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Abstract

The dynamic version of the maximum 
ow problem allows the graph underlying the 
ow network

to change over time. The graph receives corrections to its structure or capacities and consequently the

value of the maximum 
ow is modi�ed. These corrections arrive in real time. In this paper, parallel

and sequential solutions to the real-time maximum 
ow problem are developed on the Recon�gurable

Multiple Bus Machine (RMBM) model and on the Random Access Machine (RAM) model, respectively.

The parallel solution successfully meets the deadlines imposed in real time, while the sequential one fails

to do so.

The two solutions are then applied to a real-time process scheduler, an extension of Stone's static two-

processor allocation problem. The scheduler allows processes to be created and destroyed, the amount of

communication between two processes to change with time, and so on. The parallel algorithm is always

able to compute the optimal schedule, while the solution obtained sequentially is only an approximation.

The improvement provided by the parallel approach over the sequential one is superlinear in the number

of processors used by the parallel model.

Key words and phrases: maximum 
ow, parallelism, real-time computation, module allocation.

1 Introduction

Due to its many applications, the maximum 
ow problem has been widely studied for the last forty years.

This paper proposes a real-time version of the problem. In it, the 
ow network on which a maximum 
ow

is to be computed receives corrections to its structure during the computation. These corrections a�ect

the maximum 
ow. Because the problem is to be solved in real time, a new maximum 
ow has to be

computed before a given deadline. Sequential and parallel approaches to solving the real-time maximum


ow problem are proposed and compared. In most situations where parallel computers are employed, their

primary purpose is to perform calculations faster than their sequential counterparts. Here it is shown that,

in addition, the presence of deadlines allows a parallel computer to obtain a better 
ow as well, meaning that

the parallel solution is closer to optimal than any solution arrived at sequentially.

The real-time paradigm can be used to express dynamic variants of static computations. One example

is the module allocation problem [27] which relies on advance knowledge about a system of processes.

Such a system may be modeled more realistically by allowing its characteristics to change with time in an

unpredictable way. A real-time computational setting is therefore a more suitable environment for treating

�This research was supported by the Natural Sciences and Engineering Research Council of Canada.
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the dynamic version of the module allocation problem. Again, the solution computed in parallel is of higher

quality than possible sequentially. In this case, the improvement is shown to be superlinear in the number

of processors used to obtain the parallel solution.

The remainder of this paper is organized as follows. Section 2 introduces some terminology from the

theory of 
ows in networks. The sequential and parallel models of computation used in the design of the

proposed algorithms are characterized in Section 3. A de�nition of the maximum 
ow problem in a real-time

setting, with corrections arriving in real time, is provided in Section 4. Section 5 presents sequential and

parallel algorithms for di�erent correction types. The correcting algorithms are applied in Section 6 to a

real-time process scheduler. Finally, Section 7 o�ers some suggestions for future research.

2 Background

This paper is concerned with integer 
ow networks. We begin by de�ning these networks on which a

maximum 
ow is to be computed.

De�nition 1 A 
ow network is a quadruple N = (G; c; s; t), where:

(i) G = (V;E) is a simple 1, directed graph, with a set V of vertices and a set E of edges.

(ii) c : V � V ! ZZ+
S
f0g is a function associating each edge (u; v) with a capacity c(u; v). If there is

no edge from u to v then c(u; v) = 0.

(iii) s (the source) and t (the sink) are two distinguished vertices in V .

The source generates a certain commodity that travels through the network and is �nally consumed by

the sink. The capacity expresses the maximum quantity of that commodity that is able to traverse an edge.

De�nition 2 The 
ow in the network N = (G; c; s; t) is an integer-valued function f : V � V ! ZZ, such

that f(u; v) measures the amount of commodity that 
ows from u to v. A 
ow satis�es the following three

properties:

1. Capacity constraint: for all u; v 2 V , f(u; v) � c(u; v).

2. Skew symmetry: for all u; v 2 V , f(u; v) = �f(v; u).
3. Flow conservation: for all u 2 V � fs; tg : �v2V f(u; v) = 0.

Flow f saturates edge (u; v), if c(u; v) = f(u; v).

The residual capacity, r(u; v) = c(u; v) � f(u; v), with (u; v) 2 V � V , forms the residual network

Nf = (Gf = (Vf ; Ef ); r; s; t), where Vf = V and (u; v) 2 Ef if and only if r(u; v) > 0. A path from s to t in

the residual network Nf is called an augmenting path.

For the purpose of this paper, we de�ne the reduced 
ow network FNf = (FGf = (FVf ; FEf ); f; s; t),

where FVf = V and (u; v) 2 FEf if and only if f(u; v) > 0.

The value of the 
ow is the 
ow emerging from the source, that is,
P

v2V f(s; v). To solve the maximum


ow problem means to �nd a 
ow of maximal value.

A cut (S; T ) of the 
ow network is a partition of V into two sets S and T = V � S such that s 2 S and

t 2 T . If the sum of the capacities of the cut edges (starting in S and ending in T ) is minimum, the cut is a

minimum cut.

The Max-
ow Min-cut theorem, a fundamental result in 
ow network theory, states that a 
ow f is

maximal if and only if the residual network Nf contains no augmenting paths. The value of the maximum


ow is equal to the capacity of the minimum cut.

2.1 Algorithms

In what follows, we use the standard de�nition of a time unit to express running times. Speci�cally, a time

unit is the length of time required by a processor either to access a memory location for reading or writing,

or to perform a constant-time operation (such as +, �, AND, OR, and so on).

1For any two nodes u; v 2 V , there exists only one edge of the form (u; v) starting from u and ending at v. Between u and

v there exist at most two edges: (u; v) and (v; u).
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Existing maximum-
ow algorithms fall into two categories: the Ford-Fulkerson method [16] and the

pre
ow-push method [21].

The Ford-Fulkerson algorithm starts with a null 
ow (or an arbitrary initial 
ow) and iteratively increases

the value of the 
ow until it reaches the maximum. Every increase in the 
ow is due to an augmenting path

from s to t. The contribution of an augmenting path p in increasing the value of the 
ow is rf (p) =

min(u;v)2pr(u; v).

Based on this method, Edmonds and Karp [15] develop the shortest augmenting path algorithm whose

running time is O(jV j�jEj2), where jV j is the number of vertices and jEj the number of edges. Improvements
have followed. Galil and Naamad [18] obtain an O(jV j � jEj � log2 jV j) time algorithm, which is the �rst

algorithm within a polylogarithmic factor from the lower bound 
(jV j � jEj) [20].
The pre
ow-push method is more time e�cient. The �rst complete method was designed by Goldberg

and Tarjan [21] and uses Karzanov's pre
ows [23]. Goldberg and Tarjan [21] achieve O(jV j jEj log( jV j
2

jEj
))

running time and King, Rao, and Tarjan [24] obtain a running time of O(jV j jEj (log jEj
jV j log jV j

jV j)).

Goldberg and Rao's algorithm [20] achieves a running time smaller than the 
(jV j � jEj) lower bound
at the expense of limiting the capacity of the edges to a maximum value U . The execution time is

O(min(jV j
2
3 ; jEj

1
2 )� jEj log( jV j

2

jEj
) logU).

For a comprehensive history of sequential maximum-
ow algorithms see [19].

The conceptual di�erence between the two approaches is that the Ford-Fulkerson method has to have

an overview of the current state of the network. Decisions are taken after the whole network is inspected.

Goldberg and Tarjan's algorithm makes decisions locally. A node performs a change on the pre
ow, based

on the knowledge it has about itself and its neighbors. A global vision of the network is not necessary.

Therefore, the pre
ow-push method naturally lends itself to parallel implementations [22, 26, 30].

By contrast, the parallel algorithm developed in this paper is based on the Ford-Fulkerson method. This

is due to the capabilities of the parallel model used, which can depict the structure of a graph in such a way

that its global properties are easily extracted.

3 Models of Computation

The two models of computation to be used in this paper are now described. The sequential model is

the Random Access Machine (RAM) and the parallel model is the Recon�gurable Multiple Bus Machine

(RMBM). For the sake of comparison, the two models are considered to have processors of equal power.

Furthermore, these processors are assumed to be the fastest possible.

3.1 The Random Access Machine

The RAM model [4] consists of one processor connected to a random access memory. The processor has some

local registers to store intermediate results. The RAM runs a program by serially executing one instruction

after the other. An instruction may fetch a datum from memory, perform an operation on it, and write it

back to memory.

Conforming to the de�nition of time unit given above, a memory access or a constant-time operation

lasts one time unit.

3.2 The Recon�gurable Multiple Bus Machine

The RMBMmodel [29] consists ofm independent processors that communicate via n independent (electronic)

buses (Fig. 1). Its topology (structure) can be changed during the execution of an algorithm. The buses

can be fused to form larger buses, or a bus can be segmented to form two or more buses. Each processor

can connect to any bus by means of a read or write port. However one processor can read or write from/to

at most one bus in a given communication step. In addition, a processor can change the communication

con�guration by segmenting a bus or fusing two or more buses together.

Buses are used for communication among processors. When a processor reads or writes to a bus, reading

can be exclusive (ER) or concurrent (CR), and similarly writing can be exclusive (EW) or concurrent (CW).
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Processors are allowed to concurrently write if they are writing the same datum (common concurrent write).

In our algorithms we consider a CRCW RMBM.

Thus, an RMBM with m processors P0; P1; :::; Pm�1 and n buses B0; B1; :::; Bn�1 has mn sets of switches

Qi;j = fci;j;0; ci;j;1; si;j;0; si;j;1; fi;jg, where 0 � i � m� 1 and 0 � j � n� 1. Each processor has a fuse line

associated to it, which lies perpendicular to the buses. Each processor has a write port (port 0) and a read

port (port 1). The switches in the set Qi;j (Fig. 2) lie physically on bus Bj and are controlled by processor

Pi. Their meaning is:

cij0 - controls writing to bus Bj .

cij1 - controls reading from bus Bj .

sij0,sij1 - segment the bus but will not be used in the algorithm.

fij - connects the fuse line to bus Bj .

If fij and fij0 are both set (Fig. 1), the buses Bj and Bj0 are fused.

The RMBM can con�gure the buses into several "fused bus segments" by means of the segment and fuse

switches.

The directional RMBM, an extension proposed by Trahan [29], and used here, fuses the bus lines direc-

tionally: if j1 < j2, data can 
ow either (i) only from bus j1 to bus j2, or (ii) only from bus j2 to bus j1, or

(iii) in both directions.

The processors of the RMBM are considered to work synchronously. All processors receive a copy of

the algorithm and execute each of its steps simultaneously. Thus, communication between two processors is

possible by synchronizing the writing and reading of the bus. A communication step takes one time unit.

For our purposes, the RMBM model will prove valuable as it will be able to recon�gure itself dynamically

to capture the structure of the graph under consideration.
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Figure 3: Flow network (maximum 
ow = 7)
Figure 4: Unitary edge correction (maximum


ow = 8)

4 The Real-Time Paradigm

In the real-time paradigm, input and output data are subject to time constraints. The input is not all

available at the beginning and arrives during the computation. Output has to be produced before a deadline.

Depending on the input data arrival law and the output time constraints, di�erent sub-paradigms have been

de�ned and studied for di�erent problems [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 25].

The real-time maximum 
ow problem, as de�ned in this paper, is a variant of the data-accumulating

paradigm [8] and the data-correcting paradigm [12]. The initial data undergo small adjustments during the

computation.

The initial 
ow network N = (G = (V;E); c; s; t), together with the already computed maximum 
ow f ,

is given at the outset. Here, G = (V;E) is an arbitrary directed graph that may contain cycles, s and t are

the source and sink, respectively, and c, the capacity function, takes only nonnegative integer values. Thus,

the maximum 
ow in the network will also be an integer.

The network undergoes corrections during the computation. These corrections form a (possibly endless)

stream and arrive at a constant rate. The time elapsed between two consecutive corrections is � time units,

where � is a positive number which may depend on the size of the network, but remains �xed throughout

the computation. Each correction possibly determines a variation in the network's maximum 
ow f . The

paradigm imposes a deadline for each maximum 
ow to be output before it is modi�ed. This deadline is

�rm, in the sense that any data produced after the deadline is useless. The problem therefore is to compute

the new maximum 
ow before the next correction arrives, that is, in � time units. This implies that the

output is also a (possibly endless) stream, that has to be generated at the rate of one new 
ow every � time

units. The following four types of corrections will be studied:

Type 1. Unitary edge correction. At the beginning of each interval of � time units, an edge

capacity gets incremented or decremented by 1. This simple correction can a�ect the value of

the maximum 
ow by one unit. Consider the 
ow network given in Fig. 3. The two numbers on

each edge, separated by a `/', represent the capacity and the 
ow, respectively. Fig. 4 shows the

result of incrementing the capacity of (v3; v5). Note that the 
ow through an arbitrary number

of edges is a�ected; in this example, these edges are (s; v3) and (v5; t).

Type 2. Arbitrary edge correction. The capacity of an edge is changed by an arbitrary integer

value. This is a generalization of Type 1 corrections. Edge addition and deletion also fall in this

category. An edge addition means a capacity increase from 0 to some positive value, while an

edge deletion means a capacity decrease to 0.

Fig. 5 shows the 
ow network in Fig. 3 after edge (v3; v4) with capacity 3 has been added. The

maximum 
ow is increased by 3 units.

Fig. 6 shows the e�ect of deleting edge (s; v3) from the same 
ow network in Fig. 3. The maximum


ow is also decreased to 4.
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Figure 7: Edge deletion (maximum 
ow = 7)
Figure 8: Vertex addition (maximum 
ow =

14)

Nevertheless, an edge deletion need not necessarily induce a 
ow decrease. In Fig. 7, edge (s; v1)

has been deleted. The 
ow through this edge had been 4. This value has been redirected through

edges (s; v0) and (v0; v1) such that the overall maximum 
ow remains unchanged.

Type 3. Vertex addition. A new vertex arrives together with a number of edges to connect to

existing vertices. In Fig. 8, vnew has arrived with three edges: an incoming edge (v3; vnew), and

two outgoing edges (vnew ; v5) and (vnew ; t). Using the additional capacity, the network supports

a larger 
ow.

Type 4. Vertex deletion. The reverse problem to Type 3 arises when a vertex is deleted from

the network together with its incoming and outgoing edges. Fig. 9 shows the 
ow network after

vertex v1 has been deleted.

The signi�cance of the corrections de�ned above depends on the application and the speci�c meaning

given to vertices, edges and capacities. Thus, in Section 6 we apply the real-time maximum 
ow problem

to a process scheduler. Vertices in the graph represent processes or processors. Therefore, adding a vertex

means creating a new process, and deleting a vertex means destroying a process. The edges of the graph

with their capacities represent the amount of interaction between the two processes (vertices) that the edge

connects. Adding an edge means that two processes start to communicate. Deleting an edge means the

processes cease to interact. Any variation in the capacity of an edge shows that the amount of interaction

between two processes changes.
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Figure 10: Residual network with unitary augmenting path

5 Correcting Algorithms

As it turns out, solving the unitary edge correction, the simplest correction possible, gives a method for

addressing all other more complex correction types.

5.1 Unitary Edge Corrections

A 
ow network N = (G = (V;E); c; s; t) with nonnegative integer capacities, c : V �V ! ZZ+
S
f0g, is given.

The maximum 
ow, f : V � V ! ZZ, is already computed and also given at the outset.

Conforming to the real-time setting, after each � time units, an arbitrary edge (u; v) changes its capacity

by one unit.

If (u; v) is nonsaturated, that is, f(u; v) < c(u; v), then updating its capacity (by incrementing or decre-

menting it) does not a�ect the maximum 
ow.

If (u; v) is saturated, that is, f(u; v) = c(u; v), then incrementing its capacity or decrementing it might

cause a unitary increase/decrease of the maximum 
ow. Therefore, only saturated edge corrections need to

be considered.

According to the Max-
ow Min-cut theorem, there exist no paths from s to t in the residual network

induced by the maximum 
ow. When the capacity c(u; v) of saturated edge (u; v) is incremented, it generates

a new unitary directed edge (u; v) in the residual network. This new edge can be the missing link to form

a path from s to t (Fig. 10). Further, to update the maximum 
ow, the 
ow along the newly formed

augmenting path has to be incremented.

If c(u; v) is decremented, the algorithm attempts to redirect the now excessive unitary 
ow in (u; v)

through other edges (Fig. 11). It searches for a path from u to v in the residual network 2. If such a path

exists, the unitary 
ow is successfully redirected through the network by incrementing the 
ow along the

path and the value of the maximum 
ow is una�ected.

If there is no path from u to v in the residual network, the algorithm has to decrease the 
ow in the

network by one. The algorithm searches for a path in the reduced 
ow graph FGf , from s to u and from v

2Such a path is not allowed to use an edge of the form (t; s). Because such an edge is of no use in de�ning the 
ow capacity

of a network, we consider that such an edge does not exist in the original network.
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Figure 11: Residual network with rerouting path
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Figure 12: Reduced 
ow network with decrementing path

to t (Fig. 12). These paths are guaranteed to exist. Further, decrementing along the paths updates the 
ow.

This general procedure is independent of the model on which the algorithm is implemented. Note that

the only time consuming part of the above method is �nding and updating the 
ow on a path in either the

residual network (Nf ), or in the reduced 
ow network (FNf ).

5.1.1 Sequential solution

The implementation of the method given above is straightforward. Searching for a path in any of the networks

(residual or reduced 
ow) needs to inspect all edges in the worst case. This takes �(jEf j) = �(jFEf j) =
�(jEj) time in the worst case. The path contains at most all vertices. Therefore, the time required in the

worst case to update the 
ow along the path is �(jV j).
This means that T u

seq , the overall worst-case running time of the sequential implementation, is �(jV j+jEj).
This is still better than the lower bound of 
(jV j � jEj), when computing the maximum 
ow from scratch.

The sequential solution is able to meet the deadline provided that � � T u
seq . If � < T u

seq , the sequential

model either performs a limited number of corrections or simply approximates the maximum 
ow by the

maximum 
ow given at the outset.
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Figure 16: Detail of the RMBM's con�guration in Fig. 15

path from vi to v. Therefore, the group determines the minimum index l1 in IBu on which the signal was

present, and then the minimum l2 in IBv . This can be achieved in constant time by neighbor localization

[28]. Here, l1 represents the length of the shortest path from vi to u, and l2 the length of the shortest path

from vi to v. If the edge (u; v) is part of a shortest path from vi to v, then the two lengths di�er by one:

lvi;v = lvi;u+1. Once (u; v) is established to be part of a shortest path from vi to v, the group's leader Pu; v; 0
and other processors of the form Pu0; v; 0 are the subject of another neighbor localization whose purpose is

to elect exactly one shortest path.

Edges (u; v) that have failed one of the above tests are withdrawn from the graph. This means that

group IPu; v stops fusing any buses from IBu to IBv.

Following the steps above, there exists exactly one path that connects vi to any reachable vk. In particular,

there exists only one path from vi to vj . To mark all vertices/edges on the path, vj sends a signal backwards

towards vi. Therefore all processors simply invert their fusing lines: Pu; v; l directionally fuses Bv;l+1 with

Bu;l. All groups IPu;v that are still active and receive a signal on both IBu and IBv are edges on the shortest

path from vi to vj and have to update their 
ow according to the required correction.

The steps performed by the RMBM for the unitary correction are summarized in what follows:

Initial State:

Pvi;vj ; 0 contains c(vi; vj) and f(vi; vj).

Real-Time Correction:

(u; v) = the edge whose capacity changes.

cor = the value by which the capacity changes (+1 or �1).

if r(u; v) = 0 and cor = +1 then << capacity increases >>

Update parameters for (u; v): capacity, 
ow, residual capacity;

Embed the residual graph incrementally;

Find a path from s to t and if found increment the 
ow;

if r(u; v) = 0 and cor = �1 then << capacity decreases >>

Update parameters for (u; v): capacity, 
ow, residual capacity;

Embed the residual graph incrementally;

Find a path from u to v and if found increment the 
ow;

if (path not found) then

Embed the reduced 
ow graph incrementally;

Find a path from s to u and reduce the 
ow;

Find a path from v to t and reduce the 
ow.
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When the algorithm searches for a path, the start vertex writes the same signal on all outgoing edges.

The signals propagate to reachable vertices and can collide, if there exist two paths of equal lengths to

an arbitrary vertex. Therefore, the RMBM has to allow common concurrent writes on its (fused) buses.

Likewise, all edges concurrently test whether the signal is propagating through them, and in doing so they

perform a concurrent read from the buses.

All steps in the RMBM's unitary correction procedure take constant time and the overall execution time

T u
par is therefore also a constant. It is interesting to observe that the size or the intricacy of the network's

underlying graph is immaterial to the parallel algorithm's execution time. The size and complexity of the

graph is mirrored only by the size of the parallel model.

The parallel algorithm is able to meet the deadline, even if � represents a constant number of time units,

provided that � � T u
par.

The size of the RMBM is generally de�ned as the number of switches, the product of the number

of processors and the number of buses. There exist two groups of processors for each edge (u; v) in the

original 
ow network: IPu; v and IPv; u. The number of groups is therefore �(jEj). Each group contains

jV j � 1 = �(jV j) processors, which yields a total of �(jV j � jEj) processors. The number of bus groups is
equal to the number of vertices jV j and again each group contains jV j buses. The total number of buses is
jV j2. It follows that the size of the RMBM is �(jV j3 � jEj). An RMBM of this size is able to con�gure any

residual or reduced 
ow network derived from the original 
ow network.

5.1.3 Comparative Analysis

There is a large range of values that � can take, in which the parallel algorithm is able to recompute the

maximum 
ow, while the sequential algorithm fails to do so; speci�cally, T u
par � � < T u

seq , where T
u
par is

�(1) and T u
seq is �(jV j+ jEj). Note that the execution time of the parallel algorithm does not depend on the

size of the 
ow network (that is, jV j and jEj). Therefore, even if the network is large, the parallel algorithm

successfully recomputes the maximum 
ow, even for small values for � . The larger the network is, the larger

� has also to be de�ned in order for the sequential solution to succeed. Clearly, the parallel algorithm o�ers

the guarantee of success, while its sequential counterpart is inapplicable even for networks of reasonable

sizes.

Although one unitary correction has a small impact on the value of the maximum 
ow, let us recall that

corrections arrive each � time units for an inde�nite time. Therefore, if the computation is to run for a

considerable time, the value of the maximum 
ow will also be considerably altered compared to its initial

value. For example, suppose that the initial value of the maximum 
ow is �(jV j). Further, assume that

jV j2 edge corrections are received. If each correction produces a unitary increase in the 
ow, the value of

the maximum 
ow at the end of the computation will be �(jV j2). It follows that a computation taking

� �jV j2 time units produces an order of magnitude increase in the maximum 
ow. Therefore, depending on

the application, even small corrections may have to be taken into account in real-time computations.

5.2 Edge Deletion and Addition

The method used to handle unitary edge corrections leads to a general approach that applies to the rest of

the correction types.

The deletion/addition of an edge from/to a graph is a most natural correction to a 
ow network. Deleting

an edge means reducing its capacity to zero. Consequently, if the edge also carried a 
ow, that 
ow becomes

an excess 
ow to be redirected or annulled. Adding an edge to a 
ow network means increasing its capacity

from zero to a positive constant. The increased capacity may increase the maximum 
ow that the network

allows.

Both addition and deletion of an edge are special cases of changing the capacity of an edge by an arbitrary

value. For de�niteness, we assume in what follows that the maximum capacity of an edge is U , such that

U = djV j�e, where 0 < � < 1. Thus, djV j�e is also an upper bound on the absolute value of a correction.

Sequential Solution Consider adding or deleting or simply updating an edge with capacity a � djV j�e.
We apply Gabow's [17] scaling method, as follows: in each step, the algorithm searches for a path of a certain

capacity. The starting value is ba
2
c. Subsequently, the capacity of the path to be sought decreases by one
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half. Thus, the next path capacity to seek is ba
4
c, then ba

8
c, b a

16
c, and so on. For each capacity value, the

algorithm has to seek as many paths as it can �nd or until the whole capacity a has been processed.

In the worst case, augmenting paths will all have capacity 1. Therefore, the number of unitary edge

corrections that have to be applied is equal to the capacity correction a. As a consequence, T e
seq , the worst-

case execution time for the addition/deletion of an edge, is �(a� (jV j+ jEj)) = �(jV j�� (jV j+ jEj)). This
time is still better than that required to compute the maximum 
ow from scratch, namely, 
(jV j � jEj).

In the real-time setting, if the time interval � available to perform the edge correction is less than T e
seq ,

then the sequential algorithm will not be able to recompute the maximum 
ow before the deadline.

Parallel solution As with the sequential solution, the parallel algorithm for the RMBM is a simple

iterative scaling of the parallel unitary update. In the worst case, when all iterations of the program perform

only unitary augmentations, the program iterates U times. Therefore, T e
par, the worst-case running time of

the algorithm, is �(jV j�). When the time interval � is greater than or equal to T e
par, the parallel algorithm is

capable of recomputing the maximum 
ow for the general edge correction and meeting the required deadline.

5.3 Vertex Corrections

These corrections amount to either deleting an existing vertex or adding a new vertex to the graph under

consideration. We make the assumption that the degree of the vertex to be added or deleted is constant,

that is, the number of both incoming and outgoing edges is constant. This assumption is suitable for the

application described in Section 6. We also assume as in Section 5.2 that the maximum capacity of an edge is

U , where U = djV j�e and 0 < � < 1. The algorithm that deletes a vertex does so by deleting iteratively all its

incoming and outgoing edges. Similarly, the algorithm that adds a vertex performs edge additions iteratively

for all incoming and outgoing edges. Because the degree of the vertex to be deleted/added is constant, the

time required to delete/add a vertex is of the same order as the time taken by an edge deletion/addition. In

both cases, T v
seq the worst-case sequential running time is �(jV j� � (jV j+ jEj)), while T v

par, the worst-case

parallel running time is �(jV j�). As before, when T v
par � � < T v

seq , the parallel algorithms for deletion or

addition of a vertex can meet the deadlines, while their sequential counterparts are unable to do so.

We conclude this section by noting that, for the version of the real-time network 
ow problem studied,

the use of a parallel approach represents the di�erence between success and failure of the computation.

6 An Application: Process Scheduling

In what follows, the real-time maximum 
ow solutions will be applied to a real-time (dynamic) extension

of Stone's [27] (static) module allocation problem. In a distributed environment, n processes have to be

scheduled to run on m processors. A process is a program entity de�ned by an executable code and private

data. An objective function is de�ned to evaluate the communication cost and the process execution cost:

Cost = Communication + Execution:

The problem is to assign processes to processors such that the objective function (the cost) is minimized.

There are no precedence constraints among processes. In Stone's static case, the completion time of processes

is unspeci�ed. In the static case, processes can be considered to run inde�nitely.

The module allocation problem with an arbitrary number of processes and processors is NP-complete

[27]. Stone [27] solves the allocation problem for two processors in polynomial time.

The communication cost between two processes depends on their physical location. If two processes run

on the same processor, the communication cost is insigni�cant. But if they run on di�erent processors, the

cost is given by the amount of interaction. Communication is modeled by an undirected graph. Vertices

represent processes. An edge between two processes means that there exists an interaction between the

two processes. The weight of the edge represents the amount of interaction. Fig. 17 shows a process

communication model with 7 processes: pA, pB , pC , pD, pE, pF , and pG.

A process needs di�erent resources (such as memory, input/output devices, and so on). It is often assumed

in process scheduling applications that these resources di�er to some extent from one processor to the other.
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As a result, a given processor may be more or less appropriate than another to run a particular process.

Therefore, the cost of executing a process is a function of the processor on which it runs. The execution cost

is initially given in the form of a table (Fig. 18) with entries for two processors, P1 and P2. If some process

needs a resource which is not o�ered by a particular processor, that execution cost is in�nity (for example,

see the cost of executing pE on P1 in Fig. 18).

Again, the objective function to be minimized is the sum of the communication cost and the execution

cost.

6.1 Stone's Solution

Stone builds a 
ow network based on both the communication process graph and the process execution table.

Two vertices, acting as source and sink, are added to the communication process graph. They represent

processors P1 and P2, respectively. Edges are added for each cost in the process execution table. The edge

connecting processor P1 to some process carries a weight equal to the execution cost of that process on

processor P2, and vice-versa. This is illustrated in Fig. 19 for the example in Figs. 17 and 18.

It should be noted here that the 
ow networks discussed thus far were directed, while the graph in this

application is undirected. This undirected graph can be transformed into a directed graph by replacing any
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undirected edge with a pair of directed edges of di�erent directions and both having the capacity of the

original undirected edge. Thus, whenever we discuss an algorithm on an undirected graph, we actually refer

to its directed graph transformation.

In Stone's 
ow network, any cut de�nes a valid assignment of processes to processors. Moreover, the

value of the cut is equal to the cost of the assignment it de�nes. For example in Fig. 19, three possible cuts

are presented. The values of the cuts are: CUT1 = 74, CUT2 = 42, and CUT3 = 52. The minimum cut is

CUT2. It assigns processes pA, pB , pC , pF , and pG to processor P1, and processes pD and pE to processor

P2. Therefore the two-processor module allocation problem reduces to determining the minimum cut in a


ow network.

6.2 Two-Processor Allocation Problem in Real-Time

The static module allocation problem does not take into account that characteristics of the system can

change in time. In a real-time setting, processes are not all created at the beginning of computation and

their lifetime is not inde�nite. Moreover, the amount of interaction between processes may vary in time.

Therefore, a precomputed process allocation schedule may be optimal at the point of its computation but

can become completely inadequate in some further stage of the computation.

Suppose that a complex computation goes on an inde�nite amount of time. While it runs, processes are

created and discarded in an unpredictable way. The amount of interaction between two processes may also

vary in time and is bounded from above by a value depending on the number of processes.

As in the static case, the processes are to be allocated to two processors. We will consider that a newly

created process does not immediately communicate with other processes, but is at �rst de�ned only by its

execution cost on the two processors. Similarly, a process stops interacting with other processes before being

discarded.

Formally, the processes together with the two processors form a 
ow network (as de�ned in Section 2). In

this network, the cost of edges representing inapplicable executions is set arbitrarily to in�nity; these edges,

though present, are of no concern in the subsequent discussion. We assume that all other (communication

and execution) costs are nonnegative integers smaller than or equal to djV j�e, where 0 < � < 1. At the

beginning of the computation the maximum 
ow and the minimum cut are given. The underlying graph

undergoes corrections during the computation. Corrections occur one at a time, such that the interval

separating each pair of consecutive corrections is � time units. The following corrections will be considered:

1. The capacity of an edge changes by an amount a, where a can be positive or negative, and jaj � djV j�e,
which means the amount of interaction between two processes changes, or the execution cost of a process on

a processor changes.

Particular cases of this situation arise when the edge does not exist and its null capacity is increased to

some positive value. This means that two processes start to communicate. Similarly, deleting an edge, that

is, reducing its capacity to zero, means that two processes cease to communicate.

2. A new vertex is added to the graph. The new vertex comes with exactly two edges, one connecting

to the source (P1) and the other connecting to the sink (P2). This means that a process is created and its

execution cost on the two processors is de�ned.

3. A vertex connected only to the source and the sink is deleted. This is equivalent to the termination

of a process.

When a correction arrives, the best schedule for executing the processes on the two processors has to be

determined in � time units, before another correction arrives. The best schedule (as de�ned in Section 6.1)

is given by the minimum cut of the corresponding 
ow network. Therefore, the problem is to determine the

new minimum cut in � time units.

6.3 Sequential Solution

The 
ow networks that describe the two-processor allocation problem have a particular form. All vertices

(except s and t) are connected to both the source and the sink. Therefore, all cuts in the graph will contain a

minimum of jV j�2 and a maximum of ((jV j=2)�(jV j=2))�1 edges. A sequential algorithm that computes a
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Figure 21: Minimum cut and sequential cut after one step

new minimum cut needs enough time to examine each edge of the cut at least once. This places a lower bound

ofW = (jV j2=4)�1 on the worst-case running time of any sequential algorithm. If the time interval between

two consecutive corrections is smaller than this lower bound (in other words, if � < W ), the sequential model

is not capable of computing a new minimum cut before the deadline.

Nevertheless, the minimum cut for the initial graph is given at the outset. Consequently, the sequential

algorithm has but one choice, and that is to use the initial minimum cut as an approximation of the minimum

cut throughout the computation. This approximation may grow worse with each correction. Consider the


ow network given in Fig. 20. All process execution costs are 1. The minimum cut isMinCut = jV j�2+1 =

jV j�1. The next correction (see Fig. 21) increases the cost of edge (pD ; pE), such that c(pD; pE) = U , where

U = djV j�e. The new minimum cut is

MinCut = jV j: (1)

But the sequential model will keep to the former cut which is now

SeqCut(1 step) = jV j � 1 + U: (2)

If the subsequent corrections (see Fig. 22) are additions of edges of maximum capacity, whereby c(pC ; pE) =

U , c(pB ; pE) = U , c(pD; pF ) = U , c(pD ; pG) = U , and c(pD; pH) = U , the minimum cut remains the same

(that is, MinCut = jV j), yet the sequential model outputs:

SeqCut(6 steps) = jV j � 1 + 6� U: (3)

The value of the sequential cut can continuously increase for at most W steps (W being the maximum

number of edges that can be added to the initial cut), such that

SeqCut(W steps) = jV j � 1 +W � U = �(jV j2+�): (4)
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Figure 22: Minimum cut and sequential cut in worst case

To evaluate the `goodness' of the solution, we de�ne the accuracy of the solution as the ratio between

the optimal solution and the computed solution:

accuracy of the solution =
value of the minimum cut

value of the computed cut
:

Therefore, if the solution is optimal (minimal), the accuracy is equal to 1. If the solution is only an

approximation of the optimum, the accuracy is less than 1.

Our example presents the worst case for the sequential algorithm. The accuracy of the sequential algo-

rithm after one step, from equations (1) and (2), is:

acurracyseq(1 step) =
jV j

jV j � 1 + U
= �(1):

Thus, after one step, the sequential solution is still asymptotically optimal. Nevertheless, for W worst-

case steps, from equations (1) and (4), the accuracy becomes:

acurracyseq(W steps) =
�(jV j)

�(jV j2+�)
=

1

�(jV j1+�)
:

Thus, the sequential algorithm is no longer optimal.

6.4 Parallel Solution

Parallel algorithms for edge update and insertion/deletion of a vertex were presented in Sections 5.2 and 5.3,

respectively. Recall that their worst-case execution time is �(jV j�).
Once the maximum 
ow is computed, the minimum cut can be determined using the following algorithm.

The RMBM is recon�gured to re
ect the residual network (to which saturated edges do not belong). A signal

sent on the source's bus will reach all buses representing reachable vertices. Processors, representing edges,

read both the bus of their starting vertex and end vertex. If one of the vertices is reachable from the source

and the other one is not, then the edge belongs to the minimum cut. All processes (vertices) reachable from

processor P1 (the source) are scheduled on P1 and all the other processes are scheduled on P2. Note that

the algorithm determines the minimum cut but does not compute its value. Finding the minimum cut from

the maximum 
ow takes constant time.

The overall worst-case execution time T c
par for processing a correction is �(jV j�). If the time interval

� between two consecutive corrections happens to be larger than or equal to T c
par, the parallel algorithm

always outputs the optimal solution, and therefore its accuracy is 1. The range of values of � for which the

parallel algorithm succeeds in meeting the deadline with an optimal solution while its sequential counterpart

fails to do so is T c
par � � < W (where T c

par and W are �(jV j�) and �(jV j2), respectively). For example, one
such value of � would be jV j log jV j.
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6.5 Comparative Analysis of the Sequential and Parallel Algorithms

To compare the two approaches, sequential and parallel, we will compare the accuracies of the two solutions.

The accuracy ratio measures the relative performance of the sequential and the parallel algorithm:

accuracy ratio =
accuracy of the parallel solution

accuracy of the sequential solution
:

The minimum cut is in the range from �(jV j) to �(jV j2+�).
In the worst case, the sequential algorithm can add at each correction step a value of �(jV j�) to the

previous approximation of the minimum cut. That is, the solution can deteriorate by this amount in each

step. The accuracy ratio becomes:

accuracy ratio(1 step) =
1
jV j

jV j�1+U

= �(1):

This means that the sequential model does not asymptotically perform worse than the parallel one in a

single step.

However, the sequential model can continually decrease its performance. As seen, in the worst case, the

accuracy of the sequential solution can steadily decrease for W steps, where W is �(jV j2). Therefore the

accuracy ratio after this number of steps becomes:

accuracy ratio(W steps) =
1
1

�(jV j1+�)

= �(jV j1+�):

Thus, the parallel model performs asymptotically better that the sequential model after a certain number

of steps. The improvement is polynomial in the number of processors.

Another measure to evaluate the performance of the algorithms is the cumulative error, de�ned as the sum

of the errors made while incorporating all corrections [3]. This measure is particularly useful if a penalty is to

be paid at the end of each time interval, this penalty being a function of the error in the solution computed

during the present interval. For computational convenience, if an algorithm makes no error during an entire

computation, its cumulative error is set to 1 (rather than 0), by de�nition. For the sequential algorithm of

Section 6.3, in the worst case,

cumulative errorseq = djV j�e+ 2� djV j�e+ :::+W � djV j�e = �(jV j4+�):

The parallel algorithm of Section 6.4, on the other hand, makes no error, and

cumulative errorpar = 1:

The number of processors in the RMBM is �(jV j3). Therefore, the improvement achieved by the parallel
model, measured as the ratio of the sequential and parallel cumulative errors, is superlinear in the number

of processors used to obtain the parallel solution.

7 Conclusion

This paper studies the maximum 
ow problem in a real-time setting. The 
ow network undergoes a number

of corrections. Corrections arrive as a stream of data in real time. Each correction has to be incorporated in

the solution before its deadline. Allowed corrections form a set of changes in the network: addition/deletion

of an edge, addition/deletion of a vertex, increase/decrease of an edge's capacity.

Sequential and parallel algorithms are designed for each correction de�ned. The sequential algorithms run

on a RAM, while the parallel algorithms run on a CRCW RMBM. In view of the real-time constraints, the

parallel algorithms are able to meet the deadline for all possible corrections. The sequential algorithms need

more time and consequently fail to meet the deadline. Choosing a parallel solution instead of a sequential

one makes the di�erence between success and failure of the computation.
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The maximum 
ow problem has practical applications in real time. We have de�ned and studied a

dynamic two-processor allocation problem, derived from Stone's [27] (static) two-processor allocation prob-

lem. The problem de�nes a well known process scheduling method and reduces to solving a maximum 
ow

problem. It schedules processes on two processors, minimizing an objective function.

Stone's schedule is performed with previous knowledge about the processes (speci�cally, the execution and

communication costs). These assumptions are restrictive in a practical environment. We gave a de�nition

of the two-processor allocation problem in a real-time setting that takes into consideration changes in the

characteristics of a computation with time. Thus, communication costs among processes may vary in time, or

two processes might start to communicate at some moment and cease to communicate later on. Furthermore,

the actions a process takes during its lifetime a�ect the cost of its execution on the processors. New processes

are created and destroyed during the computation. Our real-time formulation allows all of these changes to

be viewed as corrections to the initial conditions.

The parallel algorithm consistently computes the optimal solution before the given deadline. The sequen-

tial algorithm is able to give only an approximation of the optimal scheduling. The accuracy ratio between

the parallel and sequential solutions is �(jV j1+�), in the worst case. The cumulative error ratio is �(jV j4+�),
indicating that the improvement due to parallelism is superlinear in the number of processors used to obtain

the optimal schedule.

One feature of the algorithms used in this paper is that they are passive. The stream of corrections

describes the evolution of a system (for example, several processes running on two processors) that is inde-

pendent of the real-time computation. The real-time algorithm adapts to corrections that happen without

its interference. Future research may focus on systems where the stream of corrections is a�ected by previous

real-time computations.

The simplest such system is where the real-time computation determines the next correction. Possible

questions in such a system are:

1. What edge deletion a�ects the maximum 
ow most?

2. What corrections are necessary to increase/decrease the maximum 
ow by some value a?

3. What vertex can be deleted from the graph without a�ecting the maximum 
ow?

A possible application of active correction algorithms is in biological systems metabolism. The metabolism

of a set of nutrients can be modeled by a network. The initial nutrients represent a set of sources, while

the �nal products are sinks. Note that the network comes in its more general form, allowing for multiple

sources and sinks. Intermediate products represent vertices in the graph. The network is a�ected by di�erent

physical and chemical parameters: temperature, pressure, the presence or absence of substances (catalysts).

Human interaction with these parameters is possible (in real time or in real-time modeling) to tune the

network towards certain characteristics, pertaining especially to the sinks (quantity of products, relative

quantity of products, and so on). Tuning the system means modifying the 
ow in the system through

subsequent corrections.
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