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Abstract

Bagging and boosting are two general techniques for building predictors based on small samples

from a dataset. We show that boosting can be parallelized, and then present performance results

for parallelized bagging and boosting using OC1 decision trees and two standard datasets. The

main results are that sample sizes limit achievable accuracy, regardless of computational time

spent; that parallel boosting is more accurate than parallel bagging; and (unexpectedly) that

parallel boosting is also cheaper than parallel bagging (at least over OC1).
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Abstract: Bagging and boosting are two general techniques for building predictors based

on small samples from a dataset. We show that boosting can be parallelized, and then present

performance results for parallelized bagging and boosting using OC1 decision trees and two

standard datasets. The main results are that sample sizes limit achievable accuracy, regardless

of computational time spent; that parallel boosting is more accurate than parallel bagging; and

(unexpectedly) that parallel boosting is also cheaper than parallel bagging (at least over OC1).

1 Introduction

One of the most common data mining scenarios is the construction of predictors. A dataset
for mining typically consists of (a large number of) objects, each of which has several at-
tributes and is labelled with a class label, indicating what kind of object it is. The goal is
to build a predictor that, given a new object and its attributes, will predict a class label
for it. For example, a credit card organization has many examples of transactions, and can
discover, after the fact, which ones were fraudulent. It wishes to build a predictor that will
predict, for new transactions, which ones are likely to be fraudulent.

The dataset with known class labels is called the training set. It is common to reserve
part of the data with known class labels to be used as simulated new data for which, however,
the correct class labels are known. This makes it possible to test predictors by comparing
their predictions with the known correct answers on data that was not used to construct the
predictor. Such data is called the test set.

Many techniques for building predictors are known [2, 11]. When deciding which to
use, properties of interest are: accuracy, usually measured by the error rate on the test
set; cost of construction, the time that it takes to build a predictor from a training set;
and cost of deployment, the time it takes to generate predictions for new data objects.
Accuracy typically depends on the problem domain, although some broad-brush qualitative
comparisons between data mining techniques are possible.

For example, decision trees [7, 11], which are the workhorses of prediction, can achieve
accuracies in the high ninety percents. For a training set with n examples, each with d

attributes, producing a decision tree of size t, the cost of construction ranges from O(dn)
to O(dn2 logn), depending on the precise kind of decision tree being built. The cost of
deployment is O(log t).

One approach to predictor generation is to use small subsets of the training data, build
predictors based on each subset, and then deploy a predictor that combines the predictions
of each of the individual predictors, using either voting or regression. The advantage of such
ensemble approaches [4] is that the combined prediction tends to have much smaller variance
than that of a single monolithic predictor trained on the same dataset. Techniques based on
small subsets have been shown to have the greatest known accuracies on several problems
[6].
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When the subsets are chosen independently, for example uniformly randomly with re-
placement, then the approach is known as bagging [3]. It has been observed that bagging
can be naturally parallelized [13].

A more complex ensemble technique, called variously boosting [8] or arcing [5], uses in-
formation about how di�cult each object is to classify to select the objects in succeeding
samples. Intuitively, the idea is that objects that are hard to classify should be overrepre-
sented in samples so that new predictors can expend more e�ort in �nding tight boundaries
between classes. Such techniques do indeed improve the accuracy of the resulting predic-
tion ensemble. However, they are widely believed to be inherently sequential because of the
dependence of the selection of each new sample on the behavior of previous predictors.

Training datasets can be extremely large. In situations where predictors must be gener-
ated or updated on short time scales it is natural to consider parallelism in the predictor gen-
eration process. In this paper we present parallel implementations for both bagging, which
is straightforward, and boosting, which is more complex because of the sequential dependen-
cies involved. We also present performance results for several datasets on a shared-memory
parallel computer. These results shed light on appropriate tradeo�s between parallelism and
sample size to achieve the greatest prediction accuracy.

Section 2 introduces ensemble approaches to data mining using predictors. Section 3 de-
scribes sequential algorithms for bagging and boosting. Section 4 describes our experimental
setting. Section 5 describes the parallelization strategies for bagging, which is straight-
forward, and boosting, which is novel. Section 6 presents our experimental results and
interpretation. Section 7 describes the contribution of the paper.

2 Predictors

Suppose that we are given a training set of the form

T = f(�xi; yi) j i = 1; : : : ; ng

where �xi are the attributes of the ith example in the set, and yi is the corresponding value
or class label for that example. The goal of prediction is to compute a predictor

 T (�x) 7! y

which, given a new example, generates a predicted value or class label for it. The accuracy
of a predictor on a test set of the form

f(�xi; yi) j i = 1; : : : ; mg

is given by

accuracy =
cardinalityf T (�xi) = yig

m

and is usually expressed as a percentage.
Ensemble techniques for data mining use the same underlying prediction approach, but

learn predictors on subsets of the training set, and make predictions by combining the pre-
dictions of their component predictors, either by regression or plurality voting. Hence a
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for i = 1 to K

select a sample or \bag", Ti, from T randomly with replacement

learn predictor  i from Ti

Figure 1: Sequential bagging

general ensemble approach to predictor computation is �rst to select a set of subsets of the
training set, Ti. A predictor,  Ti is learned from each of these subsets. When the ensemble
predictor is used as a predictor  its result is computed by

 (�x) = argmaxi Nj

where
Nj = cardinalityfk j  Tk(�xi) = jg

The error of any predictor can be divided into three components:

Error( ) = Error( �) + Bias( ) + Variance( )

where the �rst term is the minimum error of a Bayes classi�er, the second term is the
systematic error of the prediction technique, and the third term is the error resulting from
the �nite sample used to build the predictor. Bagging improves accuracy by decreasing the
magnitude of the variance term, while boosting decreases both bias and variance [1].

3 Sequential bagging and boosting/arcing

3.1 Bagging

Bagging is based on selecting subsets randomly with replacement. Hence a given example
may be overrepresented or underpresented in the sample used to generate each predictor.
The basic sequential algorithm is given in Figure 1. When the resulting ensemble predictor
is used,

 (�x) = plurality vote among  i(�x)

The number of predictors generated, K, is typically assumed to be an input parameter.
Remarks in the literature suggest that 10{15 predictors are needed to achieve signi�cant
accuracy improvements. Our results suggest that much larger numbers of predictors continue
to improve overall accuracy, although the rate of improvement slows.

3.2 Boosting/Arcing

Boosting or arcing tries to improve the quality of the predictors learned from each sample by
selecting examples that are \hard" to classify more often than their frequency in the training
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given a training set T = f(�xj; yj) j j = 1; : : : ; mg
initialize D1(j) = 1=n
for i = 1 to K

select sample Ti from T using distribution Di as selection probabilities

learn  i from Ti
compute the error for  i as

" =
P
j s:t: i(�xj)6=yj

Di(j)
(if " > 1=2 break)

�i = "i=(1� "i)

factor =

(
�i if i(�xj) = yj
1 if i(�xj) 6= yj

Di+1(j) = Di(j)=Zi � factor

Figure 2: Sequential boosting

set and selecting points that are \easy" to classify less frequently. The intuition is that more
of the computational e�ort is being used to learn those aspects of the data that are more
di�cult to learn. The decision about which examples are hard is made incrementally, based
on the ability of previous predictors to classify them correctly. The �rst predictor assumes
that all examples are equally hard. If the �rst predictor is used to classify the examples
in the training set, then those examples that it misclassi�es may be tentatively classi�ed as
more di�cult. Such examples are then disproportionately selected for inclusion in the second
sample. The selection for the third sample is based on the classi�cation achieved by both
the �rst and second predictors. As the process continues, examples that are persistently
misclassi�ed become increasingly likely to be included in new samples.

Several variants of this idea have been described in the literature, varying in the way in
which the probabilities of selection are varied in response to earlier classi�cations, and how
the resulting predictors' outputs are weighted in use [5, 6]. The predictor construction phase
of the Adaboost algorithm is shown in Figure 2 [8]. The variable D holds weights associated
with each example in the training set, modelling a probability distribution used for sample
selection. " is a global error estimate; when it exceeds 1/2, the algorithm cannot continue
directly so, if this occurs, the distribution may be reinitialized and the algorithm continued or
restarted. The variable � models the accuracy of the current predictor and determines how
quickly correctly-classi�ed examples have their weights reduced. The combined predictor is
given by

 (�x) = argmax
X

js:t: i(�x)=y

log(1=�i)

in other words, a vote weighted by the accuracies of the individual predictors on the training
set.
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Several variants have been suggested. arc-fs [5] removes \easy" examples from consider-
ation more quickly than Adaboost by setting their selection probability to zero as soon as
they have been classi�ed correctly by any predictor. It uses weighted voting in the combined
predictor. arc-x4 [5] reduces selection probabilities by a function (involving fourth powers,
hence the name) of the number of misclassi�cations so far by all predictors. However, it
uses unweighted voting, a deliberate attempt to show that the power of boosting techniques
comes from their sample selection rather than from the way they handle voting. There are
many subtleties in the accuracy properties of both bagging and boosting. Results of a large
empirical study can be found in [1].

All of these boosting/arcing ensemble techniques have an implied sequential dependency,
since the selection process at phase i + 1 depends on the classi�cation behavior at phase i.
However, as we shall show, it is possible to e�ectively parallelize ensemble techniques of this
kind.

4 Experimental Setting

Ensemble techniques may be used with any weak learner as the underlying data mining
technique. In our experiments we use the oblique decision tree predictor, OC1 [10]. Decision
trees are usually constrained to test a single attribute at each internal node. OC1 allows
a linear combination of attributes to be tested at internal nodes. Geometrically, a decision
tree partitions the attribute space into regions delimited by axis-parallel hyperplanes, while
OC1 may use oblique hyperplanes. For datasets in which the actual boundaries between
classes are not well modelled by axis-parallel hyperplanes, OC1 can be expected to achieve
good accuracy with smaller decision trees.

The cost of improved prediction is that building predictors is more expensive than for
ordinary decision trees. The time complexity of tree construction is O(dn2 logn) for a train-
ing set with n examples and d attributes. However, real datasets do not seem to require this
much time, as we shall see later.

We use a SUN Enterprise 3500 computer, with 6 Ultrasparc II 336Mhz processors, as the
test platform. In order to reduce the e�ects of other processes on our test programs, no more
than �ve processors were used. Elapsed times reported for our experiments are averages of
10 executions of the same code.

We use the Bulk Synchronous Parallel Library, BSPlib [9, 14], as the parallel programming
environment. This is a high-performance library (i.e. typically faster than MPI) that is well-
suited to problems whose large-scale structures consists of alternating phases of computation
and communication. In particular, BSPlib is carefully optimized to implement total-exchange
e�ectively, and we use this extensively in our implementations.

The datasets we use in our experiments were chosen to be large, so that partitioning the
data across multiple processors would still allow fairly large subsets at each one. They were
also chosen to be quite di�cult, that is the accuracies reported for direct sequential mining
left some room for improvement.

We use the two datasets described in Figure 3. These datasets are available from the
University of California, Irvine, archive (kdd.ics.uci.edu). The letters dataset is unusual
because the number of classes is large { this makes classi�cation quite challenging.
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Name # examples training set test set # attributes # classes
size size

letters 20000 20000 400 16 numeric 26
cover type 581012 11 340 3780 10 numeric 8

44 binary

Figure 3: Datasets used

5 Parallelization strategies

Parallelizing bagging is relatively straightforward. The training set is partitioned equally
across the available processors. Each processor executes the sequential algorithm on its
local data until su�cient predictors have been constructed. In general, it is a good idea to
partition the training set randomly to ensure that the predictors generated by each processor
do not contain unnecessary bias.

The cost of a single round of parallel bagging can be expressed in the form

single round cost = SAMPLE (n=P;m) + OC1 (m) (1)

where m is the size of samples being used, SAMPLE is the cost of selecting a sample (which
depends on both the size of the local partition and the size of the sample being selected),
and OC1 is the cost of generating an OC1 decision tree from a sample of size m.

The parallelization of boosting is more complex. Again we partition the training set across
the available processors. We then execute a number of rounds. In each round, each processor
builds a predictor using a sample from its local data. These predictors are then exchanged
among the processors, so that each processor now holds a copy of all of the predictors built
during the current round. The reweighting of examples in preparation for the next round is
done using all of these predictors: for each processor, an example is considered easy if it is
correctly classi�ed by some number of the predictors from the current round. This number is
called the threshold. In other words, an example is reweighted as in the sequential algorithm,
but a correct prediction is reinterpreted to mean \correct with respect to some number of
predictors."

The cost of a single round of parallel boosting can be expressed in the form

single round cost = SAMPLE (n=P;m) + OC1 (m) + tPg + VOTE (n=P � P ) (2)

where m is the size of samples being used, SAMPLE is the cost of selecting a sample, OC1 is
the cost of generating an OC1 decision tree from a sample of size m, tPg is the cost of total
exchange of trees of size t among P processors (where g is the BSP network permeability
architecture parameter), and VOTE is the cost of voting the n=P local examples in each
partition against P trees from the current round.

The crucial property of the parallelized algorithm is that the samples used, in every
processor, for the ith round use the information from all of the predictors in the previous
round. The quality of each processor's information about hard versus easy examples is
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given a training set T = f(�xj; yj) j j = 1; : : : ; mg
partition T into P subsets, Tp
initialize Di;p := 1=nP
for i = 1 to K

forall p in 1,. . . ,P

select a sample Ti;p from Tp using Di;p

build predictors  i;p
exchange the  i;p's among all processors

compute errors "i;p = 1=2
P
jDi;p(j) if �xj is misclassi�ed by more than

threshold processors (i.e. votep i;p(�xj) 6= yj)

(if " > 1=2 break)

�i;p := "i;p=(1� "i;p)

factor =

(
�i;p if i(�xj) = yj
1 if i(�xj) 6= yj

Di+1;p := Di;p=Zi;p � factor

Figure 4: Parallelized boosting

informed by results learned by other processors as well as its own predictor. The algorithm
is given in Figure 4.

The resulting global predictor is

 (�x) = argmaxPK
X

y2Y;( i;p(�x)=y)

log(1=�i;p)

The parameters that must be chosen for a parallel ensemble technique are: the number
of processors to use, the size of samples to use, and the appropriate threshold (for boosting).
These choices are not obvious, even for bagging. In the next section we report the results of
a set of experiments that explore the tradeo�s between these parameters.

6 Experimental results

Sample size limits accuracy, regardless of computational e�ort. The curves of
accuracy versus number of iterations of the outer loop of the algorithm, for both bagging
and boosting, have a characteristic shape, rising quickly at the beginning and then attening
out to an asymptotic accuracy value. The asymptotes increase with increasing sample size.
Hence the best achievable accuracy depends on the size of sample chosen, but not on the
total computational e�ort expended.

Figure 5 shows, for bagging, the e�ect of di�erent sample sizes on accuracy for a small
number of iterations, and Figure 6 shows the e�ect as the number of iterations increases.
Figures 7 and 8 show the same e�ect for boosting, on the letters and covtype datasets
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Figure 5: Increasing sample size increases accuracy (parallel bagging, 4 processors, letters
dataset).
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Figure 6: Accuracy is limited by sample size, regardless of how much computation is used.
Moderate sample sizes must be used to outperform the sequential OC1 algorithm, shown by
the dashed line (parallel bagging, 4 processors, letters dataset).
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Figure 7: Increasing sample size increases accuracy (parallel boosting, 4 processors, letters
dataset). The dashed line is the accuracy of the sequential OC1 algorithm.
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Figure 8: Increasing sample size increases accuracy (parallel boosting, 4 processors, covtype
dataset). The dashed line is the accuracy of the sequential algorithm.
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1 proc. 2 procs. 4 procs. 5 procs.
work acc. work acc. work acc. work acc.

time time time time

20� 1 0.7075 10� 2 0.7105 5� 4 0.7090 4� 5 0.6800
154.98 78.67 40.12 32.04

40� 1 0.7350 20� 2 0.7460 10� 4 0.7410 8� 5 0.7460
314.77 154.53 80.03 63.84

60� 1 0.7525 30� 2 0.7685 15� 4 0.7575 12� 5 0.7670
470.37 233.82 118.40 97.91

80� 1 0.7625 40� 2 0.7760 20� 4 0.7695 16� 5 0.7660
625.75 308.30 157.78 128.43

Figure 9: When the same number of examples are seen, accuracy and total execution time
are approximately the same, regardless of how the computation is arranged (parallel bagging,
letters dataset, sample size = 200). Work is expressed as the product of number of rounds

� number of processors.

respectively. For the letters dataset, boosting implementations fairly easily outperform the
accuracy of a pure sequential OC1 implementation. For the covtype dataset, this is much
more di�cult, and large sample sizes are required. It is important to point out, however, that
the sequential implementations use much longer execution times than any of the ensemble
implementations { 4382s for the letters dataset, and 1035s for the covtype dataset.

One corollary to the dependence of accuracy on sample size is to suggest an upper bound
for the degree of parallelism that is worth using in ensemble-based approaches. If the smallest
sample size that achieves better accuracy than the sequential algorithm is s, then there
is no reason to choose P , the number of processors, larger than the value that satis�es
n=P = s. Fortunately, n is extremely large in most data mining applications, while the
number of processors available in commonly available parallel computers is relatively small.
The algorithms described here are therefore still of practical interest.

One question that our results do not answer is whether a reasonable sample size (that
is, one that allows accuracies better than the straightforward sequential algorithm) is best
regarded as an absolute size or a �xed fraction of the training dataset. Two arguments
suggest that it is the former. First, if there is redundancy in the training data, as there
usually is in data mining applications, it seems counter-intuitive that doubling the size of
the training dataset should require selecting bigger samples. Second, it is clear from the
�gures that the relative accuracy improvement obtained by using a larger sample becomes
quite small (perhaps a percentage point) by the time a few thousand examples are included
in the sample. There seems little to be gained by increasing sample sizes once such large
samples are being used.

6.1 Bagging

The e�ect of parallelism. Parallelizing bagging amounts to rearranging the computation
of the sequential bagging algorithm, and therefore we might expect that speedups would be
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Figure 10: The time required for 5 rounds increases faster than linearly as a function of
sample size (parallel bagging, 4 processors, letters dataset).

linear with the number of processors used, for the same sample size. The only potential
source of performance improvement is the fact that each processor is selecting its samples
from a partition of the entire dataset, and therefore has to make fewer memory accesses
to select them. The data in Figure 9 shows that this e�ect is negligible { for the same
number of examples processed, the total time spent remains the same, regardless of how
many processors are used. Hence, of course, perfect linear speedup is achieved. Puzzlingly,
using two processors produces better accuracy than using one, if only by a slim margin.
The limits on scalability of this algorithm are that the partition allocated to each processor
should not become too small to select samples of appropriate sizes.

The e�ect of sample size. Since building OC1 decision trees potentially requires time
superlinear in the number of examples used, we might expect that using small samples would
provide a signi�cant performance enhancement. For the letters dataset, the time required to
build trees is worse than linear, but not quadratic. Figure 10 shows the required execution
time as a function of sample size.

The overall e�ect of sample size is shown in Figure 11. Each row of this table gives the
accuracy and cost of computing a predictor after having seen the same number of examples,
but in samples of di�erent sizes. Unsurprisingly, given the comments at the beginning of
this section, accuracies are greater for larger sample sizes. However, the total time required
increases quite substantially with increasing sample size. This time increase is due to the
increased complexity of building decision trees from larger samples. In other words, in
Equation 1 the SAMPLE term is linear in both n=P and m, but the OC1 term is worse
than linear in m, and this accounts for the increasing time.

Parallel bagging holds few surprises. The parallel algorithm is simply a rearrangement of

11



200(seq) 200(par) 500(par) 1000(par) 2000(par)
work acc. work acc. work acc. work acc. work acc.

time time time time time

20� 1 0.7075 5� 4 0.7090 2� 4 0.7210 1� 4 0.7270
154.98 40.12 63.62 83.22

40� 1 0.7350 10� 4 0.7410 4� 4 0.7800 2� 4 0.8230 1� 4 0.8210
314.77 80.03 124.99 166.35 206.16

60� 1 0.7525 15� 4 0.7575 6� 4 0.8075 3� 4 0.8335
470.37 118.40 190.10 248.01

80� 1 0.7625 20� 4 0.7695 8� 4 0.8090 4� 4 0.8590 2� 4 0.8680
625.75 157.78 253.39 326.39 415.92

Figure 11: When the same number of examples are seen, accuracy improves with increasing
sample size, but total execution time also increases (parallel bagging, 4 processors, letters
dataset).

sequential bagging across a set of processors. The overall accuracy and computational cost
remains the same regardless of this rearrangement.

6.2 Boosting

It is far less obvious what performance to expect from parallel boosting. On the one hand,
there are considerable overheads in exchanging OC1 trees and voting after each round,
which suggests that speedups may be poor. On the other hand, each processor is acquiring
information learned by all of the other processors in a compact way, and this has often led
to superlinear speedups in data mining applications [12, 15].

The e�ect of threshold. The threshold determines how many decision trees must agree
for an example to be classi�ed as easy. Figures 12 and 13 show that choosing a threshold value
of 2 is best for the letters dataset, while Figures 14 and 15 show that choosing a threshold
value of 3 is best for the covtype dataset. In both cases, the best choice of threshold is
independent of sample size. Also in both cases, the accuracy as a function of threshold
is strongly concave downwards, so that both small and large values of threshold perform
much worse than moderate values. It appears that the best threshold is a constant, for each
dataset, rather than a fraction of the number of available processors but we were unable to
explore this in more detail.

The e�ect of parallelism. For implementations that have seen the same number of
examples, it is clear from Figure 16 (for the letters dataset) and Figure 17 (for the covtype
dataset) that increasing parallelism results in greater accuracies. This suggests that the
sharing of information gleaned by processors amongst themselves by voting does indeed
improve the ability of the algorithm to learn. It is, however, also clear from these Tables that
this improved accuracy has a performance cost. The total amount of work required increases
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Figure 12: Choosing threshold=2 is (marginally) best for the letters dataset (parallel boost-
ing, 4 processors, sample size 200).
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Figure 13: Choosing threshold=2 is best for the letters dataset (parallel boosting, 4 proces-
sors, sample size 1000).
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Figure 14: Choosing threshold=3 is best for the covtype dataset (parallel boosting, 4 pro-
cessors, sample size 200).
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Figure 15: Choosing threshold=3 is best for the covtype dataset (parallel boosting, 4 pro-
cessors, sample size 500).
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1 proc. 2 procs. 4 procs. 5 procs.
work acc. work acc. work acc. work acc.

time time time time

20� 1 0.6950 10� 2 0.7150 5� 4 0.7183 4� 5 0.7215
177.55 90.03 49.75 46.38

40� 1 0.7580 20� 2 0.7645 10� 4 0.7765 8� 5 0.7895
358.60 181.58 104.82 89.72

60� 1 0.7650 30� 2 0.7920 15� 4 0.8208 12� 5 0.8145
534.22 277.37 154.37 130.73

80� 1 0.7695 40� 2 0.8055 20� 4 0.8360 16� 5 0.8438
711.65 368.19 199.97 171.24

Figure 16: When the same number of examples are seen, accuracy increases with parallelism,
but so does total execution time (parallel boosting, letters dataset, sample size = 200).

1 proc. 2 procs. 4 procs. 5 procs.
work acc. work acc. work acc. work acc.

time time time time

20� 1 0.6490 10� 2 0.6345 5� 4 0.6765 4� 5 0.6755
88.56 50.46 24.86 24.10

40� 1 0.6507 20� 2 0.6451 10� 4 0.6948 8� 5 0.6950
182.83 88.56 49.62 47.80

60� 1 0.6519 30� 2 0.6571 15� 4 0.7037 12� 5 0.7058
273.40 148.60 77.88 73.73

80� 1 0.6538 40� 2 0.6626 20� 4 0.7089 16� 5 0.7102
371.57 201.81 102.59 89.71

Figure 17: When the same number of examples are seen, accuracy increases very slightly
with parallelism, but so does total execution time (parallel boosting, covtype dataset, sample
size = 200).
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Figure 18: The time required for 5 rounds increases faster than linearly as a function of
sample size (parallel boosting, 4 processors, covtype dataset).

(slowly) as the number of processors increases. In other words, the speedup is sublinear.
This reects the increased communication cost as more processors are used. Notice also that
the cost of voting at the end of each round, the VOTE term in the cost of Equation 2,
is a function of n and so does not parallelize. In practice, the cost of tree construction
dominates communication and voting to update the distribution for these modest numbers
of processors. For example, in an early round of boosting, using 4 processors and the letters
dataset, sampling took 0.14% of the time, tree generation 97.76%, and voting and updating
2.11% of the time. The approach can be expected to scale well, perhaps up to 50 processors,
provided that the dataset is large enough that partitions allow reasonable samples to be
selected.

The e�ect of sample size. We have already observed that the time required to build
an OC1 tree increases faster than linearly with the number of examples used for the letters
dataset. Figure 18 shows that the relationship is quite similar for the covtype dataset. Hence
we expect to see performance penalties using larger sample sizes.

The e�ect of sample size is shown in Figures 19 and 20. As before, each row gives the
accuracy and cost of computing a predictor after having seen the same number of examples,
but in samples of di�erent sizes. Once again, accuracies are greater for larger sample sizes
(although less so for the covtype dataset), but the total time required also increases substan-
tially. These costs reect the cost of building decision trees from larger samples. In other
words, the SAMPLE cost is linear in both its arguments, the OC1 cost grows faster than
linearly in m, the communication term is independent of m (since tree sizes remain more or
less constant as sample sizes vary), and the VOTE cost is constant.

Parallel boosting does achieve improved accuracies compared to sequential boosting be-
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200(seq) 200(par) 500(par) 1000(par) 2000(par)
work acc. work acc. work acc. work acc. work acc.

time time time time time

20� 1 0.6950 5� 4 0.7215 2� 4 0.7620 1� 4 0.7450
177.55 49.75 63.17 78.56

40� 1 0.7580 10� 4 0.7895 4� 4 0.8410 2� 4 0.8320 1� 4 0.8115
358.60 104.82 122.60 148.38 182.01

60� 1 0.7650 15� 4 0.8208 6� 4 0.8725 3� 4 0.8830
534.22 154.37 185.93 218.70

80� 1 0.7695 20� 4 0.8360 8� 4 0.8990 4� 4 0.8980 2� 4 0.8985
711.65 199.97 235.04 282.28 333.25

Figure 19: When the same number of examples are seen, accuracy improves with increasing
sample size, but total execution time also increases (parallel boosting, 4 processors, letters
dataset).

200(seq) 200(par) 500(par) 1000(par) 2000(par)
work acc. work acc. work acc. work acc. work acc.

time time time time time

20� 1 0.6490 5� 4 0.6765 2� 4 0.7026 1� 4 0.6889
88.56 24.86 25.61 30.14

40� 1 0.6507 10� 4 0.6948 4� 4 0.7286 2� 4 0.7349 1� 4 0.7160
182.83 49.62 48.72 60.60 80.21

60� 1 0.6519 15� 4 0.7037 6� 4 0.7397 3� 4 0.7499
273.40 77.88 73.82 91.87

80� 1 0.6538 20� 4 0.7089 8� 4 0.7465 4� 4 0.7669 2� 4 0.7610
371.57 102.59 98.51 117.24 151.54

Figure 20: When the same number of examples are seen, accuracy improves with increasing
sample size but then attens. Total execution time also increases (parallel boosting, 4
processors, covtype dataset).
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Figure 21: Zeroing selection probabilities quickly has little e�ect on accuracy or best choice
of threshold (boosting, letters dataset, sample size 200).

cause of the information sharing that is implicit in the use of all of the predictors from a
round to select the samples for the subsequent round. However, there is a computational
cost to this improved accuracy { exchanging the predictors adds a communication cost that
is linear in P , and the resulting voting step cannot be parallelized (recall its magnitude is a
function only of n), so that there is some upper limit to the e�ectiveness of parallelism.

6.3 Adding arcing features

The e�ect of zeroing selection probabilities quickly. Several of the arcing ensemble
algorithms reduce the selection probability of \easy" examples to zero rapidly in comparison
to boosting. Figures 21 and 22 show that using such a strategy for updating selection
probabilities makes almost no di�erence in either threshold selection or achieved accuracy.

6.4 Comparing bagging and boosting

Accuracy of boosting and bagging. Figure 23 shows that, for the same scenario, boost-
ing always achieves greater accuracy than bagging. This vindicates the intuition that it is
better to devote resources to the \hard" examples at the expense of the \easy" examples.

Cost of bagging and boosting. More surprisingly, Figure 24 shows that, for the same
scenario, boosting is also computationally cheaper than bagging. When the costs of each
round are compared in detail, it becomes clear that this is because the time to compute OC1
decision trees decreases in the later rounds of boosting, but does not decrease in the later
rounds of bagging. The samples used in later rounds of boosting are more repetitive than
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Figure 22: Zeroing selection probabilities quickly has little e�ect on accuracy or best choice
of threshold (boosting, letters dataset, sample size 1000).

sample size 200 500 1000 2000
work acc. work acc. work acc. work acc.

bagging 5� 4 0.7090 2� 4 0.7210 1� 4 0.7270
boosting 0.7215 0.7620 0.7450

bagging 10� 4 0.7410 4� 4 0.7800 2� 4 0.8230 1� 4 0.8210
boosting 0.7895 0.8410 0.8320 0.8115

bagging 15� 4 0.7575 6� 4 0.8075 3� 4 0.8335
boosting 0.8208 0.8725 0.8830

bagging 20� 4 0.7695 8� 4 0.8090 4� 4 0.8590 2� 4 0.8680
boosting 0.8360 0.8990 0.8980 0.8985

Figure 23: Parallel boosting is always more accurate than parallel bagging for the same
scenario.
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sample size 200 500 1000 2000
work time work time work time work time

bagging 5� 4 40.12 2� 4 63.62 1� 4 83.22
boosting 49.75 63.17 78.56

bagging 10� 4 80.03 4� 4 124.99 2� 4 166.35 1� 4 206.16
boosting 104.82 122.60 148.38 182.01

bagging 15� 4 118.40 6� 4 190.10 3� 4 248.01
boosting 154.37 185.93 218.70

bagging 20� 4 157.78 8� 4 253.39 4� 4 326.39 2� 4 415.92
boosting 199.97 235.04 282.28 333.25

Figure 24: Parallel boosting is always cheaper to execute than parallel bagging for the same
scenario.

those of earlier rounds since the pool of examples to select from is e�ectively shrinking each
time. One possible explanation for the observed results is that the OC1 algorithm does less
work to achieve the same quality of decision tree for such homogeneous samples. Figure 25
shows that this is indeed the case. The solid line shows the computation time for OC1
on random samples of increasing size from the letters dataset. The dashed line shows the
computation time for samples of matching size obtained by replicating a random sample of
500 examples an appropriate number of times. It is clear that an OC1 decision tree can be
built much more quickly from the more homogeneous sample. The actual samples in later
rounds of parallel boosting are not nearly as homogeneous as the data used in this �gure, so
the e�ect is much smaller { but it su�ces to outperform parallel bagging. Bauer and Kohavi
[1] postulate a similar e�ect for their more-typical decision tree builder, MC4.

7 Conclusions

There are four main contributions of this work:

1. We have shown that the achievable accuracy of ensemble-based techniques is bounded
by the choice of sample size. Choosing a small sample size reduces the time to com-
pute each predictor (disproportionately when the underlying prediction technique has
complexity worse than linear in the sample size). However, we have shown that this
must be balanced by the need to achieve reasonable accuracy, and hence that there are
limits to �ne-grained ensemble approaches.

2. We have shown that boosting can be usefully parallelized despite its apparent sequential
structure.

3. We have shown that parallel boosting achieves greater accuracy than parallel bagging
for comparable scenarios. This vindicates the intuition behind boosting, that it is
useful to spend resources disproportionately on the \hard" examples in a dataset.
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Figure 25: The time required to build an OC1 decision tree is much smaller for multiple
copies of the same 500 examples than for a randomly chosen dataset of the same size.

4. We have shown that, at least for OC1, parallel boosting also outperforms parallel
bagging for comparable scenarios. This result was unexpected and is due to the fact
that OC1 tree construction is faster on more homogeneous datasets.

We have also shown that parallel bagging behaves as expected { the overall accuracy
and total execution time are una�ected by the way in which computing each predictor is
arranged in space and time. Hence the only reason for parallelizing bagging is to reduce the
elapsed time for generating a global predictor.

The performance tradeo�s for parallel boosting are more subtle. Parallelized boosting
learns better predictors after seeing the same number of examples, because partial informa-
tion learned by one processor is e�ectively shared with others early in the learning process.
On the other hand, parallelized boosting does require more total computation to learn from
the same number of examples. This extra cost arises from the communication overheads of
the parallel algorithm, and from the extra voting required { but it grows fairly slowly with
the number of processors.

We also discovered that the amount of agreement between predictors learned by di�erent
processors (the threshold) that is required to classify an example as \easy" is remarkably
small. We had expected that the greatest accuracy would be achieved by calling examples
\easy" only when most or all predictors agreed about them { in fact, it su�ces for only 2 or
3 processors to agree. There are indications that this threshold is independent of the total
number of processors used.

Parallel boosting is the strategy of choice for parallel ensemble generation of predictors.
Using large sample sizes produces accuracies greater than those of the corresponding sequen-
tial algorithm, in less elapsed time, although more overall computational time is required.
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