such languages in [11] is simply timed regular languages (as well, a timed !-language is denoted
by timed language), but we prefer this terminology for reasons that will become evident in the next section,
where we use both notions of �nite and in�nite timed words.

However, the TBA used in [11] for recognition of timed (!-)languages is not su�ciently powerful to take
into account all the real-time applications. But we will postpone this discussion till the next section.
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4 Timed Languages

While the notion of timed languages is very powerful, the device used for recognition of such languages in
[11] (that is, a �nite-state timed automaton) is not powerful enough to model all the real-time computations
that are meaningful in practice. This is supported by the following immediate result.

Theorem 4.1 There are languages formed by in�nite words (!-languages) that are not !-regular.

Proof. Let us consider the following language over the alphabet � = fa; b; c; dg: L = faubxcvdxju; x; v > 0g.
It is immediate that L is not regular. Now, consider the following !-language: L! = fl1$l2$l3$ : : : jli 2
L for any i > 0, and $ 62 �g.

Assume now that L! is !-regular. Then, there is a B�uchi automaton A = (�; S; s0; �; F ) that recognizes
it. Let x be a word in L!, x = x1$x2$x3$ : : :. Therefore, there is a run r of A over x such that inf(r)\F 6= ;.

In the run r, let S1 be the set of all the states that A is into immediately after parsing a symbol $, and
S2 the set of all states A is into immediately before parsing a symbol $. Note that S1; S2 � S, hence both
S1 and S2 are �nite. But then one can construct a �nite automaton A0 that recognizes L: let the initial
state of A0 be some s0 62 S; then, the set of states of A0 is S [ fs0g, the set of �nal states of A0 is S2, and the
transition function of A0 is �, augmented with �-transitions from s0 to each state in S1.

But this is clearly a contradiction, since L is not regular. 2

Corollary 4.2 There are timed !-languages that are not (timed) !-regular.

Proof. Simply attach to each word in the language L! some time sequence, and call the language obtained
in this way L0!. Then, the proof by contradiction follows from the proof of theorem 4.1. Indeed, consider a
TBA that is identical to A0 from the mentioned proof, and for which C = ;. Clearly, this TBA recognizes
L0!. However, such an automaton is an impossibility. 2

Note that the language L! built in the proof of theorem 4.1 is not uninteresting from a practical point
of view. Indeed, it models a search into a database for a given key: the database is modeled by the word
aubxcv, the key to search for is dx, and the instance that matches the query is simulated by bx. We just
found hence some practical situation which does not pertain to the class of (timed) !-regular languages.

4.1 A Formal De�nition

Despite the limited scope of the �nite state approach, the concept of timed languages is a very powerful
one. We propose therefore a de�nition that is similar to the one in [11], but is not restricted to �nite state
acceptors.

De�nition 4.1 1. A (�nite) timed word over some alphabet � is a pair (�#; � 0), where � 2 ��, # 62 �,
� is a time sequence, � 0 � � , and j�j+ 1 = j� j.

The time value �# associated to the symbol # denote the time at which the recognition process of the
timed word must terminate.

A timed language over � is a set of timed words over �.

2. A timed !-word over � is a pair (�; �), � 2 �!, and � is a time sequence. A timed !-language over �
is a set of timed !-words over �.

2

De�nition 4.1 is the same as the de�nition in [11], except that we consider �nite timed languages as well.
However, while the study in [11] restricted itself to those timed !-languages that are recognized by �nite
state acceptors, our suggestion is that other acceptors (with unbounded storage space) should be considered.
We o�ered a motivation of this by corollary 4.2.

In light of the above de�nition, we can also establish the general form of an acceptor for timed languages.
Extending the idea from [11], we de�ne a (general) acceptor A for timed languages as being composed of a
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�nite control, an input device, and a �nite set of clocks, as de�ned in the previous section. The acceptor may
have access to an in�nite amount of memory. However, only a �nite amount of this memory should be used
in each computation. The �nite state control has a designated \�nal" state f . In the case of !-languages, a
run of A over some word � is de�ned analogously to the run of a TBA (see equation (1)), except that the
clocks are not updated only at the arrival of a new input symbol, but at each execution of an elementary
operation instead. More precisely, a run of an acceptor is a sequence of the form

r = s0
�1;�1
�! s1

�2;�2
�! s2

�3;�3
�! � � � ; (2)

where � = �1�2 : : :, � = �1�2 : : :, and s0, s1, : : : are states of the acceptor (s0 being the initial state). The
clocks are de�ned as in section 3.3, in the sense that the only two operations allowed for some clock x

is reading of the value stored in x and resetting x to zero. However, we claimed that the clocks may be
considered externally modi�ed. In the case of TBAs, this condition means that each time a new symbol
appears at the input, the di�erence between the timestamp of that symbol and the timestamp of the symbol
that preceded it is added to all the clocks, as expressed in the de�nition of a run of a TBA (see equation (1)).
Indeed, since the transitions of a �nite automata can be considered as taking a time unit to execute, it is
enough to update the clocks at the arrival of a new symbol only. In other words, a TBA can consider every
input at the precise time it arrives. However, when more complex acceptors are considered, the internal
processes for an input symbol may last longer than the time between the arrival of that symbol and the
arrival of its successor. Therefore, we consider that each clock is incremented each time an elementary
operation is executed, although a clock may be reset only at the time some input symbol is read.

In what follows we shall call an acceptor for a timed language timed acceptor, and an acceptor for a timed
!-language a !-timed acceptor.

De�nition 4.2 A timed acceptor A accepts the timed language L if, for any input timed word (�#; � 0),
there is a computation of A that reaches the state f at time �# i� (�#; � 0) 2 L.

Analogously, an !-timed acceptor A accepts a timed !-language L0 if, for any timed !-word (�; �), there
is a run r of A over (�; �) such that f 2 inf(r) i� (�; �) 2 L0. 2

Even if we discussed here only the notion of timed languages, the extension for timed problems is imme-
diate. Indeed, a timed problem can be de�ned as a problem whose possible inputs form a timed language.
The de�nition for a timed !-problem is similar. Concerning the form of a machine that solves an timed
(!-)problem, it is an acceptor for the corresponding timed (!-)language, except that it is equipped with an
output device, where the solution of the problem eventually becomes available. However, we will allow the
machine to write to the output device only if its �nite control is in the \�nal" state f .

A �nal note on the set of clocks is in order. In the general case, since the acceptor has access to an
unlimited storage space, the clocks can be stored here, and no reference to them is necessary. However, the
storage space may be limited. For example, we presented in section 3.3 a special case of such acceptors, that
fall in our general characterization, except that the storage capacity is null. Similarly, one can de�ne timed
push-down automata, where the storage capacity, even if unbounded, has a stack structure, which is not
suitable for storing an arbitrary number of clocks. Therefore, we preferred to treat the clocks in a special
manner, and not make them part of the main memory.

4.2 Timed Acceptors and the On-Line Property

There are few formal de�nitions for on-line algorithms, although this notion is widely used (see, for example,
[25] and the references therein). We already presented the de�nition from [36], which is given terms of Turing
machines, but it can be easily extended to other models (de�nition 3.1, item 1).

Generally, an on-line algorithm must process all the input data in the order they come, without any
information on the future data. We will use this de�nition, except that we drop the requirement conforming
to which the algorithm is deterministic. However, even in this weaker form, the de�nition is still too
restrictive to be useful in our theory of timed languages. Take for example the language L! from the proof of
theorem 4.1. It is clear that an algorithm that accepts this language is not on-line. Indeed, let the currently
considered part of the input word be : : : $aubxcv. It is clear then that no decision about the acceptance or
rejection of the current string can be made before x d's have been read.
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On the other hand, it is easy to see that any acceptor of a timed !-language processes the input in
bundles. More precisely, a bundle is delimited by the moments when the acceptor reaches the \�nal" state
f . Moreover, because of the de�nition of the accepting run, the number of such bundles is in�nite. Such an
algorithm is not necessarily on-line, but the features are similar, in the sense that the algorithm is limited
in its knowledge about future data to the current bundle instead of the current datum. We will call such a
property pseudo-on-line. That is, we showed that the de�nition of real-time de�nable languages from [39]
is too restrictive, because of the on-line requirement. We suggest that this condition should be replaced by
the pseudo-on-line one.

4.3 Operations on Timed languages

The union, intersection, and complement are straightforwardly de�ned. Moreover, it is immediate that the
language that results from such an operation on two timed languages is a timed language as well. On the
other hand, the concatenation is a more complex issue. Indeed, the naive operation of concatenation of two
(�nite) timed words (that simply concatenates together the pair of sequences of symbols and the pair of time
sequences) fails to produce a timed word, since the result of the time sequence concatenation is likely not a
time sequence. This naive approach is even worse in the case of !-words, where concatenating two in�nite
sequences makes little sense.

However, one can rely on the semantics of timed words in de�ning a meaningful concatenation operation.
More precisely, recall that a timed word means a sequence of symbols, where each symbol has associated a
time value that represents the moment in time when the corresponding symbol becomes available. Then, it
seems natural to de�ne the concatenation of two timed words as the union of their sequences of symbols,
ordered in nondecreasing order of their arrival time. Formally, we have the following de�nitions.

De�nition 4.3 Given two (in�nite or �nite) words � = �1�2; : : : and �0 = �01�
0
2; : : :, we say that �0 is a

subsequence of � i� (a) for each positive integer i there is a positive integer j such that �0i = �j , and (b) for
any positive integers i; j; k; l such that �0i = �j and �0k = �l, i > k i� j > l. 2

De�nition 4.4 Given some alphabet �, let (�0; � 0) and (�00; � 00) be two timed !-words over �. Then, the
we say that (�; �) is the concatenation of (�0; � 0) and (�00; � 00), and we write (�; �) = (�0; � 0)(�00; � 00), i�

1. both (�01; �
0
1)(�

0
2; �

0
2) : : : and (�001 ; �

00
1 )(�

00
2 ; �

00
2 ) : : : are subsequences of (�1; �1)(�2; �2) : : :,

2. for any d 2 f0;00 g and any positive integers i and j, i < j, such that �dk = �dl for any k, l, i � k < l � j,
there exists m such that, for any 0 � � � j � i, (�m+�; �m+�) = (�di+�; �

d
i+�), and

3. for any positive integers i and j such that � 0i = � 00j , there exists k and l, k < l, such that (�k; �k) = (�0i; �
0
i )

and (�l; �l) = (�0j ; �
0
j).

Given two timed !-languages L1 and L2, the concatenation of L1 and L2 is the timed !-language
L = fw1w2jw1 2 L1; w2 2 L2g. The concatenation of two (�nite) timed words and two timed languages is
de�ned analogously. 2

In addition to the mentioned order of the resulting sequence of symbols, two more constraints are imposed
in de�nition 4.4. These constraints order the result in the absence of any ordering based on the arrival time.
First, if either of the two !-words contain some subword of symbols that arrive at the same time, then this
subword is a subword of the result as well. That is, the order of many symbols that arrive at the same time is
preserved. Then, if some symbols �1 and �2 from the two !-words that are to be concatenated, respectively,
arrive at the same moment, then we ask that �1 precedes �2 in the resulting !-word. The concept of Kleene
closure for timed languages can be then de�ned based on the concatenation operation:

De�nition 4.5 Given some timed (!-)language L, let L1 = L, and, for any �xed k > 1, Lk = LLk�1.
Furthermore, let L� = [k>0L

k. We call L� the Kleene closure of L. 2

It is clear that the set of timed (!-)languages is not closed under Kleene closure. Indeed, it is immediate
that there are words in L� whose time sequence does not satisfy the progress condition. In order to summarize
the properties of timed languages, we state the following result.
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Theorem 4.3 The set of (!-)languages is closed under intersection, union, complement and concatenation,
under a proper de�nition of the latter. However, it is not closed under Kleene closure. 2

5 Examples

Our thesis is that the theory of timed languages covers all the practically meaningful aspects of real-time
computations, while doing so in a formal, uni�ed manner.

In particular, note that all the formal models summarized in section 3 can be considered particular cases
of this more general form. More precisely, a real-time de�nable language is a timed language, where, for an
input of length n, the time values are (�1; �2; : : : ; �n), such that �i+1 � �i is constant for any i. Next, the
RTP/C paradigm can be modeled by creating the time sequence according to the rate at which the messages
are emitted (however, while the RTP/C model is most suitable for program speci�cation and veri�cation
(as mentioned in [26]), the model of timed languages is more adequate for complexity theoretic approaches).
Finally, timed automata are obviously a particular case of timed !-acceptors.

In order to further support our thesis, we will take some meaningful examples, with practical applications,
and we will construct timed !-languages that model them.

In general, given some problem, we denote the input and the output alphabets by � and �, respectively.
We also denote by n and m the sizes of the input � and of the output o. When a timed !-word is denoted by
(�; �), we consider that � = �1�2 : : :, and � = �1�2 : : :. We consider that �, �, and IN are disjoint. However,
this does not reduce the generality of our constructions, since one can easily add some special delimiters in
the proper places. Nonetheless, the presence of such delimiters will diminish the clarity of the constructions,
hence we will omit them.

5.1 Computing with Deadlines

One of the most often encountered real-time features is the presence of deadlines. The deadlines are typically
classi�ed into �rm deadlines, when a computation that exceeds the deadline is useless, and soft deadlines,
where the usefulness of the computation decreases as time elapses [27].

For example, a �rm deadline may be expressed as \this transaction must terminate within 20 seconds
from its initiation". By contrast, a soft deadline may be \the usefulness of this transaction is max before 20
seconds elapsed; after this deadline, the usefulness is given by the function u(t) = max� 1=(t� 20)".

Let � be a problem whose instances can be classi�ed into three classes: (i) no deadline is imposed on the
computation; (ii) a �rm deadline is imposed at time td; (iii) a soft deadline is imposed at time td, and the
usefulness function is u after this deadline, u : [td;1) ! IN \ [max; 0]. We build for each instance a timed
!-word (�; �) over � [� [ (IN \ [max; 0]) [ fw; dg, w; d 62 � [� as follows:

(i) �1 : : : �m = o, �m+1 : : : �m+n = �, �i = w for i > m + n, �i = 0 for 1 � i � m+ n, and �i = i�m � n

for i > m+ n.

(ii) �1 2 IN \ [max; 0), �2 : : : �m+1 = o, �m+2 : : : �m+n+1 = �, �i = 0 for 1 � i � m+ n+ 1; if �i < td and
i > m+ n+ 1, then �i = i�m� n� 1 and �i = w. Let i0 be the index such that �i = td. Then, for
all i � i0, �i = i0 + b(i� i0)=2c, and

�i =

�
d if i� i0 is even
0 otherwise.

(3)

(iii) This case is the same as case (ii), except that equation (3) becomes

�i =

�
d if i� i0 is even
bu(�i)c otherwise.

(4)

Let the language formed by all the !-words that conforms to the above description be L. Basically, a
timed !-word in L has the following properties: At time 0, a possible output and a possible input for � are
available. Then, up to the deadline d, the symbols that arrive are w. After that, each time unit brings to
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the input a pair of symbols, the �rst component being d (signaling that the deadline passed), and the second
one being the measure of usefulness the computation still has (which is 0 for ever when the deadline is �rm).
When a deadline is imposed over the computation (cases (ii) and (iii)), a minimum acceptable usefulness
estimate is also present at the beginning of the computation. Let then L(�) be the language of successful
instances of �, L(�) � L, in the sense that, an !-word x from L is in L(�) i� some algorithm that solves �,
when processing the input from x, outputs the output from x either within the imposed deadline (if any),
or at a time when the usefulness of the process is not below the acceptable limit from x.

We are ready to present now an acceptor for L(�). For simplicity, we consider that this acceptor is
composed of two \processes", Pw and Pm. Pw is an algorithm that solves �, which works on the input
of � contained in the current input !-word, and stores the solution in some designated memory space
upon termination. If there is more than one solution for the current instance, then Pw nondeterministically
chooses that solution that matches the proposed solution contained in the !-word, if such a solution exists.
Meantime, Pm monitors the input. If, at the moment Pw terminates, the current symbol is w, then Pm
compares the solution computed by Pw with the proposed solution, and imposes to the whole acceptor the
\�nal" state f if they are identical, or some other designated state r (for \reject") otherwise.

On the other hand, if at the moment Pw terminates, the current symbol is d, then the deadline passed.
Then, Pm compares the current usefulness measure with the minimum acceptable one. If the usefulness is
not acceptable, then Pm imposes the state r on the whole acceptor. Otherwise, Pm compares the result
computed by Pw with the proposed solution, and imposes either the state f or r, accordingly.

Once in one of the states f or r, the acceptor keeps cycling in the same state.
It is immediate that the language accepted by the above acceptor is exactly L(�), and hence we completed

the modeling of computations with deadlines in terms of !-languages. Note that we assumed here that all
the input data are available at the beginning of computation. However, the case when data arrive while the
computation is in progress is easily modeled by modifying the timestamps that corresponds with each input
data. But this case is covered in more details by our discussion in section 5.2.

5.2 The Data Accumulating Paradigm

The data accumulating paradigm has been extensively studied in [15, 16, 30, 31]. A data accumulating
algorithm (or d-algorithm for short) works on an input considered as a virtually endless stream. The
computation terminates when all the currently arrived data have been processed before another datum
arrives. In addition, the arrival rate of the input data is given by some function f(n; t) (called the data
arrival law), where n denotes the amount of data that is available beforehand, and t denotes the time. The
family of arrival laws most commonly used as examples is

f(n; t) = n+ kn
t�; (5)

where k, 
, and � are positive constants. A successful computation of a d-algorithm terminates in �nite
time.

Given a problem � pertaining to this paradigm, we can build the corresponding timed !-language L(�)
similarly to section 5.1. More precisely, given some (in�nite) input word � for � (together with a data
arrival law f(n; t) and an initial amount of data n), and a possible output o of an algorithm solving �
with input �, a timed !-word (�; �) that may pertain to L(�) is constructed as follows: �1 : : : �m = o,
�m+1 : : : �m+n = �1 : : : �n, �i = 0 for 1 � i � m + n. Note that, since both the arrival law and the initial
amount of data are known, one can establish the time of arrival for each input symbol �j , j > n. Let us denote
this arrival time by tj . Also, let i0 = m+ n + 1. Then, the continuation of the timed !-word is as follows:
for all i � 0, �i0+2i = c (where c is a special symbol), and �i0+2i+1 = �i0+i; moreover, �i0+2i+1 = ti0+i, and
�i0+2i = �i0+2i+1 � �, where � is a constant in�nitesimally close to 0.

Now, an acceptor for L(�) has a structure which is identical1 to the one used in section 5.1. More
precisely, it consists in the two processes Pw and Pm. Pw works exactly as the Pw from section 5.1, except
that it emits some special signal to Pm each time it �nishes the processing of one input data. Note that,

1In particular, if there is more than one solution for the current instance, then Pw nondeterministically chooses that solution

that matches the proposed solution contained in the !-word, if such a solution exists.
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since any d-algorithm is an on-line algorithm [16], it follows that, once such a signal is emitted the p-th time,
Pw has a (partial) solution immediately available for the input word �1 : : : �p.

Then, suppose that Pm received p signals from Pw, and it also received the input symbol �i0+2(p�1�i0),
but it didn't receive yet the input symbol �i0+2(p�i0). This is the only case when Pm attempts to interfere
with the computation of Pw. In this case, Pm compares the current solution computed by Pw with the
solution proposed in the input !-word; if they are identical, the input is accepted, and the input is rejected
otherwise (in the sense that either state f or r is imposed upon the acceptor, accordingly).

Again, once in one of the states f or r, the acceptor keeps cycling in the same state. It is immediate
that L(�) contains exactly all the successful instances of �, therefore we succeeded in modeling d-algorithms
using timed !-languages.

Other related paradigms, like c-algorithms [17, 30, 31] (which are similar with d-algorithms, except that
data that arrive during the computation consist in corrections to the initial input rather than new input)
can be easily modeled using the same technique.

Note that, even if we considered here only !-languages, �nite timed languages may be a useful tool too.
For illustrating this, let us get back to the language L! from the proof of theorem 4.1. Here, one can notice
that, even if the words from the language themselves are in�nite, by analyzing portions only (more precisely,
those portions delimited by $ symbols), one can draw conclusions regarding the phenomena that take place.
However, there are real-time problems that probably cannot be modeled as �nite timed languages. Take
for example the theory of d-algorithms where, although any successful computation considers only a �nite
amount of input data, the input itself is in�nite.

Some authors include reactive algorithms as a special class of real-time algorithms. In this view a reactive
algorithm is required to respond to the input without breaking some �xed deadline. This case is obviously
covered by the de�nition we proposed. However, other papers relax this condition [21]. They continue to
ask that the algorithm responds before some deadline, but this deadline is not �xed anymore, it being, for
example, a function of the length of the input. Since we didn't constrain the time sequence associated to
a timed word (except for monotonicity and progress conditions), this paradigm can be easily expressed in
terms of timed languages.

6 Real-Time Database Systems and Timed Languages

We modeled in sections 5.1 and 5.2 the two main ingredients that, when present, impose the real-time
quali�er on the problem. This supports our thesis that the theory of timed languages covers all the practically
relevant aspects of real-time computations. However, another part of this thesis is that our model is capable
of capturing practical aspects of the real-time domain. In order to further emphasize this aspect, we provide
in what follows timed !-languages that model problems from two highly practical areas, namely real-time
databases and ad hoc networks.

6.1 Relational Database Systems

Much of this section is presented conforming to [2]. Throughout the paper we consistently use the notations
from [2]. It is assumed that a countably in�nite set att of attributes is �xed. Moreover, the countably in�nite
set dom (disjoint from att) is also �xed, and it represents the underlying domain. A constant is an element
of dom. When di�erent attributes should have di�erent domains, a mapping Dom on att is considered,
where Dom(A) is a set called the domain of A, Dom(A) � dom. There is a countably in�nite set of relation
names. A relation is given by its name and its ordered set of attributes (sometimes called its sort). Given
a relation R, the sort of R is denoted by sort(R), and the arity of R is de�ned as arity(R) = jsort(R)j. A
relation schema is a relation name R. A database schema is a nonempty �nite set R of relation names. Let R
be a relation or arity n. Then, a tuple over R is an expression R(a1; a2; : : : ; an), where ai 2 dom, 1 � i � n.
A relation instance over R is a �nite set of tuples over R. Given a database schema R, a (database) instance
I over R is a �nite set that is the union of relation instances over R, for R 2 R. The sets of instances over
a database schema R and a relation schema R are denoted by inst(R) and inst(R), respectively.
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Exhibitions

Title Description Artist

Terre Sauvage Canadian Landscape Thompson
Paintings

Terre Sauvage Canadian Landscape Harris
Paintings

Terre Sauvage Canadian Landscape MacDonald
Paintings

Painter of the Soil Works on Paper Schaefer
Sorrowful Images Early Nederlandish Aelbrecht

Devotional Diptychs
Sorrowful Images Early Nederlandish Dieric

Devotional Diptychs

Schedules

City Title Date

Mexico City Terre Sauvage October 1999
St. Catharines Painter of the Soil November 1999
Hamilton Sorrowful Images November 1999

Figure 1: An example of a relational database instance.

S

Artist City

Schaefer St. Catharines
Aelbrecht Hamilton
Dieric Hamilton

Figure 2: The result of a query.

In order to support the intuition behind the concepts presented above, let us consider as an example the
relational database2 from �gure 1.

The database schema (call it NGC) for the database shown in �gure 1 is de�ned by NGC =
fExhibitions; Schedulesg. It contains therefore two relation schemae, namely Exhibitions and Sched-
ules. The attributes Title, Description, Artist, City, and Date are included in the set att. One
can consider the set of �nite length strings of characters as the underlying domain dom. How-
ever, a mapping Dom on att may be considered as well. In this example, Dom(T itle) �

fTerre Sauvage;Painter of the Soil; Sorrowful Imagesg, and so on. Furthermore, sort(Exhibitions) =
fT itle;Description;Artistg, and therefore arity(Exhibitions) = 3. Finally, the relation instance over
Exhibitions from �gure 1 contains 6 tuples, while the instance over Schedules contains only 3 tuples.

The interrogation of a database is accomplished by using queries. A query is a partial mapping from
inst(R) to inst(S), for a �xed database schema R and a �xed relation schema S.

For example, a meaningful query (expressed in plain English) for the database from �gure 1 might be
\which artist is exhibited in which city in November." This query is a map from inst(NGC) to inst(S) for
some relation schema S, where sort(S) = fArtist; Cityg. Incidentally, the result of performing this query
on the database instance from �gure 1 is shown in �gure 2.

6.1.1 Complexity of queries

We are mainly concerned with data complexity of queries, namely the complexity of evaluating a �xed query
for variable database inputs [2], since the usual situation is that the size of the database input dominates by
far the size of the query (and therefore this measure is most relevant).

The complexity of queries is de�ned based on the recognition problem associated with the query. More
precisely, for a query q, the recognition problem is: Given an instance I and a tuple u, determine if u belongs
to the answer q(I). That is, the recognition problem of a query q is the language

2The events described in this example are loosely based on [1].
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fenc(I)$enc(u)ju 2 q(I)g; (6)

where enc denotes a suitable encoding over queries and tuples, and $ is a special symbol.
The (data) complexity of q is the (conventional) complexity of its recognition problem. Then, for each

conventional (time, space, processors) complexity class C, one can de�ne a corresponding complexity class
of queries QC.

Another way to de�ne the complexity of queries is based on the complexity of actually constructing the
result of the query. The two de�nitions are in most cases interchangeable [2].

6.2 Real-Time Database Systems

The theory of real-time database systems (RTDBSs) may be viewed as the meeting point for the areas of
active databases, and temporal databases. In the following, we make a minimal presentation of this theory,
directing the interested reader to [2, 32].

6.2.1 Active databases

Active databases support the automatic triggering of updates in response to (internal or external) events.
Forward chaining of rules is generally used to accomplish the response, as in the case of expert systems. The
component of active database is central in the theory of real-time databases, since these databases usually
have to respond in a timely fashion to changes in the environment, that are usually signalled to the database
system by events.

There are three components in an active database [2]: an event monitoring subsystem, a set of rules
(often called a rule base), and a semantics for rule application (or an execution model).

The typical form of a rule is \on event if condition then action," where the event may be either an
external phenomenon, or an internal event (such as the insertion of a tuple). Events may have attributes that
are passed to the system. The conditions may involve parameters that are passed along with the event, or
parameters that are speci�c to the content of the database. The action is an arbitrary routine, that usually
involves an updating transaction. An action may in turn generate other events and hence trigger other rules.

For example, we may want to consider deleting those exhibitions contained in the instance of relation
Schedules from the database shown in �gure 1 which are no longer exhibited in the speci�ed city. A rule
for such a processing might be

on MonthChange if true then del(Date < CurrentDate),

where del(C) deletes those tuples for which condition C holds.
A fundamental issue in active databases addresses the choice of an execution model, that speci�es how

and when rules are applied. An important dimension of variation between execution models is given by the
moment the rules are �red. The �rst model is immediate �ring, where a rule is �red as soon as its event and
condition become true. Under deferred �ring, rule invocation is delayed until the �nal state (in the absence
of any rule) is reached. Finally, when a separate process is spawned for the rule action and is executed
concurrently with other processes, we have an concurrent �ring. In the most general model, each rule have
an associated �ring mode (immediate, deferred, concurrent).

Besides the �ring mode, there is a wide variety of execution models. A dimension of 
exibility that is
of interest in the area of real-time databases concerns the access to the \past" of a database. That is, in
addition to the access of the current state, a rule may have access to one or more previous states. In a
real-time environment, there is usually a need to have full access to (a part of) the history of the system, as
we shall see in section 6.2.3.

6.2.2 Temporal databases

Classical databases model static aspects of the data. However, in many applications (and especially in the
real-time case), the history of data is just as important as the data itself. Let our point of interest be a
database over some schema R, and let us consider now the content of the database through time. Basically,
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one can associate to each time t the instance It of the database at time t. That is, the database appears
as a sequence of states or snapshots indexed by some time domain. In order to query temporal databases,
relational languages must be extended to take into account the time dimension. To say that a tuple u is in
relation R at time t, one could simply add a second argument to R and write R(u; t).

However, an important issue concerns the time domain [2, 32]. First of all, the structure of time should
be addressed. There are two structural models of time, linear and branching. In the latter model, time is
linear and totally ordered from past till \now", when it divides into several time lines. The main model for
real-time databases is, however, linear. The density of the time domain is also of interest. This domain may
be either continuous (isomorphic to reals), dense (isomorphic to rationals), or discrete (isomorphic to natural
numbers). The model of choice is usually the discrete time domain, where each natural number corresponds
to a nondecomposable unit of time, sometimes referred to as a chronon. Finally, one can di�erentiate between
relative and absolute time.

The dimensionality of time addresses the question \what is the meaning of It." In this respect, one can
di�erentiate between valid time (the time associated to each object in some database instance is the time at
which the fact associated to this object became true in reality) and transaction time (the time at which the
fact was recorded in the database as stored data).

Although the concept of a temporal database as a sequence of instances in very convenient theoretically,
this is an extremely ine�cient way to represent such databases. In practice, this information is summarized
in a single database, by using timestamps to indicate the time of validity. Such timestamps may be placed
at attribute or tuple level (generally, because of this alternative, we use the term \object" when referring to
either an attribute or a tuple), and are typically unions of intervals over the temporal domain [2, 32, 38].

6.2.3 Real-Time Databases

Real-time databases combine the notions of active and temporal databases. There are therefore two impor-
tant aspects: First, a real-time database interacts with the physical world, for example by reading values
of physical objects and storing them. The real world is periodically sampled, and each such sampling pro-
cess generates an event that must be handled by the database. In addition, when a value changes, some
related changes happen to other data. This update process is typically accomplished by rule application as
well. Needless to say, since data in a real-time database is time sensitive, such a database is a temporal
one. Second, the transactions must be timely, that is, they must complete within their time constraints
(deadlines).

We brie
y present in the following the data model used in [38], which derives from the historical relational
data model [19].

The objects from the database are grouped in three categories: Image objects are those objects that
contain information that is obtained directly from the external environment. Associated with an image
object is the most recent sampling time. Archival sets of image objects are typically maintained, so that
di�erent snapshots at di�erent points in time are available. A derived object is computed from a set of image
objects and possibly other objects. The timestamp associated with a derived object is the oldest valid time of
the data objects used to derive it. Finally, an invariant object is a value that is constant with time. Such an
object may be considered either a temporal or non temporal data. In the �rst case, the timestamp associated
with such an object is always the current time. Note that this is a natural classi�cation. Moreover, in order
to keep a complete history of the database, it is enough to keep archival copies of the image objects, since
the other objects are either invariant with time, or their values can be derived from the values of the other
objects.

The time associated with some object x is denoted by tx. It is assumed for now that the time of an
object is a single point in time.

The age a(x) of an object x is the di�erence between the current time and the timestamp of x. The
dispersion of two data objects x and y is the absolute value of the di�erence between the timestamps of x
and y. Given some set of objects Y , it is absolutely consistent if a(xi) � Ta, for all xi 2 Y , and where Ta
is some speci�ed (�xed) threshold. Similarly, Y is relatively consistent if d(xi; xj) � Tr for all xi; xj 2 Y ,
where Tr is another speci�ed threshold.

Then, a real-time database instance is de�ned as B = (I1; I2; :::; In; D; V ), where In is the most recent set
of image objects, and I1, I2, . . . , In�1 are archival variants of this set. D is the set of derived objects, and V
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is the set of invariant ones. The database is said to have absolute consistency if In is absolutely consistent
and the ages of data objects used to derive the derived objects are less than the speci�ed threshold. The
conditions for relative consistency are similar.

Since in a real-time database it is important to re
ect the state of the real world, it is assumed that
the di�erence between the valid time and the transaction time is small. Time is usually considered discrete.
The valid time associated with each temporal object in the database instance is called the lifespan of the
object. The lifespan of a data object is de�ned as a �nite union of intervals. These intervals are closed under
union, intersection and complementation, and form therefore a boolean algebra. A single instance of time is
represented by a degenerated interval that contains exactly one time value. A lifespan can also be associated
with a set of objects, in a natural manner.

Based on these notions, a variant of relational algebra is de�ned as a query language for real-time
databases in [19, 38].

Additional issues in the real-time database systems include the pattern of queries (periodic, sporadic,
aperiodic), the nature of deadlines (hard, �rm, soft) [32], and the way the updating rules are �red. While
the �rst two issues received both theoretical and practical attention in the literature, to our knowledge, there
is no special theoretical treatment on the last issue, except for the one that spawn from the active database
theory. However, one might study various variants of rule application. For example, one may impose an
immediate �ring on the rules that update the image objects of the database, but a deferred �ring for the
derived objects. Note that the immediate �ring in the case of image objects is implied in [38] and therefore
in the above paragraphs, since it is assumed that the valid and transaction times are close to each other.

Finally, note that some aperiodic query q can be considered as a partial function from B to inst(S),
where S is some relation. However, a periodic query returns an answer each time it is issued, therefore such
a query is a function from B to (inst(S))! .

6.3 Real-Time Database Systems as Timed Languages

As shown in section 6.1.1, one of the ways of assessing the complexity of queries and query languages is
based on the reduction of such problems to the problem of language recognition.

However, the real-time component in a real-time database system adds a new dimension to the model,
namely the time. Is seems natural therefore to try to model such database systems using timed languages.
We describe such a modeling in what follows. We consider that there is a suitable encoding function enc that
encodes objects and sets of objects, without giving much attention to how such a function is constructed.
Note that such functions were widely used (see for example [2, 29]). Let $ be a symbol that is not in the
codomain of enc.

Let us ignore the queries for the moment. Recall that a real-time database instance is a tuple B =
(I1; I2; :::; In; D; V ), as mentioned in section 6.2.3. Moreover, assume for now that the database contains
exactly one immediate object, called ok, and that the value of ok is read from the external world each tk
time units. Let D and V be some sets of derived and invariant objects, respectively, with m = jenc(V )j and
p = jenc(D)j, and ok(t) be the value of ok that is read at time t from the external world. Consider then the
timed !-word dbk = (�; �), where � and � has the following form: let q = jenc(ok)j

3; then, for every i � 0,
��+i(q+1)+1 : : : ��+(i+1)(q+1) = enc(ok(ti))$,

where � = m+ p+ 2; moreover, �j = iti for �+ i(q + 1) + 1 � j � �+ (i+ 1)(q + 1).
Furthermore, let db0 = (�; �), such that �1 : : : �m = enc(V ), �(m + 1) = �(m + p + 2) = $, and

�m+2 : : : �m+p+1 = enc(D); in addition, �i = 0, 1 � i � m+ p+ 2.
In other words, the sets of both invariant and derived objects are speci�ed at time 0, as modeled by the

word db0. Then, each tk time units a new value for ok is provided. This is modeled by dbk. It is clear that
the database instance is completely speci�ed by the word db0dbk, since this word models both the invariant
and derived objects (by db0), as well as all the updates for the sole image object (by dbk).

Now, let us consider the general case of a real-time database. That is, we do not restrict ourselves to one
invariant object anymore. Therefore, let the database instance contain r such objects, called ok, 1 � k � r.

3We assume for the clarity of presentation that the length of the encoding of ok is constant over time. The extension to a

variable length is straightforward.
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However, if we consider a word dbk corresponding to each object ok, 1 � k � r, then it is immediate that
the database is described by the word

dbB = db0db1 : : : dbr: (7)

We have now a model for real-time databases. Now, all that we have to do is to consider the queries.
Again, we assume without further details that there is a function encq for encoding queries and their answers,
whose codomain is disjunct from the codomain of enc. Real-time queries can be classi�ed in two classes:
periodic and aperiodic [32].

Let us focus on aperiodic queries �rst. Each such query q may have a �rm of soft deadline. However, it
seems natural to also consider queries without any deadline, since they might be present even in a real-time
environment. Therefore, the encoding of a query should include

1. the time t at which the query is issued,

2. the (encoding of) the query itself encq(q),

3. a tuple s that might be included in the answer to the query,

4. the deadline td of the query, if any.

Note that a similar problem is the presence of deadlines, that was presented in section 5.1, except that the
�rst item is not modeled (the computation always starts at time 0). Therefore, our construction is similar
to the construction of the language that models computations with deadlines.

We have thus a query for which (i) there is no deadline, (ii) a �rm deadline is present, or (iii) a soft
deadline is present. The deadline (if any) is imposed at some relative time td (that is, the moment in time
at which the deadline occur is t + td), and the usefulness function is denoted by u. For each query q and
each candidate tuple s we can build similarly to section 5.1 an !-word aq[q;s;t] = (�; �) as follows, where
m = jencq(s)$j, n = jencq(q)$j, and $, wq , dq are not contained in the codomain of encq:

(i) �1 : : : �m = encq(s)$, �m+1 : : : �m+n = encq(q)$, �i = wq for i > m + n, �i = t for 1 � i � m + n, and
�i = t+ i�m� n for i > m+ n.

(ii) �1 2 IN \ [max; 0), �2 : : : �m+1 = encq(s)$, �m+2 : : : �m+n+1 = encq(q)$, �i = t for 1 � i � m+ n+ 1;
if �i < td and i > m+ n+ 1, then �i = t+ i�m� n� 1 and �i = wq . Let i0 be the index such that
�i = t+ td. Then, for all i � i0, �i = t+ i0 + b(i� i0)=2c, and

�i =

�
dq if i� i0 is even
0 otherwise.

(8)

(iii) This case is the same as case (ii), except that equation (8) becomes

�i =

�
dq if i� i0 is even
bu(�i)c otherwise.

(9)

Let q be a periodic query now. More precisely, q is issued for the �rst time at time t, and then it is
reissued each tp time units. Each time q is issued, we have to consider a tuple whose inclusion into the result
of q is to be tested. Let si be such a tuple for the i-th invocation of q, and let s = (s1; s2; s3; : : :). It is easy
to see that such a query is modeled by the word pq[q;s;t;tp] = aq[q;s1;t]aq[q;s2;t+tp]aq[q;s3;t+2tp] : : :. However,
there is no guarantee that the resulting word pq[q;s;t;tp] is a timed !-word. Indeed, the concatenation of an
in�nite number of timed !-languages may lead to the violation of the progress rule for the result. In our case,
however, the progress condition is not violated, and this follows immediately from the following observation.

Lemma 6.1 For a word pq[q;s;t;tp] = (�; �), and for any �nite positive integer k, there exists a �nite integer
k0 such that �k0 � k.
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Proof. Without loss of generality, we assume that k = t+itp for some i � 0. However, the symbols for which
�j < k can be counted as follows: there are i+ 1 occurrences of some word of the form encq(q)$encq(sv)$,
0 � v � i, and at most k occurrences of symbols from fwx; dxjx = t + ltp; 0 � l � ig. Therefore, j �
(i+ 1)jencq(q)$encq(s)$j+ 2ki, for some tuple s such that jsj = max0�v�i sv . Clearly, the upper bound for
j is �nite and therefore so is the number of symbols for which �j < k. 2

We modeled therefore the main ingredients of a real-time database system. All we have to do then is to
put the pieces together.

De�nition 6.1 Let B be some real-time database instance. Then, given some aperiodic query q from B to
inst(S) (where S is some relation schema), issued at time t, the recognition problem for q on B is the timed
!-language

Laq = fw 2 dbBaq[q;s;t]js 2 q(B)g: (10)

Analogously, given a periodic query q from B to (inst(S))!, issued at time t and with period tp, the
recognition problem for q on B is the timed !-language

Lpq = fw 2 dbBpq[q;s;t;tp]js 2 q(B)g: (11)

2

Note that the recognition problem for real-time queries is similar to the same problem for conventional
queries, shown in relation (6), except that the (conventional) words used in (6) are replaced by timed !-words.

7 Ad Hoc Networks

An ad hoc network is a collection of wireless mobile nodes, that dynamically forms a temporary network
without using any existing network infrastructure or centralized administration [13, 23]. Due to the limited
transmission range of such nodes, multiple hops may be needed for one node to exchange data with another.

The main di�erence between an ad hoc network and a conventional one is the routing protocol. In such
a network, each host is mobile. Therefore, the set of those nodes that can be directly reached by some host
changes with time. Furthermore, because of this volatility of the set of directly reachable nodes, each mobile
node should act not only as a host, but as a router as well, forwarding packets to other mobile hosts in the
network.

Although the concept of ad hoc networks is relatively new, many routing algorithms were developed (see,
for example, [12, 13] and the references therein). However, little in known about the performances of these
algorithms. A comparative performance evaluation was proposed for the �rst time in [13], where several
routing algorithms are compared based on discrete event simulation. To our knowledge, no analytical model
have been proposed up to date.

On the other hand, an ad hoc network is obviously a real-time system. Indeed, since the positions (and
implicitly the connectivity) of all the hosts are functions of time, such a network is close to the correcting
algorithms paradigm [17]. Therefore, conforming to our claim that timed languages can model all the
meaningful aspects of real-time computations, one can model ad hoc networks using this formalism. This is
what we are attempting in the following.

7.1 Assumptions and Notations

When speaking about ad hoc networks, we assume that the maximum number of nodes in such a network is
upper bounded by a �nite constant. We believe that this is a reasonable assumption, given today's bandwidth
limits and the potential uses of such networks. We also assume that, if a message is emitted by some node
at some time t and received by another node that is in the transmission range of the sender at time t0, then
t0 = t + 1. That is, transmitting a message takes one time unit. Note that we actually established in this
way a granularity of the time domain. This granularity seems appropriate, since transmitting a message is
an elementary operation in a network.
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Finally, we introduce a notation for the transmission range. We denote this characteristic by the predicate
range(n1; n2; t). That is, a node n2 is in the transmission range of other node n1 at time t i� range(n1; n2; t) =
true. We do not give any speci�c way of computing this predicate, since such a computation depends on the
characteristics of the particular application. Indeed, this predicate depends on the characteristics of both n1
and n2, as well as on the geographical characteristic of the area between the two nodes.

7.2 Nodes as Timed !-Words

The main component of a model for ad hoc networks is the mobile host (or the node). It is consistent
to assume that each node in a network is uniquely identi�ed (for example, by its unique IP address). For
convenience, we label such a node by an integer between 1 and n, where n is the number of nodes in the
given network.

We assume that there is an encoding function e of the properties of any node i (like the label i of the node,
the position of i, and other properties that will be explained below) over some alphabet �, with @; $ 62 �.
Denote by � the set of all possible properties. Then, we say that x is the encoding of some property � of
node i i� x = enc(i; �), where enc : IN��! �,

enc(i; �) =

�
$e(i)$ if � = i,
$e(i)@e(�)$ otherwise.

In other words, we have a standard encoding, except that each property of some node i (except i itself)
is pre�xed by an encoding of i. This will be useful when we put together the models of all the nodes that
form an ad hoc network.

Each node i is characterized by its position, that changes with time. We denote by pi(t) the (encoding of
the) position of node i at time t. In addition, each node has a set of characteristics that are invariant with
time (for example, the transmission range). The structure of this set is, however, immaterial for the present
discussion. Therefore, we consider that these characteristics are encoded by some string qi for each node i.
Finally, it is sometime assumed that each node has a constant velocity [13]. However, the constant velocity
assumption is made for simulation purposes, and is not necessarily a feature of the real world. Indeed,
the velocity of some node usually varies with time, and/or is unknown to the other nodes. Such a case is
considered in [12], where the only thing known by any node is its current position. We consider here the
most general case, where the only thing known about some node at some moment in time is its position at
that moment.

Given a series of (conventional) words w1; w2; : : :, we denote by w1w2 the concatenation of w1 and w2.
Moreover, we denote by

P!

i=1 wi the (in�nite) word obtained by successively concatenating the words wi,
i � 1

We are ready now to consider a timed !-word that models some mobile host. A node i is modeled by
the word hi = (�; �), where � = (qi)(

P!

t=0 pi(t)), and � = �1�2 : : :, with �j = 0 for 1 � j � jqipi(0)j, and, for

any k > 1, �j = k, 1 + jqij+
Pk�1

l=0 jpi(l)j � j � jqij+
Pk

l=0 jpi(l)j.
In other words, the �rst part of hi contains the invariant set of characteristics, together with the initial

position of the object that is modeled. The time values associated with this subword are all 0. Then, the
successive positions of the node are speci�ed, labeled with their corresponding time values. It is immediate
that all the necessary information about node i is contained in the word hi.

7.3 A Model for Messages

Consider a message u issued at some time t. Such a message should contain the source node s and the
destination node d. Furthermore, such a message may contain its type (for example, message or acknowl-
edgment), the data that is to be transmitted, etc. All this content (referred to as the body of the message)
is, however, immaterial, and we denote it by bu as a whole. Considering that the encoding function e in-
troduced above encodes messages over � as well, let the encoding of a message be $e(t)@e(s)@e(d)@e(bm)$,
and k = j$e(t)@e(s)@e(d)@e(bu)$j. Then, the timed (�nite) word that models u is mu = (�; �), where
�1 : : : �k = $e(t)@e(s)@e(d)@e(bu)$ and �j = t for 1 � j � k.
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Note that mu is not a timed !-word. On the other hand, it is easy to see that, for any node i, himu is
such a word. However, for a message to exist, there must be at least one node in the network, namely the
node that sends it. That is, a model of a message would always be concatenated to the model of at least one
node, and therefore the above construction is su�cient for our purposes.

Finally, one has to consider the model for the receiving event. For this purpose, assume that some
message u (generated at time tu, by a source s) is received by its intended destination d at some time t0u.
We model such an event by the timed word ru = (�; �), where �1 : : : �k0 = $e(t)@e(s)@e(d)$ and �j = t0u
for 1 � j � k0, with k0 = j$e(t)@e(s)@e(d)$j. Again, such a word is not a timed !-word, but the above
argument still holds (namely, some \acknowledgment" cannot exists in a network with no hosts).

7.4 The Routing Problem

It is immediate that an ad hoc network with n nodes and without any message is modeled by the timed
!-word an = h1h2 : : : hn. Then, a network of n nodes and some messages u1; u2; : : : ; uk, k � 1, will
be modeled by the word wn;k = h1h2 : : : hnmu1mu2 : : :muk , and the model that includes the event of
receiving ui, 1 � i � k is wrn;k = h1h2 : : : hnmu1ru1mu2ru2 : : :mukruk . Moreover, given some countably
in�nite series of messages u1u2 : : :, the model of the network in which these messages are transmitted is
wrn;! = h1h2 : : : hnmu1ru1mu2ru2 : : :. Note that wn;! is a timed !-word under the reasonable assumption
that any node can generate only a bounded number of messages per time unit.

In the following we may refer to the encoding mu of a message u simply by \the message mu". Whether
the term message refers to a message or an encoding of a message will be clear from the context. For a �xed
n, denote by Nn the set of all the words of the form wn;k, k 2 IN [ f!g.

We are ready now to state the routing problem in ad hoc networks as a timed !-language. Consider a
network with n nodes, and a message u generated at time t, with body b, that is to be routed from its source
s to the destination d. Then, a route of u is a word in the timed !-language

Rn;u = fw 2 Nng;

where, for some �nite positive integer f , there exists a set of messages u1; u2; : : : ; uf , and
possibly a set of messages rt1; rt2; : : : ; rtg , with g a positive, �nite integer, such that w =
h1h2 : : : hnmu1ru1 : : :muf rufmrt1rrt1 : : :mrtf rrtf . Furthermore, for each message ui, 1 � i � f , denote
by ti, t

0
i, si, di, and bi the generation time, receiving time, source, destination, and body of ui, respectively.

Then,

1. b1 = b2 = : : : = bf = b, s1 = s, df = d, t1 = t,

2. for any i, 1 � i � f � 1, di = si+1, t
0
i = ti+1, and range(si; di; ti) = true,

3. t0f is �nite.

In other words, the routing process generates f intermediate messages (u1, . . . , uf ). These are one-hop
messages that contain the same information as the original message. Moreover, the time at which one such
message arrives at the intended destination of u is �nite (otherwise, the message is never received, and the
routing process is hence unsuccessful). In addition, there might exist a �nite number of additional messages
(rt1, . . . , rtg), that are exchanges between nodes in the routing process (for example, when the routing
tables at each node are built/updated). In the following, we refer to some language Rn;u as an (instance of
a) routing problem, while some particular word w 2 Rn;u will be called an instance of Rn;u, or just routing
instance when Rn;u is understood from the context. Note that the actual routing (performed by some routing
algorithm) of message u in some n-node network is modeled by a word in the corresponding routing problem.

Clearly, the language Rn;u models all the relevant characteristics of a routing problem. Note that two
routing algorithms may be compared by comparing their corresponding words from Rn;u. Moreover, more
than one measure of performance may be considered. The measures of performance that are considered in
[13] are the routing overhead (the total number of messages transmitted), path optimality (the di�erence
between the number of hops a message took to reach its destination versus the length of the shortest possible
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path), and the message delivery ratio (the number of messages generated versus the number of packets
received).

The �rst two measures have immediate correspondent in our model. Indeed, considering some word
w 2 Rn;u corresponding to a routing algorithm, the routing overhead is given by f + g, the total number
of messages that are generated. The number of hops a message traveled is given by t0f � t1. The message
delivery ratio on the other hand needs some changes in our model, since we de�ned the routing problem as
consisting in the successful deliveries of messages. Consider for this purpose the language R0

n;u = fw 2 Nng,
where w has the same properties as above, except the �niteness of t0f . This models a routing problem where
the possibility of a message to be lost (that is, never received by its intended destination) exists. This
property is modeled by the cases where t0f = !.

However, note that in practice an in�nite delivery time usually means that the delivery time exceeds
some �nite threshold T . This situation is modeled by our initial construction, where a lost message is a
message for which t0f � t1 > T .

7.5 On Routing Algorithms

Up to now, we modeled the routing problem. Such an approach o�ers a basis for comparing routing algo-
rithms, once the results of these algorithms are modeled as words from Rn;u. On the other hand, nothing
is said about the routing algorithm itself. This happens in part because the notion of an acceptor for timed
!-languages is only sketched. However, one can outline the concept of a model for routing algorithms in ad
hoc networks.

The immediate variant for such a model takes the form of an acceptor for the language Rn;u. However,
further restrictions to such an acceptor must be imposed. Speci�cally, the real world router consists in n

independent algorithms, that have limited means of communication. That is, two such nodes can commu-
nicate only by messages exchanged between them. A model for a routing algorithm must take this feature
into account.

However, there is a second approach to this model, which is similar to the concept of parallel communi-
cating grammar systems [20]. Such a system consists in a number of grammars, with their own work space,
that communicate to each other by means of special symbols. Except for this communication, the grammars
work independently. The case of parallel grammar systems closely resemble a real world ad hoc network4.
Indeed, a node in such a network is unaware of the properties of another node, unless it receives a message
from (or about) that node. Based on this intuition, we can propose a model for an n-node ad hoc network.
For speci�city, we model a routing instance w = h1h2 : : : hnmu1ru1 : : :muf rufmrt1rrt1 : : :mrtf rrtf .

Such a model has n component timed !-words Hi, 1 � i � n, one for each node. Each Hi consists in a
\local" component Li and a \remote" component Ri, where

Li = himuj1
muj2

: : :mujx
mrtk1

mrtk2
: : :mrtky

; (12)

where 0 � x � f , 0 � y � g, 1 � jl � f for any l, 1 � l � x, and 1 � kl � g for any l, 1 � l � y. Moreover,
the source of each message ujl or rtkl is i. That is, the local component consists only in those messages that
are sent by the corresponding node, together with the space coordinates of that node.

Given Li, for each j 6= i, 1 � j � n, denote by Mi;j the set frujl j1 � l � x; dujl = jg [ frrtjl j1 � l �

y; drtjl = jg. That is, the set Mi;j contains the receiving events for all the messages that are sent from node
i to node j. Then,

Ri = �1 : : : �k; (13)

where �1 : : : �k are exactly all the elements in the set [nl=1Ml;i.
Finally, Hi = LiRi. In other words, the component Hi contains only those messages that are sent by

the corresponding node, and those messages that are received by the node. Besides this information, no
knowledge about the external world exists.

4It should be noted, however, that, while grammar systems are generative devices, the discussion here focuses on accepting

devices instead. Therefore, the above parallel shall be taken exclusively as an intuitional support.
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8 A Model for Distributed Computations

We presented in section 7.5 a distributed model for the routing algorithm. However, one can note that the
above modeling of a routing problem can be extended to any distributed real-time algorithm.

Indeed, such an algorithm is composed of a set of processes, that execute independently, and communicate
with each other exclusively by messages. Speci�cally, consider that there are n such processes. Consider now
some process k isolated from the external world. It has to perform some real-time task, therefore, conforming
to our thesis, its execution can be modeled by some timed !-word. Call this word ck. However, in addition
to this computation, the process may send messages to other processes. Let these messages be modeled by
some timed !-word lk. Note that the structure of lk is similar to the structure of the Lk from section 7.5,
relation (12), less the hi part. Furthermore, the messages that are sent towards process k can be modeled
by a timed !-word rk similar to Ri (relation (13)). Then, the behavior of process k is modeled by the word
cklkrk , 1 � k � n.

Therefore, such a model is not restricted to ad hoc networks, but is suitable for modeling any distributed
real-time system instead. Whether this explicit representation of distributiveness is useful remains an open
problem. We believe, however, that the above construction is natural and expressive. As noted above, a
similar construction was studied in the context of conventional languages, namely the parallel communicating
grammar systems (PCGS), introduced in [33] and further studied in, e.g., [14, 18, 20]. It is shown that the
power of such devices is increased as compared to the power of usual grammars. We expect to �nd similar
trends in the case of systems of !-acceptors.

9 Conclusions, or Towards a Complexity Theory for Real-Time

Computations

We believe that the notion of timed languages and acceptors as introduced in section 4 are important tools in
developing a complexity theory for real-time systems, which is simply not present at this time. We presented
in this paper a general de�nition of this class of languages, and we suggested that this de�nition is powerful
enough to model all the practically important aspects of real-time computations. We also supported our
thesis with meaningful examples.

Besides validating the thesis, the examples o�ered some interesting insights into the theory of real-time
systems. Speci�cally, we constructed a recognition problem for queries in a real-time database system. While
query complexity issues in traditional database systems were studied [2], the real-time domain received to
our knowledge no attention. Nevertheless, the analysis of complexity of queries in this domain could be
based on the newly developed recognition problem, which is yet another argument in favor of the mentioned
complexity theory.

Furthermore, we presented a model for the routing problem in ad hoc networks. Not only did we
formalize this problem, opening the road for a complexity analysis of it, but we also identi�ed a variant
of our model, suitable for modeling distributed real-time computations. Since there is a growing practical
interest in distributed computations, such a model could be of interest. In particular, it o�ers an alternative
to the real-time producer/consumer paradigm presented in section 3.2, that is not restricted to periodic
message generation. Incidentally, note that the current developments in the area of wireless communications
are tremendous, and this stresses the importance of theoretical analysis of routing algorithms in ad hoc
networks, since such an analysis is not a�ected by the fast changing technological characteristics.

As a �rst step toward the suggested goal of real-time complexity theory, one can study the hierarchy
of timed languages, similar with the Chomsky hierarchy for normal languages, together with the closure
properties and with the corresponding classes of acceptors. This direction has been initiated in [11], with
the study of timed !-automata, and we suggested in this paper a general form of such an acceptor.

Nonetheless, we believe that the most interesting direction is the establishment of a complexity theory
for real-time systems, based on the de�nition of timed languages. In general, such a theory takes into
account the measurable resources used by an algorithm, the most important of these being time and space.
However, in the real-time environment, time complexity makes little sense, since in most applications the
time properties are established beforehand. But, as supercomputing is now a reality, a complexity hierarchy
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with respect to the number of processors is a very interesting direction, with promising prospects. Note that
it has been already established that a parallel approach can make the di�erence between success and failure
[4, 9, 15, 16, 17, 31], or can enhance signi�cantly the quality of solutions [5, 6, 7, 8].

Note that a similar research was pursued in [34, 36], where the hierarchy was established with respect
to the number of tapes of real-time Turing machines. However, on one hand, a multitape Turing machine
is probably not equivalent to a multiprocessor device, and, on the other hand, since the real-time domain
is a highly practical issue, we think that the use of models closer to real machines (e.g., the PRAM [3]) is
desirable.
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