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Abstract

We present a new complexity theoretic approach to real-time parallel computations. Based on the

theory of timed !-languages, we de�ne complexity classes that capture the intuitive notion of resource

requirements for real-time computations in a parallel environment. Then, we show that, for any positive

integer n, there exists at least one timed !-language Ln which is accepted by a 2n-processor real-time

algorithm using arbitrarily slow processors, but cannot be accepted by a (2n � 1)-processor real-time

algorithm. It follows therefore that real-time algorithms form an in�nite hierarchy with respect to the

number of processors used. Furthermore, such a result holds for any model of parallel computation.

1 Introduction

Consider the following question:

Question 1 Can one �nd any problem that is solvable by an algorithm that uses n processors, n > 1, and
is not solvable by a sequential algorithm, even if this sequential algorithm runs on a machine whose (only)
processor is n times faster than each of the n processors used by the parallel implementation?

Although it is standard to assume that each processor on a parallel computer is as fast as the single pro-
cessor on the sequential computer used for comparison, question 1 does make sense in practice. Furthermore,
questions of this kind are crucial for the process of developing a parallel real-time complexity theory. Indeed,
a meaningful such theory should be invariant to secondary issues like the speed of some particular machine.
Thus, an answer to the above question is also important from a theoretical point of view (speci�cally, from
the point of view of parallel real-time complexity theory).

There are noteworthy results in the area of real-time parallel computation [3, 4, 5, 6, 7, 11, 12, 22], but
all of them make the assumption of equal computational speed in the parallel and sequential cases, and thus
none of them appear to properly address question 1. The closest to an answer for this question is probably
a result concerning real-time Turing machines, conforming to which a k-tape real-time Turing machine is
strictly more powerful that a (k � 1)-tape one [1, 13]. However, the model of choice here creates another
problem. Indeed, for one thing, Turing machines appear not to be an expressive enough model for either
sequential or parallel real-time computations. We shall elaborate on this idea shortly. On the other hand,
this time from a parallel point of view, it is not clear that the concept of tape in a Turing machine can
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be equated with the concept of processor in a parallel algorithm. Indeed, the Turing machine is essentially
a sequential model, because of its �nite control, even if elementary processes can be carried in parallel on
multiple tapes. In conclusion, although a result with respect to Turing machines is interesting, we believe
that a truly signi�cant result should be based on a more realistic model of real-time parallel computation.

As for the choice of such a model, there are some formal models for real-time computations, but many
of them fail to take into consideration aspects that are important in practice. Speci�cally, the already
mentioned real-time Turing machine [27] (which is probably the oldest and the most widely studied such a
model) cannot express speci�c deadlines, such as \this computation should take less than 4 seconds." As well,
the real-time producer/consumer paradigm [19] can express neither real-time events that occur acyclically,
nor variable arrival rates for the input. By contrast, the !-regular languages [8] seem to be particularly well
suited for modeling real-time problems. Nonetheless, the device used for the recognition of such languages is
not su�ciently powerful to take into account all the real-time applications. Indeed, it is easy to see that there
are real-time problems that cannot be modeled by !-regular languages. Finally, timed !-languages appear
to be expressive enough in order to capture all the practically important aspects of real-time computations.
This model was proposed in [14], and its expressiveness is illustrated in [15], where various aspects of practical
importance are modeled using this formalism.

An intuitive aside.

On the intuitive level, a positive answer to question 1 for n = 2 is provided by (a slightly
modi�ed version of) the pursuit and evasion on a ring example presented in [2]:

An entity A is in pursuit of another entity B on the circumference of a circle, such that
A and B move at the same top speed. Clearly, A never catches B. Now, if two entities
C and D are in pursuit of entity B on the circumference of a circle, such that each of
C and D moves at 1=x the speed of A (and B), x > 1, then C and D always catch B.

This modi�ed version of the pursuit/evasion problem was mentioned for the �rst time in [13].

Starting from this intuition, we lay in this paper the basis for a parallel real-time complexity theory.
Speci�cally, we start by de�ning the underlying notions for such a theory, in particular real-time complexity
classes, and a notion of input size suitable for the real-time domain. Then, we construct a timed !-language
that models the geometric problem presented above, and we extend this language as to model an \n-
dimensional circle," n � 1, and we show that such a language is accepted by a 2n-processor PRAM, but
there does not exist any (2n � 1)-processor algorithm that accepts the language. Thus, we prove that the
hierarchy of parallel machines solving real-time problems is in�nite. To our knowledge, this is the �rst
time such a result is obtained. Finally, we show that this result can be extended to any model of parallel
computation, that is, the in�niteness of the parallel real-time hierarchy is invariant with the model of parallel
computation involved.

We organize this paper as follows: We start by presenting in section 2 a review of the theory of timed
!-languages, summarizing at the same time the notations used throughout the paper. Then, in section 3, we
outline the basis of our complexity theory. Speci�cally, we identify what we believe to be the most important
complexity classes for real-time computations, and outline at the same time a general way of describing such
classes. A natural notion of input size is also presented in section 3. The main result of this paper (that is,
the in�niteness of the parallel real-time hierarchy) is presented in section 4. We conclude in section 5, with
a discussion and some open problems.

2 Preliminaries

Given some �nite alphabet �, the set of all words (that is, sequences of symbols) of �nite (but not necessarily
bounded) length over � is denoted by ��. The cardinality of IN, the set of natural numbers, is denoted by
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!. It should be noted1 that ! 62 IN [16]. Then, the set �! contains exactly all the words over � of length
!. The length of a word � is denoted by j�j. Given a set A � �, j�jA denotes the length of � after all the
symbols that are not in A have been erased. By abuse of notation, we often write j�ja instead of j�jfag. The

set �k is de�ned recursively by �1 = �, and �i = � � �i�1 for i > 1. By convention, �0 = f�g, where �
denotes the empty word.

Given two (in�nite or �nite) words � = �1�2; : : : and �
0 = �

0
1�

0
2; : : :, we say that �0 is a subsequence of �

(denoted by �
0 � �) i� (a) for each �

0
i there exists a �j such that �0i = �j , and (b) for any positive integers

i; j; k; l such that �0i = �j and �
0
k = �l, it holds that i > k i� j > l.

The following summary conforms to [14], with some additions that make the subsequent presentation
clearer. A sequence � 2 IN!, � = �1�2 : : :, is a time sequence if it is an in�nite sequence of positive values,
such that the monotonicity constraint is satis�ed: �i � �i+1 for all i > 0. In addition, a (�nite or in�nite)
subsequence of a time sequence is also a time sequence.

A well-behaved time sequence is a time sequence � = �1�2 : : : for which the progress condition also holds:
for every t 2 IN, there exists some �nite i � 1 such that �i > t. In should be noted that a time sequence may
be �nite or in�nite, while a well-behaved time sequence is always in�nite.

A timed !-word over an alphabet � is a pair (�; �), where � is a time sequence, and, if � 2 INk, then
� 2 �k, k 2 IN[f!g. Given a symbol �i from �, i > 0, then the associated element �i of the time sequence �
represents the time at which �i becomes available as input. A well-behaved timed !-word is a timed !-word
(�; �), where � is a well-behaved time sequence. A (well-behaved) timed !-language over some alphabet �
is a set of (well-behaved) timed !-words over �.

Timed !-languages were de�ned in [14], as an extension of timed !-regular languages presented in [8].
In [14], a timed !-word is de�ned as a tuple with two components: an in�nite sequence of symbols, and a
well-behaved time sequence. Then, the �nite variant is considered as well. This appeared to be a reasonable
notation at the time, since it is our thesis [14] that such languages model all the real-time computations. On
the other hand, those timed words whose time sequence is not well-behaved were not given a name in [14],
except for the �nite variant. However, it turns out that, even if these words by themselves do not model
real-time computations, they may be useful as intermediate tools in building real-time models. Therefore,
we slightly changed the terminology in this paper. What was called in [14] a timed !-language, we now
call a well-behaved timed !-language, while the absence of the \well-behaved" quali�er denotes those timed
words whose time sequence does not necessarily respect the progress condition, including �nite timed words.
As a consequence, the thesis formulated in [14] is now expressed as follows in the terminology of this paper:
well-behaved timed !-languages model all real-time computations.

As another di�erence from the approach used in [14], we consider time to be discrete, since in essence
the time perceived by a computer is discrete as well. Furthermore, one can de�ne a granularity of time as
�ne as desired.

In the following, a real-time algorithm A consists in a �nite control (that is, a program), an input tape

(that is, an input stream) that contains a timed !-word, and an output tape (that is, an output stream)
containing symbols from some alphabet � that are written by A. The input tape has the same semantics as
a timed !-word. That is, if (�i; �i) is an element of the input tape, then �i is available for A at precisely the
time �i. During any time unit, A may add at most one symbol to the output tape. Furthermore, the output
tape is write-only, that is, A cannot read any symbol previously written on the output tape. The content of
the output tape of some real-time algorithm A working on some input w is denoted by o(A;w). There exists
some designated symbol f 2 �. In addition, A may have access to an in�nite amount of working storage
space (working tape(s), RAM memory, etc.) outside the input and output tapes, but only a �nite amount
of this space can be used for any computation performed by the algorithm.

It should be noted that the concept of working space has the same meaning as in classical complexity
theory. Like a classical algorithm, a real-time algorithm can make use of some storage space in order to
carry out the desired computation. When considering space-bounded real-time computations, we analogously
consider the space used by the real-time algorithm as the amount of this storage space that is used during
the computation, without counting the (content of) input/output tapes.

1Also note that the cardinality of IN is denoted by either ! [16] or @0 [23]. We chose the �rst variant in order to be consistent

with the notation used in [8].
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The designated symbol f from � has the same meaning as the �nal state used in [8]. There, only those
timed !-languages accepted by �nite automata are considered. Such an automaton has a designated state
f , and the current input is accepted by the automaton i� the state f is entered in�nitely many times during
the accepting process. The same approach is used in [14] for more complex machines. However, since the
sate of a general machine may be hard to work with, we prefer to change the state with output. That is,
a real-time algorithm accepts some word i� some designated symbol f appears in�nitely many times on
the output tape. Formally, a real-time algorithm A accepts the timed !-language L if, on any input w,
jo(A;w)jf = ! i� w 2 L. One can note that the models that were constructed in [14, 15] can be trivially
converted to this variant of acceptor.

It is worth mentioning that the actual meaning of the symbol f on the output tape might be di�erent from
algorithm to algorithm. However, such a distinction is immaterial for the global theory of timed !-languages.
Indeed, consider an aperiodic real-time computation, e.g., a computation with some deadline. If, for some
particular input, the computation meets its deadline, then, from now on, the real-time algorithm that accepts
the language which models this problem keeps writing f on the output tape. That is, the �rst appearance of f
signals a successful computation, and the subsequent occurrences of this symbol do not add any information,
they being present for the sole purpose of respecting the acceptance condition (in�nitely many occurrences of
f). On the other hand, consider the timed language associated with a periodic computation, e.g., a periodic
query in a real-time database system. Then, f might appear on the output tape each time an occurrence
of the query is successfully served (obviously, a failure could prevent further occurrences of f , should the
speci�cation of the problem require that all the queries be served). In this case, each occurrence of f signals
a successfully served query. However, even if the actual meaning of the f 's on the output tape can vary from
application to application, it is easy to see that the acceptance condition remains invariant throughout the
domain of real-time computations.

Finally, we assume that the input of a real-time algorithm is always a (not necessarily well-formed) timed
!-word. That is, any real-time algorithm is fed with two sequences of symbols � and � , the �rst being a
(possibly in�nite) word over some alphabet, and the latter being the associated time sequence. Furthermore,
it should be emphasized that a symbol �i with the associated time value �i is not available to the algorithm
at any time t, t < �i.

2.1 Operations on timed languages

The union, intersection, and complement for timed !-languages are straightforwardly de�ned. Moreover, it
is immediate that the language that results from such an operation on two (well-behaved) timed languages
is a (well-behaved) timed language as well.

Furthermore, one can rely on the semantics of timed words in de�ning a meaningful concatenation
operation. More precisely, recall that a timed word means a sequence of symbols, where each symbol
has associated a time value that represents the moment in time when the corresponding symbol becomes
available. Then, it seems natural to de�ne the concatenation of two timed words as the union of their
sequences of symbols, ordered in nondecreasing order of their arrival time. Intuitively, such an operation
is similar to merging two sequences of pairs (symbol, time value), that are sorted with respect to the time
values. Formally, we have the following de�nition:

De�nition 2.1 [14] Given some alphabet �, let (�0; � 0) and (�00; � 00) be two timed !-words over �. Then,
we say that (�; �) is the concatenation of (�0; � 0) and (�00; � 00), and we write (�; �) = (�0; � 0)(�00; � 00), i�

1. � is a time sequence, that is, �i � �i+1 for any i > 0; both (�01; �
0
1)(�

0
2; �

0
2) : : : and (�001 ; �

00
1 )(�

00
2 ; �

00
2 ) : : :

are subsequences of (�1; �1)(�2; �2) : : :; furthermore, for any i > 0, there exists j > 0 and d 2 f0;00 g
such that (�i; �i) = (�dj ; �

d
j ),

2. for any d 2 f0;00 g and any positive integers i and j, i < j, such that �dk = �
d
l for any k, l, i � k < l � j,

there exists m such that, for any 0 � � � j � i, (�m+�; �m+�) = (�di+�; �
d
i+�), and

3. for any positive integers i and j such that � 0i = �
00
j , there exist integers k and l, k < l, such that

(�k; �k) = (�0i; �
0
i) and (�l; �l) = (�00j ; �

00
j ).
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Given two timed !-languages L1 and L2, the concatenation of L1 and L2 is the timed !-language
L = fw1w2jw1 2 L1; w2 2 L2g. 2

In addition to the mentioned order of the resulting sequence of symbols (formalized in item 1 of de�-
nition 2.1), two more constraints are imposed in de�nition 2.1. These constraints order the result in the
absence of any ordering based on the arrival time, in order to eliminate the nondeterminism. First, if either
of the two !-words contains some subword of symbols that arrive at the same time, then this subword is a
subword of the result as well, and this is expressed by item 2. That is, the order of many symbols that arrive
at the same time is preserved. Then, according to item 3, if some symbols �1 and �2 from the two !-words
that are to be concatenated, respectively, arrive at the same moment, then we ask that �1 precedes �2 in
the resulting !-word.

Given n (timed !-)words w1, w2, . . . , wn, n > 1, the notation

w =

nY
i=1

wi

is a shorthand for w = w1w2 � � �wn (that is, w is the concatenation of all the words wi, i > 0). By extension,
the (timed !-)language L obtained by concatenating n (timed !-)languages L1, L2, . . . , Ln is denoted by

L =

nY
i=1

Li:

The reason for using
Q

as the operator for concatenation is that such an operation on languages is similar
to the cross product on sets. Furthermore, language concatenation is sometimes called product [18]. One
should also note that the concatenation of timed !-words as de�ned by de�nition 2.1 is associative.

The concept of Kleene closure for timed languages can be then de�ned based on the concatenation
operation:

De�nition 2.2 Given some timed !-language L, let L0 = ;, L1 = L, and, for any �xed k > 1, Lk = LL
k�1.

Furthermore, let L� = [0�k<!L
k. We call L� the Kleene closure of L. 2

The following result is immediate:

Theorem 2.1 The set of (well-behaved) timed !-languages is closed under intersection, union, complement,

concatenation, and Kleene closure, under a proper de�nition of the latter two operations. Furthermore, a

subset of a (well-behaved) timed !-language is a (well-behaved) timed !-language.

Finally, we will make use of the following two operations: Given some timed !-word w, w = (�; �), let
detime(w) = � and time(w) = � .

3 Sizing up real-time computations

3.1 What to measure

Classical complexity theory measures the amount of resources required for the successful completion of some
algorithm. Such resources are running time, storage space, and, to a lesser degree, the number of processors
used by a parallel algorithm. Let us analyze them one by one.

Time is probably the most used measure in complexity theory. Given some function f : IN! IN, the class
TIME(f) denotes those algorithms working on input of size n and whose running time is upper bounded
by f(n). From this de�nition, more general classes can be easily derived, for example PTIME (polynomial
running time). On the other hand, in the real-time area, time is in most cases predetermined by the existence
of deadlines imposed to the computation or by other similar time constraints. Admittedly, there are classes of
real-time algorithms for which running time actually makes sense as a measure of performance. Furthermore,
one may consider algorithms that terminate before the deadline as compared to those that terminate right
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when the allowed computation time expires (still, while quicker algorithms may, say, free some resources
that can be used by other concurrent processes, those (slower) algorithms that still meet their deadlines are
by no means less correct or useless). However, by contrast to its importance in classical complexity theory,
time is no longer a universal performance measure in the real-time environment. For this reason, we will not
consider real-time classes with respect to running time.

Things are di�erent as far as space is concerned though. Indeed, space as a performance measure bears
the same signi�cance in a real-time environment as it does in classical complexity theory. With the same
notations as in the above paragraph, an algorithm from the class SPACE(f) uses an e�ective storage space
upper bounded by f(n) when working on an input of length n. We therefore introduce the corresponding
classes rt � SPACE(f), with its immediate extensions, such as rt � LOGSPACE, rt � PSPACE, etc. In
general, we pre�x all the real-time complexity classes by \rt�" (from \real-time"), in order to avoid any
possible confusion.

A third measure of interest is the number of processors. In classical complexity theory this measure
received less attention than the other measures. However, in the real-time paradigm, a parallel algorithm
has been shown to make up for the limited time that is available, and solve problems that are not solvable
by a sequential implementation [3, 11, 12, 22]. Therefore, we will consider the classes rt � PROC(f). An
algorithm pertaining to such a class solves the given problem using at most f(n) processors on an input of
size n.

However, another issue is worth considering with respect to the number of processors. Indeed, consider
the Parallel Random Access Machine (PRAM) model, as opposed to, say, some interconnection network
[2]. In the �rst case, communication between two processors is accomplished by writing to, and reading
from the shared memory, at a time cost equal to the cost of accessing a memory cell. By contrast, in
an interconnection network, interprocessor communication uses message passing. Except for a complete
network, such a communication may involve many steps (if the two communicating processors are not
directly connected), at an increased temporal cost. It is therefore reasonable to consider that the classes
rt�PROC(f) are di�erent from model to model. If this is the case, given some model of parallel computation
M , we denote the corresponding class by rt � PROCM (f), with the superscript often omitted when either
the model is unambiguously understood from the context, or the class is invariant to the model.

By abuse of notation, we write rt�PROC(c) (or rt�SPACE(c), etc.) instead of rt�PROC(f), whenever
f is a constant function, such that f(x) = c for all x 2 IN. In order to formalize the above discussion, we
o�er the following de�nition.

De�nition 3.1 Given a total function f : IN ! IN, and some model of parallel computation M , the class
rt � SPACEM (f) consists in exactly all the well-behaved timed !-languages L for which there exists a
real-time algorithm running on M that accepts L and uses no more than f(n) space, where n is the size
of the current input. Analogously, the class rt � PROCM (f) includes exactly all the well-behaved timed
!-languages L for which there exists a real-time algorithm running on M that accepts L and uses no more
than f(n) processors on any input of size n. By convention, the class rt� PROCM (1) (that is, the class of
sequential real-time algorithms) is invariant with the model M . 2

Note that we do not consider nondeterminism. This is because real-time computation is a highly practical
area, and thus nondeterministic computations, which are rather of theoretical interest, seem to be of little
importance.

3.2 How to measure

We intentionally left unexplained in de�nition 3.1 the notion of input size. In classical complexity theory,
the input size is the length of the current input, that is, the number of symbols that are available as input.
However, such a notion cannot be naturally extended to !-languages. Indeed, using such a de�nition, all
well-behaved timed !-words have length !. That is, any !-word is in�nite. Therefore, a new notion of input
size should be developed.

In the most general case of real-time applications the input data are received in bundles. Indeed, take for
example the domain of real-time database systems. Here, the most time consuming operation is answering
queries. Such queries appear at the input one at a time. That is, at any moment when some new input
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arrives, this input consists in the n symbols that encode a query. Such a model of input arrival seems to
appear in most real-time applications. Motivated by this, we propose the following de�nition for input size:

De�nition 3.2 Let w be some timed !-word over an alphabet �, w = (�; �). Let � = �1�2�3 : : : and
� = �1�2�3 : : :. Fix i0 = 0. For any j > 0, let sj = �ij�1+1�ij�1+2 : : : �ij , such that the following hold:

1. �ij�1+1 = �ij�1+2 = � � � = �ij , and

2. �ij+1 6= �ij .

Then, the size of w, denoted by jwj, is jwj = maxj>0 jsj j.
Furthermore, given some alphabet �0, �0 � �, the size of w over �0 is naturally de�ned by jwj�0 =

maxj>0 jsj j�0 , with sj de�ned as above. 2

In other words, the size of some !-word w is given by the largest bundle of symbols that arrive as input
together, at the same time. It should be noted that such a de�nition makes sense only in those cases in
which the real-time algorithms manifest the pseudo-on-line property, that is, when they process input data
in bundles, without knowledge of future input. As mentioned in [14], it would appear that this is a common
feature of such algorithms.

Yet, it might appear that there are computational paradigms that seem not to �t into such a de�-
nition. Take for example the case of d-algorithms [11, 21, 22]. The input of a d-algorithm (short for
\data-accumulating algorithm") is not entirely available at the beginning of the computation. Instead, more
data arrive while the computation is in progress, according to a certain arrival law expressed as a (strictly
increasing) function of time. Furthermore, a computation terminates when all the already received data are
processed before another datum arrives as input. Within this paradigm, the input size is de�ned as the
amount of data that is processed during the computation (one should also note that d-algorithms pertain
to the class where time complexity actually makes sense, provided that this de�nition for the input size is
used). However, the amount of processed data is itself a function of the running time, which is an incon-
venience as far as a consistent time analysis of such algorithms is concerned. Furthermore, when parallel
implementations are considered [11], the number of processors as a function of input size loses signi�cance,
since this would imply that the number of processors used by the algorithm depends on the running time (in
particular, this number increases with time), which we believe to be an unrealistic approach. Finally, when
space complexity is studied, the dependency of the input size on the running time is likely to make such a
complexity hard to express (to our knowledge, however, such a direction has not been explicitly pursued in
the literature).

It should be noted, however, that the input size for d-algorithms as de�ned in [21] and summarized in
the above paragraph was shown to be of reduced signi�cance. Indeed, it was proved [11] that d-algorithms
are actually on-line algorithms, on which some real-time constraints are imposed. That is, the true input
size for such algorithms is 1, since on-line algorithms process each input datum without knowledge of future
inputs.

For all these reasons, we believe that de�nition 3.2 is adequate for most of the real-time algorithms,
and therefore we will use it henceforth. We shall be aware though of those particular cases in which the
expressiveness of such a notion of input size is diminished. Should such cases appear in the future, one can
provide alternative, meaningful de�nitions for input size that are speci�c to the variants in discussion.

A �nal remark with respect to concatenated timed !-languages is in order. While in classical language
theory, given some word w = w1w2, the equality jwj = jw1j+ jw2j holds, this is not the case with respect to
timed !-words. Indeed, assume that the set of time values in the two !-words is disjoint. Then, the equality
that holds is jwj = max(jw1j; jw2j). However, not even this relation is general, since jwj may be larger than
both jw1j and jw2j in those cases when the words to be concatenated have sets of time values that are not
disjoint. For this reason, we provide the following notation:

De�nition 3.3 Consider two timed !-languages L1 and L2. Now, let w be some word in L1L2, that is,
w = w1w2, w1 2 L1, and w2 2 L2. Then, the size of w over L1 is de�ned as jwjL1

= jw1j. The size of w over
L2 (namely, jw2jL2

) is de�ned analogously. 2
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4 The hierarchy rt� PROC(f)

In the following, given some arbitrary word w of length n, we �nd convenient to index it starting from 0.
Speci�cally, for 0 � i � n� 1, wi denotes the i-th symbol of w, w0 being the �rst symbol and wn�1 the last.
By extension, for any 0 � i � j � n� 1, we denote by wi:::j the subword wiwi+1 : : : wj of w, with wi:::j = �

whenever j < i. Note, however, that both the symbol and time sequences in a timed !-word are indexed in
[14] and in section 2 starting from 1, and we keep henceforth this convention.

4.1 Two processors

In the following, we develop a timed !-language (call it L1) which is accepted by a two-processor algorithm,
but cannot be accepted by a sequential algorithm.

First, �x two constants r and p, r > 2p, and the alphabet � = fa; b;+;�g. Now, consider the following
(�nite) timed language:

Lo = f(�; �)j� 2 fa; bgr; �i = 0 for all 1 � i � rg:

Intuitively, a word in the language Lo (all of its symbols being available at the beginning of the compu-
tation) represents the initial value of a word that will be modi�ed as time passes. Let us introduce such a
modi�cation:

Lt = f(�; �)jj�j = j; 1 � j � p+ 1; �1 2 f+;�g;

�2:::j 2 fa; bg
j�1

; �i = t for all 1 � i � jg:

A word in Lt denotes a change to the initial word, that arrives at time t. A word in Lt has a + or �
as its �rst symbol, followed by at most p a's and/or b's. The semantics of such a word will become clear
shortly. The language that denotes all the changes over time is thus:

Lu =
Y
i>0

Lci;

for a given positive integer c. The language L1 will be constructed as a subset of LoLu. However, in order to
precisely de�ne L1, we have to de�ne some new concepts, namely insertion modulo r and acceptable insertion

zone.
First, consider some words w 2 fa; bgr and u = u0u

0, such that u0 2 f+;�g and u
0 2 fa; bgj, j � p. Then,

for some integer i, 0 � i � r�1, we de�ne the concept of insertion modulo r at point i of u in w as a function
insr that receives the three parameters w, u, and i, and returns a new word w and a new i. The behavior
of insr is as follows: Let i

0 = i+ p if u0 = + and i
0 = i� p otherwise. Then, insr(w; u; i) = (w0

; i
0mod r),

where w0 is computed as follows (x denoting the reversal of some word x):

1. If i0 < 0, let i00 = i
0mod r. Note that, in this case, u0 = �. Then, w0 = u00:::iwi+1:::i00�1u

0
i+1:::j�1.

2. Analogously, if i0 > r � 1 (and thus u0 = +), then w
0 = u

0
r�i:::j�1wi00+1:::i�1u

0
0:::r�i�1.

3. Otherwise (that is, when 0 � i
0 � r � 1), let i1 = min(i; i0), i2 = max(i; i0), and x = u

0 if u0 = + and
x = u0 otherwise. Then, w0 = w0:::i1�1xwi2+1:::r�1.

An intuitive aside.

The above description might seem complicated, but the intuition behind it (which is also
suggested by the name of the operation) is simple. Indeed, picture the word w as a circle, in
which w0 is adjacent to the right to wr�1. Then, u replaces j consecutive symbols in the \circle"
w, starting from wi, and going either to the left or to the right, depending on the value of u0
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Figure 1: Insertion modulo r.

(+ for right, � for left). In other words, u models the moves of the entity which is pursued (the
\pursuee") over the circle modeled by w. It follows that such an entity has a topmost velocity
of p=r-th of the circle's circumference per time unit. As we shall see later, the algorithm that
accepts L1 (that is, the pursuer) needs to inspect all the symbols that are modi�ed during such
an insertion process. In other words, the pursuer has to match the move of the pursuee. The
\velocity" of the accepting algorithm is given by its ability to inspect symbols stored in the
memory, and thus this velocity is directly proportional to the speed of the processor(s) used by
the algorithm. The modulo operation makes the two ends of w conceptually adjacent, thus the
pursuit space becomes conceptually a circle, as desired.

More speci�cally, consider the example in �gure 1. Here, r = 8 and p = 3. Initially, w =
bbbbbbbb, and the insertion point is i = 1. For clarity, w is represented as a circle, with 8 identi�ed
locations that corresponds to the eight symbols stored in w. These locations are labeled with
their indices (inside the circle), and with the values stored there (outside). Figure (1.a) shows
the insertion of the word u = �a1a2a3 (all the a's are the same symbol, the subscripts of symbols
in u being provided solely for illustration purposes). It is easy to see that we are in the case
handled by item 1 in the above enumeration. In other words, the pursued entity moves to the
left (or counterclockwise), rewriting the symbols at indices 1, 0, and 7, in this order. After such
a processing, the new insertion point becomes i = 7, and w = a2a1bbbbba3. Consider now that
the next word to be inserted is u = +a4a5. We are now in case 2 in the enumeration above, and
the indices whose values are modi�ed are 7 and 0. This processing is illustrated in �gure (1.b).
The �nal result is i = 0 and w = a5a1bbbbba4.

Finally, the following generalization will prove useful later: Denote insr(w; u; i) by (w; i) � u, and let �
be a left-associative operator. Then, for some integers � and �, 1 � � � �, for appropriate words w, u�,
u
�+1, . . . , u�, and for some i, 0 � i � r � 1, we de�ne

(w; i)

�M
j=�

u
j = (w; i)� u

� � u
�+1 � � � � � u

�
: (1)

9



An intuitive aside.

Intuitively, the operator
L

is for � as
P

is for + in arithmetics. Speci�cally, such an operator
receives some initial word w and some initial insertion point i, and successively inserts modulo r
the words u�, . . . , u� in w, modifying the insertion point accordingly after each such an insertion.
For example, refer again to �gure (1.b), which illustrates the result of (bbbbbbbb; 1)

L2

j=1 u
j , where

u
1 = �a1a2a3, and u

2 = +a4a5. Incidentally, the result of this operation is (a5a1bbbbba4; 0).

Let us consider now the second of the concepts we will use. Consider some word w 2 LoLu, w =
w
0
Q

i>0 w
i, with w

0 2 Lo, and w
i 2 Lci, i > 0. For some time value t and some i0, 0 � i0 � r � 1, let

s(w; t) = (�0; i0)
M
ci�t

�
i
; (2)

where �i = detime(wi), i � 0.
Consider now some algorithm A that receives w as input and uses � processors, � � 1 (when � = 1,

the algorithm is clearly sequential; otherwise, it is parallel). Furthermore, at any moment t, A may inspect
(i.e., read from memory) the symbols stored at some index in s(w; t). In the parallel case, many processors
may inspect di�erent indices in parallel. For each processor q, 1 � q � �, let �qt be the most recent index
inspected by processor q up to time t. If some processor happens to inspect no symbols from s(w; t), then,
by convention, �qt = �1. In addition, let Iqt be the \history" of symbols inspected by processor q up to time t,
that is, Iqt =

S
t0�t �

q
t0 nf�1g. One may note that neither �

q
t nor I

q
t depend on the actual processing performed

by A. Indeed, assume that A does not inspect any symbol whatsoever from s(w; t) (e.g., A doesn't even
bother to maintain s(w; t) in memory). Then, for any t, �qt = �1 and thus Iqt = ;, 1 � q � �.

For some t, let now lo = min1�q��(�
q
t ), hi = max1�q��(�

q
t ), and I =

S
1�q�� I

q
t . Then, we de�ne the

acceptable insertion zone at time t (denoted by z(w; t)) as follows:

z(w; t) =

8<
:

fij0 � i < rg if lo = �1,
fij0 � i < r; i 6= log if lo 6= �1 and there exists j 62 I , j > hi or j < lo,
fijlo � i � hig otherwise.

(3)

That is, z(w; t) is a set of indices, that has the following form: When all the indices in the area delimited
by the latest inspected indices have been inspected in the past, then this area is excluded from z(w; t).
Otherwise, the acceptable insertion zone contains all the indices except one of the indices �qt (speci�cally, the
smallest of them).

Observation 1 If � = 1 and at least one index has been inspected, then jz(w; t)j = r � 1 for any t > 0.
Generally, if � = 1, then z(w; t) � r � 1.

An intuitive aside.

In order to support the intuition, we refer again to the geometric version of the problem
(presented in section 1). In �gure 2, the acceptable insertion zone is denoted by white bullets,
while those indices that do not pertain to this zone are represented by black bullets. Consider
�rst that there are two pursuers (as we shall see in a moment, this means two processors used
by the accepting real-time algorithm). Figure (2.a) represents the moment in which the two
processors inspect indices 1 and 6, respectively. This �gure shows the acceptable insertion zone,
provided that, say, processor p1 started from index 0 and inspected only indices 0 and 1, and
processor p2 inspected only indices 7 and 6, in this order. On the other hand, when only one
processor is available, the acceptable insertion zone is always the whole circle, except the most
recently inspected index. This case is shown in �gure (2.b).
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Figure 2: Acceptable insertion zone.

Furthermore, all the indices outside the acceptable insertion zone must have been inspected
by at least one processor. Indeed, consider that two processors are available and we have the same
case as the one in �gure (2.a), except that the index 7 is not inspected by any processor. Then,
according to relation (3), the acceptable insertion zone is identical to the one shown in �gure (2.b).
The reason for such a constraint is the desire to faithfully model the geometric problem. First, we
described the insertion operation such that it models the moves of the pursuee, by introducing the
notion of insertion point, which de�nes the current position of the pursuee and moves accordingly
after each insertion, as illustrated in �gure 1. Then, since the circle is unidimensional, neither the
pursuer(s) nor the pursuee can jump over each other. This inability is modeled in the pursuee
case by the presence of the acceptable insertion zone. However, the pursuers' inability to jump
is another matter. Indeed, since our result is general, we cannot impose any restriction on the
processing performed by the real-time algorithm that accepts the language. We therefore created
a \levelled �eld of play," by making the algorithm lose the advantage of two pursuers if it decides
to jump wherever it wants on the circle. Indeed, if the pursuers jump all over the place, then the
de�nition of the acceptable insertion zone allows the pursuee to change almost any index in the
circle. As we shall see, this makes it uncatchable.

We are now ready to de�ne the language L1. For any word w 2 LoLu and for any time value ci, i > 0,
denote by zi(w) the set of indices whose values are modi�ed by the timed subword w

i of w, wi 2 Lci. Then,

L1 = fw 2 LoLujfor any i > 0, zi(w) � z(w; ci), and there exists some t,

t > 0, and some i0, 0 � i0 � r � 1, such that js(w; t)ja = js(w; t)jbg;

with s(w; t) and z(w; t) de�ned as in relations (2) and (3), respectively.

Lemma 4.1 L1 is a well-behaved timed !-language.

Proof. Let w be some word in L1, w = (�; �). Since L1 is a subset of a concatenation of (well-behaved or
not) timed languages (L1 � Lo

Q
i>0 Lci), it follows by theorem 2.1 that time(w) satis�es the monotonicity

condition.
Let w = w

0
Q

i>0 w
i, with w

0 2 Lo, and w
i 2 Lci, i > 0. Consider now some s = (�j ; �j) such that s

appears in some wk . Then, we have �j = ck. Furthermore, j < r + (p+1)(k + 1), since jwij � p+ 1 for any
1 � i � k, and jw0j = r. Now, for any �nite t > 0, choose k = (t+1)=c. Then, �j = t+1 > t, and j is �nite
(since j < r + (p+ 1)(k + 1)). Thus w satis�es the progress condition, and therefore L1 is well-behaved. 2
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Lemma 4.2 There exists no sequential deterministic real-time algorithm that accepts L1.

Proof. Assume that there exists such an algorithm and call it A. Denote by w the current input.
In order to simplify the proof, we make the following changes to the problem of accepting L1: First, we

assume that A does not have to build the structure s(w; t). Instead, this structure is magically updated,
and the algorithm has access to the up-to-date s(w; t) at any given time t. Next, we consider that, given
some string x, A is able to decide whether jxja = jxjb in jxj steps. Note that these assumptions make the
problem easier, so that proving the nonexistence of an algorithm for this version implies the nonexistence
of an algorithm deciding L1. Indeed, A actually has to spend some extra time in order to build s(w; t).
Furthermore, the jxj steps required for the above recognition problem constitute a lower bound for that
problem, since all the symbols of x must be inspected in order to check whether jxja = jxjb.

Consider now that the processor used by A has the ability to inspect c1 symbols per time unit, c1 > 0,
and choose p such that p = c � c1 + 1. It is then immediate that, during each interval of c times units, A
can inspect at most p � 1 symbols, and therefore, at any time t, there exists at least one symbol in s(w; t)
whose value is unknown to A (and thus A cannot decide whether js(w; t)ja = js(w; t)jb), provided that the
input inserts p symbols at any time ci, i > 0.

Therefore, in order to complete the proof, it is enough to show that there exists a word w such that,
at each time ci, i > 0, exactly p symbols are inserted in s(w; t). Without loss of generality, consider the
insertion point at time t = ci to be j = br=2c (indeed, given the circularity of s(w; t), another insertion
point can be considered in the same manner, by performing a simple translation; we chose the \middle of
the circle" in order to avoid modulo operations that would a�ect the clarity of the argument). Furthermore,
according to observation 1, z(w; t) contains exactly all the indices in s(w; t), except one (denote the latter
by zt). If 0 � zt < j, then choose wi+1 = +x, with jxj = p. Otherwise (that is, if j < zt � r � 1), chose
w
i+1 = �x, again with jxj = p. Note that, since A is deterministic, the index zt is uniquely determined at

any time t. It is clear that wi+1 is legal, since r > 2p and thus its insertion does not a�ect any index outside
z(w; t) (informally, zt is \in the other half of the circle" than w

i+1).
In summary, there exists an input word w 2 L1 which inserts p symbols in s(w; t) at any time t = ci,

and in this case there exists at least one symbol in s(w; t) which is unknown to A. Thus, A cannot decide
L1, and we completed the proof. 2

We have yet to prove the second part of the result (namely, that there exists a 2-processor real-time
algorithm that accepts L1). The crux of this proof is given by the following observation:

Observation 2 For some 2-processor algorithm A
0 and some input w (w = w

0
Q

i>0 w
i, with w

0 2 Lo,
and w

i 2 Lci, i > 0), and under a judiciously chosen order of inspection for the indices in s(w; t), it holds
that: (a) jz(w; t)j is decreasing with respect to t, and (b) for any x � 0, there exists a �nite t such that
jz(w; t)j < x. Therefore, there exists a �nite time tf for which jz(w; tf )j = 0.

Proof. Consider that the two processors used by A
0 are able to inspect �c1 symbols per time unit, where c1

is as in the proof of lemma 4.2, and � is a positive constant, arbitrarily close to 0.
Let �10 = 0, and �

2
0 = 1. Thus, at each time t1 when processor 1 inspects a new index in s(w; t), let the

newly inspected index be �1t1+1 (that is, processor 1 advances always to the \right," whenever it has a chance
to do so). Analogously, at each time t2 when processor 2 inspects a new index, let this index be (�2t2�1)mod r
(and thus processor 2 advances only to the \left"). Then, according to relation (3), jz(w; t)j � jz(w; t+ 1)j
(speci�cally, if neither of the two processors inspected any index at time t+ 1, then jz(w; t)j = jz(w; t+ 1)j;
otherwise, jz(w; t)j > jz(w; t+ 1)j). It follows that jz(w; t)j has property (a).

As far as property (b) is concerned, let us look at the processing that A0 needs to perform. First, A0

needs to update the structure s(w; t) as it is changed by input. However, s(w; t) depends on
Q

cj�t w
j only.

Given that w is a well-behaved timed !-language,
Q

cj�t w
j is a �nite word. Therefore, s(w; t) can be built

in �nite time. Then, A0 needs to keep track of the number of a's and b's that it already inspected. This
is clearly achievable in �nite time. Hence all the other processing that A0 is required to perform (except
inspecting indices in s(w; t)) takes �nite time. Thus, after some �nite time, A0 inspects at least one new
index. As shown above, any newly inspected symbol decreases jz(w; t)j. Condition (b) follows immediately.
2
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Lemma 4.3 There exists a 2-processor PRAM deterministic real-time algorithm that accepts L1 and that

uses arbitrarily slow processors.

Proof. Given observation 2, the ability of A0 to accept L1 is immediate. Indeed, note that at time tf the
acceptable insertion zone is empty. That is, at that time, no index in s(w; tf ) can be changed, and A

0 can
compare the number of a's and b's in s(w; tf ). In other words, A0 caught the input (or the pursuee) at time
tf . After this moment in time, A0 keeps writing f on the output tape.

In addition, recall that the two processors used by A
0 are able to compare �c1 symbols per time unit,

where c1 is as in the proof of lemma 4.2, and � is a positive constant, arbitrarily close to 0. That is, the
processors used by A

0 are arbitrarily slow, as desired. 2

Lemmas 4.1, 4.2, and 4.3 imply:

Theorem 4.4 rt� PROC(1) � rt� PROCPRAM(2) (strict inclusion).

Theorem 4.4 is itself an important result, since it means that, in a real-time environment, a parallel
algorithm is more powerful than a sequential one, even if the speed of the processors that are used by the
former is arbitrarily smaller than the speed of the unique processor used by the sequential implementation.
To our knowledge, this is the �rst result of this nature to date. In fact, we can improve on the result stated
in theorem 4.4.

4.2 n processors

In the following, we extend theorem 4.4. Speci�cally, we show that such a result holds for any number of
processors n, n > 1. This way, we show not only that parallel real-time implementations are more powerful
than sequential ones, but we also prove that such parallel algorithms form an in�nite hierarchy with respect
to the number of processors used. That is, given any number of processors available to a parallel real-time
algorithm, there are problems that are not solvable by that algorithm, but that are solvable if the number
of available processors is increased, even if each processor in the new (augmented) set is (arbitrarily) slower
than each processor in the initial set.

For this purpose, we develop a language Lk similar to L1. Intuitively, since L1 models a one-dimensional,
circular space, we extend such a space to k dimensions. Again, �x k > 1, p > 0, and r > 2p. For convenience,
let r0 = kr. Then, consider

L
0
o = f(�; �)j� 2 fa; bgr

0

; �i = 0 for all 1 � i � r
0g:

Let INk = fenc(i)j1 � i � kg, where enc is a suitable encoding function from IN to fIg�, for some symbol2

I 62 �. We do not insist on the actual form of enc, it can be, for example, the usual unary encoding of natural
numbers [20]. However, it is assumed that jenc(j)j � j for any j 2 IN, and that enc�1 is de�ned everywhere
and computable in �nite time (these properties clearly hold for any reasonable encoding function). De�ne

L
IN
t = f(�; �)j� 2 INk; �i = t for all 1 � i � j�jg:

Then, the multi-dimensional version of Lt is

L
0
t = L

IN
t Lt:

In addition to the direction of insertion and the word to be inserted, a word in L
0
t now provides the

\dimension" (from 1 to k) along which the insertion takes place. Finally, let

L
0
u =
Y
i>0

L
0
ci;

for a given constant c, c > 0. Lk will be a subset of L0oL
0
u.

2Recall from section 4.1 that � = fa; b;+;�g.
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Figure 3: The k-dimensional circle.

We will now extend the notion of insertion modulo r to the new problem. Since the presentation is easier
when we make use of the previously developed operators � and

L
, we denote the new variant of insertion

modulo r by 
, with its generalization
N
.

Given some word w 2 fa; bgr
0

, we use the notation w = w(1)w(2) : : : w(k), where jw(i)j = r, 1 � i � k,
and we call each w(i) a segment of w. Let w 2 fa; bgr

0

, and u = u
0
u
00, with u

0 2 INk, and u
00 2 �j ,

1 � j � p+ 1, u001 2 f+;�g, u
00
2:::p 2 fa; bg

j�1. Then, for some i, 0 � i � r � 1, de�ne

(w; i)
 u =

0
@
d�1Y
j=1

w(j)

1
A ((w(d); i) � u

00)

0
@

kY
j=d+1

w(j)

1
A ;

where d = enc
�1(u0). In other words, the word to be inserted contains two components, one of them (u0)

encoding a number, and the other one (u00) denoting the actual word that is to be inserted. Then, the
operator 
 inserts (modulo r) u00 into that segment of w which is given by u

0. The operator
N

is de�ned
analogously to

L
(relation (1)), again, considering that 
 is left-associative.

Now, for some word w 2 L
0
oL

0
u (w = w

0
Q

i>0 w
i, with w

0 2 L
0
o, and w

i 2 L
0
ci, i > 0), and for some i0,

0 � i0 � r � 1, let

s
0(w; t) = (�0; i0)

O
ci�t

�
i
; (4)

where �i = detime(wi), i � 0.
One should note that relation (4) is a generalization of relation (2). As a consequence, the concept of

acceptable insertion zone can be naturally extended. Indeed, consider the same algorithm A that receives
some w 2 L

0
oL

0
u as input and uses � processors. Then, for some t � 0, de�ne zj(w; t) = z(w(j); t), 1 � j � k,

with z(w(j); t) de�ned as in relation (3), except for the following change: if, at time t, some processor
inspects an index outside s(w(j); t), then �

q
t (j) = �1 and I

q
t (j) = ;. Finally, let

z
0(w; t) =

k[
j=1

z
j(w; t); (5)

and call z0(w; t) the acceptable insertion zone at time t.
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An intuitive aside.

The k-dimensional geometric version is a straightforward extension of the one-dimensional one.
In order to present the intuitional support, we refer to �gure 3. Each dimension is represented
by a circle whose circumference has length r. There are, therefore, k such circles. Moreover,
each collection of k identical indices (one on each circle) is connected by a special path (there
are r such paths, represented by thinner lines in �gure 3). These paths can be used by the
pursuee at no cost. However, the pursuers are too bulky to take such narrow paths, such that
they are prohibited to do so. More precisely, pursuers can travel on them, but such a thing is
suicidal: Once a pursuer uses such a path, it looses the advantage gained by the existence of the
acceptable insertion zone, similarly to the case of jumping pursuers in the one-dimensional case
(see �gure 2).

We have now all the concepts that are necessary for de�ning Lk:

Lk = fw 2 L
0
oL

0
ujfor any i > 0, z0i(w) � z

0(w; ci), and there exists some t,

t > 0, and some i0, 0 � i0 � r � 1, such that js0(w; t)ja = js0(w; t)jbg;

with s
0(w; t) and z0(w; t) de�ned as in relations (4) and (5), respectively, and z0i(w) denoting the set of indices

whose values are modi�ed by the timed subword w
i of w, wi 2 Lci, i > 0.

Lemma 4.5 Lk is a well-behaved timed !-language for any k > 1.

Proof. Trivial generalization of the proof of lemma 4.1. Indeed, note that any word u 2 L
IN
t has a �nite

length (speci�cally, a length smaller than k). 2

Lemma 4.6 There exists no (2n � 1)-processor PRAM deterministic real-time algorithm that accepts Ln,

n � 1.

Proof. The proof is by induction over n. Let A be an algorithm that attempts to accept Ln. The base case
(n = 1) is established by lemma 4.2. Consider now a word w 2 Ln with its associated s

0(w; t). Furthermore,
let s0(w; t) = s1s2, such that js1j = r and js2j = r

0 � r.
First, consider the case in which w modi�es s2 only. In order to successfully handle such a case, A must

allocate at least 2(n�1) processors that inspect s2, since 2(n�1)�1 processors are not enough by inductive
assumption. But then at most one processor inspects s1, and therefore A cannot handle those inputs that
modify s1 exclusively, as shown by lemma 4.2. That is, whichever of the above processor allocations is chosen
by A, there is an input word that A fails to accept.

Note that the version in which only a part of the computational power of some processor is allocated
to s1 is not acceptable, since such a processor has no in
uence on the acceptable insertion zone of s1 and
thus such a processor becomes useless. Indeed, without the restrictions imposed by the acceptable zone, the
algorithm cannot keep up with the changes for p large enough (speci�cally, for p > 2c� c1, where c1 is the
maximal number of symbols that can be inspected by a processor in one time unit). That is, no processor
allocation can lead to the acceptance of exactly all the words in Ln, and we completed the proof. 2

Lemma 4.7 There exists a 2n-processor PRAM deterministic real-time algorithm that accepts Ln and that

uses arbitrarily slow processors, n � 1.

Proof. By allocating two processors for each s
0(w; t)(j), 1 � j � n, it is possible to handle the changes, as

shown by lemma 4.3. Since there are 2n processors, such an allocation is clearly achievable. 2

By lemmas 4.5, 4.6 and 4.7 we have

Theorem 4.8 For any n 2 IN, n � 1, rt� PROCPRAM(2n� 1) � rt� PROCPRAM(2n) (strict inclusion).

That is, the hierarchy rt� PROCPRAM(f) is in�nite.
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4.3 Other parallel models of computation

One may wonder whether theorem 4.8 holds for other models of computation beside the PRAM. Indeed,
except for a bounded number of processors, current technology does not allow a physical implementation of
the PRAM. On the other hand, a model that allows a straightforward implementation is the bounded-degree
network (BDN) [2], where processing elements have access to a local storage space only, and communication
between them is achieved using a sparse interconnection network of �xed degree.

However, it is well-known that even the most powerful version of the PRAM (namely, the Concurrent
Read Concurrent Write PRAM [2]) can be simulated on a sparse interconnection network with bounded
slowdown and bounded memory blowup. Speci�cally, there exists such a simulation [17] for which the
slowdown is O(log2 n= log logn), and the memory blowup is O(logm= log logm), where n is the number of
processing elements, and m is the amount of memory used by the PRAM.

However, a bounded slowdown does not a�ect the result in theorem 4.8, since this result is invariant to the
speed of the processors involved. Furthermore, the PRAM algorithm uses a �nite amount of memory; thus, a
bounded memory blowup results in a �nite amount of memory as well for the BDN that simulates the PRAM
algorithm. In addition, given that the BDN allows for an immediate physical implementation, we make the
following (arguable, but nevertheless often encountered) assumption: The BDN is the most elementary model
of parallel computation. With this assumption in mind, the following result is an immediate corollary of
theorem 4.8:

Theorem 4.9 Given any model of parallel computation M , and for any n 2 IN, n � 1, rt� PROCM (2n�
1) � rt � PROCM (2n) (strict inclusion).

That is, we have not only an in�nite hierarchy rt � PROCPRAM(f), but such a result holds for rt �
PROCM (f) as well, for any model of parallel computation M .

5 Conclusions

In one of our previous paper [14], we suggested as an interesting research direction the study of a realistic
computational complexity theory for parallel real-time systems, that is, a theory based on a realistic model
of real-time computations, that can be easily translated into practice. The concept of timed !-languages
was proposed in [14] as a possible foundation for this pursuit. This paper continues this idea. We started
by de�ning complexity classes for the real-time domain. We believe that de�nition 3.1 captures the intuitive
notion of resource (processors, storage space) bounds for real-time parallel algorithms. We also believe
that these resources are the most important for the domain. However, section 3.1 o�ers the basis for the
development of other complexity classes, should they prove to be useful. Since the notion of input size is
di�erent from the classical de�nition in the real-time domain, we presented an intuitive de�nition of such in
section 3.2.

Besides de�ning the basis for our theory, we also proved what we believe to be an important result. Indeed,
theorem 4.9, which is the central result of this paper, shows that the hierarchy of real-time algorithms with
respect to the number of processors used is in�nite. Furthermore, such a result is invariant to the model
of parallel computation involved, and independent of the characteristics (that is, speed) of the particular
processors used by the algorithms. To our knowledge, this is the �rst time such a result is proved. From
a practical point of view, theorem 4.9 emphasizes the need for looking into parallel implementations, since
this theorem shows that parallelism may add power, in a more general sense than mere speed, to a real-time
application.

The languages Lk, k � 1, faithfully model the geometrical variant of the problem. We chose this direction
in order to preserve the clear and intuitive support provided by the geometrical case. However, the notion
of insertion point (that moves after each insertion) is not necessary. It is immediate that the results in this
paper hold even if the input is allowed to change (any number of) arbitrary indices within the acceptable
insertion zone at any time ci, i > 0.

It should be noted that, even if the algorithms developed in this paper do not exhibit explicit deadlines,
they are nonetheless real-time algorithms, since their inputs arrive in real-time. In order to justify this,
note �rst that real-time input arrival implicitly imposes a sequence of deadlines (in a certain sense) on the
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algorithm itself [10, 26] (for example, many algorithms with real-time input constraints should process the
current input before another datum arrives in order to successfully handle the (real-time) input arrival [5, 26];
as another example, although no explicit deadlines are present in the case of d-algorithms, it is shown in [10]
that the real-time arrival law for the input actually imposes a deadline on the length of the computation of
any d-algorithm). Second, many practical domains such as real-time databases and industrial applications
seem to include input into those factors that determine whether a given application deserves the real-time
quali�er [9, 24, 26]. Finally, those algorithms with real-time constraints on their input are also recognized
as real-time algorithms in [25].

A note on the di�erences and similarities between timed !-languages (that is, real-time algorithms) and
classical formal languages (that is, classical algorithms) is also in order. On one hand, it is immediate that
formal languages are particular cases of timed !-languages. Indeed, save for the time sequence, any word is a
timed !-word. If one relies on the semantics of the time sequence, one can add the time sequence 00 : : : 0 to a
classical word and obtain the corresponding timed !-word. However, none of the timed !-words obtained in
this manner is well-behaved. We have thus a crisp delimitation between real-time and classical algorithms,
while keeping the formalisms as uni�ed as possible.

We believe that the direction started in this paper (namely, the real-time parallel complexity theory) is
worth pursuing. In particular, an open problem we intend to address is the study of space hierarchies. Space
in particular received a diminished attention from the parallel community, but we believe that interesting
results can be found in this area. Another open problem, which is of less importance but nonetheless
interesting, refers to the notion of real-time input size. Our measure is intuitive and faithful to the real
world. However, given a concatenated timed !-word w = w1w2, it would be nice to have jwj = jw1j+ jw2j,
as is the case in classical complexity theory. However, it is not possible to state such a property, since
any well-behaved timed !-word can be written as an in�nite concatenation of timed !-words, and thus its
length would be in�nite given the mentioned property. Therefore, we decided to o�er instead a new notation
(de�nition 3.3) for those cases in which complexity results need to be expressed as functions of many elements
of an input which is the result of a concatenation operation. Such a somewhat cumbersome solution could
be avoided if one can �nd a canonical representation of timed !-words as concatenation of elementary words.
While we don't expect that such a representation is absolutely necessary, it would simplify the formalisms,
and it may also simplify the statement of some complexity results.
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