
A method for incorporating knowledge and communication into

decentralized discrete-event systems
�

S.L.Ricker K. Rudie

CWI Department of Electrical

P.O. Box 94079 and Computer Engineering

1090 GB Amsterdam Queen's University

The Netherlands Kingston, Ontario K7L 3N6

Canada

E-Mail: S.L.Ricker@cwi.nl, rudie@ee.queensu.ca

July 2000

Abstract

Using a formal method for reasoning about knowledge, decentralized discrete-event control

problems are described. States of the system where supervisors do not have su�cient knowledge

to make the correct control decision can be detected. A solution where supervisors may commu-

nicate is presented. The relationship between communication and control is complex because (i)

control decisions made by one supervisor may depend on communications received from another

supervisor and yet (ii) the content of the information that is communicated could be a�ected

by information the communicating supervisor previously received. Procedures are derived for

incorporating communication into decentralized discrete-event control. The resulting augmented

system gives the supervisors enough knowledge to make the correct control decisions. These

procedures yield a control solution while ensuring that supervisors communicate in a consistent

manner. Further, these procedures yield a minimal set of communications.

Keywords: Discrete-event systems, supervisory control, modal logic, formal reasoning about

knowledge, automata.

1 Introduction

Recent work has explored the relationship between control and communication in decentralized

discrete-event systems [1, 7, 15, 16, 19, 21, 22]. The basic idea of this class of problems is that

no single agent in a multi-agent system has a complete view of system behavior and a given co-

operative task cannot be performed without the agents sending or receiving information that will

allow agents to make correct control decisions.

The framework for decentralized discrete-event control that we adopt for this paper is based

on the theory of formal languages [13]. In this context, a discrete-event system (DES) is modeled

�This work is partially supported by an ERCIM fellowship for the �rst author and NSERC Grant OGP0138887

for the second author.

as a generator of a formal language. Decentralized supervisors, based on their partial view of

the system and a speci�ed subset of desirable behavior, must determine which sequences in the

language should be recognized. Control decisions consist of either allowing an event in a sequence

to occur|enabling an event|or preventing the event from taking place|disabling an event.

Until recently in this theory, decentralized control decisions were based solely on what each

supervisor has observed. In such a situation, a control strategy can be formulated as long as

there is at least one supervisor that knows the correct control decision to make. It is clear when

a control solution for a decentralized DES cannot be achieved. What is less clear is the way in

which the failure to reach a solution leads to (i) identifying locations where supervisors could

communicate; (ii) establishing which supervisor should communicate; and (iii) determining what

should be communicated to realize a control solution.

Previously [15] we introduced a knowledge model for discrete-event control whereby supervisors

formally reason about the knowledge each requires to achieve a control solution. We used the

knowledge model to identify locations where supervisors did not have enough knowledge to make

the correct control decision. Here we use the knowledge framework to reconstruct sequences along

which supervisors could communicate. A location where communication occurs is identi�ed by a

speci�c communication event, indicating that supervisor i communicates to supervisor j. When a

communication event occurs, we assume that a communicating supervisor i sends its partial view of

the system to supervisor j. Finally, we continue to use the knowledge model to determine whether

or not a control solution exists once communication is incorporated into the description of system

behavior.

The relationship between communication and control in decentralized discrete-event systems is

complex and co-dependent. On the one hand, control decisions may be a�ected by information a

supervisor receives from another supervisor. On the other hand, the content of the information

that is communicated may be a�ected by information the communicating supervisor has previously

received.

A solution to this new class of decentralized discrete-event control problems not only ensures

that correct control decisions are made. In addition, since a supervisor has only a partial view of

the system, if it communicates at a particular location in the system, it must also communicate

at every location it cannot distinguish from that location. This property of supervisor behavior

is called consistency [16]. In addition, communication may be costly, so we want to eliminate any

unnecessary communications without violating consistency yet still ensure that enough information

is available to a supervisor making a control decision. A set of communications is called minimal

if it (a) satis�es consistency, (b) provides enough information for supervisors to solve the control

problem and (c) no subset of it satis�es (a) and (b) [16].

Our work on decentralized control and communication uses the concept of minimality from [16]

and our motivation for communication is similar to the idea of avoiding the conict states in [1].

One signi�cant di�erence in our approach is that our supervisors do not exchange observations:

a two-way broadcast would occur only if neither supervisor had su�cient knowledge to make the

correct control decision and each needed the information from the other to reach a control solution.

In addition, we represent the action of communication as an event in the DES and incorporate

these new events into the system.

We begin by summarizing some of the notation from the theory of DESs and from the theory of

formal reasoning about knowledge. In section 3 we introduce a new version of the knowledge model

�rst proposed for DES in [15]. Sections 4 and 5 explain our strategy for identifying locations where

supervisors could communicate to solve the control problem and satisfy consistency. In section 6 we

discuss what it means for our communication protocols to be \well-de�ned". Once the system model

2

has been updated to include communication events, section 7 describes how to use the knowledge

model to determine whether or not a control solution exists. Algorithms for achieving a minimal

set of communication are presented in section 9. We illustrate our strategy for communication

in decentralized supervisory control and for generating a set of minimal communications with an

example.

2 Review

We present a summary of some relevant concepts from discrete-event control theory and a theory

for formal reasoning about knowledge. References that could be consulted for further clari�cation

of possible notational conicts between the two �elds are also noted.

2.1 Discrete-Event Systems

As stated previously, we use the approach to discrete-event systems as developed by Ramadge and

Wonham[13]. Other references on discrete-event control theory include [3, 14, 20].

In the discrete-event control theory of Ramadge and Wonham [13], the system requiring control

(the plant) is described as a generator of a formal language (i.e., an automaton). The behavior

of the plant is represented by sequences constructed from a non-empty set of symbols called an

alphabet. The alphabet represents the set of all possible events that can occur within the system.

Transitions from one system state to another do not depend on the passage of time, but rather, on

the occurrence of an event. The goal is to develop a control strategy for an overseer, or supervisor ,

that will constrain the behavior of the plant to that of a pre-speci�ed sublanguage (the legal

language). The supervisor averts undesirable behavior of the plant by either preventing some

events from taking place or allowing|but not forcing|others to occur.

More formally, the plant is modeled by an automaton

G = (QG;�; �G; qG0);

where QG is a set of states; � is the alphabet; �G is the transition function, a partial function

�G: � � QG ! QG; and qG0 2 Q
G is the initial state. For any event � 2 � and state qG 2 QG, if

�G(�; qG) is de�ned (i.e., there is some state in the plant that we can reach from qG via event �),

we write �G(�; qG)!. The de�nition for �G can be extended to a partial function for �� �QG such

that �G("; qG) := qG and (8� 2 �)(8t 2 ��) �G(t�) := �G(�; �G(t; qG0)). The set �� contains all

possible �nite strings (i.e., sequences) over � plus the null string ". The language generated by G,

denoted L(G), is also called the closed behavior of G:

L(G) := ft j t 2 �� and �G(t; qG0)!g:

This language describes all possible event sequences that the discrete-event system can undergo.

Thus L(G) � ��.

For any strings t; u 2 ��, we say that u is a pre�x of t if 9v such that t=uv. Thus every string t 2

�� (where t 6= ") has at least two pre�xes: " and t. If L � ��, the pre�x-closure of L is a language,

denoted by L, consisting of all pre�xes of strings of L: L := fu 2 �� j u is a pre�x of tg. Because

every string is a pre�x of itself, L � L. A language is said to be pre�x-closed if L = L. By de�nition,

L(G) is pre�x-closed.

We assume that the legal behavior of the plant may be described by an automaton E =

(QE ;�; �E ; qE0) and the legal language is denoted L(E). We assume that E is a subautomaton

3

of G as described in the context of supervisory control in [4] and [11]. That is, QE � QG, qE0 = qG0
and �E(t; qG0) = �G(t; qG0) for all t 2 L(E).

When QG is �nite, the automaton G can be described as a �nite-state automaton and can be

represented by a directed graph, where the nodes of the graph are the states in QG, the arcs of the

graph are the transitions de�ned by the partial function �G, and the set of labels for the arcs are

the events in �. Thus for any event � 2 � and state q 2 QG, �G(�; q)! if there is an arc labeled

by � from q to some other state. In the diagrams in this paper, the initial state is marked with a

small entry arrow. Illegal transitions are indicated with a dashed line.

Informally, a supervisor is an agent that has the ability to control some events based on a

(partial) view of the plant's behavior. To establish such supervision on G, we partition the set of

events � into the disjoint sets �c, controllable events, and �uc, uncontrollable events. Controllable

events are those events whose occurrence is preventable (i.e., may be disabled). Uncontrollable

events are those events which cannot be prevented and are deemed permanently enabled. There

are some systems where not all events can be seen by the supervisor. A supervisor thus has only

a partial view of the system and can see only a subset of events in �. The set of observable events

visible to a supervisor is denoted �o. To describe a supervisor's view of sequences we use the

canonical projection P , which is a mapping from �� to ��
o. This operator e�ectively \erases" those

events � from a string t that are not found in the set of observable events �o:

P (") = " (1)

P (�) = "; � 2 � n �o

P (�) = �; � 2 �o

P (t�) = P (t)P (�); t 2 ��; � 2 �:

Thus if the plant generates sequence t , then P (t) indicates the sequence of events observed by the

centralized supervisor. The inverse projection of P is the mapping from ��
o to 2�

�

:

P�1(t) = fu j P (u) = tg:

A pre�x-closed language L is observable [12] with respect to G;P if

(8t; t0 2 ��)(8� 2 �)

P (t) = P (t0)) (t0� 2 L ^ t 2 L ^ t� 2 L(G)) t� 2 L): (2)

This condition indicates that an observer's view of a string in L(G) is su�cient to determine whether

or not � should be disabled.

The decentralized control problem arises when more than one supervisor is involved in coordi-

nating control actions [5] [18]. Each supervisor Si has a partial view of the system and observes

only events in �i;o � � and controls only events in �i;c � �, for i = 1; : : : ; n. We consider here

only two local supervisors. To describe a decentralized supervisor's view of the plant, the canonical

projection Pi from �� to ��
i;o is used, for i = 1; 2. As with the centralized version of projection, if

the plant generates sequence t , Pi(t) indicates the sequence of events observed by supervisor i.

The projection operator Pi assumes that a supervisor is tracking only the partial view of the

current sequence generated by the plant. Since a supervisor cannot see every event, there may be

uncertainty as to the exact state the plant is in. A supervisor could keep track of the possible states

the plant could be in, rather than (or in addition to) keeping track of a sequence. As an example,

suppose that the plant is in state x and the occurrence of event � would lead the plant to state

y (i.e., �G(�; x) = y). If a supervisor cannot observe �, the supervisor will not know whether the

4

plant is in state x or y. Consequently, we could describe a supervisor's view of the current state of

the plant as a set that includes x and y. To capture the view that supervisor i has of the plant,

we use an observer automaton [3], based on an algorithm in [10] to translate a nondeterministic

�nite-state automaton into a deterministic �nite-state automaton:

Gobsi = (Qobsi ;�i;o; �
obsi ; q

obsi
0);

where Qobsi = 2Q
G
is the set of states, �i;o � � is the set of events observable to supervisor i (and

the set of events unobservable to supervisor i is �i;uo). The transition function �obsi and initial

state qobsi0 are de�ned as follows:

qobsi0 := fqGk j �
G(t; qG0) = qGk and t 2 (� n �i;uo)

�
g;

�obsi(�i; q
obsi
j) := fqGh j �

G(�it; q
G
h0) = qGh ; �i 2 �i;o; t 2 (� n �i;uo)

� and qGh0 2 q
obsi
j g:

The initial state qobsi0 of the automaton captures all the states reachable by unobservable events (to

supervisor i) from the initial state of the plant. Subsequent states in the projection automaton are

generated by considering which states can be reached next via an observable event � 2 �i;o from

the current state. The resulting set of states includes all states reached by unobservable sequences

from the state to which the observable event � leads.

We will also �nd it convenient to construct a �nite-state machine that allows us to simultane-

ously track the current state of the plant and the current state of each supervisor's projected view of

the plant (via the projection automaton). Such a structure, which we call themonitoring automaton

A, is a deterministic version of the nondeterministic automaton M described in [17]. The monitor-

ing automaton is formally de�ned as follows: A = (QA;�; �A; qA0), where Q
A � QG�Qobs1 �Qobs2

(QA will be fully de�ned below), the initial state is qA0 = (qG0 ; q
obs1
0 ; qobs20), and �A is de�ned below.

When �G(�; qG) is de�ned, we have four cases to consider for the construction of the transition

function:

� � 62 �1;o, � 62 �2;o:

�A(�; (qG; qobs1 ; qobs2)) = (�G(�; qG); qobs1 ; qobs2);

� � 2 �1;o, � 62 �2;o:

�A(�; (qG; qobs1 ; qobs2)) = (�G(�; qG); �obs1 (�; qobs1); qobs2);

� � 62 �1;o, � 2 �2;o:

�A(�; (qG; qobs1 ; qobs2)) = (�G(�; qG); qobs1 ; �obs2(�; qobs2));

� � 2 �1;o, � 2 �2;o:

�A(�; (qG; qobs1 ; qobs2)) = (�G(�; qG); �obs1(�; qobs1); �obs2(�; qobs2));

where qG 2 QG; qobs1 2 Qobs1 ; qobs2 2 Qobs2 . When �G(�; qG) is not de�ned, �A(�; (qG; qobs1 ; qobs2))

is also not de�ned. The set of states QA is the set of states in QG �Qobs1 �Qobs2 reachable from

the initial state via the �A de�ned above.

By the way in whichA is constructed, we have L(A) = L(G). Note that a state (qG; qobs1 ; qobs2) 2

QA is reachable if there exists t 2 L(G) such that �G(t; qG0) = qG.

5

2.2 Formal Reasoning about Knowledge

The framework for modeling knowledge that we use is based on a theory of formal reasoning about

knowledge for distributed systems [9], where multiple agents reason about their knowledge of the

world. An agent could be a human, a machine (e.g., a robot) or even a component of a machine

(e.g., an electrical circuit). Unless otherwise indicated, the de�nitions and results in this section

are adopted from [8]. The model assumes that if an agent does not have complete knowledge of the

true state of the world, it assumes a number of worlds are possible. Worlds are described in terms

of a non-empty set � of facts or primitive propositions. More complicated formulas are constructed

using expressions from propositional calculus: : (negation) and ^ (conjunction). In addition, '_

represents :(:' ^ :).

The system model is conceptually divided into two components: the agents and the environment.

The latter captures the relevant aspects of the system that are not part of the description of agent

behavior. We assume that there is a set of agents G= f1; : : : ; ng to which we ascribe knowledge

about the system.

The system behavior is captured by a global state. A global state is an (n+1)-tuple, denoted w,

that records the state of the environment and the local state|an agent's set of possible worlds|

for each of the n agents. Formally w = (we; w1; : : : ; wn). We can further refer to individual

components of w: we and wi represent the state of the environment and the local state of agent i

(for i 2 f1; : : : ; ng), respectively. We will use the terms \world" and \global state" interchangeably.

We will reason about what an agent knows about the truth of facts in the system at global

states. Knowledge of a fact is expressed using modal operators (one for each agent) K1; : : : ;Kn.

Thus K1p, where p 2 �, is interpreted as \agent 1 knows p".

The semantics of the possible-worlds model is formalized using Kripke structures. A Kripke

structure is an (n+2)-tuple containing a set of worlds (e.g., global states), an interpretation function

� that assigns truth values at each world w to the primitive propositions in � (e.g., �(w)(p) = false),

and possibility relations, one for each agent, that de�ne binary relations on the set of worlds. That

is, the relation de�nes the (set of) worlds that look alike to an agent at any world of the system. For

purposes of this discussion, the possibility relation is always an equivalence relation and therefore,

it is always the case that reexivity and symmetry hold. The possibility relation is typically not

de�ned for the environment since we are not interested in ascribing knowledge to the environment.

A Kripke structure is also expressible as a labeled graph. In particular, nodes are worlds and

edge labels (sets of agents) capture the possibility relation. For instance, worlds that look alike to

agent i are joined by an edge with a label \i". Each world is also labeled with the truth values of

all primitive propositions p 2 �, where we use the notation \:p" to indicate that the truth value

of p is false and \p" corresponds a value of true.

We now have all the components we need to reason about knowledge: a set of worlds describing

the behavior of the system and an interpretation � to analyze truth values of the propositions at

states of the system. Together the set of worlds and � de�ne an interpreted system and is denoted

by I.

To discuss knowledge in an interpreted system, we assume that the possibility relation is de�ned

as follows. Let w;w0 be two global states in I. We say w and w0 are indistinguishable to agent i if

the local state according to agent i is the same at both global states:

w �i w
0 if wi = w0

i: (3)

To discuss what it means for a fact p to be true at a particular global state in I, we use the

notation (I; w) j= p, which can be read as \p is true at (I; w)" or \p holds at (I; w)". A fact p

holds at a world w if the truth value as de�ned by � is true at w.

6

a1

b2

b2

a1

0

1 2

3 4

(0, {0, 2}, {0, 1})

(1, {1, 3, 4}, {0, 1})

(3, {1, 3, 4}, {2, 3, 4}) (4, {1, 3, 4}, {2, 3, 4})

(2, {0, 2}, {2, 3, 4})

2 1

1, 2

1

1 2

2

(ii)(i)

Figure 1: (i) a plant G; (ii) a Kripke structure for the plant in (i).

What does it mean for an agent to know facts in the system? An agent knows a fact p at w if

p holds at all worlds that the agent cannot distinguish from w:

(I; w) j= Kip i� (I; w0) j= p for all w0 such that w �i w
0: (4)

It follows that if an agent knows p at w, it also knows p at all other worlds it considers possible

at w:

(I; w) j= Kip i� (I; w0) j= Kip (5)

for all w0 such that w �i w
0.

3 State-Based Knowledge Model

Our previous knowledge model [15] assumed that agents made decisions based on their recorded

observations of event sequences generated by the plant. If the language requiring control has an

in�nite number of strings, the associated Kripke structure would have an in�nite number of worlds.

To exploit the �nite representation of a regular language, in this section we introduce a model

where agents now monitor the set of states the plant could be in.

We construct our \state-based" interpreted system IDES as follows. The environment compo-

nent of this interpreted system is the set of plant states QG, while the agents are a slight variation

of the DES local supervisors S1 and S2. In the \sequence-based" system of [15] each supervisor has

only a partial view of the complete system behavior, based on the projection operator Pi. Here we

present a system where the partial view of the plant is based on the state estimates of the observer

automaton from section 2.1.

In [15] we assumed that the worlds of the interpreted system were composed of sequences from

the plant language L(G). The worlds in the state-based system describe plant states in QG and

the respective views of those states for the group of agents G. The global states are constructed

according to the strategy for generating states in QA of the monitoring automaton A as described

in section 2.1. Consequently, a global state w has the form (we; w1; w2) where we 2 Q
G, w1 2 Q

obs1

and w2 2 Q
obs2 . Figure 1 shows a sample DES plant (where �1;o = fa1g and �2;o = fbg) and its

corresponding Kripke structure, with global states as described above.

The propositions in our knowledge model are the events in �. Each event is translated into two

propositions: one corresponding to whether or not the event is de�ned at a particular state of the

7

plant, and the other indicating whether the event is de�ned in the legal automaton. The following

de�nition summarizes some concepts from [15].

De�nition 1 (i) The proposition �G is \event � can occur" and �E is \event � is legal". (ii) A

proposition �G is true at a world w if the event � happens at the true plant state described by w.

A proposition �G is false (denoted :�G) at a world w if the event � is not de�ned at the true plant

state described by w. (iii) A proposition �E is true at a world w if the event � happens at the true

plant state described by w and is part of the legal behavior of the plant. A proposition �E is false

(denoted :�E) at a world w if either �G = false or if the event � is part of the illegal behavior of

the plant.

Previously, the interpretation �DES returned a truth value based on whether or not event �

occurs after a sequence t 2 L(G). In our new model, the interpretation returns a truth value based

on whether � is de�ned at the current plant state (i.e., at we):

�DES(w)(�G) :=

(
true if �G(�;we)!;

false otherwise:
(6)

�DES(w)(�E) :=

(
true if �E(�;we)!;

false otherwise:
(7)

Since we assume that the legal automaton can always be expressed as a subautomaton of the plant

automaton, the seemingly ambiguous reference to we (which is a plant state) in (7) is a consistent

reference to the same state in both automata.

For the decentralized DES we consider, when we say that a supervisor S = (S1;S2) solves a

control problem, we mean that when G is under the control of S (i.e., when S disables or enables

events of G), the resultant language generated equals the legal language. When we solve the

decentralized problem with a knowledge model we want to construct a knowledge-based protocol

that will ensure that all legal sequences and only legal sequences are generated. A knowledge-based

protocol maps a supervisor's knowledge of event � at its local state to a control action (e.g., disable,

enable). If the system satis�es a condition called Kripke observability then such a protocol can be

constructed. This is formally stated and proven as Theorem 2 in [15].

If the system is not Kripke-observable, then there is some world w0 where an illegal event � is

about to occur but none of the agents capable of controlling � knows that � should be disabled.

The lack of knowledge arises from the existence of another world w where � is also about to occur

but is a legal event and this same set of agents cannot distinguish w from w0. More formally, there

exists w0 2 I and a pair of primitive propositions (�G; �E) where

(I; w0) 6j= :�G _ �E (8)

and for all i 2 G�

(I; w0) 6j= Ki:�E: (9)

When we describe a knowledge model for a decentralized DES with communication, we assume

(by Theorem 2 noted above) that a control solution exists if the system satis�es Kripke observability.

8

4 Communication for Control

In [15], solving the control problem in our knowledge model amounted to each agent having enough

information to make the correct control decisions. We characterized an agent's inability to make

such a decision as a state in the interpreted system that contributes to the system not being Kripke-

observable. We then speculated about the role \pooling information" might play in providing agents

with more information to make the correct control decisions. Our previous work suggested that

pooling should take place just before a control decision needed to be made. However, it is possible

to come up with examples where a control solution exists but where pooling possible worlds under

these conditions does not lead to an agent having the knowledge to make the correct control decision.

Such examples indicate that pooling information at the point in time proposed in [15] is too late.

Therefore, in our strategy for communication, we identify locations where pooling information is

helpful.

This section introduces our approach to incorporating communication into decentralized discrete-

event control problems. The problem that we are interested in concerns interpreted systems that

do not satisfy Kripke-observability. Since an agent bases its actions on the information it has, if an

agent does not have \enough" information to know that event � should be prevented from occur-

ring, under what conditions would information from other agents give that agent the knowledge to

make the correct control decision about �?

In a Kripke structure, a state where Kripke-observability is not satis�ed corresponds to a world

w where for all i 2 G� the following holds: (IDES; w) j= �G ^ :�E ^ :Ki:�E. That is, supervisor

i does not have the knowledge to disable event � at plant state we. This lack of knowledge means

that there exists a state w0 that is indistinguishable from w to supervisor i where � is allowed to

happen at plant state w0
e, i.e., (I

DES; w0) j= �G ^ �E .

Thus, using the Kripke structure and the corresponding monitoring automaton we can identify

a world and subsequently a state in the plant, say qG, where without communication a decentralized

supervisor might not be able to make the correct control decision about event �. This is because

to agent i, qG is indistinguishable from state q0G and, as noted above, � is allowed to occur at

one state and should be disabled at the other state. If communication from supervisor j to i

occurs somewhere along the paths to state qG or along the paths to q0G, supervisor j could give

supervisor i the knowledge to distinguish states where � must be disabled from other states where

� is enabled. Thus we need to identify those paths along which communication should occur. We

use the monitoring automaton to reconstruct such paths.

First of all, we identify all pairs of global states w, w0 in the Kripke structure where for some

� 2 �, the propositions �G and :�E are true at w but �G and �E are true at w0. Suppose that

we = y and w0
e = y0, i.e., y and y0 are the plant states associated with global states w and w0. The

idea is that we want to insert communication at plant states to distinguish every sequence that

leads to y from every sequence that leads to y0. The identi�cation of these sequences is performed

with the monitoring automaton A. That is, we want to reconstruct sequences that lead to worlds

w and w0. (Recall that the states of the Kripke structure are the reachable states of A.) Since

there may be in�nitely many sequences leading to w (corresponding to cycles in the directed graph

representing the plant), it appears on the face of it that comparing all pairs t, t0 that lead to

states w, w0, respectively, is an intractable task. We conjecture that when there are in�nitely many

sequences leading to world w, we can exploit the �nite-state representation of a Kripke structure

and do not need to reconstruct all sequences involving cycles.

We describe our intuition via the example in �gures 2 and 3. Suppose that supervisor 1 sees and

controls events a and b while supervisor 2 sees events b and c. The states of the Kripke structure for

9

0

1 3

d

a

b

a

b

b

c

2

5

6

7

4

a

Figure 2: Finding locations to communicate in the presence of cycles.

the plant shown in �gure 2 are simply the states of the corresponding monitoring automaton (shown

in �gure 3). In the associated Kripke structure (not illustrated here) Kripke-observability fails at

state (6; f1; 4; 6g; f2; 5; 6g) because supervisor 1 does not have enough knowledge to make the correct

control decision about event b. At this state the truth values of the primitive propositions associated

with event b are bG = true and bE = false. There are two other states|(1; f1; 4; 6g; f0; 1; 3; 4g)

and (4; f1; 4; 6g; f0; 1; 3; 4g)|that supervisor 1 cannot distinguish from (6; f1; 4; 6g; f2; 5; 6g). At

both these states, namely (1; f1; 4; 6g; f0; 1; 3; 4g) and (4; f1; 4; 6g; f0; 1; 3; 4g), the truth values of

the primitive propositions associated with event b are bG = true and bE = true, thereby giving

rise to supervisor 1 not knowing :bE at state (6; f1; 4; 6g; f2; 5; 6g).

We use the monitoring automaton of �gure 3 to �nd paths t to state (6; f1; 4; 6g; f2; 5; 6g) such

that tb 2 L(G) but tb 62 L(E). Similarly we want to �nd paths t0 to states (1; f1; 4; 6g; f0; 1; 3; 4g)

and (4; f1; 4; 6g; f0; 1; 3; 4g) where t0b 2 L(G); L(E) and P1(t) = P1(t
0). We conjecture that we need

only consider a �nite number of these paths.

We begin by looking at state (6; f1; 4; 6g; f2; 5; 6g). We suggest that we need only consider

the following paths in the monitoring automaton: t = daba or t = abcdaba or t = abcabcdaba or

t = abcabcabcdaba. These paths either contain no cycles (the �rst three candidates) or one iteration

of a cycle (the last sequence). We suggest that these sequences capture su�cient detail of the family

of regular expressions that lead to the states where Kripke-observability fails. For example, since

Kripke-observability fails at state (6; f1; 4; 6g; f2; 5; 6g) it does not matter whether it is reached

via t = abcabcabcdaba or by some other t 2 abc(abc)�daba. We can �nd corresponding t0 for each

such t where Pi(t) = Pi(t
0) as described above. Our strategy for introducing communication events

transforms t and t0 such that the projections of these transformed sequences are no longer identical.

We conjecture that by transforming t = abcabcabcdaba we also inadvertently transform any t in

abc(abc)�daba and therefore once the former sequence is changed, there is no need to check the

10

(0, {0, 3}, {0, 1, 3, 4})

(1, {1, 4}, {0, 1, 3, 4}) (3, {0, 3}, {0, 1, 3, 4})

(4, {1, 4}, {0, 1, 3, 4})(2, {0, 2, 3, 5}, {2, 5, 6})

(0, {0, 2, 3, 5}, {0, 1, 3, 4}) (5, {0, 2, 3, 5}, {2, 5, 6})

(1, {1, 4, 6}, {0, 1, 3, 4})

(2, {0, 2, 3, 5, 7}, {2, 5, 6})

(0, {0, 2, 3, 5, 7}, {0, 1, 3, 4})

(3, {0, 2, 3, 5}, {0, 1, 3, 4})

(4, {1, 4, 6}, {0, 1, 3, 4})

(5, {0, 2, 3, 5, 7}, {2, 5, 6})

(6, {1, 4, 6}, {2, 5, 6})

(7, {0, 2, 3, 5, 7}, {7})

(3, {0, 2, 3, 5, 7}, {0, 1, 3, 4})

a

b

c

a d

b

c

a

a

b

a

d

a

b

a

b

d

a

Figure 3: The monitoring automaton for the plant in �gure 2.

11

in�nite number of sequences represented by the latter expression.

Similarly we examine the paths t0 to states (1; f1; 4; 6g; f0; 1; 3; 4g) and (4; f1; 4; 6g; f0; 1; 3; 4g)

such that P1(t) = P1(t
0) for the t noted above. Our claim is that the identi�cation of these sequences

is su�cient to determine where communication should be added for purposes of solving the control

problem. The formal proof of this conjecture constitutes future work.

4.1 Finding a location to communicate: picking control communication pairs

We have established that an supervisor requires extra information (e.g., communicated from another

supervisor) when it cannot distinguish an illegal sequence from a legal sequence and the supervisor

must make the correct control decision. We have yet to establish how to identify speci�c locations

where communication will give supervisors the knowledge to solve the control problem. In this

section we claim that, subject to certain conditions, we can always �nd a location for supervisors

to communicate so that a control solution will eventually be reached. At such a location in the

interpreted system, the communicating supervisor i can provide supervisor j with information that

allows j to determine whether the system is along a sequence where j will have to make a control

decision. We begin by introducing some terminology we will need to identify locations where

communication occurs to solve the control problem.

De�nition 2 A communication state is a state q 2 QG where supervisor i communicates to

supervisor j (for i; j 2 f1; 2g and i 6= j) so that supervisor j will know whether it is observing

states along a legal sequence or an illegal sequence.

This de�nition is intentionally imprecise at this stage and will be updated later. For now, we

consider a communication state to be a state where information from one supervisor is imparted

to the supervisor responsible for making a control decision. The communicated information allows

the latter supervisor to enable or disable the appropriate event at a subsequent point in the system.

De�nition 3 A maximal-P pair (t; t0) is a pair of sequences t; t0 2 �� where P (t) = P (t0) and

6 9� 2 � such that P (t�) = P (t0) or P (t) = P (t0�).

Recall that the canonical projection operator P in (1) e�ectively erases the unobservable events

in a sequence t. In this case P is a mapping from �� to (�1;o [�2;o)
�. Thus, a maximal-P pair

pinpoints the last place two sequences look alike to an observer that sees all observable events. We

will use maximal-P pairs to identify communication states by locating the worlds in the interpreted

system where an illegal and a legal sequence in L(G) look alike using canonical projection.

De�nition 4 The local view `i of a state ` 2 QG reached via sequence t (i.e.,9t 2 �� where

�G(t; qG0) = `) is the set of all the states in the plant that supervisor i considers the plant could be

in upon seeing Pi(t):

`i := fq
G
j qG 2 QG

^ 9u 2 P�1
i (Pi(t)) such that �G(u; qG0) = qGg:

Thus if supervisor i cannot determine if t or t0 has occurred in the plant (i.e., Pi(t) = Pi(t
0)) and

if �G(t; qG0) = q while �G(t0; qG0) = q0, the local view of supervisor i at state q will contain q and q0.

De�nition 5 If t 2 �� and � 2 �, state qG 2 QG is called a good state with respect to t� if

9u; v 2 �� such that t = uv, �G(u; qG0) = qG and �E(t�; qE0) is de�ned.

12

That is, a good state is one that occurs along a path of a legal sequence.

De�nition 6 If t 2 �� and � 2 � state qG 2 qG is called a bad state with respect to t� if

9u; v 2 �� such that t = uv, �G(u; qG0) = qG and �G(t�; qG0) is de�ned but �E(t�; qE0) is not de�ned.

Similarly, a bad state is one that occurs along a path of an illegal sequence.

We will want to be able to draw conclusions about what a supervisor sees if the canonical

projections of two sequences are equal. For instance, if P (t) = P (t0), we want to conclude that

Pi(t) = Pi(t
0). In the lemma that follows, we use PA to identify a canonical projection operator

from �� to A�, where A is a subset of �.

Lemma 1 Let B � A � �. For canonical projection operators PA : �� ! A� and PB : �� ! B�,

if PA(t) = PA(t0), where t; t0 2 �� then PB(t) = PB(t0).

The result can be shown by using induction on the length of strings. Thus sequences that are

indistinguishable to a supervisor are also indistinguishable to other supervisors that observe fewer

events.

We prove here that under a certain condition we can �nd locations where a communicating

supervisor can eliminate the confusion of the supervisor incapable of making the correct control

decision. The confused supervisor simply needs to be able to tell bad states from good states.

In the following theorem, observability is a hypothesis because observability means that a cen-

tralized observer (one that could see all the events that both supervisors see) could solve the control

problem. Otherwise one supervisor lacks observations that could not necessarily be supplied by the

other supervisor.

Theorem 1 Given G;E and let i 2 f1; 2g. If E is observable with respect to G;P and 9�̂ 2

�i;c; t; t
0 2 L(G) such that t�̂ 62 L(E) and t0�̂ 2 L(E) and Pi(t) = Pi(t

0) then 9` 2 QG where ` is

either a good state with respect to t0�̂ or a bad state with respect to t�̂ and 6 9y; y0 2 `1 \ `2 (for

y 6= y0) where y is a bad state with respect to t�̂ and y0 is a good state with respect to t0�̂.

Proof: There exists u; u0 2 �� such that u 2 t, u0 2 t0 and (u; u0) is a maximal-P pair. Since E

is observable with respect to G, (t; t0) is not a maximal-P pair and therefore either u is a proper

pre�x of t (i.e., u 6= t) or u0 is a proper pre�x of t0. Without loss of generality, let u be a proper

pre�x of t (i.e., 9� 2 �; v 2 �� such that t = u�v). Let �G(u; qG0) = z and �G(u�; qG0) = x.

We consider the following two cases:

Case A: (u; t0) is a maximal-P pair.

Let �G(t0; qG0) = z0. Refer to �gure 4 (a) for a graphical representation of this case.

(i) � 2 �uo

The next event after u cannot be unobservable. If � is unobservable, then (u; t0) would not be

a maximal-P pair because we could extend u by �.

(ii) � 2 �i;o

We will argue that this scenario is not possible. It su�ces to argue as follows:

Pi(t
0) = Pi(t)

= Pi(u�v)

= Pi(u)Pi(�)Pi(v) (10)

Since (u; t0) is a maximal-P pair, P (u) = P (t0). Since �i;o � �i;o[�j;o, by Lemma 1 Pi(u) = Pi(t
0).

Therefore (10) holds only if Pi(�)Pi(v) = ". This leads to a contradiction as Pi(�) 6= ".

(iii) � 2 �j;o

13

z

(b)(a)

x

u u

σ σ
z z

x

G
0q

x

σ
z

G
0q

u t

Figure 4: Identifying a communication state.

Claim 1 State x is a state where xi \ xj does not contain distinct states y and y0 where y0 is a

good state with respect to t0�̂ and y is a bad state with respect to t�̂.

Note that xi \ xj already contains a bad state, namely x. Therefore we just have to show that

there is no pre�x of t0 that has the same projection as some pre�x of u�.

At x, xj already contains bad state x. The only way xj could also contain a di�erent good

state with respect to t0�̂ is if there is some pre�x of t0, say w0, where Pj(w
0) = Pj(u�). If it did, xj

would additionally contain the good state �G(w0; qGo). Assume t0 = w0v0:

Pj(w
0) = Pj(u�)

= Pj(u)Pj(�)

= Pj(t
0)Pj(�) (since �j;o � �i;o [�j;o and P (u) = P (t0);

by Lemma 1; Pj(u) = Pj(t
0))

= Pj(w
0)Pj(v

0)Pj(�) (11)

For (11) to hold, Pj(v
0)Pj(�) = " which leads to a contradiction as Pj(�) 6= " (since � 2 �j;o).

2 Claim 1

Case B: (u; t0) is not a maximal-P pair.

Then u0 is a proper pre�x of t0.

Let t0 = u0�0v0 for �0 2 �, v0 2 �� and �G(u0; qG0) = z0 and �G(u0�0; qG0) = x0, as shown in

�gure 4 (b).

(i) �; �0 2 �uo

This scenario is not possible. A next event along t after u (respectively, along t0 after u0) cannot

be unobservable, otherwise we would be able to extend u or u0 and violate the fact that (u; u0) is a

maximal-P pair.

(ii) �; �0 2 �o and � = �0

This scenario is not possible. The next event along t after u cannot be identical to the next

event along t0 after u0, otherwise (u; u0) would not be a maximal-P pair.

(iii) � 2 �i;o; �
0 2 �j;o

Claim 2 State x0 is a state where x0i \ x
0
j does not contain distinct states y and y0 where y0 is a

good state with respect to t0�̂ and y is a bad state with respect to t�̂.

14

We will �rst show that from state z there is no sequence v = �w, where v 2 ��, such that

Pi(uv) = Pi(u
0�0). That is, if x0j contains any bad states (distinct from x0) with respect to t�̂ that

occur after z along t, these states are not in x0i.

We need only show that Pi(uv) 6= Pi(u
0�0). Suppose it were. Then

Pi(uw) = Pi(u
0�0)

Pi(u)Pi(w) = Pi(u
0)Pi(�

0)

= Pi(u)Pi(�
0) (since �i;o � �i;o [�j;o;

by Lemma 1; Pi(u) = Pi(u
0)) (12)

For (12) to hold it must be the case that Pi(�w) = Pi(�
0) = " (since �0 2 �j;o), which leads to a

contradiction since Pi(�) 6= ".

As for Case A (iii), we have a situation where at state x0, x0i already contains the states z; z0; x0

since Pi(u) = Pi(u
0) and Pi(u

0�0) = Pi(u) (because �
0 2 �j;o). At x

0, x0j already contains good state

x0. Now, the only way x0j could also contain a bad state (distinct from x0) with respect to t�̂ is if

there is some pre�x of u, say ŵ, where Pj(ŵ) = Pj(u
0�0). Thus x0j would also contain a bad state

�G(ŵ; qGo). Suppose that such a ŵ exists (i.e., u = ŵv̂ and v̂ 2 ��). Then

Pj(ŵ) = Pj(u
0�0) (13)

= Pj(u
0)Pj(�

0)

= Pj(u)Pj(�
0) (since �j;o � �i;o [�j;o; by Lemma 1; Pj(u) = Pj(u

0))

= Pj(ŵv̂)Pj(�
0)

= Pj(ŵ)Pj(v̂)Pj(�
0)

which leads to a contradiction since Pj(�
0) 6= " (since �0 2 �j;o).

2 Claim 2

(iv) � 2 �j;o; �
0 2 �i;o

Analogous to Case B (ii). In the current scenario, the claim to be proven becomes: The state x

is a state where xi \ xj does not contain a good state y0 with respect to t0�̂ and a bad state y with

respect to t�̂.

(v) �; �0 2 �i;o and � 6= �0

We will argue that this scenario is not possible. We have that Pi(t) = Pi(t
0) and substituting

for t and t0:

Pi(u�v) = Pi(u
0�0v0)

Pi(u)Pi(�)Pi(v) = Pi(u
0)Pi(�

0)Pi(v
0)

= Pi(u)Pi(�
0)Pi(v

0) (since �i;o � �i;o [�j;o;

by Lemma 1; Pi(u) = Pi(u
0))

which leads to a contradiction because Pi(�) 6= Pi(�
0) (since � 6= �0).

(vi) �; �0 2 �j;o and � 6= �0

Claim 3 States x and x0 are both states where xi \ xj and x
0
i \ x

0
j do not contain distinct states y

and y0 where y is a good state with respect to t0�̂ and y0 is a bad state with respect to t�̂.

15

We want to �rst illustrate the case for x0 by showing after state z there is no sequence v = �w,

where v 2 ��, such that Pj(uv) = Pj(u
0�0).

Suppose that such a v exists. Then

Pj(uv) = Pj(u
0�0)

Pj(u)Pj(v) = Pj(u
0)Pj(�

0)

= Pj(u)Pj(�
0) (since �j;o � �i;o [�j;o;

by Lemma 1; Pj(u) = Pj(u
0)) (14)

Since v = �w, for (14) to hold it must be the case that Pj(�w) = Pj(�
0), which leads to a

contradiction since Pj(�) 6= Pj(�
0).

To show that there is no sequence ŵ leading to state z where Pj(ŵ) = Pj(u
0�0), we follow the

same steps in (13).

Similar reasoning shows that if we instead select x as our state, that there is (a) no v0 = �0w0

such that Pj(u
0v0) = Pj(u�); and (b) that there is no ŵ along t0 leading to state x0 such that

Pj(ŵ) = Pj(u�).

2 Claim 3

2 Theorem 1

The idea of Theorem 1 is that when supervisor i cannot make the correct control decision about

� 2 �i;c, (i.e., 9t; t
0 2 L(G) such that t0� 2 L(E), t� 62 L(E) and Pi(t) = Pi(t

0)) we can always �nd

a location|somewhere along either t or t0|where supervisor j can distinguish between t and t0. At

this location or communication state, supervisor j sends its local state or local view to supervisor

i. Prior to receiving the communication, supervisor i does not know whether or not the current

state of the system leads to an illegal sequence or a legal sequence. When supervisor i updates its

own local state with the communicated information, supervisor i can tell the di�erence between

the legal and the illegal sequence.

The proof of Theorem 1 yields the following update to our de�nition of a communication state:

De�nition 7 Given t; t0 satisfying the hypotheses of Theorem 1, sequences u; u0 where u 2 t, u0 2 t0

and (u; u0) is a maximal-P pair, de�ne a communication state q to be

(a) �G(u0�j; q
G
0) if t

0 = u0�jv
0 for some �j 2 �j;o; v

0 2 �� and t = u�iv for some �i 2 �i;o; v 2 ��

(by Claim 1);

(b) �G(u�j ; q
G
0) if t = u�jv for some �j 2 �j;o; v 2 �� and t0 = u0�iv

0 for some �i 2 �i;o; v
0 2 ��

(by Claim 2);

(c) �G(u�j ; q
G
0) or �

G(u0�̂j; q
G
0) if t = u�jv, and t

0 = u0�̂jv
0 for some �j ; �̂j 2 �j;o; v; v

0 2 �� and

�j 6= �̂j (by Claim 3).

In the de�nitions that follow, the sequences t and t0 are those satisfying the hypothesis of

Theorem 1.

De�nition 8 A communication sequence s for a communication state q and a sequence t

is a sequence that leads to q (i.e., �G(s; qG0) = q) and is a pre�x of t, where q is a bad state with

respect to t�. (Equivalently, for q and a sequence t0 where s is a pre�x of t0 and q is a good state with

respect to t0�). A control sequence for communication state q is the sequence along which

a communication state has been identi�ed. If t is a control sequence for q then t0 is the control

twin for t (and vice versa).

16

(b)(a)

1x 2x
x

u

σ

γγ

σ

u

γ

σ

u u

σ

Figure 5: Splitting G: (a) intention is for communication to occur at state x after u�; (b) redraw

G and split state x to �nd a de�nitive communication state x1.

That is, there are two sequences that a supervisor cannot distinguish but one leads to an illegal

sequence and the other leads to a legal sequence. Communication that will allow a supervisor to

distinguish between these two sequences and make the correct control decision occurs along the

\control sequence".

We can now uniquely identify when and where supervisors communicate to solve the control

problem: communication from one supervisor to another occurs at a communication state q, after

the communication sequence s is observed by the communicating supervisor, say supervisor i.

De�nition 9 A control communication pair for supervisor i is a pair (q; t) and consists of a

communication state q and a control sequence t.

The idea is that supervisor i communicates its local view qi to supervisor j when the plant is at

state q. The sets C12 and C21 will store the control communication pairs for supervisors 1 and 2,

respectively.

De�nition 10 The communication event associated with a control communication pair (q; t) 2

Cij is comij:q.

This notation represents the action of supervisor i communicating its local state to supervisor j

at communication state q. That is, communication occurs after the communication sequence s

for (q; t) occurs. A communication event comij :q is observable by both supervisors i and j but is

controllable only by supervisor i.

4.2 Avoiding futile communication

The de�nitions regarding communication locations presented thus far have hidden a subtle possibil-

ity. It is possible that the selection of a communication state results in the reception of information

that will not lead to a supervisor knowing de�nitively whether it is along an illegal or a legal se-

quence. If after both u and u0, there are events � and �0 (as in �gure 5(a)), leading to the same

state (i.e., x = x0 in �gure 5(a)) or if after u there is an event � leading to the same state that

17

t0 leads to (i.e., x = z0 in �gure 5(a)), then state x itself is such that x is good with respect to

t0�̂ and is bad with respect to t�̂. So, a communication from supervisor j to supervisor i that

it is at state x would not yield any helpful information for supervisor i. Consequently, for those

cases, we \split the state" x into two di�erent states with distinct labels. That is, we make two

copies of x. An illustration of what we mean is shown in �gure 5. In �gure 5(a), assume that

the intention is for communication to occur at state x either after u� or u0�0 but not after both.

Suppose it had been determined that supervisor j|after seeing Pj(u�)|communicates its local

view of state x, with the intention of allowing supervisor i to distinguish between u� and u0�0. But

communication occurs whenever supervisor j believes the plant to be at state x. This happens not

only when supervisor j sees Pj(u�) but also when it sees Pj(u
0�0). Yet we only want supervisor j

to communicate after Pj(u�) and not after both Pj(u�) and Pj(u
0�0). In �gure 5(b) we redraw the

graph we use to represent G and split state x to �nd a de�nitive communication state x1.

Now, either state x1 or state x2 in �gure 5(b) would be a state that does not contain both a

good state with respect to t0�̂ and a bad state with respect to t�̂.

We identify a �nite number of states, say n, where communication is necessary to solve the

control problem. As a result, if it is necessary to redraw the graph we use to represent G so that

the only state shared by t and t0 is qG0 , the strategy of splitting states is one that terminates. In

the worst case, if we have to perform a split at every state (where a split would entail two copies

of the plant to be created) there would be 2n iterations of the process (a �nite number since n is

�nite).

Note that the language generated by an automaton where some states have been split as de-

scribed above is the same as the language generated by the original automaton. From here on,

we assume that the automaton representing the plant G has been redrawn to accommodate all

occurrences of the above scenario.

4.3 How to incorporate communication into a plant

We represent the action of communication from one supervisor to another as a new event that is

added to the plant. To this end we de�ne a set �com to store events that represent communication

and a set Qcom to keep track of all new states we will need to incorporate the events of �com into

the plant.

Formally, to incorporate communication into our system, we create a new automaton:

Gcom = (QGcom

;� [�com; �G
com

; qG
com

0);

where the set of states QGcom
:= QG [Qcom, the alphabet is � [�com and the initial state

qG
com

0 := qG0 . The identi�cation of a communication state q 2 QG (where supervisor i communicates

to supervisor j) and a communication sequence s gives rise to the creation of a new state qc which

is added to Qcom and a new event comij:q which is added to �com. We will sometimes want to refer

to those communication events where supervisor i communicates to supervisor j. Thus we partition

�com into disjoint sets �com
ij , for i; j 2 f1; 2g and i 6= j. Prior to incorporating communication,

Gcom is simply a copy of G. That is, Qcom = ;, �com = ; and �G
com

= �G.

Observation 1 Suppose that a sequence v 2 L(Gcom) leads to a state q 2 QGcom
but q 62 Qcom.

That is, �G
com

(v; q0) = q. Then by the way in which Gcom is constructed from G, the version of

this sequence that appears in L(G), say v0, (i.e., all the communication events have been removed

from v) also leads to state q. That is, �G(v0; q0) = q.

18

We present the �rst of three main procedures that transform G into Gcom. Procedure 1 describes

how to identify control communication pairs using the knowledge model IDES and the monitoring

automaton A.

Procedure 1 : Identifying Communication for Control

1. Initially Gcom = G, �com = ;, QGcom
= QG and �G

com
= �G. We also initialize C12 = C21 = ;.

2. Identify those states at which Kripke-observability fails for IDES0

(G;E), i.e., a state in the

monitoring automaton A.

3. Using Theorem 1, identify control communication pairs (q; t) and their corresponding control

twins t0 for supervisor 1 and for supervisor 2. We use the monitoring automaton A to identify

t and t0. Update the appropriate set of control communication pairs Cij = Cij [f(q; t)g, for

i; j 2 f1; 2g and i 6= j.

2 Procedure 1

Procedure 1 identi�es the control communication pairs (q; t) that indicate where a supervisor

discloses its local state to another supervisor. This information must now be translated into places

where we add communication events to the augmented plant Gcom. We call the function BuildGcom

with parameters C12 and C21 incorporating the communication event associated with each (q; t) 2

C12 [C21. That is, a communication event is added, after sequence s occurs, at state q in Gcom.

Function BuildGcom (C12, C21)

Input: Gcom, C12, C21
Output: Gcom

1. For each (q; t) 2 Cij, for i; j 2 f1; 2g and i 6= j:

(a) Create a new state qc. If qc 62 Qcom, update the state set: Qcom = Qcom [fqcg.

(b) Create a new event called comij :q which represents the action of supervisor i com-

municating local view qi to supervisor j. If comij :q 62 �com, update the alphabet:

�com = �com [fcomij :qg.

(c) Update the transition function �G
com

. Suppose the communication sequence for state q

has the form s = u� where �G(u; qG0) = q0 and �G(�; q0) = q. Then if �G
com

(�; q0) = q (i.e.,

no communication has been added at state q yet) we must �rst remove this transition

from �G
com

. The following transitions are then added to �G
com

:

�G
com

(�; q0) = qc;

�G
com

(comij :q; q
c) = q:

It could be the case that a communication event representing communication from su-

pervisor i to supervisor j has already been added to state q in Gcom. That is, more

than one communication sequence associated with the elements of Cij leads to state q. A

communication event comij :q is added to state q only once. Or it could be the case that

a communication event representing communication from supervisor j to supervisor i

has already been added to state q in Gcom. If a communication event from supervisor

19

j to supervisor i has been added to state q already (i.e., �G
com

(�; q0) 6= q), we create a

new state qcc and update Qcom:

Qcom = Qcom
[fqccg:

This situation arises if (q; t) 2 Cji \ Cij, where the communication sequence is s = u�

such that � 2 �i;o \�j;o, since a communication state where supervisor i communicates

to supervisor j occurs only after an event that supervisor i sees. Then we remove the

following transition from Gcom:

�G
com

(�; q0) = qc:

Add the following transitions to �G
com

:

�G
com

(�; q0) = qcc

�G
com

(comij :q; q
cc) = qc:

2. Return.

2 Function BuildGcom

We interpret the appearance of two consecutive communication events in Gcom as a two-way broad-

cast between supervisors i and j. That is, each supervisor communicates its local state to the other

at the same time. Note that, by construction of Gcom, one event will always correspond to a control

communication pair in Cij and the other to an element of Cji. In section 6 we elaborate on the

e�ect this has on the construction of a communication protocol.

The time complexity of Procedure 1 is dominated by step 3: �nding the control communication

pairs. The other steps in the procedures can be accomplished in constant time. We use our knowl-

edge model to identify states where Kripke-observability fails, and thus where we can reconstruct

sequences that give rise to control communication pairs. The identi�cation of such sequences can be

performed using a dynamic-programming algorithm that takes O(n3) time, where n is the number

of states in the monitoring automaton [6]. All the steps in function BuildGcom can be performed

in constant time and therefore, when iterated over the total number of communication pairs, the

time complexity is O(jC12 [C21j).

4.4 Communication that solves the control problem

We must formally show that when supervisor i �nds a control sequence indistinguishable from

its corresponding control twin, the addition of a communication event along the communication

sequence allows supervisor i to distinguish these two sequences in Gcom. We begin by describing

what it means for a sequence in G to be translated into Gcom.

We de�ne an operation that \erases" communication events and extend our de�nition of Pi as

follows. Let P̂ be the projection from (� [�com)� to �� and therefore (�com)� ! ". Similarly, P̂i
is the projection from (� [�com)� to ��

i;o and again (�com)� ! ". Despite expanding the domain

of Pi, P̂i recognizes the same set of sequences as its predecessor. The only di�erence is that now

P̂i \erases" not just the events in � n �i;o but also those events in �com from a sequence t.

We will want to describe a sequence in L(G) when it is transformed by communication events

and appears in L(Gcom) after following Procedure 1 and BuildGcom.

20

De�nition 11 For two sequences t 2 L(G) and tc 2 L(Gcom), we say t
c is a communication-

equivalent sequence for t if L(Gcom) is the language generated by the Gcom that results from the

completion of Procedure 1 and BuildGcom and

�G(t; qG0) = �G
com

(tc; qG
com

0)

and

P̂ (tc) = t:

Thus, a communication-equivalent sequence contains any communication events that occur along

t and any communication events that occur directly after t. From now on we use tc to refer to a

communication-equivalent sequence for t generated by the Gcom produced by completing Procedure

1 and BuildGcom.

If we add a communication event along a control sequence t and not along its control twin t0

(according to Theorem 1) the two sequences will no longer look alike to the supervisor making the

control decision at t or t0. This is formalized in the following lemma. In this lemma, since we will

want to describe what a supervisor sees in Gcom, we de�ne P c

i (for i = 1; 2) to be the projection

from (� [�com)� to (�i;o [�
com)�.

Lemma 2 For a control sequence t and its control twin t0 de�ned with respect to supervisor i (i.e.,

Pi(t) = Pi(t
0)), after following Procedure 1 and BuildGcom, P c

i (t
c) 6= P c

i (t
0c).

Proof. Since Pi(t) = Pi(t
0) we know that Cji will contain at least one element. Let comji:q be such

a communication event added to t. Since the plant has been redrawn such that t and t0 do not

share communication states, the state q does not appear along t0. Therefore, after Procedure 1 and

BuildGcom are completed, comji:q will not be added along t0. Therefore P c

i (t
c) 6= P c

i (t
0c).

2 Lemma 2

In the next section, we show that after adding the remaining communication events to the

rest of the plant (i.e., along sequences that are indistinguishable from communication sequences

identi�ed by Procedure 1), the communication-equivalent sequence for control sequence t remains

distinguishable from the updated communication-equivalent sequence for the control twin t0.

5 Communication for Consistency

Our communication goal is two-fold: (i) to have supervisors communicate at some place that will

lead to a control solution|we identi�ed this place as the state after a communication sequence

occurs; and (ii) to have the plant reect the intent of each supervisor to communicate at all places

that they cannot distinguish from the communication state.

This seems like a straightforward process. We proceed na��vely and add a communication event

comij :q to the plant after each control communication sequence s associated with each (q; t) 2 Cij .

Additionally, we add comij :q after each sequence v that is indistinguishable to supervisor i from

s. But we must take into consideration that as we take care of adding communication events with

respect to one control sequence, the addition of a new communication event may alter the situation

for other control sequences. This was a point that was �rst raised in [16]. We will return to this

observation shortly.

We formally de�ne what we mean for Gcom to satisfy consistency:

21

com
21

:4

b
2

a1 b
2

b
2

a1

c
2

4 c

c
2 b

2

b
2

{ 6 } { 4 }{ 5 }

com
21

:4

0

1 3

(b)(a)

2

5

74

6

d { 2, 5 }

{ 0, 1 }

{ 3, 4 }c

d

Figure 6: A Gcom that does not satisfy consistency.

De�nition 12 A system Gcom is said to be consistent if for all (q; t) 2 Cij (where i; j 2 f1; 2g

and i 6= j), and for all qc 2 Qcom such that �G
com

(qc; comij:q) = q, and for all y 2 QGcom
such that

yi = qci , �
Gcom

(y; comij :q) must be de�ned, where yi; q
c

i are supervisor i's local views of states y and

qc, respectively.

That is, whenever we identify a communication state q from a control communication pair (q; t) for

a supervisor, not only does a communication event exit from state qc (e.g., �G
com

(qc; comij :q) = q))

it must also exit all states y 2 QGcom
when supervisor i's local view of y is equal to supervisor i's

local view of qc.

Figure 6 illustrates a scenario we must preclude. Suppose that supervisor 1 sees and controls

events a1 and d while supervisor 2 sees and controls events b2; c2 and d. The Gcom in �gure 6(a)

does not satisfy consistency. The observer automaton of Gcom with respect to supervisor 2 is shown

in �gure 6(b). Note that in �gure 6(b) the local view of communication state 4c for supervisor 2 is

f3; 4cg. Similarly, the local view of state 3 for supervisor 2 is f3; 4cg. Our de�nition of consistency

says that the communication event com21:4 must exit from every state in Gcom that shares that

same local view as the communication state 4c. There is no communication event de�ned at state

3, thus violating consistency.

The reason that we will want to preclude this type of scenario (as in �gure 6(b)) is because

the observer automaton will form the basis of an supervisor's communication protocol. The idea is

that if a communication event occurs at a particular state, a supervisor must communicate. If more

than one event is de�ned at that state, a supervisor would not have a clear directive as to when

communication should happen. For example, when supervisor 2 is at state f3; 4cg in �gure 6(b)

either event d may occur or a communication event com21:4 may occur. We clarify this notion,

which we refer to as a well-de�ned communication protocol, in section 6.

5.1 Re�ning local views of control communication pairs

As noted earlier, one option for making Gcom consistent would be to add communication events

to Gcom at those states that are indistinguishable from state �G(s; qG0). However, the following

scenario could unfold: suppose that supervisor j must communicate for control to supervisor i at

state x and suppose that its local view of x is xj = fx; y; zg. Thus, in G, supervisor j is unable

to distinguish plant states x, y and z. Further suppose that because of some prior communication

from supervisor i, supervisor j can distinguish x and y in Gcom. In this case, xj really just consists

22

of the plant states x and z. An intent to communicate at plant state y constitutes a communication

that is unnecessary.

Our strategy re�nes the local views of communication states calculated for each supervisor

with respect to the original plant G. This approach considers the e�ects of prior communication

along a communication sequence before determining where to add communication events to satisfy

consistency.

We begin by introducing some terminology we will need for describing how we re�ne the super-

visors' local views of Gcom.

De�nition 13 A pair (x; v) consisting of a state x 2 QG and a sequence v 2 ��, such that

�G(v; qG0) = x, is compatible with a control communication pair (q; t)2 Cij, for i; j 2 f1; 2g and

i 6= j, if

Pi(v) = Pi(s);

where s is the communication sequence for (q; t) and v 6= s.

That is, prior to incorporating communication events into Gcom, we identify any sequence v that

leads to state x and is indistinguishable to supervisor i from communication sequence s. Note that

by not permitting v = s, we eliminate (q; s) from being compatible with (q; t).

We want to be able to identify places in the plant where we add communication events to satisfy

consistency: sequences that are indistinguishable to the supervisor sending a communication for

control after it observes s. Let X (q; t) = f(x; v) j (x; v) is compatible with (q; t) 2 Cijg.

We state an assumption regarding where we place communication events along sequences that

are indistinguishable from a communication sequence to a communicating supervisor.

Assumption 1 If the system is at a communication state, we assume that communication from

one supervisor to another happens the instant the communication sequence occurs and thus before

the system makes any more transitions|including transitions that are unobservable to the commu-

nicating supervisor.

Thus, we want to narrow down our set of locations where supervisors communicate and omit

any pairs (x; v) such that v ends in a sequence unobservable to the communicating supervisor. We

remove these pairs because we assume that a supervisor communicates the instant it observes the

communication sequence.

De�nition 14 A pair (x; v)2 X (q; t) is called a compatible communication pair for (q; t)2

Cij, for i; j 2 f1; 2g and i 6= j, if 6 9w 2 �� n ��
i;o such that v = uw (i.e., the last event in v is in

�i;o).

We want to describe whether or not a communication sequence s could contain other commu-

nication events. That is, does s contain a pre�x v that is indistinguishable to supervisor i from

some other communication sequence s0? Or is pre�x v itself a communication sequence for another

control communication pair?

De�nition 15 We say that a control communication pair (q; t) depends on control communi-

cation pair (q0
; t

0) if (i) we can �nd a compatible communication pair (x; v) for (q0; t0) such that

v 2 s and �G(v; qG0) = x, where s is the communication sequence for (q; t); or (ii) s0 2 s, where s0

and s are the communication sequences for (q0; t0) and (q; t), respectively.

23

com :q
12 21

com :q

s

v{s x

v

q

cq

q

cq

x }
Figure 7: Communication sequences that contain other communication events. Let P1(v

0) = P1(s)

and P2(v) = P2(s
0): event com21:q

0 could occur directly after v and thus prior to event com12:q;

event com12:q could be added directly after v0 and thus prior to event com21:q
0.

That is, a communication sequence for (q; t) potentially contains another communication event,

namely the event associated with the control communication pair (q0; t0). For example, in �gure 7,

suppose that s is the communication sequence for (q; t) and s0 is the communication for (q0; t0).

Further suppose that the communication sequence s for (q; t) contains a pre�x v and supervisor

2 cannot distinguish v from communication sequence s0. That is, in G, state x is contained in

supervisor 2's local view of state q0, i.e., x 2 q02. Then if the communication event com21:q
0 was

added to the sequence on the left-hand side of �gure 7 just after v happens, the updated version

of communication sequence s now contains a communication event. Therefore, (q; t) depends on

(q0; t0).

To detect some of the potential \dependencies" between control communication pairs, we build

a dependency graph D. A dependency graph of an object illustrates all of its relations to other

objects. The objects of interest are the control communication pairs. The relationship of interest

here is whether communication sequence s for a control communication pair (q; t) contains a pre�x

that either looks like another communication sequence to the appropriate supervisor or is itself

another communication sequence.

We use D to clarify the form of the communication sequences for the control communication

pairs. That is, we want to determine how many (if any) and in which order other communication

events could occur along a communication sequence. The nodes of the graph correspond to the

set of the control communication pairs in C12 [C21. There is a directed edge from (q; t) 2 Cji to

(q0; t0) 2 Cij if (q; t) depends on (q0; t0). The edge is labeled \(x; v)" if state x occurs somewhere

along s (the communication sequence for (q; t)), v 2 s and supervisor i cannot distinguish state

x from state q0 (i.e., (x; v) is a compatible communication pair for (q0; t0)). This edge labeling is

unique for each pair of control communication pairs. It is not possible to have both (x; v) and

(x0; v0) compatible with (q0; t0) such that v and v0 are pre�xes of s. That is, if Pi(v) = Pi(v
0) and

v; v0 2 s, such that �G(v; qG0) = x and �G(v0; qG0) = x0, then x = x0 and v = v0 (since by de�nition of

a compatible communication pair both v and v0 must end in events that are observable to supervisor

i).

For the remainder of this discussion, we represent D as an adjacency matrix. The dependency

graph contains n1+ n2 nodes, where jC12j = n1 and jC21j = n2. Thus D is an (n1+ n2)� (n1+ n2)

24

matrix. The �rst n1 row and column entries contain information pertaining to the dependencies

of the control communication pairs in C12. The next n2 rows and columns contain dependency

information about the control communication pairs in C21.

For convenience, we do not refer to the entries of the matrix by the numerical row and col-

umn (i.e., D[3; 4] indexes the entry in row 3 and column 4 of D). Instead, we use the notation

D[(q; t); (q0; t0)] to refer to the row and column in D that contains information about the control

communication pairs (q; t) and (q0; t0), respectively. The non-empty entries in a row (q; t) of D

indicate possible communication events that could occur along the communication sequence s for

(q; t). For D[(q; t); (q0; t0)] corresponding to D[i; j], if i � n1 then (q; t) 2 C12 (otherwise (q; t) 2 C21)

and if j � n1 (q0; t0) 2 C12 (otherwise (q0; t0) 2 C21). If D[(q; t); (q0; t0)] = ;, then (q; t) is not

dependent on (q0; t0). That is, none of the states x that occur along the path to sequence s at

state q coupled with any of the pre�xes of s (i.e., v 2 s) forms a pair (x; v) that is compatible

with (q0; t0). If D[(q; t); (q0; t0)] 6= ;, then (q; t) depends on (q0; t0) and D[(q; t); (q0; t0)] contains a

compatible communication pair for (q0; t0) that satis�es De�nition 14.

The dependency graph could contain cycles (i.e., a path that begins at some state and returns

to the same state). If Gcom is to satisfy consistency we want the communication event comij :q

(which has been incorporated into Gcom at state qc) to appear after all states yc that are elements

of qci . In the presence of a cycle in D, it is not clear when a state yc is actually an element of qci .

We return again to �gure 7 for an illustration of the e�ect a cycle in D has on the construction of

Gcom. The �gure shows part of a Gcom after performing Procedure 1 and function BuildGcom. The

(q; t) associated with s depends on the (q0; t0) associated with s0 (via the compatible communication

pair (x; v)) and that (q0; t0) depends on (q; t) (via the compatible communication pair (x0; v0)). If

we added event com21:q
0 to state x in �gure 7, then xc is certainly in q0c2 (since P c

2 (s
0) = P c

2 (v)).

Similarly, if instead event com12:q is added to state x0 in �gure 7, then x0c is certainly in qc1 (since

P c

1 (s) = P c

1 (v)). Note, though, that if both communication events are added to states x and x0

then neither xc nor x0c are in q0c2 or qc1 , respectively, and therefore we do not add communication at

either state|whereby we end up where we started. To break this impasse, we add a communication

event to only one of the states. That is, if we choose to only add com12:q
0 to Gcom at state x, then

xc 2 q0c2 and now x0 62 qc1 . Therefore, we break cycles in D to provide a systematic way of dealing

with such situations.

Note that there is more than one way to break a cycle. Here we choose to break cycles at

the node in the cycle corresponding to the control communication pair that depends on the fewest

number of other control communication pairs. This means that once we detect a cycle in D we

select the element, say (q; t), such that of all the elements involved in the cycle, row (q; t) of D

has the fewest non-empty entries. In the event that each pair in the cycle depends on the same

number of other pairs, the choice of a pair where communication is �xed is made at random.

Di�erent versions of D simply means that there is more than one way to arrange communication

dependencies for the control communication pairs. A strategy for breaking cycles in D is described

in function DetectAndBreakCycles. This function is used in conjunction with any algorithm for

detecting cycles (e.g., substitute non-empty entries of D for \1", empty entries for \0"and raise D

to the nth power to determine which elements can be reached from themselves in n steps).

Function DetectandBreakCycles

Input:

Output: D

1. While cycles of length i (where i = 2; : : : ; n) exist in D

25

(a) For each cycle let Cycle(q; t) := f(q0; t0) j (q0; t0) occurs along a cycle from (q; t) to (q; t)

in Dg

(b) Choose (q0; t0) 2Cycle(q; t) such that row (q0; t0) inD has the fewest number of non-empty

entries. If more than one (q0; t0) satis�es this criteria, randomly select one.

(c) Set D[(q0; t0); (q00; t00)] = ;; where (q00; t00) 2Cycle(q; t) and (q00; t00) 6= (q0; t0).

2. Return.

2 FunctionDetectandBreakCycles

If a cycle is detected in D, then at step 1(a) of the function we want to keep track of all the

control communication pairs involved in the cycle. We arbitrarily select a communication pair to

mark the start and end of the cycle, (q; t), and denote the set of all elements in a given cycle as

Cycle(q; t). In step 1(b), the element of Cycle(q; t) that depends on the fewest number of other

control communication pairs is selected as a place where the cycle will be broken. If more than

element satis�es this criteria, then randomly select one. The cycle is broken in step 1(c) by removing

the edge between the selected element and the next element in the cycle.

In Procedure 2 we restrict our attention to whether a control communication pair depends on

any other control communication pair. The following procedure identi�es states in the plant where a

communication event (other than the one associated with control communication pair (q; t)) occurs

along the path to state q via communication sequence s. The set C
compat
ij , for i; j 2 f1; 2g and i 6= j,

stores the compatible communication pairs (x; v) for (q; t) where the communication event comij :q

will be added to state x in Gcom.

This procedure is used to determine which communication sequences will contain additional

communication events. Procedure 2 terminates when all communication sequences have been ex-

amined, i.e., when all control communication pairs are \marked" (Steps 5 and 6(c)). Note that in

Step 5, after the initialization of Steps 1 to 4, communication sequences that will not contain any

additional communication events in Gcom (i.e., the corresponding row in D contains all ; entries)

do not need to be examined any further and are therefore labeled \marked".

Procedure 2

1. Let XV = f(x; v) j 9(q; t) 2 C12 [C21 where (x; v) is a compatible communication pair for (q; t)g

be the set of all compatible communication pairs for the control communication pairs of

C12 [C21. Let XV2 = f(x; v) j (x; v) 2 XV and v 2 s0; where s0 is a communication sequence

for some (q0; t0) 2 C12[C21g. That is, XV2 is the set of all (x; v) that give rise to a dependency

of a control communication pair (q0; t0) on another control communication pair (q; t).

2. Initialize D, for all (q; t); (q0; t0) 2 C12 [C21, as follows:

D[(q; t); (q0; t0)] =

(
(x; v) if (q; t) depends on (q0; t0) via (x; v) 2 XV2;

; otherwise.

3. Detect and resolve cycles in D using function DetectAndBreakCycles.

4. Denote all control communication pairs (q; t) 2 C12 and (q0; t0) 2 C21 \unmarked".

5. If all entries in a row of D are ;, denote the corresponding control communication pair

\marked".

26

6. While there still exist \unmarked" control communication pairs:

(a) Choose \unmarked" (q; t) 2 C12 [C21 such that all the non-empty elements in the

corresponding row of D are \marked". At least one such (q; t) exists since all cycles

in D have been broken.

(b) For each non-empty entry in column (q0; t0) of row (q; t), compare the pattern of non-

empty and empty elements in row (q; t) and row (q0; t0) of D|omitting the elements in

columns (q; t) and (q0; t0). If the occurrence of non-empty and empty elements in two

rows does not coincide then

D[(q; t); (q0; t0)] = ;:

(c) Denote (q; t) as \marked".

7. Initialize C
compat
12 = C

compat
21 = ;. These are sets that store the compatible communication

pairs (x; v) that will be added to Gcom. Update C
compat
ij (for i; j 2 f1; 2g and i 6= j) as follows:

if D[(q; t); (q0; t0)] = (x; v) and P c

i (v
c) = P c

i (s
0c), where s0 is the communication sequence for

(q0; t0), then

C
compat
ij = C

compat
ij [f(x; v)g:

2 Procedure 2

Procedure 2 identi�es compatible communication pairs (x; v), for each control communication pair

(q; t) found in Procedure 1, that occur along control communication sequences. The purpose of this

procedure is to re�ne|if necessary|a supervisor's local view of communication states in light of

any communication it receives from another supervisor prior to reaching a communication state.

This procedure will always terminate because we break any cycles that occur in the dependency

graph. In addition, we only remove dependencies from D. Thus we do not need to worry about

inadvertently introducing new cycles into D when we break existing cycles. At the conclusion of

Procedure 2, we have the sets of compatible communication pairs that give rise to dependencies

between control communication pairs. We updateGcom, in light of the entries in C
compat
12 and C

compat
21 ,

using ConsistentGcom, a variation of BuildGcom that incorporates the compatible communication

pairs into Gcom.

Function ConsistentGcom (C
compat
12 , C

compat
21)

Input: Gcom, C
compat
12 , C

compat
21

Output: Gcom

1. For each (x; v) 2 C
compat
ij compatible with (q; t) 2 Cij , for i; j 2 f1; 2g and i 6= j:

(a) Create a new state xc. If xc 62 Qcom, update the state set: Qcom = Qcom [fxcg.

(b) Update the transition function �G
com

. Suppose sequence v has the form v = u� where

�G(u; qG0) = x0 and �G(�; x0) = x. Then if �G
com

(�; x0) = x (i.e., no communication

has been added at state x yet) we must �rst remove this transition from �G
com

. The

following transitions are then added to �G
com

:

�G
com

(�; x0) = xc;

�G
com

(comij :q; x
c) = x:

27

It could be the case that a communication event representing communication from su-

pervisor i to supervisor j has already been added to state x in Gcom. That is, more

than one communication sequence associated with the elements of Cij leads to state x.

A communication event comij :q is added to state x only once. Or it could be the case

that a communication event representing communication from supervisor j to supervisor

i has already been added to state x in Gcom. If a communication event from supervisor

j to supervisor i has been added to state x already (i.e., �G
com

(�; x0) 6= x), we create a

new state xcc and update Qcom:

Qcom = Qcom
[fxccg:

This situation arises if (x; v) 2 C
compat
ji \C

compat
ij . Then we remove the following transition

from Gcom:

�G
com

(�; x0) = xc:

Add the following transitions to �G
com

:

�G
com

(�; x0) = xcc

�G
com

(comij :q; x
cc) = xc:

2. Return.

2 Function ConsistentGcom

We make a similar assumption regarding the structure of G as described in section 4.2. We

want to add a communication event comij:q at state x in Gcom corresponding to an (x; v) identi�ed

in Procedure 2. If sequences other than v lead to state x (i.e., there exists v0 2 L(G) such that

�G(v0; qG0) = x) and these sequences are not associated with a compatible communication pair for

(q; t), we want to split state x into x1 and 2. We split x as follows: for all v such that �G(v; qG0) = x,

if (x; v) is a compatible communication pair for (q; t), update �G so that �G(v; qG0) = x1; otherwise

�G(v; qG0) = x2. We assume that the plant G has been redrawn to accommodate all occurrences of

the above scenario.

The time complexity for Procedure 2 is dominated, as was Procedure 1, by step 1: �nding the

set of compatible communication pairs. Once again we can use an O(n3) dynamic-programming

algorithm to reconstruct the paths of these sequences, where n is the number of states in the

monitoring automaton. Initializing the matrix in step 2 takes O(n2) time and we can use a depth-

�rst search algorithm (O(n+ e) where e is the number of transitions in the plant) to detect cycles.

Breaking cycles simply involves removing an edge. Steps 6 and 7 also take O(n2) time. Overall,

the procedure is, because of step 1, O(n3). The time complexity of function ConsistentGcom, like

function BuildGcom on which it is based, is O(jC
compat
12 [C

compat
21 j).

We want to describe a sequence in L(G) as it appears after completing Procedure 2 followed by

ConsistentGcom. At this point L(Gcom) is the language generated by the Gcom that results from

the completion of Procedure 2 and ConsistentGcom. We write btc for the sequence in L(Gcom) such

that

�G(t; qG0) = �G
com

(btc; qGcom

0)

and

P̂ (btc) = t:

We abuse terminology and also refer to btc as a communication-equivalent sequence for t.

28

In Lemma 2 we showed that any communication event added to Gcom after following Procedure

1 is su�cient to distinguish a control sequence t from its control twin t0. We want to make a

similar statement about the distinguishability of t and t0 after Procedure 2 is completed. Note that

after Procedures 1 and 2, the only sequences a�ected by the addition of communication events are

communication sequences.

Lemma 3 For a control sequence t and its control twin t0 de�ned with respect to supervisor i (i.e.,

Pi(t) = Pi(t
0)), after following Procedure 2 and ConsistentGcom, P c

i (
btc) 6= P c

i (
ct0c).

Proof. (By contradiction) Let Pi(t) = Pi(t
0) and assume P c

i (
btc) = P c

i (
ct0c).

By Lemma 2 there is a comji:q along t
c that does not appear along t0c (respectively, the event

appears along t0c and not along tc), i.e., (q; t) is an element of Cji identi�ed in step 3 of Procedure

1.

Suppose that we added comji:q along t
0c according to step 7 of Procedure 2. Note that an event

comji:q could only get added in one place along t0c according to Procedure 2. Then the matrix D

(representing the dependency graph) has the following entry:

D[(q0; t0); (q; t00)] = (x; b);

where b 2 t0, �G(b; qG0) = x, t00 is some sequence that passes through q, (x; b) is a compatible

communication pair for (q; t00) and therefore Pj(b) = Pj(s), where s is the communication sequence

for (q; t00).

We must �rst determine if we can �nd such a pre�x b of t0. Should b exist, we would add the

communication event along t0 at state x.

We begin by �nding b 2 t0 such that Pj(s) = Pj(b) and such that b satis�es De�nition 14. By

Procedure 1, a comji:q added along t00 right after s implies that s = u�j for some u 2 ��, �j 2 �j;o.

From De�nition 7 there are two forms for t0 we consider when t00 = u�jv.

Case 1. t00 = u�jv and t0 = u0�iv
0, where �i 2 �i;o.

Since s = u�j , we want to �nd b 2 t0 such that Pj(b) = Pj(u�j).

Claim 4 b 62 u0.

Proof. This is because if b 2 u0, then u0 = bb0 for some b0 2 ��:

Pj(u) = Pj(u
0) (since (u; u0) is a maximal-P pair)

= Pj(bb
0)

= Pj(u�j)Pj(b
0) (since Pj(s) = Pj(b))

= Pj(u)Pj(�j)Pj(b
0):

This is only possible if Pj(�j)Pj(b
0) = ", but �j 2 �j;o so Pj(�j) 6= ".

2 Claim 4

Since b 2 t and Pj(b) = Pj(u�j); we can rewrite this equation as follows:

Pj(b) = Pj(u)�j

= Pj(u
0)�j : (15)

Since b 62 u0, we know from (15) that b = u0v00�jv
000 for some v00; v000 2 (� n �j;o)

�.

For b to satisfy de�nition 14, it must be the case that b = u0v00�j since v
000 2 (� n �j;o)

�.

29

Since b 2 t0, 9b00 2 �� such that t0 = bb00. Therefore

t0 = u0v00�jb
00: (16)

Previously we assumed that

t0 = u0�iv
0: (17)

Equating (16) and (17) we have

v00�jb
00 = �iv

0

Therefore, the �rst event in v00 must be �i, i.e., 9v
0000 such that v00 = �iv

0000.

Therefore, b = u0�iv
0000�j and t

0 = u0�iv
0000�jb

00.

Case 2. t00 = u�jv and t0 = u0�̂jv
0, where �̂j 2 �j;o and �̂j 6= �j (since (u; u

0) is a maximal-P

pair). Since s = u�j, we want to �nd a pre�x b of t0 such that Pj(b) = Pj(u�j). As in Claim 4, it

can be shown that b 62 u0.

As in Case 1, since b 62 u0, b = u0v00�jv
000 for some v00; v000 2 (� n �j;o)

�. Additionally, as in Case

1, we truncate b to satisfy de�nition 14 so that b = u0v00�j .

Since b 2 t0, 9b00 2 �� such that t0 = bb00. Therefore

t0 = u0v00�jb
00: (18)

Previously we assumed that

t0 = u0�̂jv
0: (19)

Equating (18) and (19) we have

v00�jb
00 = �̂jv

0

Thus, the �rst event in v00 must be �̂j but v
00 2 (�n�j;o)

�. Therefore, no such b can be constructed.

Since no such b exists we do not consider this case any further.

By Case 1, we do have a place where the communication event comji:q could be added to t0. We

add a communication event just after b occurs. That is, the communication event is added after the

last event observable to supervisor j, e.g., after u0v00�j. It remains to be shown that this additional

event now leads to a contradiction to the assumption that ct00c and ct0c are indistinguishable.
After Procedure 1 either no communication events were added to t0 or some communication

events were added to t0|but not the event comji:q since it was only added to t. We consider the

e�ect of adding comji:q after bbc in ct0c (i.e., add the event to state x).

Let t̂c = cuc�jcomji:qcvc and ct0c = cu0c�idv0000c�j comji:q cb00c.
P c

i (
cuc�j comji:q cvc) = P c

i (
cu0c�idv0000c�j comji:q cb00c)

P c

i (
cuc)P c

i (�j)P
c

i (comji:q)P
c

i (
cvc) =

P c

i (
cu0c)P c

i (�i)P
c

i (
dv0000c)P c

i (�j)P
c

i (comji:q)P
c

i (
cb00c)

P c

i (
cuc) comji:q P

c

i (
cvc) =
P c

i (
cu0c)�iP c

i (
dv0000c) comji:q P

c

i (
cb00c) (since �j 62 �i;o)

30

If P c

i (
cuc) = P c

i (
cu0c) then we have a contradiction because P c

i (�i) 6= ". However, if P c

i (
cuc) 6= P c

i (
cu0c)

then we must show it is not possible for P c

i (
cuc) = P c

i (
cu0c)�iP c

i (
dv0000c).

Suppose that P c

i (
cuc) = P c

i (
cu0c�i dv0000c). It should be the case, by Lemma 1, that these sequences

look the same with the communication events \erased":

P̂i(cuc) = P̂i(cu0c�i dv0000c):
By the de�nition of P̂i we have

P̂i(cuc) = Pi(u);

P̂i(cu0c�i dv0000c) = Pi(u
0�iv

0000):

Therefore, we have

Pi(u) = Pi(u
0�iv

0000)

Pi(u) = Pi(u
0)Pi(�i)Pi(v

0000)

= Pi(u)Pi(�i)Pi(v
0000) (since (u; u0) is a maximal-P pair)

However, this implies that Pi(�i) = " which is not possible since �i 2 �i;o.

2 Lemma 3

Procedure 2 �nds compatible communication pairs that lie along communication sequences. The

�nal step, as given further on in Procedure 3, is to �nd the remaining compatible communication

pairs (that may not lie along communication sequences) for the updated version of the control

communication pairs.

5.2 Re�ning local views of compatible communication pairs

If a supervisor's local view of a communication state in the original plant includes states that do

not lie along a communication sequence, then we need to determine whether or not these states

are still part of the supervisor's local view of the communication state in Gcom. We identify the

compatible communication pairs for each control communication pair and determine whether or not

any prior communication along the communication sequence (as identi�ed in Procedure 2) a�ects

the supervisor's view of the compatible communication pairs.

In the course of �nding the remaining compatible communication pairs of Gcom, we will want to

discuss dependencies between compatible communication pairs and control communication pairs:

De�nition 16 A compatible communication pair (x; v) for control communication pair (q; t) de-

pends on control communication pair (q0
; t

0) if we can �nd a compatible communication pair

(x0; v0) for (q0; t0) such that, for some w 2 ��, v = v0w and �G(w; x0) = x.

Figure 8 illustrates the \depends on" relationship.

Our strategy amounts to identifying all the remaining compatible communication pairs (x; v)

for all control communication pairs (q; t). We subsequently determine if a given compatible com-

munication pair depends on any control communication pairs. If the dependencies for (x; v) match

the dependencies in row (q; t) of D, then we add the appropriate communication event to state x

in Gcom.

We build another dependency graph D̂ and refer to it only in its adjacency matrix form. D̂ is

an n3 � (n1 + n2) matrix where n3 is the number of compatible communication pairs in XV n XV2

31

x

v

x

w{v

Figure 8: Dependency in the context of compatible communication pairs: (v; x) and (v0; x0) are

compatible communication pairs for (q; t) and (q0; t0), respectively. We say (v; x) depends on (v0; x0).

and n1 and n2 are still the number of control communication pairs in C12 and C21, respectively.

Let XV3 = XV n XV2. A row in D̂ corresponds to a compatible communication pair (x; v) 2 XV 3.

A non-empty entry in row (x; v) of D̂ means that there is a possible communication event that

occurs along sequence v but before the system reaches state x. Suppose that (x; v) was compatible

with control communication pair (q; t) before considering the existence of earlier communication

events along s. If row (x; v) of D̂ has the same pattern of empty and non-empty entries as row

(q; t) in D, (x; v) may still be compatible with (q; t). To verify that (x; v) is compatible with (q; t)

(where (q; t) 2 Cij) we must make certain that any communication events that occur before v and

s occur in the same order and that the sequences still have the same projection for supervisor i.

The communication events corresponding to the pairs (x; v) that survive this culling process are

added to Gcom.

This procedure is used to determine which sequences|other than the communication sequences|

will contain additional communication events. As was the case for Procedure 2, Procedure 3 termi-

nates when all sequences v in the set of compatible communication pairs XV3 have been examined,

i.e., when all these compatible communication pairs are \marked" (Steps 3 and 4(b)). Note that

in Step 3, a sequences v does not contain any additional communication events in Gcom if, after

the initialization of D̂ in Step 2, the corresponding row in D̂ contains all ; entries and the corre-

sponding row in D also contains all ; entries. That is, if the communication sequence contains no

communication events, neither does any sequence v from which it is indistinguishable to a given

supervisor. The same communication event (e.g., comij :q if (q; t) 2 Cij) will be added to Gcom after

s occurs and after v occurs but no other communication events appear along s or v. Such sequences

do not need to be examined any further and are therefore labeled \marked".

Procedure 3

1. Let XV3 = XV n XV2. Denote all elements of XV3 to be \unmarked".

2. Initialize D̂, for all (x; v) 2 XV3, as follows:

D̂[(x; v); (q0; t0)] =

8><
>:

(x0; v0) if 9(q0; t0) 2 C12 [C21 such that (x; v) depends on (q0; t0) and

(x0; v0) is the associated compatible communication pair for (q0; t0);

; otherwise.

3. For (x; v) that is a compatible communication pair for control communication pair (q; t), if

32

all entries for row (x; v) in D̂ are ; and all entries for row (q; t) in D are ;, then C
compat
ij =

C
compat
ij [f(x; v)g. Denote (x; v) \marked".

4. While there remain \unmarked" compatible communication pairs, choose \unmarked" (x; v)

such that all the non-empty entries in the corresponding row of D̂ are \marked":

(a) For each non-empty entry of row (x; v), if D̂[(x; v); (q; t)] = (x0; v0) and (x0; v0) 62 C
compat
12 [

C
compat
21 :

D̂[(x; v); (q; t)] = ;:

(b) Denote (x; v) \marked".

5. For each (x; v) 2 XV3 and (x; v) 62 C
compat
ij , where (x; v) is a compatible communication pair

for (q; t) 2 Cij (i; j 2 f1; 2g and i 6= j): if the pattern of empty and non-empty entries for row

(x; v) in D̂ coincide with row (q; t) in D and P c

i (
fvc) = P c

i (
esc) then

C
compat
ij = C

compat
ij [f(x; v)g:

2 Procedure 3

Procedure 3 identi�es compatible communication pairs (x; v), for each control communication pair

(q; t) found in Procedure 1, that occur along any other sequences in the plant|with the exception of

the communication sequences. As before, once more compatible communication pairs are identi�ed,

additional communication events must be incorporated using function ConsistentGcom with the

now-completed sets C
compat
12 and C

compat
21 .

As was the case for Procedure 2, when a compatible communication pair (x; v) is identi�ed for

a control communication pair (q; t), with which we associate the communication event comij :q, the

communication event that is added to Gcom at state x is comij :q. This will be an important feature

of the construction of Gcom which ensures that the communication protocols of the supervisors are

well-de�ned.

The time complexity of Procedure 3, like its predecessors, is also O(n3). This is because using

XV3 in step 1 means that we have to calculate XV nXV2. The complexity of �nding XV2 is O(n
3).

The other steps of the procedure involve checking matrices and can be accomplished in O(n2) time.

We want to describe a sequence in L(G) as it appears after following Procedure 3 and ConsistentGcom.

At this point L(Gcom) is the language generated by the Gcom that results from the completion of

Procedure 3 and ConsistentGcom. We write etc for the sequence in L(Gcom) such that

�G(t; qG0) = �G
com

(etc; qGcom

0)

and

P̂ (etc) = t:

We abuse terminology and also refer to etc as a communication-equivalent sequence for t.

In Lemma 2 we noted that when supervisor i could not distinguish between control sequence t

and its control twin t0, incorporating a communication event according to Theorem 1 renders the

respective communication-equivalent sequences distinguishable. In Lemma 3 we showed that adding

additional communications identi�ed by Procedure 2 preserved this distinguishability. Now we show

that adding additional communication identi�ed by Procedure 3 still preserves the distinguishability

of sequences.

33

Lemma 4 If Pi(t) = Pi(t
0) (for control sequence t and its control twin t0) and we follow Procedure

3 and ConsistentGcom then P c

i (
etc) 6= P c

i (
ft0c).

Proof. (By contradiction.) Let Pi(t) = Pi(t
0) but P c

i (~t
c) = P c

i (
ft0c).

Case 1: t0 is a control sequence

In Procedure 3, communication events are added only to those sequences that are not control

sequences. Since t and t0 are control sequences, btc = etc and ct0c = ft0c. By Lemma 3, P c

i (
btc) 6= P c

i (
ct0c).

Therefore, P c

i (
etc) 6= P c

i (
ft0c).

Case 2: t0 is not a control sequence

Procedures 1 and 2 only add communication events to control sequences and thus ct0c = t0 (i.e., the

communication-equivalent sequence for t0 contains no communication events). Because t is a control

sequence, etc contains at least one communication event. Suppose that the �rst such communication

event is comji:q (i.e., etc = fuc�j comji:q fvc, where �G(u�j ; qG0) = q).

By step 5 of Procedure 3, comji:q is added to ft0c if 9b 2 t0 such that Pj(b) = Pj(s), where s is the

communication sequence for some control communication pair (q; t00) (where t00 is some sequence

that passes through q). The rest of the proof proceeds in a similar way to that of Lemma 3, where

the appropriate substitution of e is made for b.
2 Lemma 4

6 A Well-de�ned Communication Protocol

Until now, we have been somewhat vague about what we mean for Gcom to generate well-de�ned

communication protocols. Here we provide a formal de�nition:

De�nition 17 A communication protocol Gcomi for supervisor i is said to be well-de�ned if

(8� 2 �com
ij)(8qG

comi
2 QGcomi

)

�G
comi

(�; qG
comi

) is de�ned =)6 9�0 2 ((� [�com) n f�g) such that �G
comi

(�0; qG
comi

) is de�ned,

where Gcomi is the observer automaton of Gcom for supervisor i.

The communication protocol is determined by calculating the observer automaton of Gcom with

respect to each supervisor. A communication protocol is well-de�ned when a communication event

in Gcomi indicates that supervisor i must communicate to supervisor j such that there is no am-

biguity in what supervisor i does. Note that it can be shown that if Gcom is consistent then the

protocols generated with Gcom are well-de�ned. When a communication event for supervisor i (i.e.,

� 2 �com
ij) is de�ned at one of its local states qG

comi , that particular communication event is the

only event de�ned at qG
comi .

The way in which we add communication events to Gcom ensures that our communication

protocols are well-de�ned (because consistency is satis�ed). If a system is consistent then if a

communication event for supervisor i appears in Gcom at some state it also appears after all states

that are indistinguishable to supervisor i (i.e., all states have the same local view). Then in

the observer automaton of Gcom for supervisor i, the only event de�ned at this particular local

state will be the aforementioned communication event. This is exactly the notion of well-de�ned

communication protocols. In particular, after Procedure 1, for all (q; t) 2 Cij , the communication

sequence s is followed only by the communication event comij :q (i.e., �G
com

(comij :q; q
c) = q).

Similarly, after Procedures 2 and 3, if (x; v) is a compatible communication pair for (q; t) that is

34

added to C
compat
ij , it is because P c

i (
fvc) = P c

i (
esc), where fvc; esc 2 L(Gcom). The only event de�ned

at qc and any state that supervisor i �nds indistinguishable from qc is comij:q. When supervisor

i reaches the state in Gcomi that represents its local view of qc, the only event that can occur is

one in which it must communicate its local view to supervisor j, thereby satisfying our de�nition

of what it means to construct a well-de�ned communication protocol.

7 Return to the Knowledge Domain

We use the plant we have augmented with communication events Gcom along with the updated

legal automaton Ecom to build a new interpreted system IcDES. The transition function �E
com

of

Ecom is characterized by the transitions in Gcom that lead to states in QE. The automaton Ecom

thus constructed is a sub-automaton of Gcom. Note that the legal language L(Ecom) contains the

communication-equivalent sequences for all the sequences in L(E):

L(Ecom) := f etc j (9t 2 L(E)) etc is the communication-consistent sequence for tg:

As with IDES, the set of worlds in IcDES are de�ned by the state-based evolution of the

sequences in L(Gcom). The updated set of primitive propositions �cDES includes the propositions

from IDES, and propositions corresponding to the communication events in �com:

�cDES = � [�com;

where �com are the propositions that represent the communication events in �com. Following the

construction of �DES in [15], to form �cDES we associate with each � 2 �Gcom
two distinct propo-

sitions: one to represent the fact that at a particular state in the plant the event is de�ned (i.e., is

possible), and the other to represent the fact that at the corresponding state in the legal automa-

ton state the event is de�ned. If �Gcom
is �nite, it can be written as �Gcom

= f�1; �2; : : : ; �ng.

We let �cDES = f�Gi ; �
E
i ji = 1; : : : ; ng. As before, we partition �cDES into two disjoint sets:

�c
G = f�Gi ji = 1; : : : ; ng and �c

E = f�Ei ji = 1; : : : ; ng where �c
G and �c

E are sets containing j�Gcom
j

symbols. To associate �Gj with its counterpart �Ej , we extend the relation R� from section 2.1 and

de�ne a relation R�G
com such that R�G

com � �c

G��
c

E and R�G
com := f(�G; �E)j9�i 2 �Gcom

where

�G = �Gi ; �E = �Ei g.

The interpretation for the propositions in �cDES is de�ned for all � 2 �Gcom
:

�cDES(wc)(�G) :=

(
true if �G

com
(�;we)!;

false otherwise:
(20)

�cDES(wc)(�E) :=

(
true if �E

com
(�;we)!;

false otherwise:
(21)

Because of the way in which events in �com are added to Gcom, either a communication event occurs

and is legal or it is unde�ned. Thus at any global state of IcDES it will be the case 8� 2 �com:

�cDES(w)(�G) = true and �cDES(w)(�E) = true (22)

or

�cDES(w)(�G) = false and �cDES(w)(�E) = false: (23)

35

7.1 Kripke-observability after communication is incorporated

We will show that if the Kripke structure based on the plant G is not Kripke-observable (but G;E

are both observable with respect to P), after constructing Gcom, the resulting Kripke structure for

Gcom and Ecom is Kripke-observable.

Theorem 2 Given IDES(G;E) that is not Kripke-observable. If we follow Procedures 1, 2 and

3 and functions BuildGcom and ConsistentGcom to construct Gcom and Ecom and subsequently

construct IcDES(Gcom; Ecom), then IcDES(Gcom; Ecom) is Kripke-observable.

Proof. (By contradiction)

Recall the de�nition of Kripke-observability: for all w 2 IcDES, for all (�G; �E) 2 R�G
com it must

be the case that either (IcDES; w) j= :�G_�E or there exists i 2 G� such that (I
cDES; w) j= Ki:�E.

Suppose that IcDES(Gcom; Ecom) is not Kripke-observable.

There must exist w 2 IcDES and (�G; �E) 2 R�G
com where (IcDES; w) 6j= :�G _ �E and

(8i 2 G�)(I
cDES; w) 6j= Ki:�E. That is,

(IcDES; w) j= (�G ^ :�E) (24)

and for all i 2 G� there exists w0 2 IcDES such that w �i w
0 and

(IcDES; w0) j= (�G ^ �E): (25)

Note that by (22) and (23), it is not possible for �G; �E to correspond to � 2 �com. Therefore, for

i 2 G�, � 2 � \�i;c.

By de�nition, if w �i w
0 then w and w0 have the same local state according to agent i. This

means that we can �nd a path in Gcom that leads to we and a path in Gcom that leads to w0
e such

that agent i cannot distinguish between these paths. In particular, let a path that leads to we be

reconstructed as the sequence etc (i.e., �G
com

(etc; qGcom

0) = we) while a path that leads to w0
e be the

sequence ft0c (i.e., �Gcom
(ft0c; qGcom

0) = w0
e). Since w �i w

0,

P c

i (etc) = P c

i (
ft0c): (26)

Let etc be the communication-equivalent sequence for t 2 L(G):

P̂ (etc) = t (27)

and let ft0c be the communication-equivalent sequence for t0 2 L(G):

P̂ (ft0c) = t0: (28)

Case 1. Pi(t) 6= Pi(t
0)

By (27), it must also be the case that if all communication events are erased from supervisor

i's observation of etc that this is exactly supervisor i's view of t:

P̂ (P c

i (
etc)) = Pi(t): (29)

Similarly, by (28)

P̂ (P c

i (
ft0c)) = Pi(t

0): (30)

36

If we apply the P̂ operator to both sides of (26) we get (from (29) and (30)) Pi(t) = Pi(t
0), which

contradicts the assumption.

Case 2. Pi(t) = Pi(t
0)

By de�nition, there must exist v; v0 2 IDES such that v �i v
0, t leads to state v and t0 leads

to state v0 where v; v0 are states in the monitoring automaton A. Since A generates the same

language as G, we also know that �G(t; qG0) is de�ned and that �G(t0; qG0) is de�ned. In particular,

�G(t; qG0) = ve and �
G(t0; qG0) = v0e where ve; v

0
e 2 Q

G.

From (24) we know that �G
com

(�;we) is de�ned but that �E
com

(�;we) is not de�ned.

By Observation 1 in section 4.3, we note that if �G
com

(etc; qGcom

0) = we then it is the case that

�G(P̂ (etc); qG0) = we. Thus, using (27), we have �G(t; qG0) = we. Since, from above, �G(t; qG0) = ve,

we have ve = we.

By the construction of Gcom, since �G
com

(�;we) is de�ned and since � 2 �, it must also be the

case that �G(�;we) is de�ned. Similarly, since �E
com

(�;we) is not de�ned it must be that �E(�;we)

is not de�ned. Further, it must be the case (since ve = we) that

(IDES; v) j= �G ^ :�E: (31)

From (25) we know that �G
com

(�;w0
e) is de�ned and that �E

com
(�;w0

e) is also de�ned.

Again, we can use Observation 1 to conclude that if �G
com

(ft0c; qGcom

0) = w0
e then �

G(P̂ (ft0c); qG0) =
w0
e. Therefore it is also the case that �G(t0; qG0) = w0

e. And since �G(t0; qG0) = v0e, we have v
0
e = w0

e.

By the construction of Gcom, since �G
com

(�;w0
e) and �

Ecom
(�;w0

e) are de�ned and since � 2 �,

it is also the case that �G(�;w0
e) and �

E(�;w0
e) are de�ned. Thus it must be the case that

(IDES; v0) j= �G ^ �E : (32)

By (31) and (32) and the fact that v �i v
0, we know that (IDES; v) j= :Ki:�E. Since the above

reasoning works for all i 2 G�, Kripke-observability fails for I
DES at v|in particular, corresponding

to sequences t and t0.

Also by (31) we have t� 2 L(G) but t� 62 L(E). Similarly, by (32) we have t0� 2 L(G) and

t0� 2 L(E) so t, t0 and � satisfy the hypothesis of Theorem 1. Therefore we apply Procedures 1

through to 3. By Lemma 4, P c

i (
etc) 6= P c

i (
ft0c), which contradicts (26). Therefore there exists i 2 G�

such that (IcDES; w0) j= Ki:�E.

2 Theorem 2

8 An example system requiring communication

Figure 9 shows a plant G and a legal automaton E where a control solution cannot be reached

unless there is communication between the decentralized supervisors. Events that are observable

to supervisor i are subscripted with an i and events with no subscripts are unobservable to both

supervisors. When we translate this plant into the knowledge domain, we detect three worlds (in

the Kripke structure, which is not shown due to space limitations) where Kripke-observability fails:

1. Supervisor 1 does not know whether to disable c1 since it cannot distinguish bad state

(14; f3; 8; 14; 17g; f14; 15; 18; 20; 21; 22; 24; 28g) from good state (17; f3; 8; 14; 17g; f11; 17; 23g).

2. Supervisor 1 does not know whether to disable c1 since it cannot distinguish bad state

(24; f24; 25g; f14; 15; 18; 20; 21; 22; 24; 28g) from good state (25; f24; 25g; f1; 6; 7; 8; 9; 12; 13;

16; 19; 25; 29g).

37

a
2

a
1

b
1 a

2

a
2

c
2d

1

b
2

b
1

c
2

b
2

c
2

a
2

c
2b

1

a
1

b
2

c
2

c
1

a
1

c
2

c
1

c
1

a
1

c
2

d
1

c
1

a
1

a
2

d
1

0

22

e
e

2 3

13

7

19

1

65

24

4

11 12

17 18

23

8

14

20 2726

21

1615

109

2528

29

30 31

32

Figure 9: An example requiring communication

3. Supervisor 2 does not know whether to disable c2 since it cannot distinguish bad state

(31; f31; 32g; f26; 27; 31g) from good state (26; f12; 18; 19; 21; 26; 30g; f26; 27; 31g).

Using the monitoring automaton (not shown), we can reconstruct the sequences which a super-

visor cannot distinguish without further information. There are three pairs of sequences that lead

to IDES not satisfying Kripke-observability:

P1(b1a2c2) = P1(a2b2c2b1); (33)

P1(a2a1d1c2a1) = P1(ea2a1d1a1); (34)

P2(a1ea2c2b2b1) = P2(a1a2c2d1b2); (35)

We use Procedure 1 to identify the control communication pairs for each supervisor. For exam-

ple, supervisor 1 cannot distinguish the sequences in (34) since P1(a2a1d1c2a1) = P1(ea2a1d1a1) =

a1d1a1. The only maximal-P pair for these sequences is (a2a1d1; ea2a1d1). Supervisor 2 communi-

cates following one of the entries of the maximal-P pair that is immediately followed by an event

observable to supervisor 2. Since a2a1d1 is followed by c2 and ea2a1d1 is followed by a1, supervisor

2 communicates at state 18 when it sees a2c2 (i.e., after a2a1d1c2 occurs). The control communica-

tion pair is therefore (18; a2a1d1c2a1), the communication sequence is a2a1d1c2 and the associated

control twin is ea2a1d1a1. The complete set of control communication pairs for this example is

C12 = f(21; a1a2c2d1b2)g; (36)

C21 = f(1; a2b2c2b1); (18; a2a1d1c2a1)g:

The dependency matrix D has the following row/column assignments:

� row/column 1 corresponds to control communication pair (21; a1a2c2d1b2);

38

� row/column 2 corresponds to control communication pair (1; a2b2c2b1);

� row/column 3 corresponds to control communication pair (18; a2a1d1c2a1).

In Procedure 2, the dependency matrix D is initialized as

D =

2
64 ; (9; a1a2) (15; a1a2c2)

; ; ;

(12; a2a1d1) ; ;

3
75

For example, D[1; 2] = (9; a1a2) because the communication sequence for the control communication

pair (21; a1a2c2d1b2) contains the pre�x a1a2 which has the same projection (according to supervisor

2) as the communication sequence for control communication pair (1; a2b2c2b1). Note that there is

a cycle of length two present between D[1; 3] and D[3; 1]. That is, in the dependency graph, there is

an edge from the node representing (21; a1a2c2d1b2) to the node representing (18; a2a1d1c2a1) and

vice versa. Both these rows have the same number of non-empty entries so we arbitrarily choose one

of these entries to break the cycle (Step 1(b) of functionDetectandBreakCycles): (18; a2a1d1c2a1).

Thus we set D[3; 1] = ; (by Step 1(c) of the same function) and observe that there are no more

cycles present in D. After breaking the cycle and completing Procedure 2, the dependency matrix

becomes

D =

2
64 ; (9; a1a2) (15; a1a2c2)

; ; ;

; ; ;

3
75

Additionally, by Step 7 of Procedure 2, we identify the following entries of D as compatible com-

munication pairs:

� C
compat
12 = ;;

� C
compat
21 = f(9; a1a2); (15; a1a2c2)g.

To construct D̂, it is necessary to �rst identify the compatible communication pairs for the

control communication pairs in C12 and C21 that do not lie along a control sequence. For example,

(7; ea2) is a compatible communication pair for (1; a2b2c2b1) because P2(ea2) = P2(a2), where

a2 is the communication sequence for (1; a2b2c2b1). Each such compatible communication pair is

represented by a row in D̂ (where the columns correspond to the column entries of D). At the

outset of Procedure 3, the rows of D̂ are as follows:

� (row 1) (7; ea2) is compatible with (1; a2b2c2b1);

� (row 2) (8; b1a2) is compatible with (1; a2b2c2b1);

� (row 3) (16; a1ea2) is compatible with (1; a2b2c2b1);

� (row 4) (14; b1a2c2) is compatible with (12; a2a1c2a1);

� (row 5) (22; a1ea2c2) is compatible with (12; a2a1c2a1);

� (row 6) (19; ea2a1d1) is compatible with (21; a1a2c2d1b2).

39

The dependency matrix D̂ is initially

D̂ =

2
66666664

; ; ;

; ; ;

; ; ;

; (8; b1a2) ;

; (16; a1ea2) ;

; (7; ea2) ;

3
77777775

The entry D̂[5; 2] = (16; a1ea2) because the compatible communication pair (22; a1ea2c2) (row 5)

contains a pre�x a1ea2 such that P2(a1ea2) = P2(a2), where a2 is the communication sequence for

(1; a2b2c2b1) (column 2). The �rst three rows of D̂ represent compatible communication pairs for the

control communication pair (1; a2b2c2b1). Note that the corresponding row in D for (1; a2b2c2b1)|

row 2|contains all ; entries. Since these �rst three rows of D̂ also have all ; entries, we add each

of these compatible communication pairs to C
compat
21 (Step 3 of Procedure 3). To see if (14; b1a2c2)

should be added to C
compat
21 , we �rst note that its only non-empty entry (8; b1a2) has already been

examined and that (8; b1a2) 2 C
compat
21 . Similar arguments hold for (22; a1ea2c2) of row 5. In this

example, both rows 4 and 5 of D̂ have the same pattern of empty and non-empty entries as row

3 of D. Additionally, when communication events as indicated by the non-empty entries of D̂ are

added to these two sequences, the projection of the sequences with respect to supervisor 2 is equal

to that of the updated communication sequence, namely, a2 com21:1 a1c2. For the last row of

D̂, we keep the entry D̂[7; 2] since it is already in C
compat
21 ; however, when we compare the empty

and non-empty entries of row 6 to the corresponding row in D (row 1), the pattern of entries is

dissimilar. Thus (19; ea2a1d1) is not added to C
compat
12 .

The �nal set of compatible communication pairs for this example is

� C
compat
12 = ;;

� C
compat
21 = f(9; a1a2); (15; a1a2c2); (7; ea2); (8; b1a2); (16; a1ea2); (14; b1a2c2); (22; a1ea2c2)g.

Note that the sets of control communication pairs and the sets of compatible communication

pairs do not form a minimal communication set. For instance, if supervisor 2 communicated when

the plant is at state 18, the compatible communication at state 14 would be enough to allow

supervisor 1 to distinguish between the sequence leading to state 17 and the sequence leading to

state 14.

9 Minimal Communication

In section 4 we discussed our strategy for constructing a set of control communication pairs where

one supervisor communicates to another supervisor to solve the control problem. Although commu-

nication at every (q; t) 2 Cij will lead to supervisor j making all its correct control decisions, it may

be that we can eliminate extraneous communication. That is, some subset of control communication

pairs (i.e., ~Cij � Cij) may lead to a control solution.

What do we mean when we say that an element of Cij represents extraneous communication?

One of our communication goals is to communicate enough information to allow each supervisor to

distinguish a bad state from an indistinguishable good state(s). We choose each (q; t) 2 Cij so that

bad states can be distinguished from good states. It could be the case that the communication for

(q; t) is necessary to allow supervisor j to distinguish a bad state from several sets of look-alike good

40

states. Or it is possible that a compatible communication pair (x; v) 2 C
compat
ij occurring prior to

(q; t) (where (x; v) is not a compatible pair for (q; t)) provides supervisor j with enough information

to make the correct control decision. We want to �nd a set of communications that does not contain

extraneous communication pairs. In addition, we want the the set of communications to satisfy

consistency for Gcom. We seek a set of minimal communications.

The notion of minimality for a set of communications was introduced in [16] where a set of

communications is minimal when it is the case that if any one event occurrence is not communicated

from one supervisor to another, the supervisors will not be able to achieve their objectives. We

adopt this notion of minimality for examining communication in decentralized discrete-event control

problems. The objectives of supervisors in our system are to solve the control problem and satisfy

consistency.

De�nition 18 Let C := C12 [C21 and Ccompat := C
compat
12 [C

compat
21 . A set of communication pairs

C [Ccompat for a consistent system Gcom that solves the control problem is said to be minimal if

6 9 (a; b) 2 C [Ccompat such that (C [Ccompat) n f(a; b)g also solves the control problem and renders

Gcom consistent.

Were such an extraneous (a; b) to exist, it would mean that either by the time the plant reached

state a one of the supervisors already had enough information to solve the control problem or (a; b),

which had been added because it was compatible with a control communication pair (q; t), is no

longer indistinguishable from (q; t) after other communication pairs were added to the system.

9.1 An algorithm for minimal communication

Our algorithm for minimal communication uses a \greedy" strategy to optimize our original set of

control communication pairs by removing those we deem extraneous. Optimizing this set amounts

to removing communication that is not necessary to solve the control problem (i.e., remove (q; t)

from C). We then must ensure that the �nal set of communications also contains all communication

pairs that are compatible with the optimized set of control communication pairs.

Greedy algorithms are used as a technique for solving optimization problems [2]. A greedy

algorithm proceeds by choosing, at every step, a particular entry in a set of candidates that will

maximize the user-de�ned criteria for selection. At each step of a greedy algorithm a \best" or

maximum candidate is selected and is never exchanged. Thus we must ensure that our selection

function chooses the control communication pair that will optimize our solution at that step. If

this selected candidate produces a feasible solution (i.e., can we eventually reach a solution if we

choose this value now?) then add the candidate to a �nal set and continue until a solution has

been reached, or all the candidates have been examined and no solution was achieved.

The goal of solving our decentralized control problem is to have supervisors distinguish between

certain \good" states and \bad" states hence making all the correct control decisions while satisfying

consistency. After following Procedures 1, 2 and 3 we have a set of communication pairs that,

when incorporated into Gcom, will allow supervisors to solve the control problem. (As noted

previously, Gcom is already consistent.) However, it may be the case that the presence of one of the

control communication pairs along with its compatible communication pairs allows a supervisor to

distinguish between additional \good" and \bad" states and makes the inclusion of another control

communication pair redundant. The framework of our greedy algorithm is based on an algorithm

presented in chapter 3 of [2].

Under what circumstances could a (q; t) allow a supervisor to distinguish more than one set

of good and bad states in our state-based system? Let (q; t) 2 Cij be a control communication

41

pair chosen to allow supervisor j to distinguish states along sequence t from those along its control

twin t0. Further, let (q00; t00) 2 Cij be a communication that distinguishes the states along t00 from

those along its control twin t000. There are three scenarios where (q; t) could allow supervisor j to

distinguish more than just the states along t and t0.

1. Suppose the communication sequence s for (q; t) is a pre�x of the communication sequence for

(q00; t00). In addition, let communication at q (after s occurs) be su�cient to allow supervisor

j to distinguish not only t from t0, but also distinguish t00 from t000. Then communication at

(q00; t00) would be unnecessary.

2. Suppose (q00; t00) depends on (q; t). That is, there exists some (x; v) that is compatible with

(q; t) such that v 2 s00, where s00 is the communication sequence for (q00; t00). If communication

at (x; v) allows supervisor j to distinguish states along t from those along t0 and t00 from t000,

then additional communication at (q00; t00) would be unnecessary.

3. Suppose (x; v), a compatible communication pair for (q; t), is such that v 2 t000. Again,

if communication at (x; v) allows supervisor j to distinguish t00 from t000, then additional

communication at (q00; t00) would be unnecessary.

We introduce a set New of the form f(q1; t1); (q2; t2); : : : ; (qn; tn)g, i.e., the elements of New are

control communication pairs. If an element (q; t) is in the set New, this indicates that sequence t

needs to be distinguished from its control twin t0. Initially this set is precisely C. The set FinalCom

is the set of communication pairs that constitute the optimized output from the greedy algorithm.

Initially this set is ;.

Before discussing our greedy algorithm, we �rst describe what characteristics of our candidate

set we want to use to select an optimal subset.

The intuition behind our selection strategy, presented in Algorithm 1, is that we want to count

the number of \good" and \bad" pairs of sequences that can be distinguished by communication at

a given (q; t) 2 C and at all (x; v) compatible with (q; t). In particular, we want to know how many

control sequences, as represented by elements in New, can be distinguished from their control twins

by communication associated with (q; t) and its corresponding set of compatible communication

pairs. After all the candidates are examined, we will choose the control communication pair that

allows a given supervisor to distinguish the largest number of control communication sequences

from their control twins (as represented by the elements of New). The control communication pair

(q; t) and any of its compatible communication pairs that are necessary to solve part of the control

problem are stored in the set control com. We always include (q; t) in control com even if (q; t)

is not in New. If (q; t) 62 New this means that some previously-chosen element of FinalCom or

ControlCom also distinguishes t from its control twin. In Algorithm 1 we put (q; t) in control com

because we want to keep track of the control communication pair associated with the compatible

communication pairs that might also be in control com.

Algorithm 1 is performed for each (q; t) 2 C. We want to �nd out which control sequences and

their respective control twins would be distinguished if communication events were added along

these sequences at (q; t) and all its compatible communication pairs (x; v).

Algorithm 1 Selection Strategy

Input. A control communication pair (q; t) 2 C and New, the set of control communication pairs

representing control sequences that either agent i or j cannot distinguish from their control twins

with the current set of communication pairs in FinalCom.

42

Output. A set of control communication pairs that agent i or j can distinguish if communication

events are added to Gcom at q and at states x for all compatible communication pairs (x; v) for

(q; t)|denoted distinguish|and the set, denoted control com, that contains (q; t) and those of

its compatible communication pairs (x; v) pairs that allow agent i or j to distinguish the control

sequences associated with pairs in distinguish from their control twins.

begin

1. if (q; t) 2 New then

distinguish f(q; t)g

else

distinguish ;

2. control com f(q; t)g

3. for all (a; b) 2 New

4. b0 control twin for b

5. X c(a; b) f(x; v) j (x; v) is compatible with (q; t)

and (v 2 b or v 2 b0)g

6. for all (c; d) 2 X c(a; b)

7. if 6 9y;y0 2 (ci \ cj) (for y 6= y0)

where if c is a good (resp., bad) state with

respect to b� then y is a good (resp., bad) state

with respect to b� and y0 is a bad (resp., good)

state with respect to b0� then

8. distinguish = distinguish [f(a; b)g

9. control com = control com [f(c; d)g

10. return distinguish, control com

end

At step 5 of the algorithm, we collect all the compatible communication pairs for (q; t) that lie

along either a control communication sequence in New or its associated control twin.

Step 7 examines each of the compatible communication pairs of (q; t) in X c(a; b). If commu-

nication of a supervisor's local state at (c; d) means that b and b0 can be distinguished by the

appropriate supervisor (i.e., the intersection of the local views of c do not contain both a good and

bad state with respect to b; b0), then (a; b) is added to the set of communication pairs that (q; t)

distinguishes. Since communication at c allows a supervisor to make the correct control decision

about b and b0, in step 9 (c; d) is added to the set of communication pairs necessary to solve the

overall control problem.

Our greedy strategy for decentralized supervisors is described in Algorithm 2. The set of

candidates for this algorithm is the set of control communication pairs C. The algorithm selects a

subset of the candidate set that allows the appropriate supervisor to distinguish \good" from \bad"

states. Once a candidate is selected and examined, the candidate is removed from C (step 9). If

there are still sequences that remain indistinguishable and the selected candidate (i.e., the one that

maximizes Algorithm 1) distinguishes no sequences, then we cannot reach a solution (step 20). If,

though, the selected candidate would allow the appropriate supervisor to distinguish some sequences

represented by the elements in New, then the candidate is added to the �nal set of communication

pairs and the sequences the candidate distinguishes are removed from consideration. The algorithm

continues until either all the control communication pairs have been considered or until there are

no more sequences for the supervisor to distinguish.

43

Algorithm 2 Greedy Communication

Input. A set of control communication pairs for each agent: C12, C21.

Output. Sets of communication pairs FinalCom12; F inalCom21 � C, X
compat
12 ;X

compat
21 � XV

that, when incorporated into Gcom will allow decentralized supervisors to make the correct control

decisions.

begin

1. C C12 [C21; New C; ControlCom12 ;; ControlCom21 ;;

FinalCom12 ;; FinalCom21 ;

2. while (New 6= ;) and (C 6= ;) do

3. (q; t) an element of C maximizing the cardinality of distinguish from Algorithm 1

4. if6 9 a maximum (q; t) then

5. randomly choose one of the maximal (q; t)'s

6. distinguish(q;t) distinguish, where distinguish

is associated with (q; t) selected from step 3 or 5

7. if distinguish(q;t) 6= ; and (q; t) 2 Cij (where i; j 2 f1; 2g and i 6= j) then

8. control com(q;t) control com, where control com

is associated with (q; t) selected from step 3 or 5

9. C C n f(q; t)g

10. New New n distinguish(q;t)
11. ControlComij ControlComij [(control com(q;t) n f(q; t)g)

FinalComij FinalComij [f(q; t)g

12. else return \there are no solutions".

13. if New = ; then

C C12 [C21

14. for all (q; t) 2 FinalComij (where i; j 2 f1; 2g and i 6= j)

Let distinguishC(q;t) be the output

of Algorithm 1 using input of (q; t) and C

Let DistinguishC(q0;t0)
S
(q0;t0)2FinalComijnf(q;t)g

distinguishC(q0;t0)
15. if distinguishC(q;t) nDistinguish

C
(q0;t0) = ; then

16. FinalComij FinalComij n f(q; t)g

17. ControlComij ControlComij n f(x; v) j (x; v) 2 ControlComij

and (x; v) is a compatible communication pair for (q; t)g

18. FinalComij FinalComij [ControlComij

19. X
compat
ij f(x; v) j (x; v)

is compatible with an element of FinalComijg

20. return FinalCom12; F inalCom21;X
compat
12 ;X

compat
21

21. else return \there are no solutions".

end

The success of the greedy algorithm depends on how we describe the selection of a candidate

(q; t) in step 3. A control communication pair (q; t) that maximizes Algorithm 1 is a communication

that distinguishes the largest number of control communication pairs in the set New from their

respective control twins. By the way that we de�ne the control communication pairs, each (q; t)

distinguishes at least t from its control twin. (Although note that this is only relevant if (q; t) is

also in the set New.)

44

It is possible that after step 3 instead of one maximum candidate, we could have several maximal

candidate communication pairs (i.e., of the ones that distinguish the largest number of elements).

In this case, at steps 4 and 5, we randomly select one of the maximal candidates.

After step 11, FinalComij contains all the (q; t) where the communication of a supervisor's

local view of q would lead to the other supervisor making the correct control decision. We want

to make sure that each element of FinalComij (and any of its compatible communication pairs

that might be in ControlCom) distinguishes at least one control sequence from its control twin

that the other elements in FinalComij do not. If this is not the case, then we could remove (q; t)

from FinalComij and still �nd a control solution. Thus at step 15 we determine which control

sequences (as represented by the control communication pairs in the original set C12 [C21) would

be distinguished from their control twins by the occurrence of the communication event associated

with control communication pair (q; t). The set of control communication pairs that correspond to

these control sequences is denoted here as distinguishC(q;t). Note that distinguishC(q;t) is also the

result of passing (q; t) as a parameter to Algorithm 1 during the selection of the candidate that

maximizes Algorithm 1 during the �rst iteration of Algorithm 2. We calculate this set for all the

other elements (q0; t0) in FinalComij. The union of all these sets is denoted DistinguishC(q0;t0).

If we remove from distinguishC(q;t) all those elements that occur in both DistinguishC(q0;t0) and

distinguishC(q;t), we are left with the control communication pairs that correspond to the control

sequences that can only be distinguished from their control twins when a supervisor communicates

its local view of q. If the result is the empty set, then anything that (q; t) distinguishes can already

be distinguished by other elements of FinalComij. Thus (q; t) is removed from FinalComij in

step 16. In addition, any of its compatible communication pairs are removed from ControlCom

(step 17).

Note that step 19 may not have to be calculated since this set may already have been calculated

by prior utilization of Procedures 2 and 3. Thus X
compat
ij might simply be a subset of C

compat
ij .

The output of the greedy algorithm, FinalComij and X
compat
ij , is used to create Gcom as follows.

First, set Cij = FinalComij and call function BuildGcom. Next, set C
compat
ij = X

compat
ij and call

function ConsistentGcom. The communication protocol for each supervisor is then generated by

calculating the observer automata of Gcom.

In the following we denote FinalCom = FinalCom12 [FinalCom21 and X
compat = X

compat
12 [

X
compat
21 .

Theorem 3 The set of communication pairs FinalCom [X compat obtained from executing Algo-

rithm 2 is a set of minimal communication pairs.

Proof.(By contradiction)

Suppose that FinalCom [X compat is not a minimal set. Then 9(a; b) 2 FinalCom [X compat

such that the control problem can still be solved with (FinalCom[X compat) n f(a; b)g and adding

communication events to G using BuildGcom and ConsistentGcom (as described above) with respect

to the elements of (FinalCom [X compat) n f(a; b)g yields a consistent Gcom.

Case 1. Remove (a; b) from FinalCom.

We must argue that there exists some t; t0 that communication at state a distinguishes that no

other element in FinalCom or X compat distinguishes. By step 14 of Algorithm 2, (a; b) represents

either (i) a communication event that uniquely distinguishes some t from t0 that no other element of

FinalCom or X compat does or (ii) (a; b) looks like another element in FinalCom that does uniquely

distinguish t; t0. Note that if there is no t; t0 that communication at state a uniquely distinguishes,

(a; b) would be removed from FinalCom in steps 15 and 16 of Algorithm 2. Thus, if (a; b) satis�es (i)

45

and is removed from FinalCom, the control problem cannot be solved, leading to a contradiction.

Similarly, if (a; b) satis�es (ii), that is, (a; b) is a compatible communication pair for an element of

FinalCom, say (d; e), then the removal of (a; b) means that no communication event will be added

to Gcom for state a in Procedure 3. That is, �G
com

(dc; comij :d) = d and there will be a state y in

QGcom
(either y = ac or y = acc) that has the same local view as dc but �G

com
(y; comij :d) is not

de�ned even though yi = dci . This violates our notion of consistency from De�nition 12. Therefore

the system is no longer consistent, leading to a contradiction.

Case 2. Remove (a; b) from X compat.

By the de�nition of X compat in step 18 of Algorithm 2, removing (a; b) means that a communication

event will not be added to state a in Procedure 3. Using similar reasoning to that of Case 1, the

removal of (a; b) means the system is no longer consistent. This contradicts our assumption.

2 Theorem 3

Note that if some algorithm other than Procedures 1, 2 and 3 was used to generate a commu-

nication solution to the decentralized control problem, then Algorithm 2 could still be used to pare

the solution down to a minimal communication set.

We return to the example of �gure 9. Our input to the greedy algorithm is the set of control

communication pairs in (36). The �rst control communication pair to maximize distinguish of

Algorithm 1 is (18; a2a1d1c2a1). It is the pair corresponding to a communication that would allow

a supervisor to distinguish the largest number of control sequences from their control twins: (33) and

(34) are both distinguished by (18; a2a1d1c2a1) and its compatible communication pair (14; b1a2c2).

We remove (18; a2a1d1c2a1) and (1; a2b2c2b1) from New and remove (18; a2a1d1c2a1) from C.

The set FinalCom21 now contains (18; a2a1d1c2a1) and ControlCom21 contains (14; b1a2c2).

The set New now contains only (21; a1a2c2d1b2) and it is also the only element in C12 that

distinguishes the control sequence associated with itself from its control twin. We now have

FinalCom12 = f(21; a1a2c2d1b2)g, FinalCom21 = f(18; a2a1d1c2a1)g, ControlCom12 = ; and

ControlCom21 = f(14; b1a2c2)g:

At this point, New = ;. Therefore FinalCom12 = f(21; a1a2c2d1b2)g and FinalCom21 =

f(18; a2a1d1c2a1); (14; b1a2c2)g. It can be shown that each element in FinalCom represents a

communication that allows a supervisor to uniquely distinguish at least one control sequence t

from its control twin t0.

Finally, we calculate the compatible communication pairsX
compat
12 = ; and X

compat
21 = f(15; a1a2c2);

(22; a1ea2c2)g. Note that this solution constitutes a minimal set of communications: if we remove

any control communication pair from FinalCom we would not be able to solve the control problem

and if we remove any elements from X compat the system is no longer consistent.

10 Conclusions

Previously in [15] we used our knowledge model to identify when there is insu�cient knowledge to

reach the correct control solution. Understanding what it means for a supervisor to have su�cient

knowledge to solve the control problem allowed us to determine a strategy for communication

whereby a supervisor has enough information to make correct control decisions. We used the

underlying structure of our knowledge model to identify locations for agents to communicate. More

communication injects knowledge into the system, which allows supervisors to solve decentralized

control problems that could not be solved without communication.

We are, subject to certain assumptions, able to identify locations in the knowledge model where

one supervisor provides the other with enough information to solve the control problem. We �nd

46

these locations (from Theorem 1) based on an understanding of the underlying structure of the

plant language. We are currently developing equivalent tests to �nd communication locations based

solely on the propositions in modal logic. That is, we would like to be able to describe when a

supervisor either knows it should communicate or knows that it requires communication. For

instance, we would like to be able to reason about whether or not communication at a particular

possible world will lead to a supervisor making the correct control decision. Such deductions will

require the addition of new primitive propositions that describe whether or not a world will lead

to a good or bad state with respect to a given state of the environment. Finally, work in progress

includes a proof of our earlier conjecture that only a �nite number of t and t0 pairs needs to be

considered when calculating control communication pairs.

References

[1] G. Barrett and S. Lafortune. On the synthesis of communicating controllers with decentral-

ized information structures for discrete-event systems. In Proceedings of IEEE Conference on

Decision and Control, pages 3281{3286, 1998.

[2] G. Brassard and P. Bratley. ALGORITHMICS Theory and Practice. Prentice Hall, Englewood

Cli�s, 1988.

[3] C. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Kluwer, Boston,

1999.

[4] H. Cho and S. I. Marcus. Supremal and maximal sublanguages arising in supervisor synthesis

problems with partial observations. Mathematical Systems Theory, 22:177{211, 1989.

[5] R. Cieslak, C. Desclaux, A. S. Fawaz, and P. Varaiya. Supervisory control of discrete-event

processes with partial observations. IEEE Transactions on Automatic Control, 33(3):249{260,

1988.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press,

Cambridge, 1990.

[7] R. Debouk, S. Lafortune, and D. Teneketzis. Coordinated decentralized protocols for failure di-

agnosis of discrete event systems. Discrete Event Dynamic Systems: Theory and Applications,

10(1/2):33{86, 2000.

[8] R. Fagin, J.Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge. MIT Press,

Cambridge, 1995.

[9] J.Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed environment.

Journal of the ACM, 37(3):549{587, 1990.

[10] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Compu-

tation. Addison-Wesley, Reading, 1979.

[11] S. Lafortune and E. Chen. The in�mal closed controllable superlanguage and its application

in supervisory control. IEEE Transactions on Automatic Control, 35(4):398{405, 1990.

[12] F. Lin and W.M. Wonham. On observability of discrete-event systems. Information Sciences,

44:173{198, 1988.

47

[13] P. J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete event processes.

SIAM Journal on Control and Optimization, 25(1):206{230, 1987.

[14] P. J. Ramadge and W.M. Wonham. The control of discrete-event systems. Proceedings of the

IEEE, 77(1):81{98, 1989.

[15] S.L. Ricker and K. Rudie. Know means no: Incorporating knowledge into discrete-event control

systems. IEEE Transactions on Automatic Control. To appear.

[16] K. Rudie, S. Lafortune, and F. Lin. Minimal communication in a distributed discrete-event

control system. In Proceedings of the American Control Conference, pages 1965{1970, 1999.

[17] K. Rudie and J. C. Willems. The computational complexity of decentralized discrete-event

control problems. IEEE Transactions on Automatic Control, 40(7):1313{1319, 1995.

[18] K. Rudie and W.M. Wonham. Think globally, act locally: Decentralized supervisory control.

IEEE Transactions on Automatic Control, 37(11):1692{1708, 1992.

[19] R. Sengupta. Diagnosis and communication in distributed systems. In Proceedings of the

International Workshop on Discrete Event Systems, pages 144{151, 1998.

[20] J.G. Thistle. Supervisory control of discrete event systems. Mathematical and Computer

Modelling, 11/12(23):25{53, 1996.

[21] J.H. van Schuppen. Decentralized supervisory control with information structures. In Pro-

ceedings of the International Workshop on Discrete Event Systems, pages 36{41, 1998.

[22] K.C. Wong and J.H. van Schuppen. Decentralized supervisory control of discrete-event systems

with communication. In Proceedings of the International Workshop on Discrete Event Systems,

pages 284{289, 1996.

48

