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Abstract

Tree contraction is a powerful technique for solving a large number of graph prob-

lems on families of recursively de�nable graphs. The method is based on processing the

parse tree associated with a member of such a family of graphs in a bottom-up fashion,

such that the solution to the problem is obtained at the root of the tree. Sequentially,

this can be done in linear time with respect to the size of the input graph. In parallel,

e�cient and even cost optimal tree contraction algorithms have also been developed.

In this paper we show how the method can be applied to compute the cardinality of

the minimum vertex cover of a two-terminal series-parallel graph. We then construct

a real-time paradigm for this problem and show that in the new computational envi-

ronment, a parallel algorithm is superior to the best possible sequential algorithm, in

terms of the accuracy of the solution computed. Speci�cally, there are cases in which

the solution produced by a parallel algorithm that uses p processors is better than the

output of any sequential algorithm for this problem, by a factor superlinear in p.

1 Introduction

Many real-life applications can be abstracted to graph theoretical problems. That is why
studying graph problems is of capital importance for the theory of computation. Unfortu-

nately, many of these problems appear to be not solvable e�ciently, as they were proved to

be NP-complete. However, if the input to these problems is restricted to some particular
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families of graphs, then a linear time solution (with respect to the size of the input graph)

can be derived. Several independent results were obtained along these lines. Eventually, a

theory was developed, that explained the linearity of the previously published algorithms,

predicted the existence of several thousand new linear time algorithms of this kind and

provided a methodology for constructing any one of them [24].

The problem addressed in this paper is that of �nding the cardinality of a minimum

vertex cover, in the particular case of a two-terminal series-parallel graph. Furthermore, we

de�ne the problem in a real-time environment and compare the performance of a parallel

algorithm to that of a sequential one by evaluating the accuracy of the solutions computed in

both cases. We begin by describing some previous results that will help us build our parallel

algorithm for solving the above stated problem. This is followed by an outline of the results

obtained in this paper.

1.1 Previous work

The framework elaborated in [24] can be applied to any family of graphs which can be de�ned

recursively by certain rules of composition involving �nite sets of terminals. The construction
process of a member of such a recursive family of graphs can be modeled as a tree. The

leaves of the tree represent base graphs of the family, while the internal nodes depict the
composition rules applied. Such a structure is called a parse tree, or a decomposition tree.

In order to obtain a solution whose running time is linear in the size of the input graph,

an algorithm must specify a �nite set of recurrence relations for the problem being solved
and proceed in a bottom-up fashion through the parse tree associated with the input graph.
The solution to the problem addressed is obtained at the root of the decomposition tree, as

a result of gradually reducing the tree to its root. For this reason the computational process
is called tree contraction and its immediate application is the evaluation of arithmetic ex-

pressions encoded as binary trees. In fact, �nding the solution to a graph problem, using the
methodology developed in [24] corresponds to the evaluation of an expression in a particular
kind of algebra.

In what follows, and throughout the paper, we assume that the input graph has N

vertices. The number of edges of a two-terminal series-parallel graph is on the order of the

number of its vertices. The parse tree of such a graph has as many leaves as there are edges

in the original graph. As a consequence, the number of leaves in the parse tree is O(N), and

furthermore, the number of nodes in the parse tree is also on the order of N . We also make

a distinction between nodes and vertices throughout the paper. We speak of nodes in the

context of a parse tree, while vertices will always refer to the original series-parallel graph.
Because of its widespread applicability, developing an e�cient parallel tree contraction

algorithm was very important. Miller and Reif [19] describe a deterministic algorithm which

runs in O(logN) time with O(N) Exclusive-Read Exclusive-Write Parallel Random Access

Machine (EREW PRAM) [2] processors. A single step of their algorithm uses two basic

operations to reduce the current binary tree. The RAKE operation removes in parallel all
leaves, while the COMPRESS operation is responsible for compressing maximal chains of

nodes with only one child. These chains may appear as a consequence of applying the RAKE

operation. It is shown in [19] that after O(logN) such steps a given tree is reduced to its
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root.

Since the original paper of Miller and Reif [19], a series of improved tree contraction algo-

rithms have been developed. Gazit et al. [10], Kosaraju and Delcher [15], and Abrahamson et

al. [1] were all able to develop optimal, deterministic parallel algorithms for tree contraction

on the EREW PRAM model, running in O(logN) time and using only O(N= logN) proces-

sors. These results provide e�cient parallel algorithms for a large class of graph problems

when the underlying graph is a member of a recursively de�nable family of graphs. He [11]

applied the tree contraction scheme to solve the binary tree algebraic computation (BTAC)

problem. It is then shown in [11] how several optimization problems for trees, such as for

example, minimum covering set, maximum independent set and maximum matching, can be

converted into instances of the BTAC problem. Abrahamson et al. [1] generalized the BTAC

problem by de�ning a bottom-up algebraic tree computation (B-ATC) problem, as well as

a top-down algebraic tree computation (T-ATC) problem. Under some restrictions (taking

the form of some closure properties of certain classes of unary functions) both of these two
problems can be solved within the cost of tree contraction. Abrahamson et al. [1] showed
how a number of problems (e.g., largest clique and largest independent set) which are very

di�cult for general graphs, can be solved in logarithmic parallel time, if applied to a cograph
represented as a parse tree, by reducing them to instances of a B-ATC or T-ATC problem.

Lin and Olariu [17] developed an optimal parallel matching algorithm for cographs, a result
that was extended for some other classes of graphs by Parfeno� [18].

He [12] investigated the possibility of developing optimal parallel algorithms for another

family of graphs: two-terminal series-parallel graphs. Using the already well established
methodology based on tree contraction, He was able to construct linear cost parallel algo-
rithms for solving three problems: 3-coloring, depth-�rst spanning tree and breadth-�rst

spanning tree, under the assumption that the input is given by the decomposition tree.
Nevertheless, our intuition is that the parallel tree contraction technique can be successfully

applied to the whole list of families of graphs and problems presented in [24].
In order to solve a graph problem using the tree contraction scheme, one must construct

an algebra in such a way that the evaluation of the expression encoded in the parse tree of

the input graph should lead to the solution of the problem. Usually, if the de�ned algebra
does not have a �nite carrier, then some conditions must be ful�lled in order to evaluate the

parse tree by applying a parallel tree contraction algorithm. For more details about these

conditions, see [1].

1.2 Contributions of this paper

Takamizawa et al. [21] showed in a uni�ed manner that for many combinatorial problems

on graphs, including minimum vertex cover, there exist algorithms whose running time is
linear in the size of the input, if the graphs under consideration are restricted to the class of

series-parallel graphs. In this paper we show how an appropriate algebra can be de�ned for
�nding the cardinality of the minimum vertex cover of a two-terminal series-parallel graph.

Using a tree contraction algorithm next, the problem can be solved in linear sequential time,

or in logarithmic parallel time if O(N= logN) EREW PRAM processors are employed.
We are also interested in comparing the performances of a parallel algorithm with the
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Figure 1: The base graph of the TTSP family of graphs.

best possible sequential one in a real-time environment. For this purpose, we de�ne a real-

time paradigm for computing the cardinality of the minimum vertex cover in which the input

data, represented by the parse tree of a two-terminal series-parallel graph, is divided into

chunks and fed to the algorithm at regular time intervals. We also impose deadlines on when

the newly arrived data should be processed and incorporated into the solution computed so

far. The kind of real-time paradigm constructed in this paper is similar to the one de�ned in

[4] for another optimization problem in graph theory, namely the minimum spanning tree.

The parallel algorithm will always be able to compute the exact cardinality of the mini-

mum vertex cover for the input graph. By contrast, any sequential algorithm is forced, due
to the limited time, to compute an approximate solution. We show that in the worst case,
the ratio of the cardinality of the minimum vertex cover obtained sequentially to the one

computed in parallel can be superlinear in the number of processors used by the parallel
algorithm.

The remainder of this paper is organized as follows. Section 2 is intended to make the
reader familiar with the class of two-terminal series-parallel (TTSP) graphs. Section 3 states
the variant of the minimum vertex cover problem addressed in this paper and shows how

it can be solved using the general framework developed in [24]. In section 4 we construct
a real-time environment for the problem and derive two algorithms, one sequential and one

parallel, for its solution. An analysis of the performances of the two algorithms is described
in section 5. Finally, some conclusions and suggestions for future investigations are presented
in section 6.

2 Two-terminal series-parallel (TTSP) graphs

The class of such graphs, which is a subclass of planar graphs, is a well-known model of

series-parallel electrical networks and various scheduling problems. A two-terminal series-

parallel graph can be constructed from a given graph by recursively applying series and

parallel connections.

Each graph belonging to this recursive family of graphs has two vertices that play a

special role in the composition rules, and therefore they are called terminal vertices. The
family has only one base graph, consisting of two vertices connected by an edge (Figure 1).

Starting from this base graph, any member of the family can be constructed recursively

from two smaller members using one of the composition rules described below.

Let G1 and G2 be two TTSP graphs.

Rule 1 (Series connection): Identify a terminal of G1 with a terminal of G2 and choose

the other terminals of G1 and G2 as the new terminals (Figure 2).
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Figure 2: Example of a series connection.
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Figure 3: Example of a parallel connection.

Rule 2 (Parallel connection): Identify one terminal of G1 with one terminal of G2 and

also identify the other pair of terminals. Use the resulting two vertices as the terminals and
delete any redundant edges (Figures 3 and 4).

The parse tree of a series parallel graph gives us an intuitive image of how the graph was
constructed and therefore it is also called a decomposition tree. In Figure 5 a TTSP graph

is shown together with its parse tree. This is a binary tree in which the leaves represent
distinct instances of the base graph (BG) and the internal nodes denote either a series (S)
or a parallel (P) connection.

Both sequential and parallel algorithms for recognizing a series-parallel graph and ob-
taining its decomposition tree exist in the literature [13, 23].

3 The minimum vertex cover problem

Let G = (V;E) be a graph under the usual notation convention, where V represents the

set of vertices and E the set of edges. A covering set of G is a subset C � V such that

for any edge (i; j) 2 E, fi; jg \ C 6= ;. The minimum vertex cover problem, also known as

T1

T1 T2

T2

T1
T2 T1

T2

Figure 4: Redundant edge deleted after a parallel connection.
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Figure 5: A TTSP graph and its decomposition tree.

the minimum covering set problem, is to �nd a covering set of minimum cardinality. For an
arbitrary graph, this is an NP-complete problem [9]. In our case, however, the input to the
problem is a TTSP graph and we are only interested to �nd the cardinality of the minimum

covering set, or the best possible approximation of it. Under these restrictions the problem
can be solved in sequential linear time (see [21] for example).

In our variant, a binary tree, representing the decomposition tree of a TTSP graph, is

the input to the problem. Obtaining the decomposition tree from the original TTSP graph
is not the task of the real-time algorithm. This is obtained by a preprocessing step, using

any one of the existing algorithms [13, 23].
Let G = (V;E) be a TTSP graph with terminals T1 and T2. The cardinality of the

minimum covering set of G is computed at the root of the parse tree, after processing the

tree in a bottom-up fashion. The result of this computation is a four-element integer vector
X, whose components are detailed in the following.

X(1) = cardinality of the minimum vertex cover of G containing both terminals.
X(2) = cardinality of the minimum vertex cover of G containing T1, but not T2.

X(3) = cardinality of the minimum vertex cover of G containing T2, but not T1.
X(4) = cardinality of the minimum vertex cover of G containing none of the terminals.

Obviously, one of these four values must be the cardinality of the minimum covering set of

G. If we were able to compute the values of the four elements forming the vector associated

with the root of the parse tree corresponding to G, then their minimum would represent the
cardinality of the minimum vertex cover of the original TTSP graph G.

In a similar way, a four-integer vector is associated with each of the nodes in the decom-

position tree. For an arbitrary node v, the four integers of the associated vector refer to the

subgraph of G whose decomposition tree is rooted at v. If v is a leaf in the parse tree, then
the values of the four components of the associated vector X can be immediately speci�ed

(as detailed at the end of this section) because they refer to the base graph of the TTSP

family (Figure 1). On the other hand, if v is an internal node, with children u1 and u2 and

associated vectors X1 and X2 respectively, then the vector X of v is computed as a function

of X1 and X2. The function di�ers, depending on whether the node v represents a series or
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Figure 6: A series connection between G1 and G2.

a parallel connection.

The remainder of this section is dedicated to deriving and proving correct the function

used to compute X. This will allow the vector associated with the root of the parse tree

to be computed from the vectors associated with the leaves, in a bottom-up fashion, by

applying the appropriate function to each internal node of the parse tree. Finally, choosing
the minimum among the four components of the vector at the root of the parse tree will

produce the cardinality of the minimum covering set of the original TTSP graph G.
For the ease of presentation, we adopt the following notation:

mcs(G) = the minimum covering set of graph G (although it might not be unique, we
will stick with this notation for convenience).

jmcs(G)j = the cardinality of the minimum covering set of graph G.

mcs+v(G) = the minimum covering set of graph G which includes vertex v, v 2 V .

mcs�v(G) = the minimum covering set of graphG which does not include vertex v, v 2 V .

mcs+v1;�v2(G) = the minimum covering set of graph G which includes vertex v1 but does

not include vertex v2, v1; v2 2 V .

Now suppose G = (V;E) was constructed from G1 = (V1; E1) and G2 = (V2; E2) through

a series or parallel connection. Let X1 and X2 be the labels associated with the root of the
decomposition tree of G1 and G2, respectively. The problem is to compute the four elements

of the vector associated with the root of the parse tree of G, as a function of X1 and X2, in
the case of a series and of a parallel connection.

3.1 Series connection

G1 and G2 are connected through a single vertex T (Figure 6). Therefore T is called an

articulation point.

Proposition 1 mcs(G)
T
V1 is a covering set for G1, and similarly, mcs(G)

T
V2 is a cov-

ering set for G2.
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Proof

Suppose that mcs(G)
T
V1 is not a covering set for G1. Then there must be an edge e =

(vi; vj) 2 E1 such that

fvi; vjg
\
(mcs(G)

\
V1) = ;: (1)

But vi 2 V1 and vj 2 V1, so the last equality can be rewritten as

fvi; vjg
\

mcs(G) = ;: (2)

On the other hand, E1 � E, which means that

(vi; vj) 2 E: (3)

From equations 2 and 3 we can conclude that mcs(G) is not a covering set for G, which

is obviously a contradiction. This means that our hypothesis is false and that mcs(G)
T
V1

is indeed a covering set for G1. 2

In our e�ort to construct mcs(G) from mcs(G1) and mcs(G2), the articulation point T
plays a key role. There are only two possibilities: either T belongs to mcs(G) or it does not.

Therefore, we compute the cardinality of mcs(G) in both of these cases and then choose the
minimum of the two:

jmcs(G)j = min(mcs+T (G); mcs�T (G)): (4)

Proposition 2 mcs+T (G)
T
V1 = mcs+T (G1), and similarly mcs+T (G)

T
V2 = mcs+T (G2).

Proof

According to Proposition 1, mcs+T (G)
T
V1 is a covering set for G1. It remains to show that

this covering set has the smallest cardinality among all covering sets containing T .

The only vertex belonging to both G1 and G2 is T . Therefore mcs+T (G) can be expressed
as the union of two disjoint sets as follows.

mcs+T (G) = S1
[

S2;

where S1 = mcs+T (G)
T
V1, and S2 = mcs+T (G)

T
V2 � fTg.

Suppose there exist a covering set for G1, containing T , which has a smaller cardinality

than S1. Let us call this set mcs�(G1). Our claim is that mcs�(G1)
S
S2 is a covering set for

G. This is quite obvious, since mcs�(G1) covers all the edges in E1, and S2
S
fTg covers all

the edges in E2. But since jmcs�(G1)j < jS1j, it follows that

jmcs�(G1)
[

S2j < jS1
[

S2j;

because mcs�(G1)
T
S2 = ; and S1

T
S2 = ;. The last inequality can be rewritten as

jmcs�(G1)
[

S2j < jmcs+T (G)j;
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meaning that mcs�(G1)
S
S2 is a covering set for G, which contains T , and is smaller than

mcs+T (G). But this is absurd, and consequently our assumption must have been false.

Therefore mcs+T (G)
T
V1 is a minimum covering set of G1 containing T . 2

The immediate consequence of this proposition is that

jmcs+T (G)j = jmcs+T (G1)j+ jmcs+T (G2)j � 1: (5)

due to the fact that mcs+T (G1)
T
mcs+T (G2) = fTg.

In a very similar way, we can obtain the following result.

Proposition 3 mcs�T (G)
T
V1 = mcs�T (G1), and mcs�T (G)

T
V2 = mcs�T (G2).

From Proposition 3 and the observation that mcs�T (G1)
T
mcs�T (G2) = ; we can

immediately deduce that

jmcs�T (G)j = jmcs�T (G1)j+ jmcs�T (G2)j: (6)

Substituting equations 5 and 6 in 4 we obtain

jmcs(G)j = min(jmcs+T (G1)j+ jmcs+T (G2)j � 1; jmcs�T (G1)j+ jmcs�T (G2)j):

Finally, if we rewrite this general formula in each of the four particular cases representing

the components of the vector, we obtain the function associated with a series connection,
namely:

X(1) = min(X1(1) +X2(1)� 1; X1(2) +X2(3)),
X(2) = min(X1(1) +X2(2)� 1; X1(2) +X2(4)),
X(3) = min(X1(3) +X2(1)� 1; X1(4) +X2(3)),

X(4) = min(X1(3) +X2(2)� 1; X1(4) +X2(4)).

3.2 Parallel connection

In the case of a parallel connection (Figure 7), T1 and T2 form an articulation set. Due to the
fact that the articulation set is composed of the two terminal vertices of the newly formed

graph G, the recurrence formulas will be simpler than those involved in a series connection.

In deriving these formulas, the following four propositions, one for each component of the
vector, are very useful. The proofs for these propositions are omitted because of their obvious

similarity with Proposition 2 and 3.
If the minimum vertex cover of G contains both terminals, T1 and T2, we have:

Proposition 4 mcs+T1;+T2(G)
T
V1 = mcs+T1;+T2(G1),

and mcs+T1;+T2(G)
T
V2 = mcs+T1;+T2(G2).

If the minimum vertex cover of G contains T1 but not T2, we have:
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G1
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Figure 7: A parallel connection between G1 and G2.

Proposition 5 mcs+T1;�T2(G)
T
V1 = mcs+T1;�T2(G1),

and mcs+T1;�T2(G)
T
V2 = mcs+T1;�T2(G2).

Similarly, if the minimum vertex cover of G contains T2, but not T1, we have:

Proposition 6 mcs�T1;+T2(G)
T
V1 = mcs�T1;+T2(G1),

and mcs�T1;+T2(G)
T
V2 = mcs�T1;+T2(G2).

Finally, if the minimum vertex cover of G contains neither T1 nor T2, we have:

Proposition 7 mcs�T1;�T2(G)
T
V1 = mcs�T1;�T2(G1),

and mcs�T1;�T2(G)
T
V2 = mcs�T1;�T2(G2).

Based on these four propositions, the recurrence function associated with a parallel con-
nection, can be expressed as follows:

X(1) = X1(1) +X2(1)� 2,

X(2) = X1(2) +X2(2)� 1,

X(3) = X1(3) +X2(3)� 1,
X(4) = X1(4) +X2(4).

Now that the functions associated with a series or parallel connection have been speci�ed,

the bottom-up 
ow of the computation in the parse tree is ensured. It remains to provide

a start for the computational process by specifying the values of the vector associated with
the leaves of the parse tree. As we recall, a leaf in the parse tree of a TTSP graph represents

the base graph of the family (Figure 1). The four components of the vector for the base
graph of the TTSP family of graphs are:

X(BG) = (2; 1; 1;
):
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where 
 represents the unde�ned element. The impact of the unde�ned element over the

subsequent evaluation of the parse tree can be summarized in the following evaluation rules:

(i) k +
 = 
+ k = 
,

(ii) 
� k = 
,

(iii) min(k;
) = min(
; k) = k,

for any positive integer k.

4 Computing the cardinality of the minimum covering

set (MCS) in real-time

In a traditional o�-line paradigm, an algorithm wishing to compute the cardinality of the
MCS of some graph, has access to the whole data structure representing the input graph

before the computation begins. This is not the case in a real-time paradigm, where the data
arrive as the algorithm proceeds. This is the basic idea underlying all real-time computations,
regardless of the various particular characteristics each of them has [3, 4, 5, 6, 7, 8, 16, 22].

In our formulation of the paradigm, a subset of the input data is given at the beginning
of the computation, and the rest arrive at regular intervals. The algorithm must then deal
with the newly arrived data and incorporate them into the solution computed so far, before

a new chunk of data arrives. Because we impose a deadline on when a partial solution (or an
approximation of it) must be produced, we will call such an algorithm a real-time algorithm

(as opposed to an on-line algorithm, where no deadlines are imposed [14]).
Not the whole data structure of the binary tree representing the decomposition tree of

the original TTSP graph is available to the real-time algorithm at the outset. Initially, only

a subtree with O(n) nodes (n < N) is given as input to the algorithm. We assume that
time is divided into intervals of cn� time units, where c is a positive constant and 0 < � < 1.
At the beginning of each time interval, a new subtree of the parse tree, with O(n) nodes, is

made available to the algorithm.

The division of time into �xed-length intervals and a constant data-arrival rate are two

common features of real-time computations [3, 4, 5, 6]. However, we must make a distinction
between two real-time settings. In the �rst variant, a new problem is to be solved by the

algorithm during each time interval [3, 5, 6]. In the second, the computations that take

place in one time interval are strongly connected to (and actually depend on) the previous
computations, eventually leading to the �nal solution to the problem after the last time

interval has elapsed [4]. From this point of view, the real-time paradigm described so far falls
in the second category, being similar with the setup for computing the minimum spanning

tree in real-time described in [4].

The evaluation of each subtree provided at the beginning of a time interval must be
completed before a new subtree arrives, and the exact result (a four integer vector or an

approximation of it) must be produced as output before the time interval ends. We note

that the computation of such a partial solution corresponds to a reduction of the binary

subtree to its root. It is possible for subsequent subtrees provided to the algorithm at the
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Figure 8: (a) Series reduction (requires that v have degree two). (b) Parallel reduction.
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Figure 9: Computing the label of an edge introduced by a series or parallel reduction.

beginning of a future time interval, to include such a reduced root as a leaf, together with
its previously computed vector. In this way, partial results are subsequently used in the

computation of the �nal value.
In the real-time paradigm described above, the parse tree is continuously evolving, being

reduced at each time interval. At the beginning of the last time interval, the whole current
parse tree is given as the last input to the algorithm, which is supposed to produce the
cardinality of the minimum vertex cover (or an approximation of it) after no more than cn�

time units. At this point, an interesting question suggests itself. Is this real-time paradigm of

any practical interest, or is it just arti�cially constructed? A closer look at a decomposition

algorithm for TTSP graphs will help us answer this question.

As shown in [23], a decomposition tree for a TTSP graph can be obtained by repeatedly

applying series and parallel reductions (Figure 8) to the original graph until the result is a

graph with a single edge (the base graph of the family). Through this reduction process, we

can obtain as a byproduct a decomposition tree of the original TTSP graph. We associate a

label consisting of a binary tree with each edge of the TTSP graph being reduced. Initially,

the label of each edge is a single-node binary tree. As the reduction process proceeds, we

use the rules of Figure 9 to update the edge labels. The label of the last edge remaining

after all reductions is the binary decomposition tree of the original TTSP graph.

Using this methodology, the parse tree is constructed in a bottom-up manner, starting

with the leaves, continuing with the neighbours of the leaves, and so on, up to the root. This
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T2

Figure 10: Best case for the approximating algorithm: a TTSP graph constructed only

through series connections.

is very important for the real-time algorithm which has to compute the cardinality of the

minimum vertex cover. Indeed, the algorithm can start processing the parse tree before it is

completely constructed, as soon as a subtree of the desired size becomes available. The result

is then incorporated in the subsequent computation. To see why this is possible, consider an

intermediate step of the algorithm that generates the decomposition tree (the algorithm of

[23]). The label associated with an edge of the current graph being reduced represents the

subtree given as input to the real-time algorithm, at the beginning of a time interval.

4.1 Sequential algorithm

A sequential algorithm will be faced with the evaluation of a binary tree with O(n) nodes
at the beginning of each time interval. Obviously, no sequential algorithm will be able to

process the binary tree and return the four integers composing the result vector in cn� time
units, that is, before a new chunk of data arrives and has to be immediately processed.

The only possibility that remains for the sequential algorithm is to somehow provide an
approximation for the evaluation of the binary tree, based on the computation carried out
so far. This is not an easy task, due to the four components of the vector that should be

evaluated.
In these conditions, the �nal result computed by the sequential algorithm at the end of

the last time interval will not be guaranteed to be the cardinality of the minimum vertex
cover of the original TTSP graph. Furthermore, the approximation could be quite di�erent
from the actual minimum, since the output generated in one time interval can become the

input in a subsequent time interval, thus propagating and increasing the error.
An alternative for the sequential algorithmwould be to abandon altogether the evaluation

of the parse tree and try some other approach for approximating the cardinality of the

minimum vertex cover. In this case, the input to the sequential algorithm at the beginning
of a time interval is no longer a subtree of the decomposition tree, but the original TTSP

graph corresponding to that subtree. One possible approach could be to start with a vertex
cover consisting of all the graph vertices and then try to eliminate as many of these as possible

in the available time. The best case for such an approximation algorithm is illustrated in

Figure 10. Assuming that in cn� time units O(n�) vertices can be checked and possibly
eliminated from the initial vertex cover, the cardinality of the remaining set will still be

on the order of n, which is asymptotically equal to the optimal solution. But in the worst
case (Figure 11), although the approximation computed by the sequential algorithm is

again O(n), the actual minimum vertex cover of such a TTSP graph contains only the two

terminals (in other words, its cardinality is a constant), regardless of how many vertices the
graph might have.
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Figure 11: Worst case for the approximating algorithm.

4.2 Parallel algorithm

On the other hand, e�cient parallel algorithms for tree contraction are known to exist

[1, 10, 15, 19] and if the operations de�ned in our algebra for solving the minimum vertex
cover problem meet some requirements [1] these algorithms can be successfully applied to

our particular problem. Although proving the satis�ability of these conditions is not very
di�cult, a more elegant justi�cation is provided by a recent result of Miller and Teng [20].
According to their research, we are entitled to use a parallel tree contraction algorithm in

our particular case due to the fact that the only operators used in the formulas that describe
the series and parallel connections are +, � and min. As a consequence, we are able to

process a binary tree with O(n) nodes in a bottom-up fashion, in order to compute the
vector associated with the root of the binary tree, in O(logn) time. The model of parallel
computation employed in all cases is an EREW PRAM [2]. Some of the algorithms use O(n)

such processors in order to complete the task, while others use only O(n= logn) processors,
thus achieving cost optimality.

However, the important feature of these algorithms is their running time. Such a parallel

algorithm will be able to reduce the binary tree of O(n) nodes, received as input at the
beginning of a time interval, to its root (computing the exact values of the associated vector),

in O(logn) time units. Therefore, within each time interval of length cn� time units, the
corresponding partial solution can be exactly computed, eventually leading to obtaining the

actual value for the cardinality of the minimum vertex cover.

5 Analysis

Let us compare the performances of the two real-time algorithms exhibited, the sequential

one and the parallel one, in terms of their output. If the sequential algorithm cannot provide
any approximation for the vector to be computed, then in terms of their results, the di�erence

between the two algorithms is that separating success and failure.

Otherwise, the performance of the algorithms could be judged by the accuracy of the
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solution provided to the MCS problem. The accuracy of the solution, in our case, is de�ned

as:

accuracy of the solution =
1

size of the solution

Based on this de�nition, the accuracy ratio can be used as a measure of the relative

performance of the two algorithms:

accuracy ratio =
accuracy of the parallel solution

accuracy of the sequential solution

The parallel algorithmwill always compute the exact cardinality of the minimum covering

set. For the sequential algorithm, the most trivial and rough approximation would be to

count a vertex for each edge of the original TTSP graph. Note that, asymptotically, this is

equivalent to including all the vertices in the covering set, due to the fact that in a TTSP
graph the number of edges is on the order of the number of vertices. As a consequence,
depending on the approximation method employed, the �nal value computed by the real-time

sequential algorithm could be anywhere in the interval delimited by the actual cardinality
of the MCS and the number of edges in the TTSP graph.

Compared with the particular approximation algorithm described in section 4.1, the
parallel real-time algorithm yields a solution which is O(n) times more accurate than the
sequential solution and this applies to the partial solution computed at the end of a time in-

terval. Note that if a cost optimal parallel tree contraction algorithm is employed, which uses
only O(n= logn) processors, the accuracy ratio is superlinear in the number of processors.
The cumulative e�ect of approximations computed in each time interval will eventually de-

termine an even greater accuracy ratio to the advantage of the parallel algorithm (naturally,
at the cost of increasing the overall running time).

Usually, the performance of a parallel algorithm is judged in terms of the speedup
achieved, relative to the best known sequential algorithm for the same problem. Speedup is
a natural consequence of the increased resources (more than one processing unit) of any par-

allel model of computation, which makes it faster than a sequential machine. But speedup
is not the only measure of the superiority of a parallel algorithm, when compared with a

sequential one. The real-time paradigm exhibited in this paper clearly suggests that success

versus failure, or the accuracy ratio of the solutions computed, are alternative measures for

the performance of a parallel algorithm. In some cases, the fact that a parallel machine

is faster than a sequential one might be translated, in a real-time environment, not into a

remarkable speedup, but into a dramatically improved quality of the solution computed.

6 Conclusions

We conclude this paper with some observations about the real-time paradigm de�ned

herein and suggest some possible continuations for this research. As one can see from the

above analysis, the parallel real-time algorithm is always superior in performance to the

sequential algorithm. This result is true not only for the minimum vertex cover problem for

15



TTSP graphs, but it could be extended in a similar way to other problems and/or families

of graphs listed in [24]. The key factor in ensuring the superiority of parallel algorithms over

sequential ones in this kind of real-time computation is imposing a deadline on when the

output should be produced.

We note that this real-time paradigm is much di�erent from the one exhibited in [14], for

example, which is merely an on-line paradigm, where no rate at which data are to be received

or results are to be produced is speci�ed. Furthermore, the algorithms in [14] are forced to

make decisions without any knowledge of the future, and this can dramatically a�ect their

performance. In our case, although the real-time algorithm still has no knowledge of what is

about to arrive as input, this fact is of no consequence on the performance of the algorithm,

each chunk of data being processed in exactly the same way, without any crucial decision to

be made.

The model of computation used in this paper is an EREW PRAM. Another idea which

appears to be worthwhile to investigate is to use other models of parallel computation,
less sophisticated than a PRAM (a linear array of processors, for example) in the real-time
environment and still maintain the same superiority of the parallel algorithm, when compared

to the best possible sequential one. Finally, other paradigms of real-time computation could
be investigated. In one such paradigm, corrections to the existing data arrive on-line and

must be incorporated in the solution to the problem at hand [8].
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