
Technical Report #2000-440

An Application of Discrete-Event Theory to Truck Dispatching

Department of Computing and Information Science

Queen's University, Ontario, Canada

St�ephane Blouin, Martin Guay and Karen Rudie

September 11, 2000

Technical Report 2000-440

Acknowledgment

We would like to thank Dr. W.M.Wonham for providing the �rst author with facilities (oÆce

space and computer access) at the University of Toronto for the academic year 1999-2000 and

for helpful comments on an earlier incarnation of this report. We are grateful to James Kresta

and Mike Lipsett, at the Syncrude Research and Development Center in Edmonton (Alberta),

for the information provided on the truck dispatching process.

2

Technical Report 2000-440

Abstract

This report proposes a theoretical framework to automate the making of decisions for the

discrete part of a large system. This research aims to provide a procedure that veri�es possible

decision scenarios and derives the optimal sequence of actions to take. For this purpose,

two distinct theories are explored: discrete-event systems (DES) and vector discrete-event

systems (VDES). The capabilities and limitations of these theories are examined with the

help of an industrial example. The application consists of an oilsand extraction process whose

discrete subsystem models the task of dispatching a eet of trucks. A set of production and

maintenance speci�cations are enforced while preserving the optimality in the execution of

commands. In the DES framework, various supervisors (centralized, modular, hierarchical

and timed) are synthesized. In VDES, only centralized supervisors are synthesized. Vector

DES theory provides a more compact representation than DES. On the other hand, the DES

framework remains a highly attractive approach due to its modelling capabilities and due to

the availability of well-established tools.

3

CONTENTS Technical Report 2000-440

Contents

1 Introduction 9

2 Problem De�nition 10

2.1 Industrial Context and Objectives . 10

2.2 Operating Rules and modelling . 10

2.3 Some Simplifying Assumptions . 12

3 Structure of the Study 13

4 Control Synthesis for Truck Dispatching 15

4.1 DES Supervisory Controls . 15

4.1.1 Supervisory Controls for Case 1 . 15

4.1.2 Supervisory Controls for Case 2 . 18

4.1.3 Supervisory Controls for Case 3 . 22

4.1.4 Supervisory Controls for Case 4 . 22

4.1.5 Supervisory Controls for Case 5 . 24

4.2 VDES Supervisory Controls . 27

4.2.1 Modelling of Case 1 . 27

4.2.2 Modelling of Case 2 . 29

4.2.3 Modelling of Case 3 . 31

4.2.4 Modelling of Case 4 . 32

4.2.5 Modelling and Supervisory Control of Case 5 34

4.3 Discussion . 36

4.3.1 Scope . 36

4.3.2 Comments on the DES Approach . 37

4.3.3 Comments on the VDES Approach . 38

5 Conclusions 39

5.1 DES versus VDES . 39

5.2 Future Work . 40

A DES Theoretical Background 42

A.1 Discrete-event systems . 42

A.2 Supervisors for DES . 43

4

CONTENTS Technical Report 2000-440

A.3 Timed DES . 44

B Printouts for DES Supervisory Controls 45

B.1 Printouts for Case 1 . 45

B.2 Printouts for Case 2 . 48

B.3 Printouts for Case 3 . 53

B.4 Printouts for Case 4 . 57

B.5 Printouts for Case 5 . 61

C VDES Theoretical Background 63

C.1 Vector Discrete-Event Systems . 63

C.2 Control of Vector Discrete-Event Systems . 64

C.3 Supervisors of Vector Discrete-Event Systems 66

C.4 Procedures to Compute SFBC, DSFBC and VDESI 68

D VDES solution for Case 5 70

5

LIST OF FIGURES Technical Report 2000-440

List of Figures

1 Oilsand Extraction Operation . 11

2 Case 1 - Shovel and Trucks DES . 15

3 Case 1 - SY ST1 DES . 16

4 Case 1 - Bu�er Speci�cations for SY ST1 . 16

5 Case 1 - Modular Supervisors for SY ST1 . 17

6 Case 1 - Partial Expansion of SY ST1 with Timed Events 18

7 Case 2 - Shovel and Truck DES . 18

8 Case 2 - Bu�er Speci�cation and Modular Supervisors for SY ST2 19

9 Case 2 - Second Speci�cation . 19

10 Case 2 - Partial GLO . 20

11 Case 2 - High Level Speci�cations . 21

12 Case 3 - Shovel and Truck DES . 22

13 Case 3 - Bu�ers and Modular Supervisors . 23

14 Case 4 - Truck and Bu�er DES . 25

15 Case 4 - High Level Speci�cation . 25

16 Case 5 - Queue DES . 26

17 Case 5 - High Level Speci�cation . 26

18 Simplest SHOV EL80 VDES . 27

19 Petri net Representation of Case 1 . 28

20 Petri net Representation of Case 2 . 29

21 Speci�cation of Case 2 . 30

22 Petri net Representation of Case 3 . 31

23 Petri net Representation of Case 4 . 33

24 Speci�cation of Case 4 . 34

25 Speci�cation of Case 5 . 34

26 Production and VDES Speci�cations . 36

27 Reduced Load Bu�er for T1C80 . 37

28 DES Representation of 80 Ton Shovel and Truck 43

29 Centralised and Decentralised Supervisors . 43

30 TDES for SHOV EL80 . 44

31 Example of VDES . 63

32 Interacting VDESs . 65

6

LIST OF FIGURES Technical Report 2000-440

33 VDESI on Interacting VDESs . 67

34 Fix and VDESI for P3 . 74

7

LIST OF TABLES Technical Report 2000-440

List of Tables

1 Progressive Production Layout . 13

2 Production Speci�cations . 13

3 DES Supervisors for Di�erent Cases . 14

4 Case 1 - Event Description for SY ST1 . 16

5 Case 2 - Events Description for SY ST2 . 18

6 Case 3 - Events Description for SY ST3 . 22

7 Case 4 - Events Description for SY ST4 . 24

8 Event Description for Case 1 . 28

9 State Description for Case 1 . 28

10 Event Description for Case 2 . 30

11 Event Description for Case 3 . 32

12 Event Description for Case 4 . 33

13 Possible Extensions to Mimic the Overall Production 40

8

1 INTRODUCTION Technical Report 2000-440

1 Introduction

Complexity is an inherent limitation of current control techniques. Although it is possible to

conceive of the control of large and complex systems, current tools are not amenable to provide

simple and reliable ways of integrating and orchestrating decision-making mechanisms.

In manufacturing and industrial applications, there exists an important class of complex sys-

tems consisting of processes that exhibit interaction of continuous and discrete dynamics. In

most cases, the continuous and discrete behaviours can be segregated so that they naturally

form subsystems of the overall process. The continuous behaviour arises due to the physi-

cal aspects of the processes while the discrete component originates from control strategies

implemented through programmable-logic controllers (PLC) or digital controllers.

Since complex systems can rapidly exceed human capability to capture detailed dynamics of the

system's behaviour, the making of a decision is likely to be performed with the help of heuristics

and thus may possibly be suboptimal. For situations where complexity increases or where the

process con�guration is continuously changing, the tasks of making adequate decisions and

taking appropriate actions become even more diÆcult. Moreover, complex systems may have

global objectives and performance requirements that require a mechanism to decompose global

goals into subtasks and transmit the proper control actions to achieve them.

This report proposes a theoretical framework for making decisions based on the discrete part

of the process only. The decision-making procedure for the overall (continuous and discrete)

system is left for further project. The objective of the current research is to provide a systematic

procedure for verifying possible decision scenarios and deriving the optimal sequence of actions

to take. Two distinct theories are explored: discrete-event systems (DES) and vector discrete-

event systems (VDES). The capabilities and limitations of these theories are examined with

the help of a running industrial example.

The report is structured as follows. Section 2 presents the industrial application used through-

out the report. It also gives some rules and assumptions for modelling. Section 3 provides the

structure of the study as well as the basis of comparison for the DES and VDES approaches.

Section 4 contains the modelling details and the supervisory controls for each of the cases

studied. Observations on the implementation of DES and VDES theories are also provided.

Finally, Section 5 concludes with the advantages and disadvantages of each approach as well

as suggestions for future work. To complete the report, appendices A and C supply a brief

summary of DES and VDES theories while appendices B and D contain computational details.

9

2 PROBLEM DEFINITION Technical Report 2000-440

2 Problem De�nition

This section presents the industrial application upon which the comparison of DES and VDES

techniques will be based. The application of interest consists of the Syncrude oilsand extraction

process as operated in Fort McMurray, Alberta. This process provides an industrial application

that is rich in decision-making problems. This application also possesses interacting subsystems

each of which has its own control challenges. This section proposes one approach to capture

most of the rich behaviour inherent to the process without losing critical dynamics and yet

challenging the DES and VDES theories to provide systematic procedures to derive a solution.

2.1 Industrial Context and Objectives

The oilsand separation process consists of three main operations: extraction, hydrotransport

and separation as shown in Figure 1. The extraction part consists of shovels which are located

at speci�c sites of the mine (Sites A, B, and C), each of which unloads its bucket into trucks.

Trucks then transport the ore to a crusher (feeding a hydrotransport system), taking di�erent

routes without necessarily returning to the same shovel on the return trip. Distances separating

the extraction locations from the crusher are of the order of two to four kilometers. The

complete production has three shovels of two di�erent bucket sizes (40 and 80 tons) dispersed

over three locations and 30 trucks of two distinct volumes (240 and 320 tons).

As described above, the extraction behaviour is naturally driven by the occurrence of events

(road conditions, payload capacity, etc.). Therefore, the extraction process will be better

characterized by a set of discrete variables while hydrotransport and separation have continuous

dynamics. Moreover, discrete actions taken by the extraction portion of the production a�ect

the downstream continuous dynamics.

In the actual setup the dispatch of trucks is performed by a coordinator. The dispatch rules

consist of a mixture of the dispatcher's experience and a set of heuristics. Clearly, the truck

eet size as well as the possibility of various scenarios can rapidly exceed the dispatcher's

capability to capture �ne details of the overall process. That is without considering the fact

that the shovel locations naturally vary as mining operations proceed thus translating into

changes of the route characteristics (length, quality, etc.).

In this context, it is natural to seek a systematic procedure for making decisions that will en-

sure e�ective use of the existing resources (e.g., trucks). This study focuses on the extraction

process to propose decision tools by enhancing the dispatcher's vision of the various possi-

bilities. These tools must also guarantee some degree of performance (optimality) based on

the knowledge provided on the overall behaviour. Once the decision mechanism is formalized,

control objectives related to the continuous parts can be considered.

2.2 Operating Rules and modelling

The following operation rules have been considered while modelling the extraction process:

� The average truck speed, under normal conditions, is 20 km/hr while it can go down to

15 km/hr on certain occasions. The quality of the roads (soft roads, hills,...) as well as

the truck conditions (tire temperature, ...) can result in a reduction of the truck speed

10

2 PROBLEM DEFINITION Technical Report 2000-440

Continuous

Sweet Blend
Crude Oil

Hydro-
Transport

Separation

Upgrading

Site A

Site B

Site C

Buffer A

Buffer B

Buffer C

Discrete

Buffer D
= truck

Figure 1: Oilsand Extraction Operation

or of its payload capacity. Therefore, a change of speed resulting from truck and/or road

conditions can be captured by the time needed to execute an operation. We will borrow

this point of view later in our discussion.

� The shovels do not break down.

� The production runs continuously except for co�ee breaks. The latter are not handled

here since they cause relatively short-lived (albeit signi�cant) disruptions.

� As trucks may break down, the size of the truck eet must compensate for breakdowns.

Consequently, trucks in excess may have to wait in a queue before a shovel becomes

available. Thus the shovels and the crusher should be equipped with queues.

� Additional information provided by Syncrude allowed the trucks to be modelled as �nite

state machines with the following states: idle, queued, loading, unloading, travelling,

broken, and being repaired. For this project, Syncrude suggested that the idle and

queued states be equivalent.

� Circulation rules, which govern the priority of passage between trucks at intersections,

were also given but are not explicitly used at this time.

11

2 PROBLEM DEFINITION Technical Report 2000-440

However, additional and �ctitious scenarios are also introduced to enrich the model de�nition

and explore the capabilities of the theory. Details of the scenarios will be provided in Section

3. As the applicability of any theory largely depends on its capability to translate e�ectively

the production rules, the DES and VDES modelling steps will be explained extensively.

2.3 Some Simplifying Assumptions

To demonstrate the feasibility of the application of DES and VDES theories to truck dispatch-

ing, we choose to derive a simpli�ed process that possesses all the key features of the original

system. The main reason for this simpli�cation is not conceptual but rather organizational.

We want to preserve the main elements of the problem while ensuring an easy presentation of

the otherwise large problem. Among the similarities, the determination of the most appropri-

ate con�guration and use of trucks considering the amount, location and capacity of shovels

remain of primary interest.

The simpli�ed approach is motivated by the following observation. In the oilsand extraction

context, all trucks and shovels exhibit the same behaviour (identical DES and VDES rep-

resentations). Therefore, by enlarging the eet of trucks or shovels, one only augments the

dimension of the problem without altering its complexity and therefore without changing the

existence of a solution. Thus, what is achievable on a reduced scale (with fewer trucks and

shovels) can be extended to the actual scale.

Finally, some aspects of the production are altered to facilitate this study by limiting the size of

the overall system and controller. For instance, the shovels remain of 40 and 80 tons while the

trucks' capacities are decreased to 80 and 160 tons. Distances are also reduced to minimize the

size of the problem in a timed DES framework. For instance, a simpli�cation was made on the

time unit used by reducing hauling distances, or equivalently by increasing the hauling speed.

Since all truck speeds are averages, time bounds can be used to reect the speed span for the

hauling time. If a speed decrease is required, the time bounds can be changed or another event

can be de�ned with reduced time bounds.

12

3 STRUCTURE OF THE STUDY Technical Report 2000-440

3 Structure of the Study

It is known that the production con�guration (mainly driven by the number of operational

trucks and shovels) can change frequently. In this project, we perform sequential passes of

increasing complexity to converge to a model suÆciently rich and complex in behavior. The

strategy is to develop a stable structure and its respective controller before adding a new feature

(Simon, [11]). This progressive approach shows how DES and VDES theories enable us to meet

numerous speci�cations with a varying production layout. In the present case, the production

layout is made more complex and more precise through �ve progressive scenarios listed in

Table 1. These cases (labeled from 1 to 5) are di�erentiated by the following characteristics:

the number of shovels (�rst column), the number of trucks (second column), the number of

shovel locations (third column), the possibility of truck breakdowns (indicated by Yes or No in

the fourth column) and the presence of queues at extraction and crusher sites (last column).

Shovels Trucks Locations Breakdowns Queues

Case 1 1 3 1 No 0

Case 2 1 3 1 Yes 0

Case 3 2 3 1 Yes 0

Case 4 2 3 2 Yes 0

Case 5 2 3 2 Yes 1

Table 1: Progressive Production Layout

The approach taken is to cast the variable nature of the process within speci�cations while the

invariant aspects of a piece of equipment are intrinsic to the plant description. Throughout

sections 4.1 and 4.2, a set of seven speci�cations will be either implemented or, at least, mod-

eled. In reference to the case number of Table 1, the speci�cations include the following:

Cases 1-5: Bucket capacity for each truck,

Case 1: Only one truck loaded at a time by the shovel,

Case 2: Priority of repair of 160-ton trucks over 80-ton trucks,

Case 2: Limit of one truck breakdown for four successfull loads,

Case 4: After three 160-ton truck breakdowns, only 40-ton shovel can load the truck,

Case 5: Queue for trucks at shovel sites,

Case 5: Blend speci�cation.

Table 2: Production Speci�cations

Among the untimed speci�cations of the process one �nds the number of shovels available

(which also a�ects the plant size), the size of the queues at the extraction and dumping areas,

the load capacity of each truck, the blend of trucks required to satisfy a speci�c ore content,

and the priorities of repair in case of trucks breakdowns. An example of a timed speci�cation

is the time needed for delivering ore at the crusher including the time required for loading,

hauling and unloading.

The synthesis of a controller for the truck dispatching task is performed in two steps. First,

Section 4.1 presents the modelling and synthesis aspects of DES theory. Then, Section 4.2

covers the same scenarios using VDES theory.

13

3 STRUCTURE OF THE STUDY Technical Report 2000-440

Among the existing techniques available in DES theory, we focus on centralized supervision,

modular supervision, hierarchical supervision and timed DES. These concepts are summarized

in Appendix A. Table 3 shows which of these supervisors is derived for each case.

Case 1 Case 2 Case 3 Case 4 Case 5

Centralised Superv. X X X X X

Modular Superv. X X X X X

Hierarchical Superv. X X X

Timed Superv. X X

Table 3: DES Supervisors for Di�erent Cases

Full details for the DES supervisor synthesis are not provided here but only the main issues and

observations are given. However, the main DES or TDES names are provided so the reader can

refer to Appendix B of this report. The MAKEIT �les (readable with any text editor) contain

the history of all operations. Once again, for the sake of brevity, not all �les are provided in

this appendix. Even for the simplest cases the �nal result remains prohibitively large to be

presented in a written form.

Since in Section 4.1 a DES supervisor is derived for each of the cases in Table 1 and speci�ca-

tions of Table 2, Section 4.2 mainly focuses on the modelling aspects of VDES to �nally solve

the last case (Case 5) whose full details can be found in Appendix D. The motivation for this

procedure is that, contrary to the cumbersome solution of the full problem, it provides more

insights than using the automated procedure in VTCT (a software package being developed

at University of Toronto to perform VDES operations).

14

4 CONTROL SYNTHESIS FOR TRUCK DISPATCHING Technical Report 2000-440

4 Control Synthesis for Truck Dispatching

In this section, the �ve cases described in Table 1 will be sequentially solved by using DES and

VDES theory. This approach has the bene�t of depicting the progressive increase in complexity

(by inserting one new feature at a time) and its consequences (or computational cost). The

objective here is to obtain stable structures up to the �fth case. Once this stage is reached,

further features can be incorporated in the system to reect the real process.

The models for DES, timed DES, and vector DES as well as their control synthesis techniques

(modular and hierarchical) have the avor of the work performed by Wonham and coworkers in

[9], [2], [13],[6] and [7]. For more fundamentals on the topics, the reader is encouraged to refer

to those references. An abbreviated introduction to the matter is also provided in appendices

A and C. Other well-known timed DES and hierarchical DES approaches can be found in [1]

and [3], respectively.

The text is organized as follows. Section 4.1 provides a thorough analysis of the process using

DES theory. Then, Section 4.2 solves the same cases using VDES theory. Section 4.3 concludes

by providing a discussion on various aspects from the DES and VDES approaches.

4.1 DES Supervisory Controls

In the next sections, the scenarios and speci�cations described in Section 3 will be sequentially

modeled and solved using DES tools. The models for the plant and speci�cation are also

explained with the help of �gures while their computational details can be found in Appendix

B.

The software CTCT and TTCT have been used to synthesize supervisors for DES and TDES.

The software can be found at the WWW site provided in [12].

4.1.1 Supervisory Controls for Case 1

The �rst scenario is composed of one shovel of 80 tons and three trucks (one of 80 tons and

two of 160 tons) located at the same ore source. The distance between the extraction site

and the crusher is identical for all trucks. Also, no breakdowns are allowed and no queues

are adjoined to the shovel or to the crusher. The DES representing the plant is composed of

SHOV EL80, T1C80, T1C160 and T2C160 (Figure 2) whose events are summarized in Table

4. The resulting plant DES SY ST1 (Figure 3) is the shu�e product (product of DES depicting

all possibilities of asynchronous events) of all �nite-state machines in Figure 2. Note \slfpf g"

means self-loop at every state of the DES with events in brackets.

Figure 2: Case 1 - Shovel and Trucks DES

As there is only one shovel and no queue, many trucks can have access to the shovel and the

loading of a speci�c truck must be di�erentiated from the loading of others. This justi�es

15

4 CONTROL SYNTHESIS FOR TRUCK DISPATCHING Technical Report 2000-440

Event Meaning Event Meaning

1 loading of T1C80 7 full loading of T1C80

3 loading of T1C160 8 unloading of T2C160

4 unloading of T1C80 9 full loading of T1C160

5 loading of T2C160 11 full loading of T2C160

6 unloading of T1C160

Table 4: Case 1 - Event Description for SY ST1

the presence of controllable events 1, 3 and 5 for the loading of the 80-ton and the two 160-

ton trucks. Since we represent the shovel DES as a singleton, the loading events must be

controllable since the shovel can only load one truck at a time (supervisor must disable other

loading events). The truck events, being loaded and unloaded, are controllable (eventually

useful when full or partial loading will have to be chosen) and uncontrollable (depends on

roads and truck conditions), respectively.

Figure 3: Case 1 - SY ST1 DES

The �rst untimed speci�cations to be assigned to SY ST1 refer to the bucket capacity of each

truck. The capacities of trucks T1C80, T1C160 and T2C160 are speci�ed by bu�ers of di�erent

sizes B1, B2 and B3 (Figure 4). The bu�ers translate the fact that only one bucket is required

to �ll T1C80 (bu�er B1) while two are needed for each of T1C160 and T2C160 (bu�ers B2

and B3). Moreover, the bu�ers specify the requirement that only one truck is loaded at a

time. For instance, in bu�er B2 when event 3 occurs, other loading events 1 and 5 are not

allowed until truck T1C160 is full, signi�ed by event 9. All states of each bu�er have self-loops

of events of the other trucks to keep an independence of operation among the trucks.

Figure 4: Case 1 - Bu�er Speci�cations for SY ST1

16

4 CONTROL SYNTHESIS FOR TRUCK DISPATCHING Technical Report 2000-440

With this setup, a centralized supervisor SUPER1 is determined. As designed, the bu�ers

B1, B2 and B3 enforce the truck capacity and the loading of one truck at a time. However,

taken individually they do not prevent the underow or overow of the trucks. It is possible

(in B1, B2 and B3, Figure 4) for loading events (namely 1, 3 and 5) to occur before unloading

events (4, 6 and 8) take place at state 0. For instance, a faulty sequence in B2 would be 3-3-9-3

since a third loading occurs before an unloading, thus leading to a truck overow for T1C160.

Therefore, modular supervisors must be designed to respect the underow and overow rules.

As an example, consider T1C80 and its respective bu�er B1. The underow rule suggests that

unloading must not occur when the truck is empty (avoid event 4 before 7). The overow rule

speci�es that no other loading can happen before the truck is unloaded (avoid another event 1

before event 4) . These requirements are satis�ed by adding an additional state to the bu�er

that brings the sequence loading-unloading in the right order (equivalent to including the truck

model in the speci�cation). Finally, we obtain the proper bu�er supervisors MB1, MB2, and

MB3 (Figure 5) whose intersection generates the modular supervisorMSUPER14. Moreover,

the latter is optimal since it generates the same language as SUPER1 when put on-line with

SY ST1.

Figure 5: Case 1 - Modular Supervisors for SY ST1

A timed DES that models this simple system is then developed to detect any possible prob-

lems. In fact, this �rst exercise raised some questions since the process description provided

by Syncrude contained �nite lower and upper time bounds for all events. Therefore, the upper

time bounds of all controllable events were set to in�nity as required by theory (Section A.3).

However, a critical modelling question remains: \Which one of the upper bound or controlla-

bility property should be kept when the e�ects of those properties on the overall process are not

known?" Obviously, this question refers to the need for a better understanding of the process

and the answer requires a deeper analysis to assess the most realistic property for each event.

Arbitrary lower bounds of value 1 were given for shovel loading events 1, 3 and 5 while truck

events had the time bounds: 4 [1 2]; 7 [1 1]; 6 [1 2]; 9 [1 1]; 8 [1 2]; 11 [1 1] where elements in

brackets have the following meanings [(lower time bound) (upper time bound)]. All control-

lable events are set to be forcible (an assumption that facilitates the �rst approach). With the

previous speci�cations and given time bounds, no supervisor exists.

Similar to SHOV EL80, a partial expansion of SY ST1 with the tick event and the above time

bounds is provided in Figure 6. It is shown that if event 7 occurs at state 1 then, from state 5,

event 4 becomes imminent and is impossible to stop. This is because event 4 reached its upper

time bound (i.e., no more tick allowed) and there is a limit to the number of ticks the forcible

events 1, 3, 5, 7, 9 and 11 can preempt. Similar conclusions can be drawn for events 6 and 8

such that there exists no controllable subsystem in SY ST1. The selected time bounds are too

restrictive for the system and the set of possible actions must be enlarged. This is performed

17

4 CONTROL SYNTHESIS FOR TRUCK DISPATCHING Technical Report 2000-440

Event Meaning Event Meaning

1 loading of T1C80 9 repair of T1C80

2 unloading of T1C80 10 unloading of T2C160

3 loading of T1C160 11 full loading of T1C160

4 breakdown of T1C80 12 breakdown of T2C160

5 loading of T2C160 13 repair of T1C160

6 unloading of T1C160 15 full load of T2C160

7 full loading of T1C80 17 repair of T2C160

8 breakdown of T1C160

Table 5: Case 2 - Events Description for SY ST2

by �xing the lower bounds of events 1, 3 and 5 to 0 (1 tick gap with upper time bounds of

uncontrollable events 4, 6 and 8). This modi�cation amounts to allowing the loading events

1, 3 and 5 to take place with no delay once they are given the possibility to occur. While the

untimed supervisor has 28 states and 64 transitions, its timed equivalent has 375 and 899. No

temporal speci�cations are added yet to the problem.

Figure 6: Case 1 - Partial Expansion of SY ST1 with Timed Events

4.1.2 Supervisory Controls for Case 2

For the second scenario, truck breakdowns are introduced. Even if this is not a major change in

the process description, this extension of truck models is used as a valuable re�nement towards

a more complex model. Names for trucks, shovels, bu�ers and modular bu�er supervisor DES

remain the same as in Section 4.1.1 but the global speci�cation (resulting from B1, B2 and

B3) is named SPEC2. Again the plant DES SY ST2 is composed of trucks and shovel as

shown in Figure 7. Due to the addition of breakdowns, the list of events is altered and the

meaning of each event can be found in Table 5.

Figure 7: Case 2 - Shovel and Truck DES

With this new con�guration a centralized supervisor SUPER2 is obtained. Once again, a

18

4 CONTROL SYNTHESIS FOR TRUCK DISPATCHING Technical Report 2000-440

modular supervisor is built from the bu�ers DES. The changes required to synthesize the

supervisors are similar to these of the previous case. In addition, care must be taken to account

for the ordering of repairs compared to other events. To avoid overload occurring before an

unload, only the repair events must lead to a loading (Figure 8). From proper supervisorsMB1,

MB2 and MB3 for the bu�ers, a modular and optimal supervisorMSUPER2 is determined.

Figure 8: Case 2: Bu�er Speci�cation and Modular Supervisors for SY ST2

With the possibility of breakdowns, a new speci�cation is introduced. It consists of forcing the

repair of any 160-ton trucks (if broken) before the repair of the 80-ton one (when broken). The

speci�cation REPAIR, built from two individual speci�cations REPAIR1 and REPAIR2

(Figure 9), can be used as a modular supervisor to guarantee the correct order of repairs. The

combination of SPEC2 and REPAIR provides the new speci�cation SPEC22. From this we

get the centralized supervisor SUPER22 and its modular equivalent MSUPER22 that is also

optimal.

Figure 9: Case 2 - Second Speci�cation

Now, we can also perform hierarchical supervision. Since we introduced breakdowns, it is pos-

sible for the manager to monitor the status of production by looking at how many breakdowns

have occurred compared to the loads successfully brought to the crusher. For this purpose, a

sample of the truck eet is taken, here one 160-ton truck (T1C160), and the manager vocalizes

the states representing the full and broken status (events 8 and 11).

The development of the hierarchical supervisor is performed as follows. The reader may refer

to [12] for technical details. The states of SY ST2 where events 8 and 11 lead are �rst vocalized

19

4 CONTROL SYNTHESIS FOR TRUCK DISPATCHING Technical Report 2000-440

as states 10 and 11 (Figure 10). This means the following:

For event 8: States 7 12 15 17 20 22 23 25 26 are vocalized as 10

For event 11: States 2 5 8 10 13 16 18 21 24 are vocalized as 11

These vocalized states are a means of recording the occurrence of speci�c events (8 and 11) by

tagging their target states with particular labels (10 and 11). The latter are not related to the

low-level state labels and from now on, we strictly refer to states 10 and 11 as vocalized states.

For convenience, the modi�ed SY ST2 is renamed GLO as it is our low level system. A portion

of GLO is shown in Figure 10 where vocalized states are represented by a double circle. The

DES GLO is then made output control consistent (named OCGLO) and then hierarchically

consistent (named HCGLO) by appropriate operations [12].

Figure 10: Case 2 - Partial GLO

By vocalizing some of the DES states we make abstraction of a portion of the low-level be-

haviour. In the sequel, we will refer to low-level sequences of events linking two vocalized states

as paths. To guarantee a unique low-level execution following a high-level command, the high-

level description must be enriched with the controllability nature of the paths. Namely, the

controllable/uncontrollable paths of GLO will become the controllable/uncontrollable events

of the high-level abstraction. Thus, a high-level event is controllable (resp., uncontrollable)

based on the presence (resp., absence) of low-level controllable events within the path. For

example, the path [0 11 2] linking state 0 to state 2 via event 11 is a controllable path while the

path [8 10 2] is an uncontrollable one. The controllable (resp., uncontrollable) high-level event

labels are identi�ed by extending the low-level vocal state labels with an odd (resp., even) third

digit. For instance, the low-level state 2 of Figure 10 (and vocalized as 11) becomes high-level

events 111 and 110, due to the controllable and uncontrollable paths [0 11 2] and [8 10 2],

respectively. As a result of this operation, the high-level alphabet is composed of events 100,

101, 110 and 111. The procedure described above leads to output control consistency (OCC).

The manager has a special interest in breakdowns (low-level event 8) and successful loadings

(low-level event 11). By the de�nition of OCC, the controllable event 11 makes the path

controllable, and since the uncontrollable event 8 always connects two vocalized states, it

forms an uncontrollable path. So in the high-level abstraction of Figure 10, events 111 and

100 are the events of interest for the manager because they correspond to events 8 and 11 at

the low level.

The manager is given limited observation and control over some of the low level events (here

breakdown and full loading events). Suppose the manager wants to limit the number of break-

20

4 CONTROL SYNTHESIS FOR TRUCK DISPATCHING Technical Report 2000-440

downs to one for each four successful loads of the truck. Using the simpli�ed high-level alphabet

only, the manager can draw his speci�cation DES, named SPECHI, as in Figure 11. Once put

on-line with the high-level map of the real production, we �nd that it cannot be done unless

no production is allowed (a rather sad situation). For this speci�c case, the only capability the

manager has is to stop the production whenever a certain number of breakdowns occurs (DES

named SPECHI2, Figure 11). The manager can impose with success this new speci�cation

on the low-level system, the production.

Figure 11: Case 2 - High Level Speci�cations

In the �nal step of the model re�nement, time is introduced into the system using the following

time bounds:

1 [0 1] 2 [2 3] 3 [0 1] 4 [1 2] 5 [0 1]

6 [2 3] 7 [1 1] 8 [1 2] 9 [2 1] 10 [2 3]

11 [1 1] 12 [1 2] 13 [2 1] 15 [1 1] 17 [2 1]

In this �rst approach, all controllable events are set to be forcible (which represents an ideal

case that could be relaxed later). With the above time bounds, central and optimal modular

supervisors are developed for the bu�er speci�cations B1, B2 and B3 only (i.e., without any

repair speci�cation). The timed supervisors exist and they are similar to their untimed version

except for the presence of the tick event. This con�rms that any untimed speci�cation should

be worked out �rst in an untimed framework before switching to TDES because the size of

the system increases dramatically when the occurrence of the tick event is introduced. For

instance, the pair (#states;#transitions) for the central supervisors when submitted to the

bu�er speci�cation only is, respectively for the untimed and timed case, of value (72,243) and

(1152,3073).

The temporal speci�cation to be studied is to determine how fast one cycle (load/unload or

load/breakdown/repair) can take. This is achieved by building a timer speci�cation TIMER

[12] that is compared to the actual timed supervisory control SUPER2 (same name as untimed

scenario but di�erent supervisor). If among TIMER there exists a supremal controllable

sublanguage w.r.t. SUPER2 then the timer speci�cation can be satis�ed. Progressively,

timers of 3, 4, 5 and 6 ticks were tried. For the �rst three timers there is no possible supervisor

(see Appendix B) while for the fourth one TTCT failed. However, by inspection of any truck

DES (since they all have the same time bounds) it can be seen that a minimum of seven ticks

is required (for the longest uncontrollable path: 2 ticks before event 7 can occur (eligible after

1), 2 ticks before event 4 becomes imminent and 3 ticks before event 9 can take place (2 ticks

to become eligible)).

The time bounds were initially assigned according to data provided for each event (load,

unload, breakdown and repair) of Figure 7. For example, the breakdown events 4, 8 and 12

(if they occur) normally take place in the �rst period of hauling and this justi�ed the time

bounds [1 2] (compared to [2 3] for successful unload events 2, 6 and 10). However, giving

21

4 CONTROL SYNTHESIS FOR TRUCK DISPATCHING Technical Report 2000-440

Event Meaning Event Meaning

1 T1C80 loaded by SHOV EL40 10 unloading of T2C160

2 unloading of T1C80 11 T2C160 loaded by SHOV EL80

3 T1C160 loaded by SHOV EL40 12 breakdown of T2C160

4 breakdown of T1C80 13 full loading of T1C80

5 T2C160 loaded by SHOV EL40 17 repair of T1C80

6 unloading of T1C160 19 full loading of T1C160

7 T1C80 loaded by SHOV EL80 23 repair of T1C160

8 breakdown of T1C160 25 full loading of T2C160

9 T1C160 loaded by SHOV EL80 29 repair of T2C160

Table 6: Case 3 - Events Description for SY ST3

time bounds by only looking at the event itself is misleading. We must also take into account

other events leaving from the same node. With the actual time bounds the breakdown event

always preempts the unload since it becomes imminent before the unload is eligible. To ensure

fairness of occurrence of both events, we must permit at least some tick overlap and we should

equate the two time upper bounds to include any late breakdown.

4.1.3 Supervisory Controls for Case 3

For the third case, another shovel of 40-ton capacity SHOV EL40 is added to the extraction

site (Figure 12). Once again, events labels are rede�ned (Table 6) and the global system is

named SY ST3.

As the additional shovel is of di�erent capacity than the other (we now have shovels of 40 and

80 tons) the trucks can be �lled by a di�erent number of buckets. The direct e�ect of this new

feature is to bring another branch to all truck bu�ers B1, B2 and B3. Consider B1 the bu�er

associated with T1C80 (Figure 13), the bu�er stipulates that the truck can be �lled by one

80-ton bucket (event 7) or two 40-ton buckets (event 1 twice) both cases leading to a full truck

(event 13). As all machinery is at one location, there is no need to distinguish between a load

performed by any speci�c shovel. The modular bu�er supervisors MB1, MB2 and MB3 are

built with the same rules as in Case 2 and are themselves proper supervisors (Figure 13).

Figure 12: Case 3 - Shovel and Truck DES

4.1.4 Supervisory Controls for Case 4

This scenario brings a feature that disrupts both the truck and bu�er DESs (shovels DESs

remain identical). As in the real process, each shovel is located at a speci�c extraction site

and trucks go to and from it to perform their loading and unloading. The two extraction sites

are at di�erent distances from the crusher and thus the travelling distance (important for the

22

4 CONTROL SYNTHESIS FOR TRUCK DISPATCHING Technical Report 2000-440

Figure 13: Case 3 - Bu�ers and Modular Supervisors

timed DES) will vary depending on where the truck is sent to or from. It is assumed that truck

dispatching to di�erent extraction sites is a controllable event and that it is performed from

the crusher site which also corresponds to the location where the trucks start at the beginning

of the day.

From now on, a successful load/unload cycle is described by the following sequence (where

events for T1C80 of Figure 14 are provided in brackets as a reference): travel from crusher

to extraction site (event 13 or 15), load at extraction site by a speci�c shovel (event 17 or

19), travel from extraction site to crusher (event 2 or 4), unload into crusher (event 21) and

start over. A breakdown (event 6) may occur right after the loading and it is followed by

a repair (event 23). By assigning a speci�c shovel to reach, the dispatcher directly enforces

travelling distance requirements. In the TDES framework, we can relate a longer distance to

a larger upper time bound. Thus, the choice of a shovel would imply the number of buckets

needed to �ll the truck, and the time required to travel back and forth between the shovel and

the crusher. By distinguishing the loading at di�erent locations, we can establish a relation

between the dispatcher's choice and its implications on the production. For instance, the bu�er

B1 in Figure 14 has two di�erent travelling distances to reach the shovels (namely events 13

or 15 for T1C80) and also di�erent hauling distances to reach the crusher (events 17 or 19).

This arrangement even allows us to set a higher average speed when the truck is empty and

a lower one when it is full. Finally, breakdown events are not associated to a speci�c shovel

because they originate from normal wear or road conditions. Table 7 provides the meaning for

all events of Figure 14.

For the new system SY ST4, a modular supervisor is built directly from the bu�er DES B1,

B2 and B3. In fact, one no longer needs to add an extra state to make the bu�er DES a

23

4 CONTROL SYNTHESIS FOR TRUCK DISPATCHING Technical Report 2000-440

Event Meaning Event Meaning

1 T1C80 loaded by SHOV EL40 19 SHOV EL80 fully loaded T1C80

2 haul from SHOV EL40 to crusher 21 unloading of T1C80

3 T1C160 loaded by SHOV EL40 23 repair of T1C80

4 haul from SHOV EL80 to crusher 25 travel from crusher to SHOV EL40

5 T2C160 loaded by SHOV EL40 27 travel from crusher to SHOV EL80

6 breakdown of T1C80 29 SHOV EL40 fully loaded T1C160

7 T1C80 loaded by SHOV EL80 31 SHOV EL80 fully loaded T1C160

8 haul from SHOV EL40 to crusher 33 unloading of T1C160

9 T1C160 loaded by SHOV EL80 35 repair of T1C160

10 haul from SHOV EL80 to crusher 37 travel from crusher to SHOV EL40

11 T2C160 loaded by SHOV EL80 39 travel from crusher to SHOV EL80

12 breakdown of T1C160 41 SHOV EL40 fully loaded T2C160

13 travel from crusher to SHOV EL40 43 SHOV EL80 fully loaded T2C160

14 haul from SHOV EL40 to crusher 45 unloading of T2C160

15 travel from crusher to SHOV EL80 47 repair of T2C160

16 haul from SHOV EL80 to crusher

17 SHOV EL40 fully loaded T1C80

18 breakdown of T2C160

Table 7: Case 4 - Events Description for SY ST4

proper supervisor. This is because the shovel loading events (1, 3, 5, 7, 9 and 11) cannot

take place before a truck reached a site (events 13, 15, 25, 27, 37 and 39). This strategy

avoids any possible overow. The untimed supervisor is of dimension (1302,4799) with bu�er

speci�cations only and of dimension (1302,4774) with the repair speci�cation added.

Hierarchical supervisory control is also performed on the system. However it is done with two

trucks only because with all trucks PSY ST4 (projection of SY ST4 without events 1, 3, 5, 7,

9, 11) still has over 1000 transitions to visually inspect and manually vocalize (a cumbersome

task). The reader can refer to Case 2 for more details on the procedure. We vocalize T1C160

at states 2, 4 and 6 or equivalently states in SY ST4 where events 12, 29 and 31 lead (respective

vocal states are 10, 11 and 12).

From the de�nition of OCC (and for reasons similar to the ones given in Section 4.1.2), low-level

events 12, 29 and 31 correspond to high-level events 100, 111 and 121, since they characterize

in a unique fashion the paths to vocal states. The manager is now capable of blocking a truck

from being loaded by a speci�c shovel. For the speci�cation of Figure 15, the manager disables

successfully the loading of truck T1C160 performed by SHOV EL40.

4.1.5 Supervisory Controls for Case 5

For the �fth and last scenario, a queue is added to the shovel SHOV EL40. Since the queue

enters the problem as an additional speci�cation (Figure 16) the truck, shovel and bu�er DES

are identical to the fourth case. The queue speci�cation is developed as a modular supervisor.

To do so, it must respect the system's behavior SY ST5 (identical to SY ST4) by allowing no

more information than the system contains without being more restrictive than the centralized

24

4 CONTROL SYNTHESIS FOR TRUCK DISPATCHING Technical Report 2000-440

078 2 3 4 5

1,5

3 3 3 399

1,5 7,117,117,11 7,11

31
291,5,7,8,10,11

12,35,33

slfp{2 4 6 13 14 15 16 17 18

19 21 23 37 39 41 43 45 47}

B2

078 2 3 4 5

1,3

511

7,9

43
1,3,7,9, 14

16,18,45,47

slfp{2 4 6 8 10 12 13 15 17

19 21 23 25 27 29 31 33 35}

B3

1,3 7,9 7,9 7,9

5 5 511

41

B1

03 2 5

3,59,119,11

2,3,4,5,6

9,11,21,23

1 1 7

17

13

slfp{8 10 12 14 16 18 25 27

29 31 33 35 37 39 41 43 45 47}

1 4

3,5,

9,11
3,5,

9,11

15

19

6 1

1,5

7,11

2527

1,5

7,11

6 1
37

1,3

7,9

39

1,3

7,9

2 3 4 51

6

0

T1C80

13 15

17 19
2 4
6 6

23
21

2 3 4 51

6

0

T1C160

25 27

29 31
8 10

12 12

35
33

2 3 4 51

6

0

T2C160

37 39

41 43
14

16

18 18

47
45

Figure 14: Case 4 - Truck and Bu�er DES

Figure 15: Case 4 - High Level Speci�cation

supervisor. Again, only 2 trucks (T1C80 and T1C160) are considered even though the shovel

events account for three trucks (i.e., contain loading events 5 and 11).

The speci�cation SPEC5 includes the bu�er speci�cations B1 and B2 as well as the queue

speci�cation Q. A modular supervisorMSUPER5 is found to be optimal. Its language, in the

presence of the system SY ST5, matches the language of the centralized supervisor SUPER5.

One could think that with only two trucks present and a queue for two trucks at one site the

supervisor size should not be di�erent from the one found in case 4. In fact, SUPER5 is ten

times larger than SUPER4. This increase in complexity is due to the fact that, in SUPER4,

a truck could arrive at a site before another truck and still be loaded last. With the queue

speci�cation, we impose the rule \�rst come, �rst loaded". Thus the language is more speci�c

and the DES larger.

Hierarchical supervisory control is now performed by vocalizing states following travel events

25

4 CONTROL SYNTHESIS FOR TRUCK DISPATCHING Technical Report 2000-440

13 and 15. In SY ST5 states 1, 6, 17, 18, 31 and 32 are vocalized with 13 while states 2, 9, 10,

21, 22, 35 and 36 are vocalized with 15. From the OCC de�nition (Section 4.1.2 and [12]), the

high-level events of interest are 131 and 151. A new speci�cation SPECHI5 is introduced to

indicate that the dispatcher wants the truck T1C80 to be loaded twice by SHOV EL40 and

then once by SHOV EL80 (Figure 17). This is because SHOV EL40 is farther than the other

shovel and since the truck tires heat up when travelling too much while loaded, the short trip

to SHOV EL80 permits its tires to cool down. This speci�cation could also correspond to a

requirement for a speci�c blend. For this case, a controllable high-level supervisor SUPERHI5

exists.

02 4
25 13

13
1 3

25

17 29
29

17

1,9,11

1,9,11A B

C

A=slfp{1,7,8,9,10,11,12,27,31,33,35}

B=slfp{2,4,5,6,8,10,11,12,15,19,21

,23,27,31,33,35}

C=slfp{2,3,4,6,7,9,11,15,19,,21,23}

Q

Figure 16: Case 5 - Queue DES

Figure 17: Case 5 - High Level Speci�cation

26

4 CONTROL SYNTHESIS FOR TRUCK DISPATCHING Technical Report 2000-440

4.2 VDES Supervisory Controls

The plant and speci�cation DES developed in Section 4.1 are used as a starting point for VDES

modelling. However, the details of how the speci�cations are adapted to a VDES approach

are provided. As mentioned previously, only VDES models are provided for the �rst four cases

while the �fth case is fully solved. A brief overview of VDES theory can be found in Appendix

C while Appendix D contains all calculations related to the solution of the �fth case.

4.2.1 Modelling of Case 1

The �rst scenario is composed of one shovel of 80 tons and three trucks (one of 80 tons and

two of 160 tons) located at the same ore source. The truck capacity speci�cation can be

represented by a VDES with an upper bound U representing the number of buckets needed

for a speci�c truck. However, it is not immediately apparent how to derive a static predicate

to enforce the requirement that when U loadings have taken place an unloading event must

occur. For instance, consider the 80-ton shovel VDES modeled by three states x1, x2 and x3

representing one full bucket, one bucket in a 160-ton truck and one bucket in a 80-ton truck,

respectively (Figure 18). To respect the speci�cation of loading only one truck at a time (say

the loading of a 160-ton truck or event a1), we should have a condition of the type: if x2 � 1

then [0 0 1][x1 x2 x3]
T � 0 until #x2 = 2. The previous condition requires that once the

shovel initiated the loading of a 160-ton truck (if x2 � 1), the loading of the 80-ton truck is

disabled (then [0 0 1][x1 x2 x3]
T � 0) until it completes the loading of the 160-ton truck with a

second bucket (until #x2 = 2). This type of condition is a combination of static and dynamic

predicates; it does not appear to be easily expressed either as a static predicate or entirely as

a dynamic predicate. As such, the algorithms in [4] could not be immediately applied.

b1
x1 x2

b2
x3

a2 a1

Figure 18: Simplest SHOV EL80 VDES

However, we can enforce the speci�cation of having only one truck loaded at a time via the

insertion of the truck capacity into the shovel VDES. For these reasons, the bu�er and priority

speci�cations are embedded into the shovel VDES (as shown in Figure 19). In the latter, the

VDES representations of the shovel and the trucks are named SHOV EL80, TC80 and TC160,

respectively. All events found in Figure 19 are de�ned in Table 8. In general, the meaning of

the VDES states (Table 9) is an extension of the events (Table 8).

In VDES, a speci�cation can be enforced by creating interdependences between various VDESs.

An interdependence is generated via interconnections between the states of one VDES and the

events of another VDES. This must be done in such a way that the number of tokens within

each individual VDES remains invariant. In this sense, this is analogous to a mass balance.

In Figure 32, an interdependence is assigned between the loading events (b1 and b2) and the

shovel states (x3 and x4). For example, the connection x3 � b1 � x1 is composed of an arrow

leaving state x3 to point towards event b1 and another arrow exiting event b1 to connect

with state x1. The �rst arrow enforces the requirement that event b1 only �res when each

27

4 CONTROL SYNTHESIS FOR TRUCK DISPATCHING Technical Report 2000-440

of state x3 and x5 possesses at least one token (x3 � 1 and x5 � 1) while the second arrow

makes SHOV EL80 available to �re event a1 or a3 as soon as event b1 has taken place. The

connections x3 � b1 � x1 thus ensure the transfer of a token from x3 to x1 for every �ring

of event b1. Consequently, whenever event a1 �res, event a3 cannot take place until event b1
occurs, which has the e�ect of disabling event b2 in TC80 since a token is required in state x4.

Therefore, the Petri net representation of Figure 32 guarantees a certain sequence of events

between VDESs SHOV EL80, TC160 and TC80.

a1

a2

a3

b1

c1

b2

c2

TC160

TC80

SHOVEL80

x1

x2

x3

x4

x5 x6

x7 x8

Figure 19: Petri net Representation of Case 1

Event Meaning Event Meaning

a1 �rst bucket in one TC160 c1 unloading of one TC160

a2 second bucket in one TC160 b2 full loading of one TC80

a3 �rst bucket in one TC80 c2 unloading of one TC80

b1 full loading of one TC160

Table 8: Event Description for Case 1

Event Meaning Event Meaning

x1 idle status for SHOV EL80 x5 idle (empty) status for trucks TC160

x2 half-full loading of one truck TC160 x6 full status for trucks TC160

x3 full loading of one truck TC160 x7 idle (empty) status for trucks TC80

x4 full loading of one truck TC80 x8 full status for trucks TC80

Table 9: State Description for Case 1

Similar to the DES case, loading events (b1 or b2) determine that a truck is ready to unload

(event c1 or c2) and that the shovel is available to load another truck (event a1 or a3). In

this sense, the sequence of events in the VDES of Figure 19 respects the behavior of the DES

counterparts in Section 4.1.1. In fact, one notes that the truck VDES models are identical to

the DES models of Figure 2.

28

4 CONTROL SYNTHESIS FOR TRUCK DISPATCHING Technical Report 2000-440

A sequence of events like a1 � a2 � b1 � a1 � a2 � b1 � a1 leads to an erroneous loading since

event c1 has never taken place and both 160-ton trucks have been �lled already. To prevent

such a (overow) situation, dynamic predicates must be used. The dynamic predicates must

record the number of loading cycles #ai and compare it to the number of unloadings #ci.

That is formulated by the following dynamic predicates

P1 := #a1 � #c1 + 2

P2 := #a3 � #c2 + 1
; (1)

where the constants 1 and 2 represent the initial number of trucks in the idle status. An

increase in the number of trucks or a change in eet con�guration (trucks idle or not) requires

a change in these constants.

Since the Petri net representation does not include the controllable or uncontrollable nature

of events, we recall it from Section 4.1. The uncontrollable events are c1 and c2 while the

controllable ones are a1, a2, a3, b1 and b2.

4.2.2 Modelling of Case 2

For the second scenario, truck breakdowns (events d1 and d2) and repairs (events e1 and e2) are

introduced. The impact of additional events and states is to enlarge the VDES dimension and

to render the loading dynamic predicates (P1 and P2) of Case 1 more complex. By extension,

we get the resulting Petri net representation for Case 2 in Figure 20 with respective events

de�ned in Table 10. One notices that the VDES structure for all trucks is again identical to the

DES structure provided in Section 4.1.2. The latter contains all the justi�cations the reader

needs to make connections between the VDES structure and the extraction process. In this

case, the controllable events are a1, a2, a3, b1, b2, e1 and e2. The uncontrollable events are c1,

d1, c2 and d2.

a1

a2

a3

b1
c1

TC160

TC80

SHOVEL80

x1

x2

x3

x4

x5

x6 x7
d1

e1

b2
c2

x8

x9 x10
d2

e2

Figure 20: Petri net Representation of Case 2

29

4 CONTROL SYNTHESIS FOR TRUCK DISPATCHING Technical Report 2000-440

Event Meaning Event Meaning

a1 �rst bucket in one TC160 truck e1 repair of one TC160 truck

a2 second bucket in one TC160 truck b2 full loading of one TC80 truck

a3 �rst bucket in one TC80 truck c2 unloading of one TC80 truck

b1 full loading of one TC160 truck d2 breakdown of one TC80 truck

c1 unloading of one TC160 truck e2 repair of one TC80 truck

d1 breakdown of one TC160 truck

Table 10: Event Description for Case 2

The addition of events d1; e1; d2 and e2 alters the dynamic predicates P1 and P2 in the following

manner

P1 := #a1 � (#c1 +#e1) + 2

P2 := #a3 � (#c2 +#e2) + 1
;

where the sum of ci and ei represents the number of available trucks to be �lled (coming back

from unloading or repair).

For the speci�cation of repair priority of 160-ton trucks over 80-ton trucks, it is easier to

implement it as a VDES than as a predicate. In Figure 21, the state x11 = 1 guarantees that

if events d1 and d2 occur, repair event e2 cannot follow since x11 = 0 until event e1 takes place

thus giving priority of repair to TC160 over TC80. The presence of event f (assumed to take

place at high speed) and state x12 is justi�ed by the fact that a self-loop cannot be represented

in the actual VDES framework.

a1

a2

a3

b1
c1

TC160

TC80

SHOVEL80

x1

x2

x3

x4

x5

x6 x7
d1

e1

b2
c2

x8

x9 x10
d2

e2

x12

x11

f

Repair
priority

Figure 21: Speci�cation of Case 2

As the truck dispatcher wants a maximum of one breakdown (d1 or d2) per four successful

30

4 CONTROL SYNTHESIS FOR TRUCK DISPATCHING Technical Report 2000-440

unloads (c1 or c2), the following dynamic predicates ensure the speci�cation is met.

P3 := �4#d1 +#c1 � 0

P4 := �4#d2 +#c2 � 0

If more than one breakdown occurs for fewer than four unloadings, the above predicate is

violated and the controllable loading event a1 or a3 will be disabled.

4.2.3 Modelling of Case 3

For this case, another shovel of capacity 40 tons, SHOV EL40, is added to the extraction site.

As the additional shovel is of di�erent capacity than the other (buckets of 40 and 80 tons now

available), the trucks can be �lled by a di�erent number of buckets. The direct e�ect of this

new feature is to give another loading option (two types of loading bi or ci) to all truck VDES

representations as in Figure 22.

a1

a2

a3

b1 c1

TC160SHOVEL80

x1

x2

x3

x4

x5

x6 x7

d1

e1

g1

g2

g3

SHOVEL40

x12

x16

x14

x17

g4

g5

g6

x11

x13

x15

f1

b2 c2

TC80

x8

x9 x10

d2

e2

f2

Figure 22: Petri net Representation of Case 3

One notices that in DES (Section 4.1.3) the addition of a shovel modi�ed the bu�er speci�cation

while in VDES it brings a modi�cation to the truck VDES. In the present case, loading events

from di�erent shovels (events bi and ci) are distinguished while they were not in their DES

equivalent. If only one truck loading event (say b1) is linked to the loaded states of both shovels

(x3 and x15), the occurrence of b1 will require that x3 = x15 = 1, allowing the loading of one

truck by two shovels, an undesirable situation. As will be seen, the fourth case forces the

distinction between loading performed by di�erent shovels.

31

4 CONTROL SYNTHESIS FOR TRUCK DISPATCHING Technical Report 2000-440

The predicates P1 and P2 preventing trucks overow thus become

P1 := #a1 +#g1 � (#d1 +#f1) + 2

P2 := #a3 +#g5 � (#d2 +#f2) + 1:

The de�nition of events of Figure 22 is provided in Table 11. Finally, the controllable and un-

controllable events are a1, a2, a3, g1; : : : ; g6, b1, c1, b2, c2, f1, f2 and d1, e1, d2, e2, respectively.

Event Meaning Event Meaning

a1 �rst SHOV EL80 bucket in TC160 d2 unloading of TC80 truck

a2 second SHOV EL80 bucket in TC160 e2 breakdown of TC80 truck

a3 �rst SHOV EL80 bucket in TC80 f2 repair of TC80 truck

b1 full loading of TC160 by SHOV EL80 g1 �rst SHOV EL40 bucket in TC160

c1 full loading of TC160 by SHOV EL40 g2 second SHOV EL40 bucket in TC160

d1 unloading of TC160 truck g3 third SHOV EL40 bucket in TC160

e1 breakdown of TC160 truck g4 fourth SHOV EL40 bucket in TC160

f1 repair of TC160 truck g5 �rst SHOV EL40 bucket in TC80

b2 full loading of TC80 by SHOV EL80 g6 second SHOV EL40 bucket in TC80

c2 full loading of TC80 by SHOV EL40

Table 11: Event Description for Case 3

4.2.4 Modelling of Case 4

The extraction sites are now located at di�erent distances from the crusher and thus the

travelling distance varies depending on where the truck is sent to or came from. Consequently,

hauling and loading events are associated with speci�c shovels. From now on, we assume that

the truck dispatcher decides, via events c1, c2, h1 and h2, to which shovel the trucks are sent.

In Figure 23 we observe that only the truck VDES are modi�ed compared to Case 3. Here,

hauling events c1, c2, h1 and h2 are needed to initiate the loading by shovels. The process

events are de�ned in Table 12 where uncontrollable events are e1, f1, m1, ,p1, e2, f2, m2 and

p2 while the others are controllable. Once again, the VDES models for the trucks match the

ones developed for the DES approach in Section 4.1.4.

With this new con�guration, the predicates P1 and P2 for the appropriate loading of trucks

thus become

P1 := #a1 +#b1 � #g1 +#n1 + x120

P2 := #a3 +#b5 � #g2 +#n2 + x190
;

where x120 = 2 and x190 = 1. This way, a more general case where the number of tokens in x120
and x190 are of di�erent value could be considered without altering predicates P1 and P2. As

mentioned before, a more detailed truck VDES provides an explicit relationship between the

loading by a speci�c shovel (events di or ki) and their respective hauling events (ci or hi). This

ensures increased accuracy in the description of the process. Another speci�cation to consider

is that after three 160-ton truck breakdown events ff1; p1g, only the 40-ton shovel can load the

160-ton truck via event h1. This speci�cation is implemented as a VDES in Figure 24 in the

following way. Since a self-loop cannot exist in the actual VDES framework, two extra states

x26 and x27 as well as an event q (assumed to take place at a high speed and to be projected

32

4 CONTROL SYNTHESIS FOR TRUCK DISPATCHING Technical Report 2000-440

a1

a2

a3

g1

c1

TC160

SHOVEL80

x1

x2

x3

x4

x12

d1 e1

b1

b2

b3

SHOVEL40

x6

x10

x8

x11

b4

b5

b6

x5

x7

x9

f1

h1

k1m1

p1

n1x13

x14

x15

x16

x17

x18

g2

c2

TC80

x19

d2 e2

f2

h2

k2m2

p2

n2x20

x21

x22

x23

x25

x24

Figure 23: Petri net Representation of Case 4

Event Meaning Event Meaning

a1 �rst SHOV EL80 bucket in TC160 h1 hauling of TC160 to SHOV EL40

a2 second SHOV EL80 bucket in TC160 k1 full loading of TC160 by SHOV EL40

a3 �rst SHOV EL80 bucket in TC80 m1 hauling of TC160 to crusher

b1 �rst SHOV EL40 bucket in TC160 n1 repair of TC160 truck

b2 second SHOV EL40 bucket in TC160 c2 hauling of TC80 to SHOV EL80

b3 third SHOV EL40 bucket in TC160 d2 full loading of TC80 by SHOV EL80

b4 fourth SHOV EL40 bucket in TC160 e2 hauling of TC80 to crusher

b5 �rst SHOV EL40 bucket in TC80 f2,p2 breakdown of TC80 truck

b6 second SHOV EL40 bucket in TC80 g2 unloading of TC80 truck

c1 hauling of TC160 to SHOV EL80 h2 hauling of TC80 to SHOV EL40

d1 full loading of TC160 by SHOV EL80 k2 full loading of TC80 by SHOV EL40

e1 hauling of TC160 to crusher m2 hauling of TC80 to crusher

f1,p1 breakdown of TC160 truck n2 repair of TC80 truck

g1 unloading of TC160 truck

Table 12: Event Description for Case 4

out later on) are added. For every event f1 or p1 state x27 loses one token. As long as x27 � 1,

event c1 can take place. Consequently, after three breakdown events (or #f1+#p1 = 3) event

c1 is disabled (since x27 = 0) while loading event h1 remains possible. Thus only event h1 can

perform the loading of TC160 via SHOV EL80.

One notices that even if TC160 includes all trucks of 160 tons, the dispatcher can also enforce

some preferred sequences of truck loadings (e.g., all TC160 trucks are loaded two times by

SHOV EL40 and then three times by SHOV EL80).

33

4 CONTROL SYNTHESIS FOR TRUCK DISPATCHING Technical Report 2000-440

g1

c1

x12

d1 e1

f1

h1

k1m1

p1

x14

x15

x16

x17

x18

x26 x27

TC160

Breakdown Spec.

n1

q

x13

Figure 24: Speci�cation of Case 4

4.2.5 Modelling and Supervisory Control of Case 5

For the �fth and last case, a blend speci�cation is considered for 80-ton trucks. It consists of

forcing two loadings by SHOV EL40 (event k2) for each loading performed by SHOV EL80

(event d2). In Figure 25, as x29 = 2 and event h2 only displaces one token at a time (by default),

event h2 can take place twice, thus augmenting state x28 to two. As event c2 decreases state

x28 and increases state x29 by two units (weight of 2 on arrows entering and exiting event c2),

it cannot occur when x28 = 1. Therefore, there will be two events h2 for each event c2.

g2
c2

x19

d2 e2

f2

h2

k2m2

p2

x21

x22

x23

x25

x24

x28
x29

TC80

Blend Spec.

n2

2 2

x20

Figure 25: Speci�cation of Case 5

The queue speci�cation enforces the rule \�rst come, �rst loaded" at a shovel (or extraction)

site and thus ensures fairness of events. In a VDES framework, all trucks of the same capacity

(all 80-ton trucks or all 160-ton trucks) are modeled by a unique VDES. For the purpose of

queueing, the truck capacity is the most crucial information and knowing which speci�c truck

(for instance, the blue or the red one) is loaded becomes irrelevant. Therefore, the queue

speci�cation should instead record the occurrence of events originating from trucks of di�erent

capacities. Namely, the speci�cation requires that tokens of the VDES representing the 80-ton

34

4 CONTROL SYNTHESIS FOR TRUCK DISPATCHING Technical Report 2000-440

and 160-ton trucks be distinguishable. The feature of di�erentiating tokens is impossible in the

actual VDES framework, and therefore the queue speci�cation cannot be achieved. Instead,

Colored Petri nets may be used even though there exists no relation to convert the \�rst come,

�rst used" rule into a VDES. One diÆculty that may arise is that for this rule to be active in

the actual VDES framework it should be made universal (i.e., to di�erentiate the trucks at all

places).

Now, the system developed in Cases 4 and 5 with the speci�cations listed below will be used

to synthesize an optimal supervisory control.

1 Bucket capacity for each truck,

2 Only one truck loaded at a time by the shovel,

3 Priority of repair of 160-ton trucks over 80-ton trucks,

4 After three 160-ton truck breakdowns, only 40-ton shovel can unload the truck,

5 Limit of one truck breakdown for four successful load,

6 Blend speci�cation

The Petri net representation resulting from the modelling of previous cases is shown in Figure

26. Since dynamic predicates (P1; P2) are analogous to (P3; P4), only the implementation

of dynamic predicates P2 and P3 is shown for clarity purposes. Appendix D provides the

calculations to derive the supervisory rules to implement the dynamic predicates P1, P2, P3

and P4

P1 := #a1 +#b1 � #g1 +#n1 + x120

P2 := #a3 +#b5 � #g2 +#n2 + x190

P3 := �4(#f1 +#p1) + #g1 � 0

P4 := �4(#f2 +#p2) + #g2 � 0:

The end result, as given in Appendix D, is that all speci�cations (with the exception of the

queue speci�cation) and predicates can be successfully implemented in a VDES framework.

35

4 CONTROL SYNTHESIS FOR TRUCK DISPATCHING Technical Report 2000-440

a1

a2

a3

SHOVEL80

x1

x2

x3

x4

b1

b2

b3

SHOVEL40

x6

x10

x8

x11

b4

b5

b6

x5

x7

x9

g2

c2

TC80x19

d2 e2

f2

h2

k2m2

p2

n2
x20

x21

x22

x23

x25x24

g1
c1

x12

d1 e1

f1

h1

k1

m1

p1

x14

x15

x16

x17x18

x26 x27

TC160

Breakdown limit

n1

q

x13

x28
x29

Blend Spec.

2 2

x31

x30

x
Repair
priority

Predicate P3

4 4

w
z

x32 x33

4
4

Predicate P2

Figure 26: Production and VDES Speci�cations

4.3 Discussion

This section provides a discussion on various aspects of Section 4.1 and Section 4.2. The text

is organized as follows. Section 4.3.1 analyzes the objectives that could be achieved using DES

and VDES theories in light of the original process. Then, Section 4.3.2 and Section 4.3.3 give

technical comments on the DES and VDES approaches, respectively.

4.3.1 Scope

The following paragraphs refer to additional speci�cations than the ones found in Table 2. This

section aims at providing an analysis of obstructions or diÆculties ful�lling these speci�cations

in the DES and VDES approaches.

36

4 CONTROL SYNTHESIS FOR TRUCK DISPATCHING Technical Report 2000-440

Consider the speci�cation of having two trucks unloading at the same time. A possible TDES

strategy would be to use a small enough time unit such that two unloadings are a tick apart

(given two trucks are present at the crusher). This is realistic since real simultaneous events

are rare if the time unit is chosen appropriately (small enough compared to the time taken for

unloading). In a VDES approach, simultaneous events are theoretically allowed but the main

theorems are not designed to consider such a scenario.

Another speci�cation of interest is that a truck may be partially broken down but still opera-

tional with a reduced capacity (payload or speed). In a DES framework, such a speci�cation

can be embedded into the bu�ers by the insertion of an additional transition leading to the

end of a cycle before the truck is full. For instance, for the DES B1 of Case 4 (Figure 14) one

can add the controllable event 49 that stops the loading of a second bucket (Figure 27).

Figure 27: Reduced Load Bu�er for T1C80

4.3.2 Comments on the DES Approach

The main drawback of the DES approach is that the increasing size of the overall system may

render the implementation of centralized supervisors prohibitive. When possible, the strategy

of this research has been to develop modular supervisors to reduce the e�ective size (and

complexity) of the overall system. As speci�cations were designed to act as optimal modular

supervisors, the proposed approach has been to increment progressively the number of trucks.

However, the optimal nature of the modular supervisor must be veri�ed after each new addition

of components (stable intermediate structure).

As seen in Section 4.1, the addition of timed events gives a representation that is closer to

reality. However, the assignment of time bounds requires deep understanding of the process

and it must be performed carefully with respect to the overall process, as seen in Section 4.1.1

and Section 4.1.2. A more critical issue remains the proper selection of time units such that

the dominant dynamics are captured without penalizing the computational cost of having a

detailed representation of the process. Also, any untimed speci�cation should be worked out

�rst in an untimed framework before converting it to TDES. Finally, the major drawback of

using timed DES is the explosion in the number of discrete states.

In hierarchical control, there is a trade-o� between the level of re�nements the low-level requires

so that the high-level supervisor can take adequate actions.

37

4 CONTROL SYNTHESIS FOR TRUCK DISPATCHING Technical Report 2000-440

4.3.3 Comments on the VDES Approach

There are stringent conditions under which a VDES implementation (or VDESI) can be de-

rived. The main conditions are as follows: i) the uncontrollable subsystem Gu must be loop-

free, ii) the uncontrollable events involved in predicates cannot be preceded by more than one

state. For our special application (see Appendix D), the �rst condition is naturally satis�ed

by the large number of controllable events while for the second condition, an easy �x has

been found. Since such a �x may not always be possible, there is no guarantee that a VDES

implementation of an optimal supervisor can be derived.

Another limitation is the modelling of queues that does not seem to be easily achievable within

the actual VDES framework. If machines within a VDES need to be di�erentiated, a formalism

similar to the one in Colored Petri nets should be established.

Since self-loops cannot be represented in the actual VDES framework, the �nal language of a

VDES is obtained by projecting out the dummy events that have been added to circumvent

the need for self-loops (for example, events x and y in Figure 26).

38

5 CONCLUSIONS Technical Report 2000-440

5 Conclusions

This last section summarizes the capabilities of DES and VDES theories to solve a decision

problem when applied to an oilsand extraction process. In Section 5.1, we perform a comparison

of the advantages and inconveniences of the DES and VDES approaches. Section 5.2 concludes

by providing possible direction for further research work that would bene�t both the oilsand

extraction application and DES theory.

5.1 DES versus VDES

Unlike other theories, VDES and DES theories answer the question \With a given setup, how

can the equipment be operated in an optimal way to satisfy the speci�cations?" and not \What

is the optimal setup to ful�ll the speci�cations?" This is particularly well-suited for a truck

dispatching task where daily conditions (not under control) a�ect the production setup (i.e.,

the number of trucks, ore location, ore content, and number of shovels available for extraction).

All speci�cations provided by Syncrude were successfully tackled or at least a scheme of solution

was provided (Section 4.3.1). Moreover, additional and �ctitious speci�cations were considered

to show the DES/VDES theory and the capabilities of the associated tools. With the DES

approach, the speci�cations have been solved sequentially and often in an isolated manner.

This approach was intentional since even with a reduced level of complexity, the solution to

a DES problem often exceeds the capability of standard representation techniques (in this

case, a direct translation into state charts1 would be bene�cial). Unlike DES, VDES possesses

a compact representation when many machines exhibit the same behaviour. This explains

why in Section 4.2.5 all speci�cations could be considered at the same time without omitting

information about the overall behaviour.

In some cases, VDES theory o�ers fewer options than DES to implement a speci�cation. In

DES, a speci�cation can always be embedded in the plant DES or speci�ed as a separate DES

with no increase in complexity. As in Section 4.2.1, it appears that sometimes VDES theory

must inevitably embed certain speci�cations to preserve some dynamics of interest. Fortu-

nately, after performing the appropriate changes, the overall VDES behaviour corresponds

exactly to the DES behavior. Even though VDES is dual to DES2, it appears that not all

untimed DES features can be captured when expressed in a VDES framework. In this respect,

the limitations of VDES theory in implementing the queue speci�cation remain considerable

in the actual industrial context.

Obviously, modular supervisory control remains an interesting manner to implement DES

supervisors at a reduced cost. The DES theory also o�ers hierarchical supervisory control

that can provide a truck dispatcher with a simpli�ed picture of the whole production, thus

facilitating the decision-making task. On the other hand, vector DES o�ers an equivalence to

modular supervisory control by allowing the conjunction of many predicates. To our knowledge,

there is no hierarchical technique in VDES but since the representation is more compact, a

manager has the ability to focus on a small portion of the process while preserving a complete

picture of the overall behaviour.

1A state chart is a graphical formalism used to describe complex system languages (object of in�nite length)
by providing an equivalent economical (or �nite dimension) representation in a clear and realistic format [5].

2In VDES a behaviour is characterized by the evolution of its states rather than by the sequence of events.

39

5 CONCLUSIONS Technical Report 2000-440

Since Syncrude's production is mostly composed of identical machinery, once two or three

pieces of equipment are successfully introduced into the process the procedure developed in

a DES framework can be easily extended to a larger eet. As mentioned earlier, the main

bene�t of using VDES is the compactness of its representation. As seen in Section 4.2, with a

VDES approach the complete eet of 30 trucks can be more easily represented than in DES.

For example, in Figure 26, the insertion of 30 trucks (tokens) amounts to setting x120 and

x190 such that x120 + x190 = 30 (if trucks are only allowed to start from the Idle position).

Therefore, the whole truck eet is modeled without enlarging the dimension of the system.

Moreover, the supervisor built for a smaller eet remains adequate.

5.2 Future Work

One of the crucial tasks remains the translation of (qualitative and/or quantitative) objectives

into suitable DES or VDES equivalences. Even though this was accomplished easily in the

present case, there exists no systematic procedure to convert an objective into a language.

Any breakthrough in this direction would signi�cantly bene�t the use of DES and VDES as a

solution scheme for decision problems. While performing a conversion of a system's behaviour

to a language, important considerations are the determination (or \identi�cation") for each

event of whether it is controllable or uncontrollable and the value of its time bounds. As

seen in Section 4.1.1, there must be consistency between the untimed and the timed DES

representation of a process.

Throughout this work, a progressive and incremental approach has been shown to be fruitful

in the development of DES/VDES supervisory controls. We believe that this is an appropriate

strategy for any future work that will be performed with an application such as the oilsand

extraction.

In reference to Table 2, some further extensions could be brought to the �fth case. The next

logical steps to take for the continuation of the work, so that the overall model is closer to the

original process, could be summarized by four major additions (Table 13). This amounts to

the addition of more trucks as well as queues that are brought in wherever a truck can go (i.e.,

at the shovel location and the crusher). Finally, from case 9 the enlargement to thirty trucks

and three locations will only be a matter of time since the main issues will have already been

addressed.

Shovels Trucks Locations Breakdowns Queues

Case 6 2 3 2 Yes 2

Case 7 2 3 2 Yes 3

Case 8 2 4 2 Yes 3

Case 9 2 5 2 Yes 3

Table 13: Possible Extensions to Mimic the Overall Production

Since VDES is simpler in its representation and calculation, we �rst believed that - prior to

using DES - a VDES approach could be used as a �rst and rapid solution for synthesizing

an optimal supervisory control. However, if the VDES approach does not yield an optimal

supervisor, it does not automatically follow that DES is incapable of solving the problem in an

optimal fashion (the queue speci�cation is an example). Also, if VDES has a solution it may

be blocking (from the theory) and therefore a nonblocking optimal DES supervisor may not

40

5 CONCLUSIONS Technical Report 2000-440

exist. The last issue should be investigated more deeply with a simple system. From there,

two possible research directions are possible. One could re�ne the VDES theory and provide

stronger conditions that guarantee a nonblocking VDES supervisor, or one could determine

additional conditions that ensure the existence of a nonblocking optimal DES supervisor when

VDES theory provides a solution. If there exist no such conditions, VDES will remain a less

attractive tool than DES from an application point of view. Also, VDES theory should be

enhanced so that queue speci�cations can be handled.

This study has revealed that the DES theory is a more suitable framework than VDES for the

decision problem of the discrete part of the oilsand extraction process. The next step will be

to incorporate the continuous dynamics and see how DES theory can be used for the overall

decision problem.

41

A DES THEORETICAL BACKGROUND Technical Report 2000-440

A DES Theoretical Background

The following sections present an informal introduction to DES theory and its objectives. It

is by no means an exhaustive picture of the capability of the whole theory but it contains the

necessary information to facilitate the reading and the understanding of the present study. For

greater details, the reader is referred to [8] and [9].

A.1 Discrete-event systems

Discrete-event systems are systems driven by the occurrence of events bringing the system from

one state to another. Events are assumed to be instantaneous (i.e., without time reference)

and can be of two types: controllable or uncontrollable. Uncontrollable events are events that

cannot be stopped while controllable events can be disabled by some \control" mechanism. In

a DES, the set of all possible events forms the alphabet. The behavior of a DES is characterized

by the sequences of events, or language, that it is capable of generating. Similarly, the control

rules (desired sequences of events), called here speci�cations, can be translated into a �nite-

state machine representation. For this reason, we speak of a DES and its respective language

interchangeably.

For the control of DES, there will be two languages of interest: one for the plant representing

the system to control, and one for the speci�cations describing some desired behavior. For a

system composed of subsystems (i.e., here the shovels and trucks), the plant DES is de�ned as

the Cartesian product of its subsystems DES. A supervisor (terminology for a DES controller)

for a plant DES is itself a DES that enables and disables the events such that the plant

meets the speci�cations. Thus some events are shared between the plant and the supervisor.

The techniques discussed in the following section can be used to synthesize di�erent types of

supervisors based on supervision needs (centralized, decentralized (modular) or hierarchical

(multilayers)). The DES theory guarantees that all synthesized supervisors are optimal in

the sense that the maximum number of events is always enabled (i.e., it provides the least

restrictive supervisor).

Discrete-event systems are represented by transition diagrams (directed graphs) of �nite di-

mension where events are described by arrows and states by circles. In all the DESs shown in

this report, states are labelled by numbers, starting with the initial state identi�ed by zero. As

only events can be shared, common states labels between two or more DES bear no particular

meaning. In a transition graph, controllable and uncontrollable events are distinguished by

odd and even values, respectively. An exiting arrow attached to a state means that the state

is of particular interest (called a marked state).

An example of a DES is provided in Figure 28 showing the DES for a shovel (named SHOV EL80)

and a truck of 80 tons of capacity (named T1C80). The shovel DES has only one state (no

breakdown) and continuously loads trucks (loading state 0). Possible events are 1, 3 and 5

(all controllable) and they represent the loading of trucks: 1 stands for the loading of the 80-

ton truck T1C80, 3 for one 160-ton truck T1C160 and 5 for the other 160-ton truck T2C160.

The loadings are assumed to be controllable since any loading can always be stopped from

occurring. The truck DES has two states representing its empty or full mode (respectively,

state 0 and state 1). Events 7 and 4 depict a full loading and an unloading. The loading event

is de�ned to be controllable as it is always possible to �nd a mechanism to stop the loading of

42

A DES THEORETICAL BACKGROUND Technical Report 2000-440

a truck. The unloading event is assumed to be uncontrollable since an unloading is successful

only in the absence of breakdowns (uncontrollable by nature). A DES can be made as precise

as required and the approach will demonstrate the e�ect of more precise system descriptions

and speci�cations.

Figure 28: DES Representation of 80 Ton Shovel and Truck

A.2 Supervisors for DES

Di�erent types of supervisors can be synthesized for DESs. The most common and easily

computed one is the centralized supervisor, which consists of a global supervisor that handles

all speci�cations. The main disadvantage is that its size is often so large that one loses sight

of the original features. This often renders the implementation of a centralized supervisor

prohibitive.

An alternative to the centralized supervisor is the decentralized (or modular) supervisor. It

performs the same task as its centralized counterpart but has as many supervisory modules

as local speci�cations. Thus it is easier to implement and the supervisory objective is more

apparent from the modular structure. This type of supervisor is preferred in the present

context since the real production (30 trucks and 3 shovels) leads to a rather large system that

would bene�t from modular supervisors. Figure 29 shows that a centralized supervisor merges

all local speci�cations (Sp.1 to Sp. N) into a global one to develop its supervisory language.

Each modular supervisor (MS 1 to MS N) satis�es a local speci�cation and an event is enabled

when it is enabled by all modular supervisors.

Figure 29: Centralised and Decentralised Supervisors

The third type of supervisor of interest is the hierarchical supervisor. It consists of a higher

level supervisor designed for management purposes. It only observes some of the process events

that are of speci�c interest. These events are said to be vocalized or viewed by the high-level

supervisor. As a result, the hierarchical supervisor has a reduced version of the process but can

still impose its speci�cations at the higher level, while its corresponding low-level supervisor

43

A DES THEORETICAL BACKGROUND Technical Report 2000-440

translates and implements these speci�cations. This type of supervisor is a key element of DES

theory. It serves as a decision-making process for the system that looks at relevant information

only. Centralized and decentralized supervisors can be synthesized in the high-level language.

A.3 Timed DES

Timed DES introduces the notion of time by associating time bounds (lower and upper) to all

events of a DES. The lower bound represents the minimum time required to elapse before the

event takes place. The upper time bound is the maximum time before an event must occur.

The time measure is the tick of a global clock under which all events are synchronized. That

way, when a tick occurs, events that are eligible (events whose occurrence is possible) see their

time counter augmented by one unit. By de�nition, controllable events have an in�nite upper

time bound since disabling an event is analogous to giving the event an eternity to occur.

Moreover, an event can be set to beat the clock by preempting a tick from occurring and

preempting other events. Such events are said to be forcible.

Consider the truck DES T1C80 (Figure 28) and de�ne the time bounds for event 4 as [1 2] and

for event 7 as [1 1] where the values in brackets represent, respectively, the lower and upper

time bounds. As seen in Figure 30, event 7 can only occur after a tick elapsed and before an

in�nite number of ticks. Similarly, event 4 cannot take place before at least one tick elapses

and it must occur before the third one. One easily sees that the introduction of time has a

signi�cant impact on the size of the state representation of a DES (from 2 to 9 states) [10].

Figure 30: TDES for SHOV EL80

The size of the resulting TDES is related to the choice of time unit size (seconds, fraction of

minutes, minutes, etc.). The �ner the time unit the larger the TDES becomes, allowing more

possibilities for supervisory control. However, a smaller time unit increases the computational

cost of determining an appropriate supervisor, which may become a limiting factor. Conversely,

if the time unit is too large the resulting model may fail to accurately represent the original

process. This can lead to a reduction of supervisory capabilities. These issues are illustrated

in [10]. Moreover, the reader can refer to Brandin and Wonham [2] for additional details on

TDES.

44

B PRINTOUTS FOR DES SUPERVISORY CONTROLS Technical Report 2000-440

B Printouts for DES Supervisory Controls

B.1 Printouts for Case 1

****************** UNTIMED OPERATIONS *******************************

SYST1 # states: 8 state set: 0 ... 7 initial state: 0

marker states: 0

vocal states: none

transitions: 48

transitions:

[0, 1, 0] [0, 3, 0] [0, 5, 0] [0, 7, 1] [0, 9, 2] [0, 11, 3] [1, 1, 1] [1, 3, 1] [1, 4, 0] [1, 5, 1] [1,

9, 4] [1, 11, 5] [2, 1, 2] [2, 3, 2] [2, 5, 2] [2, 6, 0] [2, 7, 4] [2, 11, 6] [3, 1, 3] [3, 3, 3] [3, 5,

3] [3, 7, 5] [3, 8, 0] [3, 9, 6] [4, 1, 4] [4, 3, 4] [4, 4, 2] [4, 5, 4] [4, 6, 1] [4, 11, 7] [5, 1, 5] [

5, 3, 5] [5, 4, 3] [5, 5, 5] [5, 8, 1] [5, 9, 7] [6, 1, 6] [6, 3, 6] [6, 5, 6] [6, 6, 3] [6, 7, 7] [6, 8,

2] [7, 1, 7] [7, 3, 7] [7, 4, 6] [7, 5, 7] [7, 6, 5] [7, 8, 4]

SPEC1 # states: 6 state set: 0 ... 5 initial state: 0

marker states: 0

vocal states: none

transitions: 21

transitions:

[0, 1, 1] [0, 3, 2] [0, 4, 0] [0, 5, 3] [0, 6, 0] [0, 8, 0] [1, 6, 1] [1, 7, 0] [1, 8, 1] [2, 3, 4] [2, 4,

2] [2, 8, 2] [3, 4, 3] [3, 5, 5] [3, 6, 3] [4, 4, 4] [4, 8, 4] [4, 9, 0] [5, 4, 5] [5, 6, 5] [5, 11, 0]

SUPER1 # states: 28 state set: 0 ... 27 initial state: 0

marker states: 0

vocal states: none

transitions: 64

transitions:

[0, 1, 1] [0, 3, 2] [0, 5, 3] [1, 7, 4] [2, 3, 5] [3, 5, 6] [4, 3, 7] [4, 4, 0] [4, 5, 8] [5, 9, 9] [6,

11, 10] [7, 3, 11] [7, 4, 2] [8, 4, 3] [8, 5, 12] [9, 1, 13] [9, 5, 14] [9, 6, 0] [10, 1, 15] [10, 3,

16] [10, 8, 0] [11, 4, 5] [11, 9, 17] [12, 4, 6] [12, 11, 18] [13, 6, 1] [13, 7, 17] [14, 5, 19] [

14, 6, 3] [15, 7, 18] [15, 8, 1] [16, 3, 20] [16, 8, 2] [17, 4, 9] [17, 5, 21] [17, 6, 4] [18, 3, 22]

[18, 4, 10] [18, 8, 4] [19, 6, 6] [19, 11, 23] [20, 8, 5] [20, 9, 23] [21, 4, 14] [21, 5, 24] [21,

6, 8] [22, 3, 25] [22, 4, 16] [22, 8, 7] [23, 1, 26] [23, 6, 10] [23, 8, 9] [24, 4, 19] [24, 6, 12] [

24, 11, 27] [25, 4, 20] [25, 8, 11] [25, 9, 27] [26, 6, 15] [26, 7, 27] [26, 8, 13] [27, 4, 23] [27,

6, 18] [27, 8, 17]

45

B PRINTOUTS FOR DES SUPERVISORY CONTROLS Technical Report 2000-440

MSUPER14 # states: 28 state set: 0 ... 27 initial state: 0

marker states: 0

vocal states: none

transitions: 64

transitions:

[0, 1, 1] [0, 3, 2] [0, 5, 3] [1, 7, 4] [2, 3, 5] [3, 5, 6] [4, 3, 7] [4, 4, 0] [4, 5, 8] [5, 9, 9] [6,

11, 10] [7, 3, 11] [7, 4, 2] [8, 4, 3] [8, 5, 12] [9, 1, 13] [9, 5, 14] [9, 6, 0] [10, 1, 15] [10, 3,

16] [10, 8, 0] [11, 4, 5] [11, 9, 17] [12, 4, 6] [12, 11, 18] [13, 6, 1] [13, 7, 17] [14, 5, 19] [

14, 6, 3] [15, 7, 18] [15, 8, 1] [16, 3, 20] [16, 8, 2] [17, 4, 9] [17, 5, 21] [17, 6, 4] [18, 3, 22]

[18, 4, 10] [18, 8, 4] [19, 6, 6] [19, 11, 23] [20, 8, 5] [20, 9, 23] [21, 4, 14] [21, 5, 24] [21,

6, 8] [22, 3, 25] [22, 4, 16] [22, 8, 7] [23, 1, 26] [23, 6, 10] [23, 8, 9] [24, 4, 19] [24, 6, 12] [

24, 11, 27] [25, 4, 20] [25, 8, 11] [25, 9, 27] [26, 6, 15] [26, 7, 27] [26, 8, 13] [27, 4, 23] [27,

6, 18] [27, 8, 17]

SHOVEL80 = Create(SHOVEL80,[mark 0],[tran [0,1,0],[0,3,0],[0,5,0]]) (1,3)

T1C80 = Create(T1C80,[mark 0],[tran [0,7,1],[1,4,0]]) (2,2)

T1C160 = Create(T1C160,[mark 0],[tran [0,9,1],[1,6,0]]) (2,2)

T2C160 = Create(T2C160,[mark 0],[tran [0,11,1],[1,8,0]]) (2,2)

B1 = Create(B1,[mark 0],[tran [0,1,1],[1,7,0]]) (2,2)

B1 = Seloop(B1,[6,8,9,11]) (2,10) Computing time = 00:00:00.00

B1 = Edit(B1,[trans +[0,3,0],+[0,4,0],+[0,5,0]]) (2,13)

B2 = Create(B2,[mark 0],[tran [0,1,0],[0,3,1],[0,5,0],[0,6,0],[1,3,2],[2,9 ,0]]) (3,6)

B2 = Seloop(B2,[4,7,8,11]) (3,18) Computing time = 00:00:00.00

B3 = Create(B3,[mark 0],[tran [0,1,0],[0,3,0],[0,5,1],[0,8,0],[1,5,2],[2,1 1,0]]) (3,6)

B3 = Seloop(B3,[4,6,7,9]) (3,18) Computing time = 00:00:00.00

MEETB1B2 = Meet(B1,B2) (4,19) Computing time = 00:00:00.00

SPEC1 = Meet(MEETB1B2,B3) (6,21) Computing time = 00:00:00.00

TC160 = Sync(T1C160,T2C160) (4,8) Computing time = 00:00:00.00

TRUCKS = Sync(TC160,T1C80) (8,24) Computing time = 00:00:00.06

SYST1 = Sync(TRUCKS,SHOVEL80) (8,48) Computing time = 00:00:00.00

SUPER1 = Supcon(SYST1,SPEC1) (28,64) Computing time = 00:00:00.00

SUPER1 = Condat(SYST1,SUPER1) Controllable. Computing time = 00:00:00.00

false = Nonconict(B1,SYST1) Computing time = 00:00:00.00

DATB1 = Condat(SYST1,B1) Uncontrollable. Computing time = 00:00:00.00

MB14 = Create(MB14,[mark 0],[tran [0,1,1],[0,3,0],[0,5,0],[1,7,2],[2,3,2], [2,4,0],[2,5,2]]) (3,7)

46

B PRINTOUTS FOR DES SUPERVISORY CONTROLS Technical Report 2000-440

MB14 = Seloop(MB14,[6,8,9,11]) (3,19) Computing time = 00:00:00.06

true = Nonconict(MB14,SYST1) Computing time = 00:00:00.00

DATMB14 = Condat(SYST1,MB14) Controllable. Computing time = 00:00:00.00

MB24 = Create(MB24,[mark 0],[tran [0,1,0],[0,3,1],[0,5,0],[1,3,2],[2,9,3], [3,1,3],[3,5,3],[3,6,0]])

(4,8)

MB24 = Seloop(MB24,[4,7,8,11]) (4,24) Computing time = 00:00:00.00

true = Nonconict(MB24,SYST1) Computing time = 00:00:00.00

DATMB24 = Condat(SYST1,MB24) Controllable. Computing time = 00:00:00.00

MB34 = Create(MB34,[mark 0],[tran [0,1,0],[0,3,0],[0,5,1],[1,5,2],[2,11,3] ,[3,1,3],[3,3,3],[3,8,0]])

(4,8)

MB34 = Seloop(MB34,[4,6,7,9]) (4,24) Computing time = 00:00:00.00

true = Nonconict(MB34,SYST1) Computing time = 00:00:00.00

DATMB34 = Condat(SYST1,MB34) Controllable. Computing time = 00:00:00.00

true = Nonconict(MB14,MB24) Computing time = 00:00:00.00

true = Nonconict(MB14,MB34) Computing time = 00:00:00.00

true = Nonconict(MB24,MB34) Computing time = 00:00:00.00

MB14MB24 = Meet(MB14,MB24) (10,41) Computing time = 00:00:00.00

MSUPER14 = Meet(MB14MB24,MB34) (28,64) Computing time = 00:00:00.00

true = Nonconict(MSUPER14,SYST1) Computing time = 00:00:00.00

TMSUP14 = Trim(MSUPER14) (28,64) Computing time = 00:00:00.00

true = Isomorph(MSUPER14,TMSUP14;identity) Computing time = 00:00:00.00

TEST14 = Meet(MSUPER14,SYST1) (28,64) Computing time = 00:00:00.00

true = Isomorph(SUPER1,TEST14;identity) Computing time = 00:00:00.06

****************** TIMED OPERATIONS *******************************

shovel80 = ACreate(shovel80,[mark 0],[timebounds [1,0,1000],[3,0,1000],[5, 0,1000]],[forcible

1,],[tran [0,1,0],[0,3,0],[0,5,0]]) (1,3)

t1c80 = ACreate(t1c80,[mark 0],[timebounds [4,1,2],[7,1,1000]],[forcible 7],[tran [0,7,1],[1,4,0]])

(2,2)

t1c160 = ACreate(t1c160,[mark 0],[timebounds [6,1,2],[9,1,1000]],[forcible 9],[tran [0,9,1],[1,6,0]])

(2,2)

t2c160 = ACreate(t2c160,[mark 0],[timebounds [8,1,2],[11,1,1000]],[forcibl e 11],[tran [0,11,1],[1,8,0]])

(2,2)

tc160 = Comp(t1c160,t2c160) (4,8) Computing time = 0 sec

trucks = Comp(tc160,t1c80) (8,24) Computing time = 0 sec

system1 = Comp(trucks,shovel80) (8,48) Computing time = 0 sec

47

B PRINTOUTS FOR DES SUPERVISORY CONTROLS Technical Report 2000-440

system1 = TimedGraph(system1) (125,664) Computing time = 0 sec

b1 = Create(b1,[mark 0],[tran [0,0,0],[0,1,1],[0,3,0],[0,4,0],[0,5,0],[1,0 ,1],[1,7,0]],[forcible 1,3,5,7])

(2,7)

b1 = Seloop(b1,[6,8,9,11],[new forcible 9,11]) (2,15) Computing time = 1 sec

b2 = Create(b2,[mark 0],[tran [0,0,0],[0,1,0],[0,3,1],[0,5,0],[0,6,0],[1,0 ,1],[1,3,2],[2,0,2],[2,9,0]],[forcible

1,3,5,9]) (3,9)

b2 = Seloop(b2,[4,7,8,11],[new forcible 7,11]) (3,21) Computing time = 0 sec

b3 = Create(b3,[mark 0],[tran [0,0,0],[0,1,0],[0,3,0],[0,5,1],[0,8,0],[1,0 ,1],[1,5,2],[2,0,2],[2,11,0]],[forcible

1,3,5,11]) (3,9)

b3 = Seloop(b3,[4,6,7,9],[new forcible 7,9]) (3,21) Computing time = 0 sec

b1b2 = Meet(b1,b2) (4,23) Computing time = 0 sec

spec1 = Meet(b1b2,b3) (6,27) Computing time = 0 sec

super1 = Supcon(system1,spec1) (375,899) Computing time = 0 sec

super1 = Condat(system1,super1) Computing time = 0 sec

B.2 Printouts for Case 2

***************** UNTIMED OPERATIONS ************************************

PSYST2 # states: 27 state set: 0 ... 26 initial state: 0

Projection of SYST without the selfoop at each state with events 1,3 and 5

marker states: 0

vocal states: none

transitions: 108

transitions:

[0, 7, 1] [0, 11, 2] [0, 15, 3] [1, 2, 0] [1, 4, 4] [1, 11, 5] [1, 15, 6] [2, 6, 0] [2, 7, 5] [2, 8, 7]

[2, 15, 8] [3, 7, 6] [3, 10, 0] [3, 11, 8] [3, 12, 9] [4, 9, 0] [4, 11, 10] [4, 15, 11] [5, 2, 2] [5,

4, 10] [5, 6, 1] [5, 8, 12] [5, 15, 13] [6, 2, 3] [6, 4, 11] [6, 10, 1] [6, 11, 13] [6, 12, 14] [7, 7,

12] [7, 13, 0] [7, 15, 15] [8, 6, 3] [8, 7, 13] [8, 8, 15] [8, 10, 2] [8, 12, 16] [9, 7, 14] [9, 11,

16] [9, 17, 0] [10, 6, 4] [10, 8, 17] [10, 9, 2] [10, 15, 18] [11, 9, 3] [11, 10, 4] [11, 11, 18] [

11, 12, 19] [12, 2, 7] [12, 4, 17] [12, 13, 1] [12, 15, 20] [13, 2, 8] [13, 4, 18] [13, 6, 6] [13, 8,

20] [13, 10, 5] [13, 12, 21] [14, 2, 9] [14, 4, 19] [14, 11, 21] [14, 17, 1] [15, 7, 20] [15, 10, 7]

[15, 12, 22] [15, 13, 3] [16, 6, 9] [16, 7, 21] [16, 8, 22] [16, 17, 2] [17, 9, 7] [17, 13, 4] [17,

15, 23] [18, 6, 11] [18, 8, 23] [18, 9, 8] [18, 10, 10] [18, 12, 24] [19, 9, 9] [19, 11, 24] [19,

17, 4] [20, 2, 15] [20, 4, 23] [20, 10, 12] [20, 12, 25] [20, 13, 6] [21, 2, 16] [21, 4, 24] [21, 6,

14] [21, 8, 25] [21, 17, 5] [22, 7, 25] [22, 13, 9] [22, 17, 7] [23, 9, 15] [23, 10, 17] [23, 12,

26] [23, 13, 11] [24, 6, 19] [24, 8, 26] [24, 9, 16] [24, 17, 10] [25, 2, 22] [25, 4, 26] [25, 13,

14] [25, 17, 12] [26, 9, 22] [26, 13, 19] [26, 17, 17]

GHI # states: 7 state set: 0 ... 6 initial state: 0

48

B PRINTOUTS FOR DES SUPERVISORY CONTROLS Technical Report 2000-440

marker states: 0 1 2 3 4 5 6

vocal states: none

transitions: 17

transitions:

[0,111, 1] [1,100, 2] [1,110, 3] [1,111, 1] [2,100, 4] [2,101, 2] [2,111, 1] [3,100, 4] [3,110, 5]

[3,111, 1] [4,100, 6] [4,101, 2] [4,111, 1] [5,100, 6] [5,111, 1] [6,101, 4] [6,111, 1]

SHOVEL80 = Create(SHOVEL80,[mark 0],[tran [0,1,0],[0,3,0],[0,5,0]]) (1,3)

T1C80 = Create(T1C80,[mark 0],[tran [0,7,1],[1,2,0],[1,4,2],[2,9,0]]) (3, 4)

T1C160 = Create(T1C160,[mark 0],[tran [0,11,1],[1,6,0],[1,8,2],[2,13,0]]) (3,4)

T2C160 = Create(T2C160,[mark 0],[tran [0,15,1],[1,10,0],[1,12,2],[2,17,0]]) (3,4)

B1 = Create(B1,[mark 0],[tran [0,1,1],[0,2,0],[0,3,0],[0,4,0],[0,5,0],[0,9 ,0],[1,7,0]]) (2,7)

B1 = Seloop(B1,[6,8,10,11,12,13,15,17]) (2,23) Computing time = 00:00:00.00

B2 = Create(B2,[mark 0],[tran [0,1,0],[0,3,1],[0,5,0],[0,6,0],[0,8,0],[0,1 3,0],[1,3,2],[2,11,0]]) (3,8)

B2 = Seloop(B2,[2,4,7,9,10,12,15,17]) (3,32) Computing time = 00:00:00.00

B3 = Create(B3,[mark 0],[tran [0,1,0],[0,3,0],[0,5,1],[0,10,0],[0,12,0],[0 ,17,0],[1,5,2],[2,15,0]]) (3,8)

B3 = Seloop(B3,[2,4,6,7,8,9,11,13]) (3,32) Computing time = 00:00:00.00

TC160 = Sync(T1C160,T2C160) (9,24) Computing time = 00:00:00.00

TRUCKS = Sync(TC160,T1C80) (27,108) Computing time = 00:00:00.00

SYST2 = Sync(TRUCKS,SHOVEL80) (27,189) Computing time = 00:00:00.05

MEETB1B2 = Meet(B1,B2) (4,37) Computing time = 00:00:00.00

SPEC2 = Meet(MEETB1B2,B3) (6,47) Computing time = 00:00:00.00

SUPER2 = Supcon(SYST2,SPEC2) (72,243) Computing time = 00:00:00.00

SUPER2 = Condat(SYST2,SUPER2) Controllable. Computing time = 00:00:00.00

TSYST2 = Trim(SYST2) (27,189) Computing time = 00:00:00.00

true = Isomorph(SYST2,TSYST2;identity) Computing time = 00:00:00.00

MB1 = Create(MB1,[mark 0],[tran [0,1,1],[0,3,0],[0,5,0],[1,7,2],[2,2,0],[2 ,3,2],[2,4,2],[2,5,2],[2,9,0]])

(3,9)

MB1 = Seloop(MB1,[6,8,10,11,12,13,15,17]) (3,33) Computing time = 00:00:00.00

true = Nonconict(MB1,SYST2) Computing time = 00:00:00.00

MB3 = Create(MB3,[mark 0],[tran [0,1,0],[0,3,0],[0,5,1],[1,5,2],[2,15,3],[3,1,3],[3,3,3],[3,10,0]

,[3,12,3],[3,17,0]]) (4,10)

MB3 = Seloop(MB3,[2,4,6,7,8,9,11,13]) (4,42) Computing time = 00:00:00.00

MB2 = Create(MB2,[mark 0],[tran [0,1,0],[0,3,1],[0,5,0],[1,3,2],[2,11,3],[3,1,3],[3,5,3],[3,6,0],

49

B PRINTOUTS FOR DES SUPERVISORY CONTROLS Technical Report 2000-440

[3,8,3],[3,13,0]]) (4,10)

MB2 = Seloop(MB2,[2,4,7,9,10,12,15,17]) (4,42) Computing time = 00:00:00.06

true = Nonconict(MB1,SYST2) Computing time = 00:00:00.00

true = Nonconict(MB2,SYST2) Computing time = 00:00:00.05

true = Nonconict(MB3,SYST2) Computing time = 00:00:00.00

MB1MB2 = Meet(MB1,MB2) (10,75) Computing time = 00:00:00.00

MSUPER2 = Meet(MB1MB2,MB3) (28,128) Computing time = 00:00:00.00

true = Nonconict(MSUPER2,SYST2) Computing time = 00:00:00.00

TMSUPER2 = Trim(MSUPER2) (28,128) Computing time = 00:00:00.00

true = Isomorph(MSUPER2,TMSUPER2;identity) Computing time = 00:00:00.00

TEST2 = Meet(MSUPER2,SYST2) (72,243) Computing time = 00:00:00.00

true = Isomorph(SUPER2,TEST2;identity) Computing time = 00:00:00.05

REP1 = Create(REP1,[mark 0],[tran [0,8,1],[0,9,0],[1,13,0]]) (2,3)

REP1 = Seloop(REP1,[1,2,3,4,5,6,7,10,11,12,15,17]) (2,27) Computing time = 00:00:00.00

REP2 = Create(REP2,[mark 0],[tran [0,9,0],[0,12,1],[1,17,0]]) (2,3)

REP2 = Seloop(REP2,[1,2,3,4,5,6,7,8,10,11,13,15]) (2,27) Computing time = 00:00:00.00

REPAIR = Meet(REP1,REP2) (4,49) Computing time = 00:00:00.00

true = Nonconict(REPAIR,SYST2) Computing time = 00:00:00.00

DATREP = Condat(SYST2,REPAIR) Controllable. Computing time = 00:00:00.00

MSUPER22 = Meet(MSUPER2,REPAIR) (112,396) Computing time = 00:00:00.00

true = Nonconict(MSUPER22,SYST2) Computing time = 00:00:00.00

TMSUP22 = Trim(MSUPER22) (112,396) Computing time = 00:00:00.00

true = Isomorph(MSUPER22,TMSUP22;identity) Computing time = 00:00:00.06

SPEC22 = Meet(SPEC2,REPAIR) (24,141) Computing time = 00:00:00.00

SUPER22 = Supcon(SYST2,SPEC22) (72,234) Computing time = 00:00:00.00

SUPER22 = Condat(SYST2,SUPER22) Controllable. Computing time = 00:00:00.00

TEST22 = Meet(SYST2,MSUPER22) (72,234) Computing time = 00:00:00.00

true = Isomorph(SUPER22,TEST22;identity) Computing time = 00:00:00.00

PSYST2 = Project(SYST2,Null[1,3,5]) (27,108) Computing time = 00:00:00.06

GLO = Edit(SYST2V) (27,189)

OCGLO = Outconsis(GLO) (44,309) Computing time = 00:00:00.06

HCGLO = Hiconsis(OCGLO) (44,309) Computing time = 00:00:00.11

GHI = Higen(HCGLO) (7,17) Computing time = 00:00:00.11

50

B PRINTOUTS FOR DES SUPERVISORY CONTROLS Technical Report 2000-440

SPECHI = Create(SPECHI,[mark 0],[tran [0,111,1],[1,111,2],[2,111,3],[3,111 ,4],[4,100,0]]) (5,5)

SPECHI = Seloop(SPECHI,[101,110]) (5,15) Computing time = 00:00:00.00

TSPECHI = Trim(SPECHI) (5,15) Computing time = 00:00:00.00

true = Isomorph(TSPECHI,SPECHI;identity) Computing time = 00:00:00.05

MEETHI = Meet(SPECHI,GHI) (16,27) Computing time = 00:00:00.05

TMEETHI = Trim(MEETHI) (16,27) Computing time = 00:00:00.06

SUPERHI = Supcon(GHI,SPECHI) (1,0) Computing time = 00:00:00.06

SUPERHI = Condat(GHI,SUPERHI) Controllable. Computing time = 00:00:00.00

SPECHI2 = Create(SPECHI2,[mark 0],[tran [0,100,1],[0,111,0],[1,100,2],[1,1 11,1],[2,100,3],[2,111,2]])

(4,6)

SPECHI2 = Seloop(SPECHI2,[101,110]) (4,14) Computing time = 00:00:00.00

SUPERHI2 = Supcon(GHI,SPECHI2) (1,0) Computing time = 00:00:00.00

SUPERHI2 = Condat(GHI,SUPERHI2) Controllable. Computing time = 00:00:00.00

SPECHI2 = Edit(SPECHI2,[mark +[3]]) (4,14)

SUPERHI2 = Supcon(GHI,SPECHI2) (10,16) Computing time = 00:00:00.00

SUPERHI2 = Condat(GHI,SUPERHI2) Controllable. Computing time = 00:00:00.00

********************** TIMED OPERATIONS ************************************

shovel80 = ACreate(shovel80,[mark 0],[timebounds [1,0,1000],[3,0,1000],[5, 0,1000]],[forcible

1,],[tran [0,1,0],[0,3,0],[0,5,0]]) (1,3)

t1c80 = ACreate(t1c80,[mark 0],[timebounds [2,2,3],[4,1,2],[7,1,1000],[9,2 ,1000]],[forcible 7,],[tran

[0,7,1],[1,2,0],[1,4,2],[2,9,0]]) (3, 4)

t1c160 = ACreate(t1c160,[mark 0],[timebounds [6,2,3],[8,1,2],[11,1,1000],[13,2,1000]],[forcible

11,],[tran [0,11,1],[1,6,0],[1,8,2],[2,13,0]]) (3,4)

t2c160 = ACreate(t2c160,[mark 0],[timebounds [10,2,3],[12,1,2],[15,1,1000] ,[17,2,1000]],[forcible

15,],[tran [0,15,1],[1,10,0],[1,12,2],[2, 17,0]]) (3,4)

tc160 = Comp(t1c160,t2c160) (9,24) Computing time = 0 sec

trucks = Comp(tc160,t1c80) (27,108) Computing time = 0 sec

system2 = Comp(trucks,shovel80) (27,189) Computing time = 0 sec

system2 = TimedGraph(system2) (512,2839) Computing time = 0 sec

b1 = Create(b1,[mark 0],[tran [0,0,0],[0,1,1],[0,2,0],[0,3,0],[0,4,0],[0,5 ,0],[0,9,0],[1,0,1],[1,7,0]],[forcible

1,3,5,7,9]) (2,9)

b1 = Seloop(b1,[6,8,10,11,12,13,15,17],[new forcible 11,13,15,17]) (2,2 5) Computing time =

0 sec

b2 = Create(b2,[mark 0],[tran [0,0,0],[0,1,0],[0,3,1],[0,5,0],[0,6,0],[0,8 ,0],[0,13,0],[1,0,1],[1,3,2],

[2,0,2],[2,11,0]],[forcible 1,3,5,11,13]) (3,11)

51

B PRINTOUTS FOR DES SUPERVISORY CONTROLS Technical Report 2000-440

b2 = Seloop(b2,[2,4,7,9,10,12,15,17],[new forcible 7,9,15,17]) (3,35) Computing time = 0 sec

b3 = Create(b3,[mark 0],[tran [0,0,0],[0,1,0],[0,3,0],[0,5,1],[0,10,0],[0, 12,0],[0,17,0],[1,0,1],[1,5,2],

[2,0,2],[2,15,0]],[forcible 1,3,5,15,17]) (3,11)

b3 = Seloop(b3,[2,4,6,7,8,9,11,13],[new forcible 7,9,11,13]) (3,35) Computing time = 0 sec

b1b2 = Meet(b1,b2) (4,41) Computing time = 0 sec

spec2 = Meet(b1b2,b3) (6,53) Computing time = 0 sec

super2 = Supcon(system2,spec2) (1152,3073) Computing time = 17 sec

timer = Create(timer,[mark 0,1,2,3,4,5,6],[tran [0,0,1],[1,0,2],[2,0,3],[3 ,0,4],[4,0,5],[5,0,6]]) (7,6)

timer = Seloop(timer,[1,2,3,4,5,6,7,8,9,10,11,12,13,15,17],[new forcible 1,3,5,7,9,11,13,15,17])

(7,111) Computing time = 0 sec

timer5 = Edit(timer,[mark -[6]],[states -[6]],[trans +[5,0,6],-[5,0,6]]) (7,95)

timer5 = Minstate(timer5) (6,95) Computing time = 0 sec

mb1 = Create(mb1,[mark 0],[tran [0,1,1],[0,3,0],[0,5,0],[1,7,2],[2,2,0],[2 ,3,2],[2,4,2],[2,5,2],

[2,9,0]],[forcible 1,3,5,7,9]) (3,9)

mb1 = Seloop(mb1,[0,6,8,10,11,12,13,15,17],[new forcible 11,13,15,17]) (3,36) Computing time

= 0 sec

datmb1 = Condat(system2,mb1) Computing time = 0 sec

mb2 = Create(mb2,[mark 0],[tran [0,1,0],[0,3,1],[0,5,0],[1,3,2],[2,11,3],[3,1,3],[3,5,3],[3,6,0],[3,8,3],

[3,13,0]],[forcible 1,3,5,11,13]) (4,10)

mb2 = Seloop(mb2,[0,2,4,7,9,10,12,15,17],[new forcible 7,9,15,17]) (4,4 6) Computing time =

0 sec

datmb2 = Condat(system2,mb2) Computing time = 0 sec

mb3 = Create(mb3,[mark 0],[tran [0,1,0],[0,3,0],[0,5,1],[1,5,2],[2,15,3],[3,1,3],[3,3,3],[3,10,0],[3,12,3],

[3,17,0]],[forcible 1,3,5,15,17]) (4,10)

mb3 = Seloop(mb3,[0,2,4,6,7,8,9,11,13],[new forcible 7,9,11,13]) (4,46) Computing time = 0

sec

datmb3 = Condat(system2,mb3) Computing time = 0 sec

mb1mb2 = Meet(mb1,mb2) (10,85) Computing time = 0 sec

msuper2 = Meet(mb1mb2,mb3) (28,156) Computing time = 0 sec

true = Nonconict(msuper2,system2) Computing time = 0 sec

tmsuper2 = Trim(msuper2) (28,156) Computing time = 0 sec

true = Isomorph(msuper2,tmsuper2;identity) Computing time = 0 sec

test2 = Meet(system2,msuper2) (1152,3073) Computing time = 0 sec

true = Isomorph(super2,test2;identity) Computing time = 0 sec

52

B PRINTOUTS FOR DES SUPERVISORY CONTROLS Technical Report 2000-440

timer4 = Edit(timer5,[mark -[5]],[states -[5]],[trans -[4,0,5]]) (6,79)

timer4 = Minstate(timer4) (5,79) Computing time = 0 sec

timer3 = Edit(timer4,[mark -[4]],[states -[4]],[trans -[3,0,4]]) (5,63)

timer3 = Minstate(timer3) (4,63) Computing time = 0 sec

stimer4 = Supcon(super2,timer4) (0,0) Computing time = 7 sec

stimer4 = Condat(super2,stimer4) Computing time = 0 sec

stimer5 = Supcon(super2,timer5) (0,0) Computing time = 73 sec

timer6 = Edit(timer) (7,111)

reps80 = Create(reps80,[mark 0],[tran [0,0,0],[0,1,0],[0,2,0],[0,4,1],[0,7 ,0],[1,0,2],[1,9,0],[2,0,3],[2,9,0],

[3,0,4],[3,9,0],[4,9,0]],[forcible 1,7,9]) (5,12)

reps80 = Seloop(reps80,[3,5,6,8,10,11,12,13,15,17],[new forcible 3,5,11, 13,15,17]) (5,62) Com-

puting time = 0 sec

sreps80 = Supcon(system2,reps80) (576,2919) Computing time = 0 sec

sreps80 = Condat(system2,sreps80) Computing time = 1 sec

spec22 = Meet(spec2,reps80) (26,179) Computing time = 0 sec

super22 = Supcon(system2,spec22) (1280,3377) Computing time = 17 sec

spec22 = Condat(system2,spec22) Computing time = 75 sec

reps802 = Create(reps802,[mark 0],[tran [0,0,0],[0,1,0],[0,2,0],[0,4,1],[0 ,7,0],[1,0,2],[1,9,0],[2,0,3],

[2,9,0],[3,0,4],[3,9,0],[4,0,5],[4,9,0]],[forcible 1,7,9]) (6,13)

reps802 = Seloop(reps802,[3,5,6,8,10,11,12,13,15,17],[new forcible 3,5,1 1,13,15,17]) (6,73) Com-

puting time = 1 sec

spec23 = Meet(spec2,reps802) (31,208) Computing time = 0 sec

super23 = Supcon(system2,spec23) (1280,3377) Computing time = 122 sec

super23 = Condat(system2,super23) Computing time = 178 sec

B.3 Printouts for Case 3

********************** UNTIMED OPERATIONS ******************************

SHOVEL40 = Create(SHOVEL40,[mark 0],[tran [0,1,0],[0,3,0]]) (1,2)

SHOVEL80 = Create(SHOVEL80,[mark 0],[tran [0,7,0],[0,9,0]]) (1,2)

T1C80 = Create(T1C80,[mark 0],[tran [0,13,1],[1,2,0],[1,4,2],[2,17,0]]) (3,4)

T1C160 = Create(T1C160,[mark 0],[tran [0,19,1],[1,6,0],[1,8,2],[2,23,0]]) (3,4)

B1 = Create(B1,[mark 0],[tran [0,1,1],[0,2,0],[0,3,0],[0,4,0],[0,7,3],[0,9 ,0],[0,17,0],

[1,1,2],[1,9,1],[2,9,2],[2,13,0],[3,3,3],[3,13,0]]) (4, 13)

B1 = Seloop(B1,[6,8,19,23]) (4,29) Computing time = 00:00:00.00

53

B PRINTOUTS FOR DES SUPERVISORY CONTROLS Technical Report 2000-440

B2 = Create(B2,[mark 0],[tran [0,1,0],[0,3,3],[0,6,0],[0,7,0],[0,8,0],[0,9 ,1],[0,23,0],

[1,1,1],[1,9,2],[2,1,2],[2,19,0],[3,3,4],[3,7,3],[4,3,5] ,[4,7,4],[5,3,6],[5,7,5],[6,7,6],[6,19,0]]) (7,19)

B2 = Seloop(B2,[2,4,13,17]) (7,47) Computing time = 00:00:00.00

MB1 = Create(MB1,[mark 0],[tran [0,1,1],[0,3,0],[0,7,3],[0,9,0],[1,1,2],[1 ,9,1],[2,9,2],[2,13,4],

[3,3,3],[3,13,4],[4,2,0],[4,3,4],[4,4,4],[4,9 ,4],[4,17,0]]) (5,15)

MB1 = Seloop(MB1,[6,8,19,23]) (5,35) Computing time = 00:00:00.00

MB2 = Create(MB2,[mark 0],[tran [0,1,0],[0,3,3],[0,7,0],[0,9,1],[1,1,1],[1 ,9,2],[2,1,2],

[2,19,7],[3,3,4],[3,7,3],[4,3,5],[4,7,4],[5,3,6],[5,7, 5],[6,7,6],[6,19,7],[7,1,7],[7,6,0],[7,7,7],[7,8,7],[7,23,0]])

(8,2 1)

MB2 = Seloop(MB2,[2,4,13,17]) (8,53) Computing time = 00:00:00.00

TRUCKS = Sync(T1C80,T1C160) (9,24) Computing time = 00:00:00.00

SHOVELS = Sync(SHOVEL40,SHOVEL80) (1,4) Computing time = 00:00:00.00

SYST3 = Sync(SHOVELS,TRUCKS) (9,60) Computing time = 00:00:00.06

MEETB1B2 = Meet(B1,B2) (18,71) Computing time = 00:00:00.00

SPEC3 = Meet(B1,B2) (18,71) Computing time = 00:00:00.00

SUPER3 = Supcon(SYST3,SPEC3) (44,109) Computing time = 00:00:00.00

SUPER3 = Condat(SYST3,SUPER3) Controllable. Computing time = 00:00:00.00

MSUPER3 = Meet(MB1,MB2) (30,90) Computing time = 00:00:00.00

TEST3 = Meet(SYST3,MSUPER3) (44,109) Computing time = 00:00:00.00

true = Isomorph(SUPER3,TEST3;identity) Computing time = 00:00:00.00

SHOVEL80 = Edit(SHOVEL80,[trans +[0,11,0]]) (1,3)

B1 = Edit(B1,[trans +[0,11,0],+[1,11,1],+[2,11,2]]) (4,32)

MB1 = Edit(MB1,[trans +[0,11,0],+[1,11,1],+[2,11,2],+[4,11,4]]) (5,39)

B2 = Edit(B2,[trans +[0,11,0],+[3,11,3],+[4,11,4],+[5,11,5],+[6,11,6]]) (7,52)

MB2 = Edit(MB2,[trans +[0,11,0],+[3,11,3],+[4,11,4],+[5,11,5],+[6,11,6],+[7,11,7]]) (8,59)

SHOVELS = Sync(SHOVEL40,SHOVEL80) (1,5) Computing time = 00:00:00.00

SYST3 = Sync(SHOVELS,TRUCKS) (9,69) Computing time = 00:00:00.00

SPEC3 = Meet(B1,B2) (18,78) Computing time = 00:00:00.00

SUPER3 = Supcon(SYST3,SPEC3) (44,136) Computing time = 00:00:00.00

SUPER3 = Condat(SYST3,SUPER3) Controllable. Computing time = 00:00:00.00

MSUPER3 = Meet(MB1,MB2) (30,106) Computing time = 00:00:00.00

TEST3 = Meet(MSUPER3,SYST3) (44,136) Computing time = 00:00:00.00

true = Isomorph(SUPER3,TEST3;identity) Computing time = 00:00:00.06

54

B PRINTOUTS FOR DES SUPERVISORY CONTROLS Technical Report 2000-440

SHOVEL40 = Edit(SHOVEL40,[trans +[0,5,0]]) (1,3)

SHOVELS = Sync(SHOVEL40,SHOVEL80) (1,6) Computing time = 00:00:00.00

SYST3 = Sync(SHOVELS,TRUCKS) (9,78) Computing time = 00:00:00.00

B1 = Edit(B1,[trans +[0,5,0],+[3,5,3]]) (4,34)

B2 = Edit(B2,[trans +[0,5,0],+[1,5,1],+[2,5,2]]) (7,55)

MB1 = Edit(MB1,[trans +[0,5,0],+[3,5,3],+[4,5,4]]) (5,42)

MB2 = Edit(MB2,[trans +[1,5,1],+[2,5,2],+[7,5,7]]) (8,62)

MB2 = Edit(MB2,[trans +[0,5,0]]) (8,63)

SPEC3 = Meet(B1,B2) (18,82) Computing time = 00:00:00.00

MSUPER3 = Meet(MB1,MB2) (30,116) Computing time = 00:00:00.05

SUPER3 = Supcon(SYST3,SPEC3) (44,154) Computing time = 00:00:00.00

SUPER3 = Condat(SYST3,SUPER3) Controllable. Computing time = 00:00:00.00

TEST3 = Meet(MSUPER3,SYST3) (44,154) Computing time = 00:00:00.00

true = Isomorph(SUPER3,TEST3;identity) Computing time = 00:00:00.06

T2C160 = Create(T2C160,[mark 0],[tran [0,25,1],[1,10,0],[1,12,2],[2,29,0]]) (3,4)

TRUCKS = Sync(TRUCKS,T2C160) (27,108) Computing time = 00:00:00.00

SYST3 = Sync(TRUCKS,SHOVELS) (27,270) Computing time = 00:00:00.00

B1 = Seloop(B1,[10,12,25,29]) (4,50) Computing time = 00:00:00.06

B2 = Seloop(B2,[10,12,25,29]) (7,83) Computing time = 00:00:00.00

MB1 = Seloop(MB1,[10,12,25,29]) (5,62) Computing time = 00:00:00.00

MB2 = Seloop(MB2,[10,12,25,29]) (8,95) Computing time = 00:00:00.00

SPEC3 = Meet(B1,B2) (18,154) Computing time = 00:00:00.00

SUPER3 = Supcon(SYST3,SPEC3) (132,638) Computing time = 00:00:00.00

SUPER3 = Condat(SYST3,SUPER3) Controllable. Computing time = 00:00:00.05

MSUPER3 = Meet(MB1,MB2) (30,236) Computing time = 00:00:00.00

TEST3 = Meet(SYST3,MSUPER3) (132,638) Computing time = 00:00:00.00

true = Isomorph(SUPER3,TEST3;identity) Computing time = 00:00:00.00

B3 = Create(B3,[mark 0],[tran [0,1,0],[0,3,0],[0,5,0],[0,7,0],[0,9,0],[0,1 0,0],[0,11,1],[0,12,0],

[0,29,0],[1,1,1],[1,3,1],[1,11,2],[2,1,2],[2,3 ,2],[2,25,0]]) (3,15)

B3 = Seloop(B3,[2,4,6,8,13,17,19,23]) (3,39) Computing time = 00:00:00.00

MB3 = Create(MB3,[mark 0],[tran [0,1,0],[0,3,0],[0,5,0],[0,7,0],[0,9,0],[0 ,11,1],[1,1,1],

[1,3,1],[1,11,2],[2,1,2],[2,3,2],[2,25,3],[3,1,3],[3, 3,3],[3,5,3],[3,7,3],[3,9,3],[3,10,0],[3,12,3],[3,29,0]])

(4,20)

55

B PRINTOUTS FOR DES SUPERVISORY CONTROLS Technical Report 2000-440

MB3 = Seloop(MB3,[2,4,6,8,13,17,19,23]) (4,52) Computing time = 00:00:00.00

SPEC3 = Meet(SPEC3,B3) (32,214) Computing time = 00:00:00.00

SUPER3 = Supcon(SYST3,SPEC3) (186,714) Computing time = 00:00:00.05

SUPER3 = Condat(SYST3,SUPER3) Controllable. Computing time = 00:00:00.00

MSUPER3 = Meet(MSUPER3,MB3) (92,430) Computing time = 00:00:00.00

TEST3 = Meet(MSUPER3,SYST3) (186,714) Computing time = 00:00:00.00

true = Isomorph(SUPER3,TEST3;identity) Computing time = 00:00:00.05

B3 = Create(B3,[mark 0],[tran [0,1,0],[0,3,0],[0,5,3],[0,7,0],[0,9,0],[0,1 0,0],[0,11,1],[0,12,0],

[0,29,0],[1,1,1],[1,3,1],[1,11,2],[2,1,2],[2,3 ,2],[2,25,0],[3,5,4],[3,7,3],[3,9,3],[4,5,5],[4,7,4],[4,9,4],

[5,5,6],[5,7,5],[5,9,5],[6,7,6],[6,9,6],[6,25,0]]) (7,27)

B3 = Seloop(B3,[2,4,6,8,13,17,19,23]) (7,83) Computing time = 00:00:00.00

MB3 = Create(MB3,[mark 0],[tran [0,1,0],[0,3,0],[0,5,3],[0,7,0],[0,9,0],[0 ,11,1],[1,1,1],

[1,3,1],[1,11,2],[2,1,2],[2,3,2],[2,25,7],[3,5,4],[3, 7,3],[3,9,3],[4,5,5],[4,7,4],[4,9,4],[5,5,6],[5,7,5],[5,9,5],[6,7,6]

,[6,9,6],[6,25,7],[7,1,7],[7,3,7],[7,7,7],[7,9,7],[7,10,0],[7,12,7], [7,29,0]]) (8,31)

MB3 = Seloop(MB3,[2,4,6,8,13,17,19,23]) (8,95) Computing time = 00:00:00.00

MEETB1B2 = Meet(B1,B2) (18,154) Computing time = 00:00:00.00

SPEC3 = Meet(MEETB1B2,B3) (48,310) Computing time = 00:00:00.00

SUPER3 = Supcon(SYST3,SPEC3) (258,918) Computing time = 00:00:00.00

SUPER3 = Condat(SYST3,SUPER3) Controllable. Computing time = 00:00:00.06

MB1MB2 = Meet(MB1,MB2) (30,236) Computing time = 00:00:00.00

MSUPER3 = Meet(MB1MB2,MB3) (132,584) Computing time = 00:00:00.00

TEST3 = Meet(MSUPER3,SYST3) (258,918) Computing time = 00:00:00.06

true = Isomorph(SUPER3,TEST3;identity) Computing time = 00:00:00.05

************************** TIMED OPERATIONS ****************************

shovel40 = ACreate(shovel40,[mark 0],[timebounds [1,1,1000],[3,1,1000],[5, 1,1000]],[forcible

1,],[tran [0,1,0],[0,3,0],[0,5,0]]) (1,3)

shovel80 = ACreate(shovel80,[mark 0],[timebounds [7,1,1000],[9,1,1000],[11 ,1,1000]],[forcible

7,],[tran [0,7,0],[0,9,0],[0,11,0]]) (1,3)

t1c80 = ACreate(t1c80,[mark 0],[timebounds [2,3,4],[4,2,3],[6,1,2],[13,3,1 000],[15,2,1000],

[17,3,1000],[19,2,1000],[21,1,1000],[23,2,1000]],[forcible 13,15,17,19,],[tran [0,13,1],

[0,15,5],[1,17,2],[2,2,3],[2,6,6],[3,21,0],[4,4,3],[4,6,6],[5,19,4],[6,23,0]]) (7,10)

t1c160 = ACreate(t1c160,[mark 0],[timebounds [8,3,4],[10,2,3],[12,1,2],[25,3,1000],

[27,2,1000],[29,5,1000],[31,3,1000],[33,1,1000],[35,2,1000]],[forcible 25,27,29,31,],

[tran [0,25,1],[0,27,5],[1,29,2], [2,8,3],[2,12,6],[3,33,0],[4,10,3],[4,12,6],[5,31,4],[6,35,0]]) (7,10)

56

B PRINTOUTS FOR DES SUPERVISORY CONTROLS Technical Report 2000-440

t2c160 = ACreate(t2c160,[mark 0],[timebounds [14,3,4],[16,2,3],[18,1,2],[3 7,3,1000],[39,2,1000],

[41,5,1000],[43,3,1000],[45,1,1000],[47,2,1000]],[forcible 37,39,41,43,],

[tran [0,37,1],[0,39,5],[1,41,2],[2,14,3],[2,18,6],[3,45,0],[4,16,3],

[4,18,6],[5,43,4],[6,47,0]]) (7,10)

tc160 = Comp(t1c160,t2c160) (49,140) Computing time = 0 sec

trucks = Comp(tc160,t1c80) (343,1470) Computing time = 0 sec

shovels = Comp(shovel40,shovel80) (1,6) Computing time = 0 sec

system = Comp(shovels,trucks) (343,3528) Computing time = 0 sec

trucks = TimedGraph(trucks) (13750,31280) Computing time = 19 sec

shovels = TimedGraph(shovels) (64,256) Computing time = 0 sec

t1c80 = AEdit(t1c80,[changed timebounds [17 [0,1000]],[19 [0,1000]]]) (7,10)

t1c160 = AEdit(t1c160,[changed timebounds [29 [0,1000]],[31 [0,100 0]]]) (7,10)

t2c160 = AEdit(t2c160,[changed timebounds [41 [0,1000]],[43 [0,100 0]]]) (7,10)

tc160 = Comp(t1c160,t2c160) (49,140) Computing time = 0 sec

trucks = Comp(tc160,t1c80) (343,1470) Computing time = 0 sec

trucks = TimedGraph(trucks) (4913,13779) Computing time = 1 sec

B.4 Printouts for Case 4

SHOVEL40 = Create(SHOVEL40,[mark 0],[tran [0,1,0],[0,3,0],[0,5,0]]) (1,3)

SHOVEL80 = Create(SHOVEL80,[mark 0],[tran [0,7,0],[0,9,0],[0,11,0]]) (1,3)

T1C80 = Create(T1C80,[mark 0],[tran [0,13,1],[0,15,5],[1,17,2],[2,2,3],[2, 6,6],

[3,21,0],[4,4,3],[4,6,6],[5,19,4],[6,23,0]]) (7,10)

B1 = Create(B1,[mark 0],[tran [0,2,0],[0,3,0],[0,4,0],[0,5,0],[0,6,0],[0,9,0],[0,11,0],

[0,13,1],[0,15,4],[0,21,0],[0,23,0],[1,1,2],[1,3,1],[1,5,1],[1,9,1],[1,11,1],[2,1,3],

[2,9,2],[2,11,2],[3,9,3],[3,11,3],[3,17,0],[4,3,4],[4,5,4],[4,7,5],[4,9,4],

[4,11,4],[5,3,5],[5,5,5],[5,19,0]]) (6,30)

SHOVELS = Sync(SHOVEL40,SHOVEL80) (1,6) Computing time = 00:00:00.05

SYST4 = Sync(SHOVELS,T1C80) (7,52) Computing time = 00:00:00.06

SUPER4 = Supcon(SYST4,B1) (10,47) Computing time = 00:00:00.00

SUPER4 = Condat(SYST4,SUPER4) Controllable. Computing time = 00:00:00.00

true = Nonconict(B1,SYST4) Computing time = 00:00:00.00

TB1 = Trim(B1) (6,30) Computing time = 00:00:00.00

57

B PRINTOUTS FOR DES SUPERVISORY CONTROLS Technical Report 2000-440

true = Isomorph(TB1,B1;identity) Computing time = 00:00:00.00

TEST4 = Meet(SYST4,B1) (10,47) Computing time = 00:00:00.05

true = Isomorph(SUPER4,TEST4;identity) Computing time = 00:00:00.00

MB1 = Edit(B1) (6,30)

true = Nonconict(MB1,SYST4) Computing time = 00:00:00.00

TMB1 = Trim(MB1) (6,30) Computing time = 00:00:00.00

true = Isomorph(MB1,TMB1;identity) Computing time = 00:00:00.00

TEST4 = Meet(MB1,SYST4) (10,47) Computing time = 00:00:00.00

true = Isomorph(SUPER4,TEST4;identity) Computing time = 00:00:00.05

DATMB1 = Condat(SYST4,MB1) Controllable. Computing time = 00:00:00.00

T1C160 = Create(T1C160,[mark 0],[tran [0,25,1],[0,27,5],[1,29,2],[2,8,3],[2,12,6],[3,33,0],

[4,10,3],[4,12,6],[5,31,4],[6,35,0]]) (7,10)

B2 = Create(B2,[mark 0],[tran [0,1,0],[0,5,0],[0,7,0],[0,8,0],[0,10,0],[0,11,0],[0,12,0],[0,25,1],

[0,27,6],[0,33,0],[0,35,0],[1,1,1],[1,3,2],[1,5,1],[1,7,1],[1,11,1],[2,3,3],[2,7,2],

[2,11,2],[3,3,4],[3,7,3],[3,11,3],[4,3,5],[4,7,4],[4,11,4],[5,7,5],[5,11,5],[5,29,0],

[6,1,6],[6,5,6],[6,7,6],[6,9,7],[6,11,6],[7,1,7],[7,5,7], [7,9,8],[8,1,8],

[8,5,8],[8,31,0]]) (9,39)

B2 = Seloop(B2,[2,4,6,13,15,17,19,21,23]) (9,120) Computing time = 00:00:00.00

B1 = Seloop(B1,[8,10,12,25,27,29,31,33,35]) (6,84) Computing time = 00:00:00.00

SPEC4 = Meet(B1,B2) (44,214) Computing time = 00:00:00.05

TRUCKS = Sync(T1C80,T1C160) (49,140) Computing time = 00:00:00.00

SYST4 = Sync(TRUCKS,SHOVELS) (49,434) Computing time = 00:00:00.00

SUPER4 = Supcon(SYST4,SPEC4) (120,461) Computing time = 00:00:00.00

SUPER4 = Condat(SYST4,SUPER4) Controllable. Computing time = 00:00:00.00

MB1 = Edit(B1) (6,84)

MB2 = Edit(B2) (9,120)

DATMB1 = Condat(SYST4,MB1) Controllable. Computing time = 00:00:00.00

DATMB2 = Condat(SYST4,MB2) Controllable. Computing time = 00:00:00.06

MSUPER4 = Meet(MB1,MB2) (44,214) Computing time = 00:00:00.05

true = Nonconict(SYST4,MSUPER4) Computing time = 00:00:00.00

TMSUPER4 = Trim(MSUPER4) (44,214) Computing time = 00:00:00.00

true = Isomorph(TMSUPER4,MSUPER4;identity) Computing time = 00:00:00.00

TEST4 = Meet(MSUPER4,SYST4) (120,461) Computing time = 00:00:00.00

58

B PRINTOUTS FOR DES SUPERVISORY CONTROLS Technical Report 2000-440

true = Isomorph(SUPER4,TEST4;identity) Computing time = 00:00:00.00

**************** Hierarchical supervisory control *****************************

SYST4V = Edit(SYST4,[voc [11,11],[12,12],[17,11],[18,12],[21,11],[22,12],[24,10],[29,11],

[30,12],[32,10],[33,11],[34,12],[36,10],[37,11],[3 8,12],[39,11],[40,12],[42,10],[44,10],[46,10],[48,10]])

(49,434)

GLO = Edit(SYST4V) (49,434)

OCGLO = Outconsis(GLO) (60,529) Computing time = 00:00:00.05

HCGLO = Hiconsis(OCGLO) (60,529) Computing time = 00:00:00.77

true = Isomorph(OCGLO,HCGLO;identity) Computing time = 00:00:00.00

GHI = Higen(HCGLO) (8,26) Computing time = 00:00:00.05

SPECHI = Create(SPECHI,[mark 0,3],[tran [0,100,1],[0,121,0],[1,100,2],[1,1 21,1],[2,100,3],[2,121,2]])

(4,6)

SPECHI = Seloop(SPECHI,[101,110,111,120]) (4,22) Computing time = 00:00:00.00

SUPERHI = Supcon(GHI,SPECHI) (18,44) Computing time = 00:00:00.00

SUPERHI = Condat(GHI,SUPERHI) Controllable. Computing time = 00:00:00.00

T2C160 = Create(T2C160,[mark 0],[tran [0,37,1],[0,39,5],[1,41,2],[2,14,3], [2,18,6],[3,45,0],

[4,16,3],[4,18,6],[5,43,4],[6,47,0]]) (7,10)

B3 = Create(B3,[mark 0],[tran [0,1,0],[0,3,0],[0,7,0],[0,9,0],[0,14,0],[0, 16,0],[0,18,0],[0,37,1],

[0,39,6],[0,45,0],[0,47,0],[1,1,1],[1,3,1],[1 ,5,2],[1,7,1],[1,9,1],[2,5,3],[2,7,2],[2,9,2],[3,5,4],[3,7,3],[3,9,3],

[4,5,5],[4,7,4],[4,9,4],[5,7,5],[5,9,5],[5,41,0],[6,1,6],[6,3,6],[6, 7,6],[6,9,6],[6,11,7],[7,1,7],

[7,3,7],[7,11,8],[8,1,8],[8,3,8],[8,43, 0]]) (9,39)

B3 = Seloop(B3,[2,4,6,8,10,12,13,15,17,19,21,23,25,27,29,31,33,35]) (9, 201) Computing time

= 00:00:00.05

B1 = Seloop(B1,[14,16,18,37,39,41,43,45,47]) (6,138) Computing time = 00:00:00.00

B2 = Seloop(B2,[14,16,18,37,39,41,43,45,47]) (9,201) Computing time = 00:00:00.00

TC160 = Sync(T1C160,T2C160) (49,140) Computing time = 00:00:00.00

TRUCKS = Sync(TC160,T1C80) (343,1470) Computing time = 00:00:00.05

SYST4 = Sync(SHOVELS,TRUCKS) (343,3528) Computing time = 00:00:00.05

MEETB1B2 = Meet(B1,B2) (44,610) Computing time = 00:00:00.00

SPEC4 = Meet(MEETB1B2,B3) (258,1514) Computing time = 00:00:00.06

SUPER4 = Supcon(SYST4,SPEC4) (1302,4799) Computing time = 00:00:00.11

SUPER4 = Condat(SYST4,SUPER4) Controllable. Computing time = 00:00:00.17

DATMB1 = Condat(SYST4,MB1) Controllable. Computing time = 00:00:00.00

59

B PRINTOUTS FOR DES SUPERVISORY CONTROLS Technical Report 2000-440

DATMB2 = Condat(SYST4,MB2) Controllable. Computing time = 00:00:00.00

MB1 = Edit(B1) (6,138)

MB2 = Edit(B2) (9,201)

MB3 = Edit(B3) (9,201)

MB1MB2 = Meet(MB1,MB2) (44,610) Computing time = 00:00:00.06

MSUPER4 = Meet(MB1MB2,MB3) (258,1514) Computing time = 00:00:00.05

DATMB1 = Condat(SYST4,MB1) Controllable. Computing time = 00:00:00.06

DATMB2 = Condat(SYST4,MB2) Controllable. Computing time = 00:00:00.05

DATMB3 = Condat(SYST4,MB3) Controllable. Computing time = 00:00:00.00

true = Nonconict(SYST4,MSUPER4) Computing time = 00:00:00.00

TMSUPER4 = Trim(MSUPER4) (258,1514) Computing time = 00:00:00.00

true = Isomorph(TMSUPER4,MSUPER4;identity) Computing time = 00:00:00.11

TEST4 = Meet(MSUPER4,SYST4) (1302,4799) Computing time = 00:00:00.05

true = Isomorph(SUPER4,TEST4;identity) Computing time = 00:00:00.28

**************** Second speci�cation *****************************

REP1 = Create(REP1,[mark 0],[tran [0,12,1],[0,23,0],[1,35,0]]) (2,3)

REP1 = Seloop(REP1,[2,4,6,8,10,13,14,15,16,17,18,19,21,25,27,29,31,33,37 ,39,41,43,45,47])

(2,51) Computing time = 00:00:00.00

REP1 = Seloop(REP1,[1,3,5,7,9,11]) (2,63) Computing time = 00:00:00.05

REP2 = Create(REP2,[mark 0],[tran [0,18,1],[0,23,0],[1,47,0]]) (2,3)

REP2 = Seloop(REP2,[2,4,6,8,10,12,13,14,15,16,17,19,21,25,27,29,31,33,35 ,37,39,41,43,45])

(2,51) Computing time = 00:00:00.00

REP2 = Seloop(REP2,[1,3,5,7,9,11]) (2,63) Computing time = 00:00:00.00

DATREP1 = Condat(SYST4,REP1) Controllable. Computing time = 00:00:00.00

DATREP2 = Condat(SYST4,REP2) Controllable. Computing time = 00:00:00.00

REPAIR = Meet(REP1,REP2) (4,121) Computing time = 00:00:00.05

SPEC42 = Meet(SPEC4,REPAIR) (1032,5521) Computing time = 00:00:00.05

SUPER42 = Supcon(SYST4,SPEC42) (1302,4774) Computing time = 00:00:00.06

SUPER42 = Condat(SYST4,SUPER42) Controllable. Computing time = 00:00:00.05

true = Nonconict(REPAIR,SYST4) Computing time = 00:00:00.00

DATREP = Condat(SYST4,REPAIR) Controllable. Computing time = 00:00:00.00

MSUPER42 = Meet(MSUPER4,REPAIR) (1032,5521) Computing time = 00:00:00.00

true = Nonconict(MSUPER42,SYST4) Computing time = 00:00:00.06

TMSUP42 = Trim(MSUPER42) (1032,5521) Computing time = 00:00:00.00

60

B PRINTOUTS FOR DES SUPERVISORY CONTROLS Technical Report 2000-440

true = Isomorph(MSUPER42,TMSUP42;identity) Computing time = 00:00:00.22

TEST42 = Meet(MSUPER42,SYST4) (1302,4774) Computing time = 00:00:00.05

true = Isomorph(SUPER42,TEST42;identity) Computing time = 00:00:00.28

B.5 Printouts for Case 5

Q = Create(Q,[mark 0],[tran [0,2,0],[0,4,0],[0,5,0],[0,6,0],[0,7,0],[0,8,0],[0,9,0],

[0,10,0],[0,11,0],[0,12,0],[0,13,1],[0,15,0],[0,19,0],[0,21,0],[0,23,0],[0,25,3],

[0,27,0],[0,31,0],[0,33,0],[0,35,0],[1,1,1],[1,7,1],[1,8,1],[1,9,1],[1,10,1],

[1,11,1],[1,12,1],[1,17,0],[1,25,2],[1,27,1],[1,31,1],[1,33,1],[1,35,1],[2,1,2],

[2,9,2],[2,11,2],[2,17,3],[3,2,3],[3,3,3],[3,4,3],[3,6,3],[3,7,3],[3,9,3],[3,11,3],

[3,13,4],[3,15,3],[3,19,3],[3,21,3],[3,23,3],[3,29,0],[4,3,4],[4,7,4],[4,11,4],[4,29,1]]) (5,54)

SPEC5 = Meet(B1,B2) (44,214) Computing time = 00:00:00.00

SYST5 = Sync(SHOVELS,TRUCKS) (49,434) Computing time = 00:00:00.00

ALLSP5 = Allevents(SPEC5) (1,24) Computing time = 00:00:00.00

ALLQ = Allevents(Q) (1,24) Computing time = 00:00:00.06

true = Isomorph(ALLSP5,ALLQ;identity) Computing time = 00:00:00.00

true = Nonconict(SYST5,Q) Computing time = 00:00:00.00

DATQ = Condat(SYST5,Q) Controllable. Computing time = 00:00:00.00

MB1 = Edit(B1) (6,84)

MB2 = Edit(B2) (9,120)

MB1MB2 = Meet(MB1,MB2) (44,214) Computing time = 00:00:00.00

TQ = Trim(Q) (5,54) Computing time = 00:00:00.00

true = Isomorph(TQ,Q;identity) Computing time = 00:00:00.00

MQ = Edit(Q) (5,54)

MSUPER5 = Meet(MQ,MB1MB2) (45,207) Computing time = 00:00:00.06

true = Nonconict(MSUPER5,SYST5) Computing time = 00:00:00.00

TEST5 = Meet(MSUPER5,SYST5) (121,446) Computing time = 00:00:00.00

SPEC5 = Meet(SPEC5,Q) (45,207) Computing time = 00:00:00.06

SUPER5 = Supcon(SYST5,SPEC5) (121,446) Computing time = 00:00:00.00

SUPER5 = Condat(SYST5,SUPER5) Controllable. Computing time = 00:00:00.06

true = Isomorph(SUPER5,TEST5;identity) Computing time = 00:00:00.05

PSYST5 = Project(SYST5,Null[1,3,5,7,9,11]) (49,140) Computing time = 00:00:00.05

61

B PRINTOUTS FOR DES SUPERVISORY CONTROLS Technical Report 2000-440

SYST5V = Edit(SYST5,[voc [1,13],[2,15],[6,13],[9,15],[10,15],[17,13],[18,13],

[21,15],[22,15],[31,18],[32,18],[35,15],[36,15]]) (49,434)

SYST5V = Edit(SYST5V,[voc [31,13],[32,13]]) (49,434)

GLO = Edit(SYST5V) (49,434)

OCGLO = Outconsis(GLO) (53,466) Computing time = 00:00:00.00

HCGLO = Hiconsis(OCGLO) (53,466) Computing time = 00:00:00.33

true = Isomorph(HCGLO,OCGLO;identity) Computing time = 00:00:00.00

GHI = Higen(HCGLO) (3,8) Computing time = 00:00:00.00

SPECHI5 = Create(SPECHI5,[mark 0],[tran [0,130,0],[0,131,1],[0,150,0],[1,130,1],

[1,131,2],[1,150,1],[2,130,2],[2,150,2],[2,151,0]]) (3,9)

SUPERHI5 = Supcon(GHI,SPECHI5) (6,9) Computing time = 00:00:00.00

SUPERHI5 = Condat(GHI,SUPERHI5) Controllable. Computing time = 00:00:00.00

62

C VDES THEORETICAL BACKGROUND Technical Report 2000-440

C VDES Theoretical Background

The following paragraphs contain an informal introduction to VDES theory that is meant to

facilitate the reading and understanding of the present study. More details can be found in [6]

and [7].

C.1 Vector Discrete-Event Systems

Vector discrete-event systems are DESs in which the state transition structure is given a more

fundamental role. In fact, in a DES a system's behaviour is characterized by the occurrence of

events while a VDES behaviour will be de�ned through its discrete states. We usually borrow

the Petri net formalism as a representation means for VDES. In this formalism, each system's

state plays the role of a bu�er containing some tokens. In fact, the value of a state provides

the number of tokens associated with its bu�er. For instance, in Figure 31 the presence of one

token in state x1 and the absence of tokens in states x2 and x3 translate into x1 = 1, x2 = 0

and x3 = 0. As in DES, each state of a VDES represents a particular status of a machine (idle,

breakdown, etc.). Thus, at any moment the number and location of tokens in the states of a

VDES characterize the number of machines of a certain condition. The evolution of a VDES

depends upon the occurrence3 of events (as a1, a2, b1 and b2 in Figure 31) whose e�ect is to

displace tokens from one location to another.

To represent the evolution of a VDES graphically, we adopt the following rules. For a given

event, a state with an event arrow pointing out sees its value decreased while a state with

an incoming arrow experiences an increase of its state value. Consequently, a discrete state

sees its value augmented (resp., decreased) when one of its entering (resp., exiting) events

�res. Normally, the �ring of an event decreases by one the number of tokens in all preceding

states. Otherwise, a weight (an integer) will be assigned to the event arrows indicating how

many tokens are displaced. Moreover, an event can only �re when its attached upstream states

possess a suÆcient number of tokens. For instance, only events a1 and a2 (whose �ring require

one token) can occur in Figure 31 because x1 = 1. If a1 �res, the state values will become

x1 = 0, x2 = 1 and x3 = 0 as event a1 leaves x1 and points into x2 while x3 remains unaltered.

Therefore, when event b1 takes place, the original con�guration of our example (Figure 31) is

recovered.

b1
x1 x2

b2
x3

a2 a1

Figure 31: Example of VDES

Formally, a VDES G = (X;�; �;Xo;Xm) is a DES equipped with a vector structure and in

which we make use of vector addition over the integers representing the discrete-state values.

Thus, a VDES is mainly characterized by an alphabet �, a transition function � : X��! X,

a state vector X and its initial value Xo. Given the state vector X of a VDES and an event

�, the transition function �(X;�) computes the next value of X resulting from the �ring of �

3As in Petri net theory, we will refer to the \�ring" of an event for its occurrence.

63

C VDES THEORETICAL BACKGROUND Technical Report 2000-440

in the following manner:

�(X;�) = X +EV (�):

The displacement matrix E converts the �ring of event � into its respective incremental and

decremental e�ects on state vector X. Therefore with � = f�1 �2 : : : �mg, the matrix E can

be written as E = [e�1 e�1 : : : e�m] where the column vector e�i is the displacement vector

associated with event �i. In this sense, the matrix E is analogous to a transition matrix since it

completely characterizes a VDES. The occurrence vector V (s) extracts from a given sequence

of events (or string) s the number of occurrences of event �i 2 �. While entries in E can

take negative values, we require that for all xi 2 X we have xi � 0. For instance, the �ring

of event a1 can be written as V = [#a1 #a2 #b1 #b2]
T = [1 0 0 0]T . Also, the e�ect of the

�ring of a1 over X = [x1 x2 x3]
T is recorded in the �rst column of E as ea1 = [�1 1 0]T since

x1 is decreased by 1 while x2 is increased by 1 and x3 is una�ected by event a1. With the

con�guration of Figure 31, we have Xo = [x1o x2o x3o] = [1 0 0]T and the transition following

the �ring of a1 is written as

�(Xo; a1) = Xo +EV (a1) =

2
64 1

0

0

3
75+

ea1 ea2 eb1 eb22
64 �1 �1 1 1

1 0 �1 0

0 1 0 �1

3
75
2
6664
#a1 = 1

#a2 = 0

#b1 = 0

#b2 = 0

3
7775 =

2
64 0

1

0

3
75 =

2
64 x1

x2

x3

3
75 ;

where columns 2 through 4 of matrix E take into account the decremental/incremental e�ects

of events a2, b1 and b2, respectively.

Unlike DES, a VDES representation of similar machines can be grouped into one VDES where

the number of machines is indicated by the number of tokens within the machine (i.e., the

sum of its states). For instance, the two 160-ton trucks of Figure 32 are modeled by TC160

with two tokens in the idle position, x5, representing the initial status of 160-ton trucks.

Despite the token exchange between trucks TC80, TC160, and shovel SHOV EL80, the total

number of tokens in each VDES (i.e., the sum of all machine states) remains invariant (i.e.,

x1 + x2 + x3 + x4 = 1, x5 + x6 = 2 and x7 + x8 = 1).

In the actual VDES framework, a self-loop of an event cannot be represented since there is no

means to di�erentiate a self-loop (namely an entry of value 1 � 1 = 0) from no event (value

0) in matrix E. The usual way to circumvent this limitation is to de�ne an additional dummy

state and event so that the self-loop is represented by the sequential �ring of two events.

Furthermore, the extra event is assumed to take place rapidly and it is further projected out

to extract the appropriate behaviour.

C.2 Control of Vector Discrete-Event Systems

Constraints on a VDES can be imposed on the value taken by the states or by the number

of times a state is visited. The �rst type of constraint on the states X of a VDES can

be implemented via a static predicate Pstatic, while the second type is enforced by a dynamic

predicate Pdyn. Given a state set X, a predicate P : X ! f0; 1g is a function placing conditions

(0 and 1) on elements of X. Thus, with a predicate P can be associated a subset Xp � X

respecting P . We should think of a predicate P as a speci�cation for the controlled behaviour

of a VDES named G. To complete the analogy with speci�cations, the values 0 and 1 generated

64

C VDES THEORETICAL BACKGROUND Technical Report 2000-440

a1

a2

a3

b1

c1

b2

c2

TC160

TC80

SHOVEL80

x1

x2

x3

x4

x5 x6

x7 x8

Figure 32: Interacting VDESs

by a predicate and assigned to the states of a VDES mean that a state is forbidden and allowed,

respectively. The implementation of a speci�cation is performed through its conversion into

a static or a dynamic predicate. The following text provides information on the modelling of

speci�cations.

A static predicate assigns constraints on the state values. By convention, we write a static

predicate as

x j= Pstatic i� x = aX � b;

where x j= Pstatic means \a state x 2 Xp satis�es the predicate Pstatic". For instance, the

predicate P imposing x2 � 0 (by convention of representation even though x2 < 0 is not

possible) on the system of Figure 31 could be rewritten with a = [0 1 0], X = [x1 x2 x3]
T and

b = 0.

A predicate Pstatic is enforced on a VDES by suitably enabling/disabling events � 2 � at some

x 2 X. For this purpose, a state feedback control (SFBC) is adjoined to the VDES. A SFBC

takes the value X as inputs and in return generates a collection of predicates ff�g disabling

or enabling � at speci�c x 2 X. In the previous example (x2 � 0 imposed on VDES of Figure

31), a SFBC will disable event a1 at state x1 when x2 = 0. More formally, one can write

fa1(X) = 1 if �(X; a1)! and x2 < 0

fa1(X) = 0 otherwise
:

This way, whenever a transition with event a1 exists (namely �(X; a1)!) event a1 cannot be

enabled (fa1(X) = 1) since the condition x2 < 0 is never satis�ed. Consequently, event a1 is

always disabled (fa1(X) = 0). We usually require a SFBC to be balanced, so that it enables

the largest possible set of reachable events satisfying the predicate. This property guarantees

some optimal behaviour that is preserved under conjunction of SFBCs.

In some cases, the speci�cation not only depends on the present status of the system but also

requires knowledge of the past behaviour. Consequently, the past behaviour is captured by a

65

C VDES THEORETICAL BACKGROUND Technical Report 2000-440

dynamic predicate Pdyn, which by convention takes the form

v j= Pdyn i� d� cv � 0;

where v, d and c represent the occurrence vector of events contained in Pdyn, an integer value,

and the coeÆcient vector of v, respectively. For instance, to enforce Pdyn := #c1 � #c2 on the

VDES of Figure 32, thus specifying that the number of events c2 in TC80 can occur at most

\#c1" times, one would de�ne v = [vc1 vc2]
T , d = 0 and c = [�1 1] where vc1 represents #c1

and vc2 represents #c2.

Roughly speaking, a dynamic predicate sets a counter on how often a set of states is visited.

Similarly to SFBC, we de�ne a dynamic SFBC (or DSFBC) as the controller that implements

the dynamic predicate Pdyn over a VDES G. The implementation of a dynamic predicate re-

quires a transformation into an equivalent static predicate as follows. One de�nes an additional

state set Y (namely a collection of event counters) extending the VDES state set X. Then,

one converts the dynamic predicate into a static one by ensuring that 8y 2 Y; y � 0. For in-

stance, in the example Pdyn := #c1 � #c2, one could de�ne a new state set Y = fy1; y2g where

y1 = #c1 and y2 = #c2 (both guaranteed to be positive). Therefore, with Pstatic := y2�y1 � 0,

Pdyn is equivalent to the static predicate Pstatic if one implements Pstatic over the enlarged state

set, denoted by X � Y .

The conversion of a dynamic predicate Pdyn to a static one Pstatic is performed by de�ning a

memory VDESH for G. Formally, a memoryH = (Y; �; �; Yo; Y) is a DES where L(H) � L(G)

and whose marker set is the entire state set. The resulting enlarged system (in the sense of

adjoining state sets X and Y . i.e., X � Y), denoted by G�H, as well as the static predicate

Pstatic e�ectively implement Pdyn if L(G�H;Pstatic) = L(G;Pdyn) holds. Therefore, a DSFBC

implements the dynamic predicate Pdyn over G via G�H and Pstatic. The major advantage

of converting dynamic predicates to static ones is that it permits the conjunction of both

types of predicates into a static predicate framework, thus enabling combinations of various

speci�cations.

C.3 Supervisors of Vector Discrete-Event Systems

The key property to derive an optimal SFBC relates to the uncontrollable subsystem of G,

denoted Gu. A subsystem of G, which is also a VDES, is obtained by picking out a subset of the

component of the state vector X and a subset of the event set �. For instance, the subsystem

Gu contains the complete state setX and the subset of uncontrollable events �u � �. Similarly,

we further consider Eu � E consisting of the displacement submatrix (with columns properly

reorganized) due to uncontrollable events. If Gu is loop-free, then an optimal SFBC can

possibly be determined. In fact, the existence of a SFBC is related to the solution of a

maximization problem

maximize aEuv
� subject to v� � 0; X +Euv

�
� 0;

where a and Eu are as de�ned above while v�, the solution of the maximization problem, is

an occurrence vector. Therefore, a solution to the above maximization problem, if it exists, is

optimal in the sense that a maximal number of event occurrences is enabled. The constraints

v� � 0 and X + Euv
� � 0 insure that the occurrences of events in v� (positive integers) are

such that the state values can still be represented by natural numbers. A SFBC is said to

66

C VDES THEORETICAL BACKGROUND Technical Report 2000-440

be optimal if with the VDES initial values X0 and the solution of the maximization problem

v�, the condition a(X0 + Euv
�(X0)) � b is satis�ed. Namely, this insures that under the ow

of events in v� and with the VDES in its initial con�guration, the static predicate remains

valid. Finally, in the presence of event � 2 �c (the subset of controllable events) the predicates

generated by the SFBC, denoted by f�, are obtained from the following equation

f�(X � Y) = 1 if � � �(X � Y; �)! and a(X � Y)new + aEuv
�((X � Y)new) � b

f�(X � Y) = 0 otherwise
;

where (X � Y)new = (X � Y) + (e� � h�) with e� and h� the displacement vectors for

states X and Y , respectively. Therefore, the above expression provides the enablement (resp.,

disablement) rules of event � represented by value 1 (resp., 0) depending on the value of the

state X �Y . One notices that event � is enabled (i.e., f�(X �Y) = 1) only if event � remains

a transition of the enlarged system � � �(X � Y; �)! while not violating the static predicate

over the enlarged state set X � Y .

After the computation of a SFBC, the �nal step is to derive a VDES implementation (or

VDESI) of that SFBC. Namely, we convert the SFBC into a VDES with suitable interde-

pendence relations with the controlled VDESs. This is performed in three steps. First, we

determine the subsystem Gr � Gu uniquely composed of uncontrollable events decreasing the

speci�cation coordinates Y [12]. Then, we investigate its loop-freeness. Secondly, we verify

that Gr decrements at most one state in G. Finally, we rewrite the speci�cation so that it

is composed of controllable events. Therefore, we can disable the controllable event when the

speci�cation reaches its limit. An algorithm performing this last step is provided in [4]. If the

above procedure is successful a VDESI exists. Occasionally, a VDESI can be derived directly

from the VDES to control and the dynamic predicate.

a1

a2

a3

b1

c1

b2

c2

TC160

TC80

SHOVEL80

x1

x2

x3

x4

x5 x6

x7 x8

ynew

Figure 33: VDESI on Interacting VDESs

A simpli�ed schematic of the computation of a VDESI is now provided. Consider the predicate

Pdyn := #c1 � #c2 modeled by a single state VDES ynew := #c1 � #c2 � 0 in Figure 33.

Events bi and ci, i = 1; 2 are assumed to be controllable and uncontrollable, respectively. To

design a VDESI, we follow the three-step procedure described in the previous paragraph. By

inspection of Figure 33, one notices that Gr is composed of event c2 since this is the unique

uncontrollable event decrementing ynew. Thus G
r is automatically loop-free. Moreover, event

67

C VDES THEORETICAL BACKGROUND Technical Report 2000-440

c2 only decreases state x8 of G (namely of VDES TC80). To make the VDESI controllable,

one can replace #c2 (solid line) with #b2 (dotted line) in ynew. Despite the modi�cation of

the predicate, its true behaviour is preserved because event c2 is preceded by event b2 whose

�ring leads to the unstoppable �ring of event c2. Moreover, the modi�ed predicate provides a

means to disable event b2 when necessary.

C.4 Procedures to Compute SFBC, DSFBC and VDESI

The following procedures summarize the various steps given in Section C.1, Section C.2 and

Section C.3.

Pstatic ! SFBC: To extract a SFBC from a static predicate,

1. Identify the state vector X and its initial value Xo,

2. From the alphabet � build the displacement matrix E,

3. Identify the uncontrollable events �u = f�1 : : : �pg and extract the uncontrollable

displacement submatrix Eu,

4. From inspection of the VDES or Eu verify that Gu is loop-free,

5. Write down the speci�cation as a standard static predicate

x j= Pstatic i� aX � b;

from which a and b are obtained.

6. Form vector v� = [v1 : : : vp] representing the number of occurrences of �1; : : : ; �p,

7. Determine v� solving the maximization problem

maximize aEuv
� subject to v� � 0 and X +Euv

�
� 0:

This amounts to the following:

� write all constraints v� � 0 and X +Euv
� � 0 explicitly,

� extract the set of e�ective constraints,

� choose v� maximizing aEuv
� while respecting the reduced set of constraints.

8. Check if

aX0 + aEuv
�(X0) � b

holds. If so, there exists an optimal SFBC f� for predicate Pstatic. If not, no SFBC exists

that enforces predicate Pstatic.

9. De�ne the optimal SFBC f� so that for � 2 �c it enables � (i.e., f�(X) = 1) if

�(X;�)! and aXnew + aEuv
�(Xnew) � b

holds. Also, Xnew = X + e� must satisfy Xnew � 0.

68

C VDES THEORETICAL BACKGROUND Technical Report 2000-440

Pdyn ! Pstatic: To convert a dynamic predicate into a static one,

1. Identify the state vector X and its initial value Xo,

2. De�ne the alphabet � = f�; �; : : :g and the occurrence vector v = [v� v� : : :] =

[#� #� : : :],

3. Write down the speci�cation as a standard dynamic predicate

v j= Pdyn i� d� cv � 0;

from which c and d are obtained.

4. Associate to Pdyn a VDES memory,

H = fY;�; �; Yo; Y g

where Y � 0 and Yo represent the state set and its initial value. The transition function

is de�ned as �(Y; �) = Y + h� with the displacement vector h� for state set Y .

5. Enlarge the state vector X by Y such that for the enlarged VDES, denoted by G�H, we

have state vectors of the form X �Y = [x1 : : : y1 : : :] and (X �Y)o = [x1o : : : y1o : : :].

6. Rede�ne the dynamic predicate Pdyn as a static one Pstatic by using the states X � Y .

Thus we have

d� cv � 0 � b� a(X � Y) � 0 � a(X � Y) � b;

from which a and b are extracted. Also, Y0 is obtained by setting all event occurrences

equal to zero in the state set Y .

7. Verify that in all cases X � Y � 0. If not, the state set Y must be rede�ned and step 4

must be reinitiated.

Pdyn ! DSFBC: To convert a dynamic predicate into DSFBC,

1. Initiate procedure Pdyn ! Pstatic,

2. Continue with procedure Pstatic ! SFBC by replacing X, � and e� with the equivalent

for the enlarged system i.e., X � Y , � � � and e� � h�.

(D)SFBC ! VDESI: To convert a SFBC or DSFBC into a VDESI,

1. From procedure Pdyn ! DSFBC or procedure Pstatic ! SFBC extract Gr � Gu,

2. Verify that Gr is loop-free,

3. Verify that each uncontrollable event in Gr decrements at most one state of G,

4. Rewrite the speci�cation so that it is composed of controllable events. This can be done

with the algorithm provided in [12] and [4].

69

D VDES SOLUTION FOR CASE 5 Technical Report 2000-440

D VDES solution for Case 5

This section provides the calculations for Case 5 of Section 4.2.5. We refer to G as the VDES

of Figure 26 and give it the following de�nition G = (X;�; �;Xo;Xm) where X and � represent

the state set and the transition function, respectively.

The �rst phase is to convert the dynamic predicates developed previously into optimal dy-

namic state feedback controls (Pdyn ! DSFBC). This can be done because the uncontrollable

subsystem Gu is loop-free (shown later on). Let us consider the following predicates:

P1 := #a1 +#b1 � #g1 +#n1 + x120

P2 := #a3 +#b5 � #g2 +#n2 + x190

P3 := �4(#f1 +#p1) + #g1 � 0

P4 := �4(#f2 +#p2) + #g2 � 0:

We solve for dynamic predicates P1 and P3 only since their equivalent versions in TC80 (P2

and P4) can be derived similarly. Consider the vector of event occurrences de�ned as v =

[va1 vb1 vg1 vn1 : : :]T . The predicate P1 can be put in the following form:

P1 := d� cv � 0

x120 � [1 1 � 1 � 1 : : :]

2
6666664

va1

vb1

vg1

vn1
...

3
7777775
� 0

[1 � 1]

0
BBBBBB@
"
x120

0

#
+

"
0 0 1 1 : : :

1 1 0 0 : : :

#
2
6666664

va1

vb1

vg1

vn1
...

3
7777775

1
CCCCCCA
� [1 � 1]

"
0

0

#
;

such that x j= P1 i� cv � d. Then we associate a memory H = (Y;�; �; Yo; Y) where Y =

fy1; y2g and Y0 = d = [x120 0]
T . Therefore we de�ne G�H, an enlarged VDES with additional

states, "
y1

y2

#
=

"
x120 +#g1 +#n1

#a1 +#b1

#
;

with the following non-trivial initial values,

x10 = 1; x50 = 1; x120 = 2; x190 = 1; x270 = 3; x290 = 2; x300 = 1; y10 = x120 = 2:

The above calculations consist of the �rst steps to convert the dynamic predicate into an

enlarged VDES with a static predicate (Pdyn ! Pstatic). It remains to determine the existence

of an optimal DSFBC for the static predicate. From the previous steps we have that X �Y =

[x1 : : : x31 y1 y2]
T and �u = fe1; f1;m1; p1; e2; f2;m2; p2g such that the occurrence matrix for

70

D VDES SOLUTION FOR CASE 5 Technical Report 2000-440

uncontrollable events is

Eu =

2
666666666666666666666664

e1 f1 m1 p1 e2 f2 m2 p2

x14 �1 �1 0 0 0 0 0 0

x15 1 0 1 0 0 0 0 0

x16 0 1 0 1 0 0 0 0

x18 0 0 �1 �1 0 0 0 0

x21 0 0 0 0 �1 �1 0 0

x22 0 0 0 0 1 0 1 0

x23 0 0 0 0 0 1 0 1

x24 0 0 0 0 0 0 �1 �1

x27 0 �1 0 �1 0 0 0 0

x30 0 �1 0 �1 0 0 0 0

y1 0 0 0 0 0 0 0 0

y2 0 0 0 0 0 0 0 0

3
777777777777777777777775

;

where one notes that there exists no loop made of uncontrollable events only. Therefore, Gu is

loop-free. Then P1 is rewritten as a static predicate function of the enlarged state set X � Y

such as

x j= P1 i� [0 : : : 0 � 1 1]

2
6666664

x1
...

x31

y1

y2

3
7777775
� 0;

with a = [0 : : : 0 � 1 1] and b = 0. The next step is to maximize aEuv
� where v� =

[ve1 vf1 vm1
vp1 ve2 vf2 vm2

vp2]. However, since the predicate P1 does not contain any uncon-

trollable events (i.e., aEuv
� = 0) the static predicate P1 is already optimal. Before a VDES

implementation is derived for P1, we treat the predicate P3 by repeating the steps taken for

P1 (i.e., Pdyn ! DSFBC)).

For predicate P3 := �4(#f1 +#p1) + #g1 � 0, we have v = [vf1 vg1 vp1 : : :]T and

P3 := [1 � 1]

0
BBBB@
"
0

0

#
+

"
0 1 0 : : :

4 0 4 : : :

#
2
66664
vf1

vg1

vp1
...

3
77775

1
CCCCA � [1 � 1]

"
0

0

#
;

such that we get two additional states"
y3

y4

#
=

"
#g1

4(#f1 +#p1)

#
;

The state set for predicates P1 and P3 thus becomes X � Y = [x1 : : : x31 y1 y2 y3 y4]
T while

�u remain unchanged and Eu is augmented by two lines. For the initial values, we simply

adjoin y30 = y40 = 0 to initial values derived for P1 to obtain (X � Y)0. Therefore, the static

71

D VDES SOLUTION FOR CASE 5 Technical Report 2000-440

equivalent to P3 is

x j= P3 i� [0 : : : 0 � 1 1]

2
6666664

x1
...

y2

y3

y4

3
7777775
� 0

where a = [0 : : : 0 � 1 1] and b = 0. Unlike P1, predicate P3 contains uncontrollable events

f1 and p1. Therefore, the maximization problem of aEuv
� or

[0 0 0 0 0 0 0 0 0 0 0 0 � 1 1]

2
66666666666666666666666666664

e1 f1 m1 p1 e2 f2 m2 p2

x14 �1 �1 0 0 0 0 0 0

x15 1 0 1 0 0 0 0 0

x16 0 1 0 1 0 0 0 0

x18 0 0 �1 �1 0 0 0 0

x21 0 0 0 0 �1 �1 0 0

x22 0 0 0 0 1 0 1 0

x23 0 0 0 0 0 1 0 1

x24 0 0 0 0 0 0 �1 �1

x27 0 �1 0 �1 0 0 0 0

x30 0 �1 0 �1 0 0 0 0

y1 0 0 0 0 0 0 0 0

y2 0 0 0 0 0 0 0 0

y3 0 0 0 0 0 0 0 0

y4 0 4 0 4 0 0 0 0

3
77777777777777777777777777775

2
6666666666664

ve1

vf1

vm1

vp1

ve2

vf2

vm2

vp2

3
7777777777775

=

4vf1 + 4vp1

is formulated as Maximize aEuv
� = 4vf1 + 4vp1 subject to v� � 0 and X + Euv

� � 0. The

constraint v� � 0 is true since we represent the event occurrences by positive integers while

the development of X +Euv
� � 0 gives

x14 � ve1 + vf1 ; x15 � �ve1 � vm1
; x16 � �vf1 � vp1 ;

x18 � vm1
+ vp1 ; x21 � ve2 + vf2 ; x22 � �ve2 � vm2

;

x23 � �vf2 � vp2 ; x24 � vm2
+ vp2 ; x27 � vf1 + vp1 ;

x30 � vf1 + vp1 ; y4 � �4vf1 � 4vp1

In the above set of constraints, the events belonging to TC80 and TC160 are unrelated. There-

fore, the constraints concerned with events contained in the function to maximize aEuv
� =

4vf1 + 4vp1 (e.i., f1 and p1) reduce to

x14 � ve1 + vf1 ; x18 � vm1
+ vp1 ; x30 � vf1 + vp1 ; x27 � vf1 + vp1

since constraints x16 � �vf1 � vp1 and y4 � �4vf1 � 4vp1 are satis�ed by the fact that xj � 0,

yj � 0 and vj � 0 for all j by de�nition. State x30 takes values in f0; 1g while states x14 and

x18 can take values in f0; 1; 2g.

Therefore, the maximum value for 4(vf1 + vp1) is when ve1 = vm1
= 0 such that vf1 = x14 and

vp1 = x18. Consequently, we de�ne the occurrence vector v� which solves the maximization

72

D VDES SOLUTION FOR CASE 5 Technical Report 2000-440

problem as

v
� =

2
6666666666664

ve1

vf1

vm1

vp1

ve2

vf2

vm2

vp2

3
7777777777775
=

2
6666666666664

0

x14

0

x18

�

�

�

�

3
7777777777775
:

An optimal SFBC for P3, named f3� , exists since a(X � Y)0 + aEuv
�((X � Y)0) = �y30 +

y40 + 4(x140 + x180) � b = 0 when computed with a, b, (X � Y)0, Eu and v� provided above.

The optimal SFBC f3� for � 2 �c is such that

f3�(X � Y) = 1 if � � �(X � Y; �)! and a(X � Y)new + aEuv
�((X � Y)new) � b

if � � �(X � Y; �)! and �y3;new + y4;new + 4(x14;new + x18;new) � 0

f3�(X � Y) = 0 otherwise

;

Moreover, the above SFBC has a balanced equivalent so that the set of predicates P1, P2, P3

and P4 can be further considered as a unique dynamic predicate by the conjunction Pdyn =
V
Pi,

i = 1; 2; 3; 4.

The last step is to derive a VDES implementation (or VDESI) of f3� (i.e., (D)SFBC! VDESI).

We convert predicate P3 into a one-dimensional VDES (represented by only one state ynew =

�4(#f1 +#p1) + #g1 whose displacement vector is h� = [: : : hf1 hg1 : : : hp1 : : :] = [: : : �

4 1 : : : � 4 : : :]). The connections attached to state ynew are represented by solid arrows in

Figure 34). One notices that a weight of 4 tokens characterizes the arrows exiting state ynew
thus meaning that 4 tokens are removed each time event f1 or p1 �res.

There are only two uncontrollable events ff1; p1g with decremental e�ects on Y = fynewg.

Thus events f1 and p1 form Gr, which is loop-free (for reasons similar to the ones given above

where P3 is represented by states fy1; y2g). However, the states X of G that are decreased

by the �ring of events in Gr (i.e., ff1; p1g) are fx14; x18; x30g. In particular, since two states

fx14; x30g (resp., fx18; x30g) are upstream of event f1 (resp., p1), a VDESI does not exist. (In

reference to [12], this will translate into ��u = �r = ff1; p1g, I
r = fx14; x18g where ff1; p1g

is a set of leaf events such that for � = f1 2 �r we have j�"j > 1.) Fortunately, a designer

can circumvent the problem with a simple �x. It consists of adding two additional states and

events (t1 and v1) to all truck VDES as shown in Figure 34. The additional events can be

either controllable or uncontrollable. The modi�cation of the truck VDES decouples the repair

priority from the predicate P3 by providing only one source state to events f1 and p1. With

the new system, all conditions for a VDESI that is equivalent to f3� hold.

The algorithm in [4] provides a controllable equivalence to the dynamic predicate P3 by com-

puting new initial values ynew;0 and new displacement vectors hnew;� where � is related to

uncontrollable events in P3. As a result, we have for event f1 that

ynew;0 = 0; hnew;d1 = �4; hnew;e1 = 4; hnew;f1 = 0:

The procedure determines the equivalent #f1 = #d1�#e1 that is used to rewrite predicate P3

and alter the VDESI. Consequently, the solid arrows of Figure 34 are replaced by dotted arrows

73

D VDES SOLUTION FOR CASE 5 Technical Report 2000-440

leaving e1 and pointing to d1 thus enabling us to stop the progression of #f1 by disabling d1.

When considering the modi�cations originating from uncontrollable events ff1; p1g, the VDESI

derived from dynamic predicate P3 is given by

ynew;0 = 0; [hd1 he1 hf1 hk1 hm1
hp1]new = [�4 4 0 �4 4 0];

whose �nal result is shown in Figure 34. Finally, for clarity purposes only predicates P2

(analogous to P1) and P3 (Figure 34) are implemented on the complete system of Case 5 to

result into Figure 26.

d1 e1 k1

4

4

4 4

g1

c1

x12

f1

h1

m1

p1

x14

x15

x16

x17

x18

TC160

Repair
priority

n1
x13

x31

x30

x

p1

t1 v1

ynew4

4

Figure 34: Fix and VDESI for P3

74

REFERENCES Technical Report 2000-440

References

[1] R. Alur and D.L. Dill. A Theory of Timed Automata. Theoretical Computer Science,

(126):183{235, 1994.

[2] B.A. Brandin and W.M. Wonham. Supervisory Control of Timed Discrete-Event Systems.

IEEE Transactions on Automatic Control, 39:329{342, 1994.

[3] P.E. Caines and Y.-J. Wei. The Hierarchical Lattice of a Finite Machine. Systems &

Control Letters, 1996.

[4] S.-L. Chen. Control of Discrete-event Systems of Vectors and Mixed Strucutral Type. PhD

thesis, University of Toronto, 1996.

[5] D. Harel. Statecharts: a visual formalism for complex systems. Science of Computer

Programming, North-Holland, 8(3):231{274, 1987.

[6] Y. Li and W.M. Wonham. Control of vector discrete-event systems: I - The base model.

IEEE Trans. on Automatic Control, 38(8):1214{1227, 1993.

[7] Y. Li and W.M. Wonham. Control of vector discrete-event systems: II - Controller syn-

thesis. IEEE Trans. on Automatic Control, 39(3):512{531, 1994.

[8] P.J. Ramadge and W.M. Wonham. Supervisory Control of a Class of Discrete Event

Processes. SIAM Journal of Control and Optimization, 25(1):637{659, 1987.

[9] P.J. Ramadge and W.M. Wonham. The Control of Discrete Event Systems. Proceeding

of the IEEE, 77:81{98, 1989.

[10] K. Rudie, N. Shimkin, and S.D. O'Young. Timed Discrete-Event Systems: A Manufactur-

ing Application. Proceedings of the 1994 Conference on Information Science and Systems,

pages 374{381, 1994.

[11] H.A. Simon. The Sciences of The Arti�cial, 2nd Edition. The MIT Press, 1981.

[12] W.M. Wohnam. Lecture Notes of DES1 class. University of Toronto, available at:

http://www.control.utoronto.ca/people/profs/wonham/wonham.html, 1999.

[13] H. Zhong and W.M. Wonham. On the Consistency of Hierarchical Supervion in Discrete-

Event Systems. IEEE Transactions on Automatic Control, 35:1125{1134, 1990.

75

