
Technical Report No. 2001-445

Locating The Median Of A Tree In Real Time
�

Marius Nagy and Selim G. Akl

Department of Computing and Information Science

Queen's University

Kingston, Ontario K7L 3N6

Canada

Email: fmarius,aklg@cs.queensu.ca

May 23, 2001

Abstract

Determining the optimal location of a switching center in a tree network of users

is accurately modeled by the median problem. A real-time approach is used in this

paper to investigate the dynamics of such a communication network in two cases:

(1) a growing tree of nodes associated with equal demand rates, and (2) a stream of

corrections that arbitrarily change the demand rates at the nodes.

The worst-case analysis performed in both situations clearly demonstrates the im-

portance of parallelism in such real-time paradigms. It is shown that the error gen-

erated by the best sequential algorithm in the �rst case can be arbitrarily large. A

synergistic behavior is revealed when the quality-up is investigated in the second case.

1 Introduction

Facility location problems have been intensively studied due to their practical applications.

Determining the optimal location of an emergency medical service station in a predominately

rural area consisting of several towns, or locating a distribution center to receive products

from a factory and then distribute them to several markets are only two examples of such

problems. In this paper, we focus on a particular topology, assuming that the network under

consideration is a tree. This assumption is justi�ed by the fact that tree is the minimal

topology that ensures connectivity between any two nodes in the network.

�This research was supported by the Natural Sciences and Engineering Research Council of Canada.

1



The optimality criteria extensively considered in the location theory literature are the

minimum distance sum criterion and the minimum eccentricity criterion [15, 17]. Consider

an undirected and weighted tree T = (V;E), where V and E are the vertex and edge sets

of T , respectively. For any two distinct vertices v; u 2 V let d(v; u) be the distance from v

to u computed as the sum of the weights of the edges forming the unique path from v to u.

Note that, because T is undirected, d(v; u) = d(u; v). The distance sum from the vertices of

T to a vertex u 2 T is SumT (u) =
P

v2V d(v; u). The eccentricity from the vertices of T to

the vertex u 2 T is EccT (u) = maxv2V d(v; u).

While the minimum eccentricity criterion aims to minimize the worst possible behavior

of a tree network, we are concerned in this paper with the other class of location problems,

in which the objective function tries to optimize the average behavior. More precisely, we

try to locate a vertex in a tree such that the sum of distances from all the other vertices to

this vertex is the minimum possible. That special vertex is called the median of the tree and

therefore this problem is referred to as the median problem or minisum location problem.

While an immediate illustration for the median problem is locating a single ambulance

station in a network of towns, we formulate an application closer to the computer science

area. Given a communication network with a tree topology, the problem asks for optimally

locating a switching center in order to minimize the average transmission cost in the network.

Although many factors can inuence the transmission cost, we only take into consideration

the distance between the nodes involved in a communication.

Formally, we are given a tree network T whose node set V is fv1; v2; � � � ; vng. Associated
with each edge (vi; vj) of the tree is a weight d(i; j) denoting the distance between vi and vj.

In our problem, as in most minisum location problems, the network model is constructed so

that demands for services occur only at the nodes. Thus with every node vi we associate a

demand rate g(i); i = 1; 2; � � � ; n. The units for the demand rates may be frequencies, such

as number of calls per day, or probabilities, such as the probability of a call being generated

over a one-hour period. In many facility location problems it is convenient for the demand

rates to be normalized, such that g(1) + g(2) + � � � + g(n) = 1. In such a case g(i) can be

interpreted as the conditional probability that the call was generated at vi, given that there

was a call.

Suppose that the switching center is located at a point x in the network, not necessarily

a node. Then the average transmission cost from the switching center to a random node on

the network is

Sum(x) =
nX

i=1

g(i)d(x; i); (1)

where d(x; i) is the distance from x 2 T to vi 2 T computed as the sum of the weights

associated with the edges composing the unique path from x to vi. If x coincides with vi
then d(x; i) = 0. In the case where x is located somewhere between two nodes vi and vj, we

consider edge (vi; vj) as being partitioned into two edges (vi; x) and (x; vj), both with their

corresponding weights.

Although a genuine average requires that the right-hand side of equation (1) be divided

by n, we adopt the de�nition of Sum(x) employed in the literature [15]. For the same reason,

the terms median and average are both used in the context of the same problem, even though

2



they usually represent di�erent concepts (particularly in statistics).

An absolute median is a location x� that minimizes the average transmission cost Sum(x).

If we restrict the location of the median only to one of the nodes of the network then the

median is called a vertex median. Hakimi [14] was the �rst to show that there exists at least

one node in an undirected network which is an absolute median and introduced a simple

algorithm for determining it. In our communication network problem we are also looking for

a vertex median, that is, we want our switching center built at one of the network's nodes.

Furthermore, we are interested in a real-time version of the problem, where at regular time-

intervals a new node joins the network and the switching center might have to be relocated

in order to ensure optimal performance.

A simple case, in which all the nodes in the network are associated with equal demand

rates, is studied �rst. It is shown that even in this simple setup, the error generated during

one step by the best possible sequential algorithm that deals with the real-time constraints

imposed could be arbitrarily large. By comparison, the parallel algorithm developed to

address the same situation manages to compute the optimal solution in due time, generating

no error.

In the general case, where the demand rates associated with the nodes in the tree are

arbitrary, the quality-up achieved by the parallel algorithm when compared with the best

sequential e�ort is measured. Again, the improvement in the quality of the solution, brought

about by parallelism, is arbitrarily large from the theoretical point of view. In fact, even

under reasonably practical assumptions, the improvement in the average transmission cost

is still superlinear in the number of processors used by the parallel algorithm.

The rest of the paper is organized as follows. Section 2 o�ers some preliminary results

as well as a detailed description of the real-time environment into which the performances

of the sequential and parallel algorithms are to be compared. The simple case, with equal

demand rates, is analyzed in Section 3. The generalization to arbitrary demand rates is

investigated in Section 4. Finally, the paper concludes with a short discussion in Section 5.

2 Preliminaries

Determining the location of a vertex median can be done e�ciently, due to the tree

topology of the underlying graph. Goldman's algorithm [13] solves this problem in O(n)

steps. In order to understand how this algorithm works we need to introduce the following

notation. For any subset V 0 of the node set V , g(V 0) denotes the sum of the demand rates

associated with nodes in subset V 0, that is,

g(V 0) =
X

vi2V 0

g(i); for any subset V 0 � V:

The main result on which Goldman has built his algorithm is given in the following.

Proposition 1 Node vi is an absolute median of T if there exist subtrees T1 = (V1; E1) and

T2 = (V2; E2) of T , where V1
T
V2 = fvig, V1

S
V2 = V , E1 � E, E2 � E, such that both the

following conditions hold:

3



(a) (b)

Figure 1: Example of a tree with (a) a unique vertex median; (b) two vertex medians.

(1) g(V1) �
1

2
g(V ),

(2) g(V2) �
1

2
g(V ).

This result might look surprising at �rst glance. The weights on the edges do not a�ect

the location of the vertex median. Its position is solely determined by the demand rates at

the nodes. A formal proof is given in [15] where it is shown that moving the median (in any

direction) from a node vi satisfying conditions (1) and (2) of Proposition 1 will not increase

the average transmission cost. However, we may think of this result in a more intuitive way.

An absolute median corresponds to that node of T minimizing the sum de�ned by equation

(1). From the point of view of a combinatorial problem, a node has to be chosen out of n

possible candidates, in such a way as to optimize a certain criterion. Changing the weight

associated with an edge of T will modify accordingly the sums associated with all the nodes

of T . Therefore, the process of selecting the node with the minimum sum is not inuenced

by such a modi�cation. Di�erent values for the weights on the edges of T lead to di�erent

values of the average transmission cost, but in all cases this sum is minimized by the same

node(s).

The algorithm proposed by Goldman is based on tree contraction. It searches for an end

node (a node with only one neighbor) vi and its associated edge (vi; vj). It then modi�es

T by deleting vi and (vi; vj) and increments g(j) by g(i). This procedure is repeated until

an end node vi is found with g(i) � g(V )=2, in which case that node is the desired absolute

median. The case in which T is reduced to a single node is also possible, with the remaining

node being the absolute median.

The e�ciency of the algorithm is due to the fact that our distance measure on the tree

is convex and thus at each iteration we are descending to a global minimum. This is the

reason why even if the solution obtained by the algorithm does not satisfy both conditions

of Proposition 1, that node is nevertheless an absolute median.

Note that the node vi found by Goldman's algorithm is not necessarily the unique vertex

median of the tree. The following observation settles this issue.

Observation 1 A weighted tree T having demand rates associated with its nodes has at least

one vertex median and at most two. In the case when there are two vertex medians, they are

necessarily neighbors (Figure 1).

To see that the above claim is true, suppose T = (V;E) has two vertex medians VM1 and

VM 2. Consequently, there exists subtrees T1 = (V1; E1) rooted at VM 1 and T2 = (V2; E2)

4



rooted at VM 2 of T such that V1
T
V2 = ;, g(V1) �

1

2
g(V ) and g(V2) �

1

2
g(V ). An easy

way to determine such a subtree is to trace Goldman's algorithm and retain those deleted

nodes leading to a vertex median. Since V1 � V and V2 � V it follows that necessarily

g(V1) = g(V2) = g(V )=2. In other words, any node of T is included in one of the two disjoint

sets V1 and V2. Therefore, there is no other node left that can claim the vertex median status

or that can separate VM 1 and VM 2.

2.1 The real-time setup

The algorithm described above is able to determine the optimum location for the switch-

ing center in a static tree network of users. In reality, it is often the case that such a

communication network is faced with the problem of an expansion. From time to time a new

node has to be connected to the existing network while maintaining the average transmission

cost to its minimum. In order to reach this goal, as soon as the current network is extended

by connecting a new node, a decision has to be made as to whether or not another node in

the network should assume the role of switching center. If the network is functioning more

e�ciently with the switching center placed at a new location, the node currently hosting the

switching center should transfer its attributions in this respect to the newly chosen node.

We refer to this process (of transferring the switching attributions) as moving the switching

center to its new location. There are practical reasons for which a limited time is allowed

when making the decision. The amount of time during which the network is functioning

with a switching center not optimally located should be reduced as much as possible while

allowing for the new center to be set up at its new location.

We can model the network expansion problem using the following real-time setup. Con-

sider an initial tree T with n nodes. The location of a vertex median (VM) in T , corresponding

to the switching center, is also given. Time is divided into equal intervals, each one measur-

ing c logn time units, where c is a positive constant. At the beginning of each time interval

a new node is connected to one of the nodes of T . Before the time interval ends, the network

must be running with an optimally located switching center. In other words, the new vertex

median must be found (and the switching attributions transfered) in at most c logn time

units.

Locating the new vertex median before the imposed deadline is, evidently, the most

challenging task. It is not di�cult to set up the switching center at its new location in

logarithmic sequential time, with respect to the number n of nodes served. One way to do

this is to inform the involved nodes about their status change using their address in the

network. Since there are n nodes in the whole network, logn sequential time su�ces to

decode the logn-bit address of any of the network's nodes. Again, we will compare the

performances of the best possible sequential algorithm and a parallel algorithm that deals

with the median problem in this real-time environment.

3 A simple case: equal demand rates

Let us begin by analyzing the problem in the particular case when all the nodes in the

network have equal demand rates. In this case, the demand rates at the nodes can be ignored

5



VMVM1 2

T T1 2

Figure 2: Adding a new node disquali�es one of the old vertex medians (VM1).

altogether and the tree can be looked at as a usual weighted tree. The su�cient condition

given in Proposition 1 for a node vi to be an absolute median, can be simpli�ed in this

particular case as follows.

Proposition 2 Node vi is an absolute median of T if there exist subtrees T1 = (V1; E1) and

T2 = (V2; E2) of T , where V1
T
V2 = fvig, V1

S
V2 = V , E1 � E, E2 � E, such that both the

following conditions hold:

(1) jV1j �
1

2
jV j,

(2) jV2j �
1

2
jV j.

How is the location of a vertex median a�ected by the addition of a new node to the

tree? The following propositions summarize all the possibilities.

Proposition 3 Adding a new node to a tree T with 2 vertex medians will disqualify one of

them. The vertex median closer to the newly added node becomes the unique vertex median

of the extended tree (Figure 2).

Proof

Due to the fact that T has two vertex medians, the node set V of T can be partitioned into

two subsets with equal cardinality: jV1j = jV2j = jV j=2 (note that T must have an even

number of nodes). Each of these two subsets represents the node set of a subtree rooted at

one of the two vertex medians. We already know from Observation 1 that VM1 and VM 2 are

neighbors. Suppose, without loss of generality, that the new node added to T is connected

to one of the vertices of T2, increasing the cardinality of V2 to 1+(jV j=2). As it can easily be

checked, VM 2 satis�es both conditions of Proposition 2 and is therefore a vertex median of

the extended tree. On the other hand, VM2 is the unique vertex with this property because

the extra node added leads to an odd number of nodes in the extended tree, eliminating the

possibility of having two vertex medians. 2

Proposition 4 The addition of a new node to a tree T with a unique vertex median will

result in one of the following two situations:

6



(a) (b)

Figure 3: Addition of a node to a tree with a unique vertex median.

(a) the old vertex median remains the unique vertex median of the extended tree (Figure

3(a)).

(b) another node joins the old vertex median to become the second vertex median of the

extended tree. The second median is the neighbor of the old median on the path to the newly

added node (Figure 3(b)).

Proof

Suppose VM is the unique vertex median of the initial tree T = (V;E) with n nodes.

The sequence of nodes deleted by Goldman's algorithm in order to reach VM forms a tree

T 0 = (V 0; E 0) rooted at VM , such that jV 0j � n=2. If jV 0j = n=2 then it must be the case

that v, the only neighbor of VM which is not in T 0, is the root of another tree T" = (V "; E")

with V " and V 0 being disjoint sets. T" would account for the other half of the nodes of T ,

making v the second vertex median of T . But according to the hypothesis, VM is the only

vertex median of T , so jV 0j must be strictly greater than n=2.

Because jV 0j must be an integer, it follows immediately that jV 0j � (n + 1)=2. If the

new node is connected to T through a node outside T 0, then Goldman's algorithm will go

through the same sequence of steps to �nd VM as a vertex median of the extended tree.

Alternatively, if the new node is attached to T 0, then VM can possibly lose its property

only in favor of one of its children, say u. Let us denote by x the number of nodes in the

subtree of T 0 rooted at u, before the addition of the new node. Then x < n=2 because u was

not a vertex median of T , and in the same time x + 1 � (n + 1)=2 represents the necessary

condition for u to be a vertex median of the extended tree. The system formed by the last

two inequalities is equivalent with

n� 1 � 2x < n:

The only integer x satisfying the above double inequality is

x =
n� 1

2
:

This gives x+1 = (n+1)=2, meaning that u and VM are each the root of a distinct tree

with (n+1)=2 nodes. This corresponds to the case in which they will both be vertex medians,

and u is that neighbor of VM whose corresponding subtree includes the newly added node. 2

We can therefore conclude from these two propositions that adding a new node to a

weighted tree with equal demand rates will either result in the old vertex median retaining

7



its property, or the adjacent vertex on the path from the old median to the new node

becoming the new vertex median. We use these observations to design the sequential and

parallel real-time algorithms for determining the location of the new vertex median.

3.1 Sequential algorithm

Given a weighted tree T with n nodes, a vertex median can be found in O(n) time using

Goldman's algorithm [13]. Considering T as a rooted tree with the vertex median as its root,

and using a tree contraction procedure we can compute for each node vi the number l(vi)

of nodes in the subtree rooted at vi. For this it is su�cient to associate the integer 1 with

every node and make every non-leaf node compute the sum of its children and send the sum

plus 1 to its parent. The whole computation will still take O(n) time.

Having all this initial information, we want to determine the location of a vertex median

when a new node is connected to T . To accomplish this we can use the basic idea of

Goldman's algorithm. On the path from the most recently added node to the old vertex

median, we increment the label associated with each node by 1, to account for the extra

node that was added. As soon as we increment a node's value, we check it to see if it is equal

to or larger than (n+1)=2, half of the total number of nodes in the extended tree. The �rst

node to meet this criterion is declared the new vertex median. A formal description of the

algorithm is given in the following.

Algorithm Real Time Sequential Vertex Median

Input: � The extended tree T 0 with n + 1 nodes,

� OVM - the location of the old vertex median,

� l(vi); i = 1; � � � ; n - the labels associated with the nodes of the initial tree T .

Output: NVM - the location of the new vertex median.

1. Consider T 0 as a rooted tree with root OVM.

2. Let u = the parent of the newly added node in T 0.

3. WHILE u 6= OVM DO

l(u) = l(u) + 1;

IF l(u) � n+1
2

THEN

NVM = u;

Stop.

ELSE

let u = parent(u);

4. NVM = OVM;

5. Stop.

The correctness of the above algorithm is easy to check, since it consists of a slightly

modi�ed version of Goldman's algorithm. The only di�erence is that here the nondetermin-

8



ism present in Goldman's algorithm is eliminated. We know exactly where to search for the

new median, namely, on the path linking the old vertex median to the newly added node.

According to Propositions 3 and 4, either the old median remains the unique vertex median

of the extended tree (in which case Step 4 of the algorithm will be reached), or the neighbor

of OVM on the path to the extra node will satisfy the condition for being a vertex median

and consequently terminate the while loop of Step 3.

We conclude this section with the important observation that the above algorithm is

the best possible sequential algorithm that deals with the worst case. It might be possible

perhaps to construct an algorithm that is able to decide in constant time if the location of

the vertex median remains unchanged or not. But in the worst case, when the median is

shifted one step towards the newly added node, there is no way to tell which of the children

of the old median is the new median, unless we reach it coming from the recently added

node. Unfortunately, between the new node and the vertex median there could be on the

order of n nodes, so the complexity of the sequential updating algorithm is still O(n).

3.2 Parallel algorithm

In this section we develop a parallel algorithm capable of determining the precise location

of a vertex median in the extended tree T 0. The algorithm is presented in the following.

Algorithm Real Time Parallel Vertex Median

Input: � The extended tree T 0 with n + 1 nodes,

� OVM - the location of the old vertex median.

Output: NVM - the location of the new vertex median.

1. Consider T 0 as a rooted tree with root OVM.

2. Assign the label 1 to each leaf and the function computing the sum of the children's

labels to each internal node of T 0. Use tree contraction to compute l(vi) for all nodes vi of

T 0, i = 1; � � � ; n + 1.

3. Any node u 6= OVM having l(u) � n+1
2

is marked as a vertex median (VM).

4. IF VM exists

THEN

IF l(VM) > n+1
2

THEN NVM = VM;

ELSE NVM = OVM;

ELSE

NVM = OVM.

There are two observations worth formulating about the above algorithm. In the �rst

place, note that there can only be one node meeting the requirements speci�ed in Step 3.

Secondly, note that the algorithm is constructed in such a way as to shift the location of the

median only when it is absolutely necessary, that is, when the old median no longer satis�es

9



the required property.

The complexity of the algorithm is determined by the tree contraction step. Using a

cost-optimal parallel tree contraction algorithm ([1, 12, 16]) the above computation can be

completed in c0 logn time units (where c0 > 0), using n= logn EREW PRAM processors.

The time needed for transferring the switching attributions from the old vertex median to

the new vertex median is considered included in the c0 logn time units. Recall that a new

node is added to T at the beginning of each time interval, that is, every c logn time units.

Assuming that c0 < c, the parallel algorithm locates a new center successfully before a new

node is received. Another advantage of using such a tree contraction procedure is that

algorithm Real Time Parallel Vertex Median does not need any preliminary information to

be computed during an initial preprocessing step.

3.3 Comparative analysis of the generated errors

We analyze the performances of the sequential and parallel updating algorithms described

above by comparing the errors generated by them. Since we are dealing with an optimization

problem, errors are measured as deviations of the computed solutions from the optimal

solution. In our communication network problem, we are trying to minimize the average

transmission cost (ATC), so the error produced by an algorithm A that tries to solve this

problem is

error(A) = computed ATC �minimum ATC:

In the worst case, the sequential algorithm does not have the resources to complete its

computation and determine the location of the new vertex median in c logn time units.

Alternatively, as it can be easily deduced from Propositions 3 and 4, moving the location of

the vertex median is required only in the case when the old and the new vertex medians are

the two vertex medians of the initial tree T , before the addition of the new node. In any

other case, the current vertex median retains its property. It follows that a good heuristic

for the sequential algorithm is to keep the location of the vertex median unchanged.

On the other hand, the parallel algorithm is always able to update the vertex median

accurately, in any case. This means that the parallel algorithm always manages to compute

the minimum ATC, producing the optimal solution and generating an error equal to 0.

In order to evaluate the sequential error caused by the addition of a new node, the

worst possible case is depicted in Figure 4. Initially, the network has n nodes and 2 vertex

medians, VM 1 and VM 2. Each of the two initial medians can be considered as the root

of a subtree with n=2 nodes. The edge connecting VM 1 and VM 2 has a weight of W . At

this moment, a new node u is attached to the subtree rooted at VM 2, thereby increasing

its size to n=2 + 1. According to Proposition 3 the extended network will have only one

vertex median, namely VM 2. The sequential algorithm will apply its heuristic and compute

the average transmission cost considering that the switching center is located at VM 1. The

error induced by this computation is:

error(Real T ime Sequential V ertex Median) = Sum(VM 1)� Sum(VM 2) = W:

10



n-
2

n-
2

W

VM VM
1 2

u

Figure 4: Worst case behavior of the vertex median during one step of the real-time compu-

tation.

It is interesting to note that this error could be arbitrarily large. For example, W could

be an exponential function in n, making the error generated in one step by the sequential

real-time algorithm exponential in the size of the network.

A high value forW will contribute not only to a large sequential error, but also to a large

value for the optimal parallel solution. Therefore, asymptotically, the size of the sequential

solution cannot grow beyond that of the parallel one. Nevertheless, this error translates

into a highly increased average transmission cost in the sequential case, especially for large

communication networks.

Furthermore, the error generated by the sequential algorithm continues to accumulate

during the O(n) possible time intervals for the real-time computation. This can make the

price that has to be paid every time interval in the sequential case unacceptably high. Again,

the parallel algorithm remains the �rst choice for such a real-time problem.

4 The general case: arbitrary demand rates

The simplifying assumption that all the nodes of the tree network have equal demand

rates gives a certain stability to the vertex median location. In the worst case, all the added

nodes shift the location of the vertex median in the same direction. Speci�cally, every two

time intervals, the median moves only one node further away from its previous location.

In this section we analyze the more general case in which the demand rates at the nodes

are arbitrary. We also focus on another kind of real-time paradigm. In the previous section,

the real-time setup described corresponds to a data-accumulating paradigm ([10, 11]), where

the size of the problem increases with every time interval.

The real-time algorithms constructed hereafter are correcting algorithms ([9]), that try

to recompute the solution when one of the input data is altered. The set of input data for

the problem of interest consists of the weights associated with each edge of the tree and the

demand rates characterizing each node. The magnitude of the weights on the edges does not

inuence the location of the vertex median, but only the value of the average transmission

cost. In this respect, the tree median problem can accommodate without any e�ort a real-

time paradigm in which a stream of edge weight corrections is received by the communication

network.

A more involved case, however, can be formulated when the corrections received in real

time concern the demand rates at the nodes. Let us consider a weighted tree T with n

11



nodes, each node having associated a demand rate g(i); i = 1; � � � ; n. This tree models a

communication network in which the frequency of calls generated by a certain node is taken

into account through the demand rate associated with that node. For example, the value of

g(i) could represent the number of calls generated by node i during one day. For the purpose

of computing the average transmission cost in such a network, the demand rates have to be

normalized. In the following we make a distinction between the demand rate g(i) associated

with node i and its normalized value p(i), computed as

p(i) =
g(i)

Pn
i=1 g(i)

; i = 1; � � � ; n:

A normalized demand rate p(i) represents the probability that the call was generated at

node i, assuming that there was a call. The location of a vertex center of T with respect to

the normalized demand rates p(i); i = 1; � � � ; n is also given at the outset. This corresponds

to the location of the switching center for the communication network.

For the real-time paradigm of interest in this section, a stream of demand rate corrections

is received by the tree network. Speci�cally, every c logn time units (c being a positive

constant) the frequency of calls generated by a certain node vj changes. In other words, the

value of g(j) is modi�ed. In order to adapt the network to the new situation, the location of

the new vertex center of T must be found. The new vertex center corresponds to that node

vk for which

Sum(k) =
nX

i=1

p(i)d(k; i)

is minimum. Being a real-time computation, a deadline is also imposed on when the result

should be produced. Following the alteration of the demand rate of a certain node vj, the

switching center must be set up at its new location before a new correction arrives. Again,

we assume that a switching center serving a network with n nodes can be easily set up in

logarithmic sequential time using its logn-bit address in the network.

4.1 Sequential solution

The modi�cation of a single demand rate g(j) for some j (1 � j � n), will trigger the

alteration of all the normalized demand rates p(i), i = 1; � � � ; n. The computation of the new

values for p(i) will take O(n) time when performed by a sequential computer. Having the

normalized demand rates computed for each node, Goldman's algorithm can now be applied

to determine the location of a vertex median.

Note that because the demand rates are arbitrary and the modi�cations can occur at any

node, the location of the old vertex median is of no help in determining the location of the

new vertex median. Indeed, the relative stability that characterizes the vertex median of a

tree with equal demand rates disappears in the context of arbitrary demand rates. (Recall

that in the simple case of equal demand rates, the new vertex median - when it does change

its location - is one of the old median's neighbors.)

By contrast, when any of the tree's nodes can change its demand rate (which may increase

as well as decrease) by an arbitrary amount, there are no procedures able to determine

12



e�ciently which node will be the new median, using the location of the old median as

a starting point. Practically, any node in the tree may become the new vertex median.

Therefore, the nature of the problem imposes the computation of the new median location

from scratch. Goldman's algorithm takes O(n) time to �nd it.

It is worthwhile noting that we can obtain the actual value of the average transmission

cost corresponding to the new median, without asymptotically increasing the running time

of the algorithm. Considering T as a rooted tree with the new vertex median vk as its root,

a tree contraction scheme can be applied to compute d(k; i) for all i = 1; � � � ; n. Finally,

the sum
Pn

i=1 p(i)d(k; i) can now be computed to produce the average transmission cost.

Because each step requires O(n) time, the whole computation (from receiving the modi�ed

demand rate g(i) to obtaining the minimum average transmission cost) needs O(n) running

time for completion.

4.2 Parallel solution

Even if the demand rates at the nodes are arbitrary, the observation that T has at least

one vertex median and at most two remains valid. It is also true that in the latter case,

the two vertex medians are necessarily neighbors (Observation 1). These observations are

important for designing the following parallel algorithm in charge of computing the minimum

average transmission cost when one node vj changes its demand rate g(j).

Using n= logn EREW PRAM processors it is not di�cult to recompute p(i), for every

i = 1; � � � ; n in O(logn) time. Still in O(logn) time we can then compute the value

p(Vi) =
X

l2Vi

p(l)

associated with each node vi, where Vi is the set of nodes composing the subtree rooted at

node vi. This can be accomplished by considering T as a rooted tree and applying a cost-

optimal parallel tree contraction algorithm. While the current vertex median can be selected

as the root of T (as we did for equal demand rates), this decision is of no consequence for

our parallel algorithm.

The node vk with a minimum value for p(Vk), but still greater or equal to 1=2 is the

desired new vertex median. Note the property that such a node vk is unique. Finding it,

as well as computing the corresponding average transmission cost can also be viewed as

tree contractions applications. Consequently, the parallel real-time algorithm needs only

c00 logn time units (where c00 > 0) for producing an optimal solution and setting up the

switching center at the new location, using n= logn EREW PRAM processors. When c" < c,

the parallel algorithm successfully computes the new vertex median before the end of the

interval, that is, before the next change in the demand rate of a node occurs.

4.3 Quality-up analysis

The real-time nature of the computation discussed above has a major impact not on the

speedup provided by the parallel algorithm, but on the quality-up achieved when parallelism

is employed. Quality-up, an alternate measure for the performance of a parallel algorithm,

13



1 2 3 n

A B

p p p
1 1 1

p(A) p p(B)

Figure 5: A possible setup yielding superlinear quality-up behavior.

is de�ned as the ratio of the quality of the parallel solution computed for some problem

to the quality of the best sequential solution for the same problem. In the case of our

speci�c problem, a solution is of good quality if the computed average transmission cost is

low. Therefore, we de�ne the quality of a computed solution as the inverse of the average

transmission cost obtained.

Now that we have precisely de�ned what we want to evaluate, how large can the quality-

up be, in the case of our communication network problem? In order to answer this question

let us consider the case presented in Figure 5.

The n nodes are placed in such a way as to form an array-shaped network. For ease of

presentation we make the following simplifying assumptions. Initially, all nodes have equal

probabilities associated, except for the end nodes A and B. Without loss of generality, we

also assume that all the edges have unitary weights associated. As we have already seen,

the location of the vertex median is not a�ected by this assumption. The weights on the

edges only a�ect the magnitude of the average transmission cost. Labeling the nodes with

1; 2; � � � ; n from left to right (A = 1; B = n), we can formally de�ne the initial assumptions

as follows:

(i) p(i) = p, for every i = 2; � � � ; n� 1,

(ii) p(B) >> p,

(iii) p(A) >> p(B),

(iv) d(i; i+ 1) = 1, for every i = 1; � � � ; n� 1.

The second and third initial conditions will determine the vertex median to be located

at node A. According to the real-time paradigm described for this problem, a modi�cation

occurs at one of the nodes, altering its associated probability. Consider the case in which

the demand rate at node A decreases suddenly from p(A) to p.

The new location of the vertex median has to be determined and the corresponding

average transmission cost computed in no more than c logn time units. The sequential

algorithm will obviously fail in trying to meet this deadline. In fact, the sequential machine

will not even be able to compute the new normalized demand rates (probabilities) for all of

the n nodes, following the modi�cation incurred at node A. Lacking a better alternative,

the sequential algorithm is forced to keep the switching center located at node A.

The parallel machine, on the other hand, has su�cient resources (processors) to complete

the required computation in time and therefore obtain an optimal (minimum) solution. The

ATC is computed by the parallel algorithm with respect to node B, the new vertex median

of the tree:

Sum(B) =
nX

i=1

p(i)d(B; i) = p
n�1X

i=1

d(B; i) = (n� 1)np=2:

14



If the network continues to function with its switching center located at node A, the

average transmission cost incurred is

Sum(A) =
nX

i=1

p(i)d(A; i) = p
n�1X

i=2

d(A; i) + (n� 1)p(B) = (n� 2)(n� 1)p=2 + (n� 1)p(B):

Consequently, the quality-up is

quality � up =
Sum(A)

Sum(B)
=

(n� 2)p=2 + p(B)

pn=2
=

(n� 2)p+ 2p(B)

pn
:

For de�niteness and keeping in mind that initially p(A) >> p(B) >> p, we take

p(A) = O(1), p(B) = O(n��) and p = O(n�2�), where � � 1. Under these conditions,

the improvement in the quality of the solution is on the order of n��1.

Theoretically, this result proves that the improvement in the quality of the solution,

gained by using a parallel algorithm, is unbounded, in the sense that � can be arbitrarily

large. In practice, when � has some reasonable value (for example � = 2), this result still

demonstrates a superlinear improvement in the average transmission cost with respect to

the number of processors employed.

5 Discussion

The paper addresses two important classes of real-time paradigms. The real-time setup

de�ned for the equal demand rates case belongs to the data-accumulating paradigm. Any

algorithm in charge of solving such a problem is faced with processing an increased amount of

data at every time interval. On the other hand, the real-time environment where the demand

rates are arbitrary belongs to the data-correcting paradigm. The size of the problem remains

constant throughout the computation, but the algorithm in charge faces a new instance of

the problem (even if not totally new) every time interval. To the same class belongs the

paradigm in which a stream of edge-weight corrections is received by the communication

network.

It might be worthwhile to study a third possible real-time arrangement, in which nodes

may become disconnected from the network, thus decreasing the size of the problem. How-

ever, in this case, additional complications may arise. If the node to be removed is an internal

node, then the removal operation will split the tree into several connected components. Still,

if the removed node is only a leaf, then we believe that results similar to those obtained in

this paper could be derived. The next step on this research path would be to investigate the

performance achieved through parallelism in a real-time paradigm where any one of these

cases is possible during one time interval.

From another perspective, the paper con�rms that the classic approach in measuring

the performance of a parallel algorithm (namely, by analyzing the speedup achieved) is not

appropriate for real-time paradigms of the type de�ned herein (see also [4, 2, 3, 5, 6, 7, 8]).

The true superiority of a parallel algorithm over its sequential counterpart, in the real-time

area, can be fully exposed only if alternative performance measures are employed. These

include the generated error and the quality-up, as de�ned in Sections 3 and 4, respectively.

15



It is also important to note that the synergy in the quality of the solution, proved for

arbitrary demand rates, is even more remarkable if we realize that it was obtained for prac-

tical values of the parameter �, and is not just an abstract result that has no relationship

with the real world.

References

[1] K. Abrahamson, N. Dadoun, D. G. Kirkpatrick, and T. Przytycka. A simple tree

contraction algorithm. Journal of Algorithms, 10:287{302, 1989.

[2] S. G. Akl. Nonlinearity, maximization and parallel real-time computation. In Proceed-

ings of the Twelfth Conference on Parallel and Distributed Computing and Systems,

pages 31{36, Las Vegas, Nevada, November 2000.

[3] S. G. Akl. Parallel real-time computation: Sometimes quantity means quality. In Pro-

ceedings of the International Symposium on Parallel Architectures, pages 2{11, Dallas,

Texas, December 2000.

[4] S. G. Akl. Superlinear performance in real-time parallel computation. Technical Report

No. 2001-443, Department of Computing and Information Science, Queen's University,

Kingston, Ontario, March 2001.

[5] S. G. Akl and S. D. Bruda. Improving a solution's quality through parallel processing.

The Journal of Supercomputing, 19:219{231, 2001.

[6] S. G. Akl and S. D. Bruda. Parallel real-time optimization: Beyond speedup. Parallel

Processing Letters, 9:499{509, 1999.

[7] S. G. Akl and S. D. Bruda. Parallel real-time cryptography: Beyond speedup II. In

Proceedings of the International Conference on Parallel and Distributed Processing Tech-

niques and Applications, pages 1283{1289, Las Vegas, Nevada, June 2000.

[8] S. G. Akl and S. D. Bruda. Parallel real-time numerical computation: Beyond speedup

III. International Journal of Computers and their Applications, Special Issue on High

Performance Computing Systems, 7:31{38, 2000.

[9] S. D. Bruda and S. G. Akl. A case study in real-time parallel computation: Correcting

algorithms. Journal of Parallel and Distributed Computing, 61:688{708, 2001.

[10] S. D. Bruda and S. G. Akl. On the data-accumulating paradigm. In Proceedings of the

Fourth International Conference on Computer Science and Informatics, pages 150{153,

Research Triangle Park, North Carolina, October 1998.

[11] S. D. Bruda and S. G. Akl. The characterization of data-accumulating algorithms.

Theory of Computing Systems, 33:85{96, 2000.

16



[12] H. Gazit, G. L. Miller, and S.-H. Teng. Optimal tree contraction in an EREW model. In

Proceedings of the 1987 Princeton Workshop on Algorithm, Architecture and Technology

Issues for Models of Concurrent Computation, pages 139{156, Princeton, New Jersey,

October 1987.

[13] A. J. Goldman. Optimal center location in simple networks. Transportation Science,

5:212{221, 1971.

[14] S. L. Hakimi. Optimum locations of switching centers and the absolute centers and

medians of a graph. Operations Research, 12:450{459, 1964.

[15] G. Y. Handler and P. Mirchandani. Location on Networks: Theory and Algorithms.

MIT Press, Cambridge, Massachusetts, 1979.

[16] S. R. Kosaraju and A. L. Delcher. Optimal parallel evaluation of tree-structured com-

putation by raking. In Proceedings of the Third Aegean Workshop on Computing, pages

101{110, Corfu, Greece, July 1988.

[17] B. C. Tansel, R. L. Francis, and T. J. Lowe. Location on networks: A survey. Manage-

ment Science, 29:482{511, 1983.

17


