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Abstract

Determining the optimal location of a switching center in a tree network of users
is accurately modeled by the median problem. A real-time approach is used in this
paper to investigate the dynamics of such a communication network in two cases:
(1) a growing tree of nodes associated with equal demand rates, and (2) a stream of
corrections that arbitrarily change the demand rates at the nodes.

The worst-case analysis performed in both situations clearly demonstrates the im-
portance of parallelism in such real-time paradigms. It is shown that the error gen-
erated by the best sequential algorithm in the first case can be arbitrarily large. A
synergistic behavior is revealed when the quality-up is investigated in the second case.

1 Introduction

Facility location problems have been intensively studied due to their practical applications.
Determining the optimal location of an emergency medical service station in a predominately
rural area consisting of several towns, or locating a distribution center to receive products
from a factory and then distribute them to several markets are only two examples of such
problems. In this paper, we focus on a particular topology, assuming that the network under
consideration is a tree. This assumption is justified by the fact that tree is the minimal
topology that ensures connectivity between any two nodes in the network.

*This research was supported by the Natural Sciences and Engineering Research Council of Canada.



The optimality criteria extensively considered in the location theory literature are the
minimum distance sum criterion and the minimum eccentricity criterion [15, 17]. Consider
an undirected and weighted tree 7' = (V, E), where V and E are the vertex and edge sets
of T, respectively. For any two distinct vertices v,u € V let d(v,u) be the distance from v
to u computed as the sum of the weights of the edges forming the unique path from v to .
Note that, because T is undirected, d(v, u) = d(u,v). The distance sum from the vertices of
T to a vertex u € T is Sump(u) = Y. ,cy d(v,u). The eccentricity from the vertices of T to
the vertex u € T is Ecer(u) = mazyeyd(v, u).

While the minimum eccentricity criterion aims to minimize the worst possible behavior
of a tree network, we are concerned in this paper with the other class of location problems,
in which the objective function tries to optimize the average behavior. More precisely, we
try to locate a vertex in a tree such that the sum of distances from all the other vertices to
this vertex is the minimum possible. That special vertex is called the median of the tree and
therefore this problem is referred to as the median problem or minisum location problem.

While an immediate illustration for the median problem is locating a single ambulance
station in a network of towns, we formulate an application closer to the computer science
area. Given a communication network with a tree topology, the problem asks for optimally
locating a switching center in order to minimize the average transmission cost in the network.
Although many factors can influence the transmission cost, we only take into consideration
the distance between the nodes involved in a communication.

Formally, we are given a tree network 7" whose node set V' is {vq, vg, -+ -, v, }. Associated
with each edge (v;, v;) of the tree is a weight d(7, j) denoting the distance between v; and v.
In our problem, as in most minisum location problems, the network model is constructed so
that demands for services occur only at the nodes. Thus with every node v; we associate a
demand rate ¢(i),i = 1,2,---,n. The units for the demand rates may be frequencies, such
as number of calls per day, or probabilities, such as the probability of a call being generated
over a one-hour period. In many facility location problems it is convenient for the demand
rates to be normalized, such that g(1) 4+ ¢(2) +---+ g(n) = 1. In such a case g(i) can be
interpreted as the conditional probability that the call was generated at v;, given that there
was a call.

Suppose that the switching center is located at a point x in the network, not necessarily
a node. Then the average transmission cost from the switching center to a random node on
the network is

n

Sum(z) =Y g(i)d(z, i), (1)
i=1

where d(z,i) is the distance from x € T to v; € T computed as the sum of the weights
associated with the edges composing the unique path from x to v;. If z coincides with v;
then d(z,7) = 0. In the case where x is located somewhere between two nodes v; and v;, we
consider edge (v;,v;) as being partitioned into two edges (v;, z) and (x,v;), both with their

corresponding weights.
Although a genuine average requires that the right-hand side of equation (1) be divided
by n, we adopt the definition of Sum/(z) employed in the literature [15]. For the same reason,
the terms median and average are both used in the context of the same problem, even though



they usually represent different concepts (particularly in statistics).

An absolute median is a location z* that minimizes the average transmission cost Sum(z).
If we restrict the location of the median only to one of the nodes of the network then the
median is called a vertezx median. Hakimi [14] was the first to show that there exists at least
one node in an undirected network which is an absolute median and introduced a simple
algorithm for determining it. In our communication network problem we are also looking for
a vertex median, that is, we want our switching center built at one of the network’s nodes.
Furthermore, we are interested in a real-time version of the problem, where at regular time-
intervals a new node joins the network and the switching center might have to be relocated
in order to ensure optimal performance.

A simple case, in which all the nodes in the network are associated with equal demand
rates, is studied first. It is shown that even in this simple setup, the error generated during
one step by the best possible sequential algorithm that deals with the real-time constraints
imposed could be arbitrarily large. By comparison, the parallel algorithm developed to
address the same situation manages to compute the optimal solution in due time, generating
N0 error.

In the general case, where the demand rates associated with the nodes in the tree are
arbitrary, the quality-up achieved by the parallel algorithm when compared with the best
sequential effort is measured. Again, the improvement in the quality of the solution, brought
about by parallelism, is arbitrarily large from the theoretical point of view. In fact, even
under reasonably practical assumptions, the improvement in the average transmission cost
is still superlinear in the number of processors used by the parallel algorithm.

The rest of the paper is organized as follows. Section 2 offers some preliminary results
as well as a detailed description of the real-time environment into which the performances
of the sequential and parallel algorithms are to be compared. The simple case, with equal
demand rates, is analyzed in Section 3. The generalization to arbitrary demand rates is
investigated in Section 4. Finally, the paper concludes with a short discussion in Section 5.

2 Preliminaries

Determining the location of a vertex median can be done efficiently, due to the tree
topology of the underlying graph. Goldman’s algorithm [13] solves this problem in O(n)
steps. In order to understand how this algorithm works we need to introduce the following
notation. For any subset V' of the node set V', (V') denotes the sum of the demand rates
associated with nodes in subset V', that is,

g(V'y = > g(i), for any subset V' C V.
v, eV’

The main result on which Goldman has built his algorithm is given in the following.

Proposition 1 Node v; is an absolute median of T if there exist subtrees Ty = (V1, Ey) and
Ty = (Va, Es) of T, where Vi Vo = {v;}, ViUVa =V, Ey C E, E; C E, such that both the
following conditions hold:



oO——O

SN o

O
€ (b)

Figure 1: Example of a tree with (a) a unique vertex median; (b) two vertex medians.

(1) 9(1) = 59(V),

(2) g(Va) > 39(V).

This result might look surprising at first glance. The weights on the edges do not affect
the location of the vertex median. Its position is solely determined by the demand rates at
the nodes. A formal proof is given in [15] where it is shown that moving the median (in any
direction) from a node v; satisfying conditions (1) and (2) of Proposition 1 will not increase
the average transmission cost. However, we may think of this result in a more intuitive way.
An absolute median corresponds to that node of 7" minimizing the sum defined by equation
(1). From the point of view of a combinatorial problem, a node has to be chosen out of n
possible candidates, in such a way as to optimize a certain criterion. Changing the weight
associated with an edge of T' will modify accordingly the sums associated with all the nodes
of T'. Therefore, the process of selecting the node with the minimum sum is not influenced
by such a modification. Different values for the weights on the edges of T" lead to different
values of the average transmission cost, but in all cases this sum is minimized by the same
node(s).

The algorithm proposed by Goldman is based on tree contraction. It searches for an end
node (a node with only one neighbor) v; and its associated edge (v;,v;). It then modifies
T by deleting v; and (v;,v;) and increments g(j) by ¢(¢). This procedure is repeated until
an end node v; is found with ¢(i) > ¢(V)/2, in which case that node is the desired absolute
median. The case in which 7' is reduced to a single node is also possible, with the remaining
node being the absolute median.

The efficiency of the algorithm is due to the fact that our distance measure on the tree
is convex and thus at each iteration we are descending to a global minimum. This is the
reason why even if the solution obtained by the algorithm does not satisfy both conditions
of Proposition 1, that node is nevertheless an absolute median.

Note that the node v; found by Goldman’s algorithm is not necessarily the unique vertex
median of the tree. The following observation settles this issue.

Observation 1 A weighted tree T having demand rates associated with its nodes has at least
one vertex median and at most two. In the case when there are two vertex medians, they are
necessarily neighbors (Figure 1).

To see that the above claim is true, suppose T' = (V, E) has two vertex medians VM, and
VM,. Consequently, there exists subtrees 77 = (V1, E}) rooted at VM, and T, = (V5, Es)
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rooted at VM, of T such that ViNVa = 0, g(V1) > 39(V) and g(V2) > 3g(V). An easy
way to determine such a subtree is to trace Goldman’s algorithm and retain those deleted
nodes leading to a vertex median. Since V; C V and Vo, C V it follows that necessarily
g(V1) = g(Va) = g(V) /2. In other words, any node of T is included in one of the two disjoint
sets V7 and V5. Therefore, there is no other node left that can claim the vertex median status
or that can separate VM, and VM,.

2.1 The real-time setup

The algorithm described above is able to determine the optimum location for the switch-
ing center in a static tree network of users. In reality, it is often the case that such a
communication network is faced with the problem of an expansion. From time to time a new
node has to be connected to the existing network while maintaining the average transmission
cost to its minimum. In order to reach this goal, as soon as the current network is extended
by connecting a new node, a decision has to be made as to whether or not another node in
the network should assume the role of switching center. If the network is functioning more
efficiently with the switching center placed at a new location, the node currently hosting the
switching center should transfer its attributions in this respect to the newly chosen node.
We refer to this process (of transferring the switching attributions) as moving the switching
center to its new location. There are practical reasons for which a limited time is allowed
when making the decision. The amount of time during which the network is functioning
with a switching center not optimally located should be reduced as much as possible while
allowing for the new center to be set up at its new location.

We can model the network expansion problem using the following real-time setup. Con-
sider an initial tree 7" with n nodes. The location of a vertex median (VM) in T', corresponding
to the switching center, is also given. Time is divided into equal intervals, each one measur-
ing clogn time units, where ¢ is a positive constant. At the beginning of each time interval
a new node is connected to one of the nodes of T'. Before the time interval ends, the network
must be running with an optimally located switching center. In other words, the new vertex
median must be found (and the switching attributions transfered) in at most clogn time
units.

Locating the new vertex median before the imposed deadline is, evidently, the most
challenging task. It is not difficult to set up the switching center at its new location in
logarithmic sequential time, with respect to the number n of nodes served. One way to do
this is to inform the involved nodes about their status change using their address in the
network. Since there are n nodes in the whole network, logn sequential time suffices to
decode the logn-bit address of any of the network’s nodes. Again, we will compare the
performances of the best possible sequential algorithm and a parallel algorithm that deals
with the median problem in this real-time environment.

3 A simple case: equal demand rates

Let us begin by analyzing the problem in the particular case when all the nodes in the
network have equal demand rates. In this case, the demand rates at the nodes can be ignored



Figure 2: Adding a new node disqualifies one of the old vertex medians (V).

altogether and the tree can be looked at as a usual weighted tree. The sufficient condition
given in Proposition 1 for a node v; to be an absolute median, can be simplified in this
particular case as follows.

Proposition 2 Node v; is an absolute median of T if there exist subtrees Ty = (V1, Ey) and
Ty = (Va, Es) of T, where Vi Vo = {v;}, ViUVa =V, Ey C E, E; C E, such that both the
following conditions hold:

(1) |V4] > Lv,

(2) [Va| = 5|V1.

How is the location of a vertex median affected by the addition of a new node to the
tree? The following propositions summarize all the possibilities.

Proposition 3 Adding a new node to a tree T with 2 vertex medians will disqualify one of
them. The vertex median closer to the newly added node becomes the unique vertex median
of the extended tree (Figure 2).

Proof

Due to the fact that T has two vertex medians, the node set V' of T' can be partitioned into
two subsets with equal cardinality: |Vi| = |Va] = |V|/2 (note that 7" must have an even
number of nodes). Each of these two subsets represents the node set of a subtree rooted at
one of the two vertex medians. We already know from Observation 1 that VM, and VM, are
neighbors. Suppose, without loss of generality, that the new node added to 7T is connected
to one of the vertices of Ty, increasing the cardinality of V5 to 1+ (|V]/2). As it can easily be
checked, VM, satisfies both conditions of Proposition 2 and is therefore a vertex median of
the extended tree. On the other hand, VM5 is the unique vertex with this property because
the extra node added leads to an odd number of nodes in the extended tree, eliminating the
possibility of having two vertex medians. O

Proposition 4 The addition of a new node to a tree T with a unique vertex median will
result in one of the following two situations:
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Figure 3: Addition of a node to a tree with a unique vertex median.

(a) the old vertex median remains the unique vertex median of the extended tree (Figure
3(a)).

(b) another node joins the old vertex median to become the second vertex median of the
extended tree. The second median is the neighbor of the old median on the path to the newly
added node (Figure 3(b)).

Proof

Suppose VM is the unique vertex median of the initial tree 7" = (V, E) with n nodes.
The sequence of nodes deleted by Goldman’s algorithm in order to reach VM forms a tree
T" = (V', E’) rooted at VM, such that |V'| > n/2. If |V'| = n/2 then it must be the case
that v, the only neighbor of VM which is not in 77, is the root of another tree 77 = (V" E”)
with V7 and V' being disjoint sets. 77 would account for the other half of the nodes of T,
making v the second vertex median of 7. But according to the hypothesis, VM is the only
vertex median of T, so |V'| must be strictly greater than n/2.

Because |V'| must be an integer, it follows immediately that [V'| > (n + 1)/2. If the
new node is connected to 7" through a node outside 7", then Goldman’s algorithm will go
through the same sequence of steps to find VM as a vertex median of the extended tree.

Alternatively, if the new node is attached to 7", then VM can possibly lose its property
only in favor of one of its children, say u. Let us denote by x the number of nodes in the
subtree of T" rooted at u, before the addition of the new node. Then x < n/2 because u was
not a vertex median of 7', and in the same time x +1 > (n + 1)/2 represents the necessary
condition for u to be a vertex median of the extended tree. The system formed by the last
two inequalities is equivalent with

n—1<2zr<n.

The only integer x satisfying the above double inequality is

n—1
2

This gives x +1 = (n+ 1)/2, meaning that v and VM are each the root of a distinct tree
with (n+1)/2 nodes. This corresponds to the case in which they will both be vertex medians,
and w is that neighbor of VM whose corresponding subtree includes the newly added node. O

Tr =

We can therefore conclude from these two propositions that adding a new node to a
weighted tree with equal demand rates will either result in the old vertex median retaining
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its property, or the adjacent vertex on the path from the old median to the new node
becoming the new vertex median. We use these observations to design the sequential and
parallel real-time algorithms for determining the location of the new vertex median.

3.1 Sequential algorithm

Given a weighted tree T" with n nodes, a vertex median can be found in O(n) time using
Goldman’s algorithm [13]. Considering 7" as a rooted tree with the vertex median as its root,
and using a tree contraction procedure we can compute for each node v; the number I(v;)
of nodes in the subtree rooted at v;. For this it is sufficient to associate the integer 1 with
every node and make every non-leaf node compute the sum of its children and send the sum
plus 1 to its parent. The whole computation will still take O(n) time.

Having all this initial information, we want to determine the location of a vertex median
when a new node is connected to 7. To accomplish this we can use the basic idea of
Goldman’s algorithm. On the path from the most recently added node to the old vertex
median, we increment the label associated with each node by 1, to account for the extra
node that was added. As soon as we increment a node’s value, we check it to see if it is equal
to or larger than (n+1)/2, half of the total number of nodes in the extended tree. The first
node to meet this criterion is declared the new vertex median. A formal description of the
algorithm is given in the following.

Algorithm Real_Time_Sequential_Vertex_Median

Input: ¢ The extended tree T" with n + 1 nodes,

© OVM - the location of the old vertex median,

o l(v;),i =1,---,n - the labels associated with the nodes of the initial tree T
Output: NVM - the location of the new vertex median.

1. Consider T" as a rooted tree with root OVM.
. Let u = the parent of the newly added node in T".
3. WHILE u # OVM DO

l(u) = l(u) + 1;

IF I(u) > ”T“ THEN

[\

NVM = u;
Stop.
ELSE
let u = parent(u);
4. NVM = OVM:
5. Stop.

The correctness of the above algorithm is easy to check, since it consists of a slightly
modified version of Goldman’s algorithm. The only difference is that here the nondetermin-



ism present in Goldman’s algorithm is eliminated. We know exactly where to search for the
new median, namely, on the path linking the old vertex median to the newly added node.
According to Propositions 3 and 4, either the old median remains the unique vertex median
of the extended tree (in which case Step 4 of the algorithm will be reached), or the neighbor
of OVM on the path to the extra node will satisfy the condition for being a vertex median
and consequently terminate the while loop of Step 3.

We conclude this section with the important observation that the above algorithm is
the best possible sequential algorithm that deals with the worst case. It might be possible
perhaps to construct an algorithm that is able to decide in constant time if the location of
the vertex median remains unchanged or not. But in the worst case, when the median is
shifted one step towards the newly added node, there is no way to tell which of the children
of the old median is the new median, unless we reach it coming from the recently added
node. Unfortunately, between the new node and the vertex median there could be on the
order of n nodes, so the complexity of the sequential updating algorithm is still O(n).

3.2 Parallel algorithm

In this section we develop a parallel algorithm capable of determining the precise location
of a vertex median in the extended tree 1”. The algorithm is presented in the following.

Algorithm Real Time_Parallel_Vertex_Median

Input: ¢ The extended tree T" with n + 1 nodes,
© OVM - the location of the old vertex median.
Output: NVM - the location of the new vertex median.

1. Consider T" as a rooted tree with root OVM.
2. Assign the label 1 to each leaf and the function computing the sum of the children’s
labels to each internal node of 7”. Use tree contraction to compute I(v;) for all nodes v; of
T i=1,---,n+1
3. Any node u # OVM having I(u) > 5 is marked as a vertex median (VM).
4. IF VM exists
THEN
IF [(VM) > 2L THEN NVM = VM;
ELSE NVM = OVM;
ELSE
NVM = OVM.

There are two observations worth formulating about the above algorithm. In the first
place, note that there can only be one node meeting the requirements specified in Step 3.
Secondly, note that the algorithm is constructed in such a way as to shift the location of the
median only when it is absolutely necessary, that is, when the old median no longer satisfies



the required property.

The complexity of the algorithm is determined by the tree contraction step. Using a
cost-optimal parallel tree contraction algorithm ([1, 12, 16]) the above computation can be
completed in ¢ logn time units (where ¢ > 0), using n/logn EREW PRAM processors.
The time needed for transferring the switching attributions from the old vertex median to
the new vertex median is considered included in the ¢’ logn time units. Recall that a new
node is added to T at the beginning of each time interval, that is, every clogn time units.
Assuming that ¢’ < ¢, the parallel algorithm locates a new center successfully before a new
node is received. Another advantage of using such a tree contraction procedure is that
algorithm Real_Time_Parallel_Vertex_Median does not need any preliminary information to
be computed during an initial preprocessing step.

3.3 Comparative analysis of the generated errors

We analyze the performances of the sequential and parallel updating algorithms described
above by comparing the errors generated by them. Since we are dealing with an optimization
problem, errors are measured as deviations of the computed solutions from the optimal
solution. In our communication network problem, we are trying to minimize the average
transmission cost (ATC), so the error produced by an algorithm A that tries to solve this
problem is

error(A) = computed ATC — minimum ATC.

In the worst case, the sequential algorithm does not have the resources to complete its
computation and determine the location of the new vertex median in clogn time units.
Alternatively, as it can be easily deduced from Propositions 3 and 4, moving the location of
the vertex median is required only in the case when the old and the new vertex medians are
the two vertex medians of the initial tree T', before the addition of the new node. In any
other case, the current vertex median retains its property. It follows that a good heuristic
for the sequential algorithm is to keep the location of the vertex median unchanged.

On the other hand, the parallel algorithm is always able to update the vertex median
accurately, in any case. This means that the parallel algorithm always manages to compute
the minimum ATC', producing the optimal solution and generating an error equal to 0.

In order to evaluate the sequential error caused by the addition of a new node, the
worst possible case is depicted in Figure 4. Initially, the network has n nodes and 2 vertex
medians, VM and VM,. Each of the two initial medians can be considered as the root
of a subtree with n/2 nodes. The edge connecting VM and VM, has a weight of W. At
this moment, a new node u is attached to the subtree rooted at VM, thereby increasing
its size to n/2 + 1. According to Proposition 3 the extended network will have only one
vertex median, namely VM,. The sequential algorithm will apply its heuristic and compute
the average transmission cost considering that the switching center is located at VM. The
error induced by this computation is:

error(Real Time_Sequential _Vertex_Median) = Sum(V M) — Sum(V M) = W.
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Figure 4: Worst case behavior of the vertex median during one step of the real-time compu-
tation.

It is interesting to note that this error could be arbitrarily large. For example, W could
be an exponential function in n, making the error generated in one step by the sequential
real-time algorithm exponential in the size of the network.

A high value for W will contribute not only to a large sequential error, but also to a large
value for the optimal parallel solution. Therefore, asymptotically, the size of the sequential
solution cannot grow beyond that of the parallel one. Nevertheless, this error translates
into a highly increased average transmission cost in the sequential case, especially for large
communication networks.

Furthermore, the error generated by the sequential algorithm continues to accumulate
during the O(n) possible time intervals for the real-time computation. This can make the
price that has to be paid every time interval in the sequential case unacceptably high. Again,
the parallel algorithm remains the first choice for such a real-time problem.

4 The general case: arbitrary demand rates

The simplifying assumption that all the nodes of the tree network have equal demand
rates gives a certain stability to the vertex median location. In the worst case, all the added
nodes shift the location of the vertex median in the same direction. Specifically, every two
time intervals, the median moves only one node further away from its previous location.

In this section we analyze the more general case in which the demand rates at the nodes
are arbitrary. We also focus on another kind of real-time paradigm. In the previous section,
the real-time setup described corresponds to a data-accumulating paradigm ([10, 11]), where
the size of the problem increases with every time interval.

The real-time algorithms constructed hereafter are correcting algorithms ([9]), that try
to recompute the solution when one of the input data is altered. The set of input data for
the problem of interest consists of the weights associated with each edge of the tree and the
demand rates characterizing each node. The magnitude of the weights on the edges does not
influence the location of the vertex median, but only the value of the average transmission
cost. In this respect, the tree median problem can accommodate without any effort a real-
time paradigm in which a stream of edge weight corrections is received by the communication
network.

A more involved case, however, can be formulated when the corrections received in real
time concern the demand rates at the nodes. Let us consider a weighted tree T" with n
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nodes, each node having associated a demand rate ¢(i),i = 1,---,n. This tree models a
communication network in which the frequency of calls generated by a certain node is taken
into account through the demand rate associated with that node. For example, the value of
g(1) could represent the number of calls generated by node i during one day. For the purpose
of computing the average transmission cost in such a network, the demand rates have to be
normalized. In the following we make a distinction between the demand rate g(7) associated
with node 7 and its normalized value p(i), computed as

9(4)
i1 9(2)

A normalized demand rate p(i) represents the probability that the call was generated at
node 7, assuming that there was a call. The location of a vertex center of 7" with respect to
the normalized demand rates p(i),i = 1,---,n is also given at the outset. This corresponds
to the location of the switching center for the communication network.

For the real-time paradigm of interest in this section, a stream of demand rate corrections
is received by the tree network. Specifically, every clogn time units (¢ being a positive
constant) the frequency of calls generated by a certain node v; changes. In other words, the
value of ¢(7) is modified. In order to adapt the network to the new situation, the location of
the new vertex center of 1" must be found. The new vertex center corresponds to that node
vp, for which

p(i) =

yi=1,--- n.

n

Sum(k) = 3 p(i)d(k. i)
i=1
is minimum. Being a real-time computation, a deadline is also imposed on when the result
should be produced. Following the alteration of the demand rate of a certain node v;, the
switching center must be set up at its new location before a new correction arrives. Again,
we assume that a switching center serving a network with n nodes can be easily set up in
logarithmic sequential time using its log n-bit address in the network.

4.1 Sequential solution

The modification of a single demand rate g(j) for some j (1 < j < n), will trigger the
alteration of all the normalized demand rates p(i), i = 1,---,n. The computation of the new
values for p(i) will take O(n) time when performed by a sequential computer. Having the
normalized demand rates computed for each node, Goldman’s algorithm can now be applied
to determine the location of a vertex median.

Note that because the demand rates are arbitrary and the modifications can occur at any
node, the location of the old vertex median is of no help in determining the location of the
new vertex median. Indeed, the relative stability that characterizes the vertex median of a
tree with equal demand rates disappears in the context of arbitrary demand rates. (Recall
that in the simple case of equal demand rates, the new vertex median - when it does change
its location - is one of the old median’s neighbors.)

By contrast, when any of the tree’s nodes can change its demand rate (which may increase
as well as decrease) by an arbitrary amount, there are no procedures able to determine

12



efficiently which node will be the new median, using the location of the old median as
a starting point. Practically, any node in the tree may become the new vertex median.
Therefore, the nature of the problem imposes the computation of the new median location
from scratch. Goldman’s algorithm takes O(n) time to find it.

It is worthwhile noting that we can obtain the actual value of the average transmission
cost corresponding to the new median, without asymptotically increasing the running time
of the algorithm. Considering 7" as a rooted tree with the new vertex median v as its root,
a tree contraction scheme can be applied to compute d(k,i) for all i = 1,---,n. Finally,
the sum Y | p(i)d(k,i) can now be computed to produce the average transmission cost.
Because each step requires O(n) time, the whole computation (from receiving the modified
demand rate ¢(7) to obtaining the minimum average transmission cost) needs O(n) running
time for completion.

4.2 Parallel solution

Even if the demand rates at the nodes are arbitrary, the observation that 1" has at least
one vertex median and at most two remains valid. It is also true that in the latter case,
the two vertex medians are necessarily neighbors (Observation 1). These observations are
important for designing the following parallel algorithm in charge of computing the minimum
average transmission cost when one node v; changes its demand rate g(j).

Using n/logn EREW PRAM processors it is not difficult to recompute p(i), for every

i=1,---,nin O(logn) time. Still in O(logn) time we can then compute the value
p(Vi) = >_ p(l)
levi

associated with each node v;, where V; is the set of nodes composing the subtree rooted at
node v;. This can be accomplished by considering 7" as a rooted tree and applying a cost-
optimal parallel tree contraction algorithm. While the current vertex median can be selected
as the root of T' (as we did for equal demand rates), this decision is of no consequence for
our parallel algorithm.

The node v, with a minimum value for p(V}), but still greater or equal to 1/2 is the
desired new vertex median. Note the property that such a node v, is unique. Finding it,
as well as computing the corresponding average transmission cost can also be viewed as
tree contractions applications. Consequently, the parallel real-time algorithm needs only
"logn time units (where ¢ > 0) for producing an optimal solution and setting up the
switching center at the new location, using n/logn EREW PRAM processors. When ¢” < ¢,
the parallel algorithm successfully computes the new vertex median before the end of the
interval, that is, before the next change in the demand rate of a node occurs.

4.3 Quality-up analysis

The real-time nature of the computation discussed above has a major impact not on the
speedup provided by the parallel algorithm, but on the quality-up achieved when parallelism
is employed. Quality-up, an alternate measure for the performance of a parallel algorithm,
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Figure 5: A possible setup yielding superlinear quality-up behavior.

is defined as the ratio of the quality of the parallel solution computed for some problem
to the quality of the best sequential solution for the same problem. In the case of our
specific problem, a solution is of good quality if the computed average transmission cost is
low. Therefore, we define the quality of a computed solution as the inverse of the average
transmission cost obtained.

Now that we have precisely defined what we want to evaluate, how large can the quality-
up be, in the case of our communication network problem? In order to answer this question
let us consider the case presented in Figure 5.

The n nodes are placed in such a way as to form an array-shaped network. For ease of
presentation we make the following simplifying assumptions. Initially, all nodes have equal
probabilities associated, except for the end nodes A and B. Without loss of generality, we
also assume that all the edges have unitary weights associated. As we have already seen,
the location of the vertex median is not affected by this assumption. The weights on the
edges only affect the magnitude of the average transmission cost. Labeling the nodes with
1,2,---,n from left to right (A = 1, B = n), we can formally define the initial assumptions
as follows:

(i) p(i) = p, for every i =2,---, n— 1,

(ii) p(B) >> p,

(iii) p(A) >> p(B),

(iv) d(i,i+1) =1, for every i = 1,---,n — 1.

The second and third initial conditions will determine the vertex median to be located
at node A. According to the real-time paradigm described for this problem, a modification
occurs at one of the nodes, altering its associated probability. Consider the case in which
the demand rate at node A decreases suddenly from p(A) to p.

The new location of the vertex median has to be determined and the corresponding
average transmission cost computed in no more than clogn time units. The sequential
algorithm will obviously fail in trying to meet this deadline. In fact, the sequential machine
will not even be able to compute the new normalized demand rates (probabilities) for all of
the n nodes, following the modification incurred at node A. Lacking a better alternative,
the sequential algorithm is forced to keep the switching center located at node A.

The parallel machine, on the other hand, has sufficient resources (processors) to complete
the required computation in time and therefore obtain an optimal (minimum) solution. The
ATC is computed by the parallel algorithm with respect to node B, the new vertex median
of the tree:

n n—1

Sum(B) =} _p(i)d(B,i) =p)_ d(B,i) = (n—1)np/2.

i=1 =1
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If the network continues to function with its switching center located at node A, the
average transmission cost incurred is

Sum(A) = ip(i)d(fl, i) = pg d(A,7) + (n — D)p(B) = (n — 2)(n — 1)p/2 + (n — 1)p(B).

Consequently, the quality-up is

Sum(A) _ (n=2)p/2+p(B) _ (n—2)p+2p(B)

lity — up = = -
quattty —up Sum(B) pn/2 pn

For definiteness and keeping in mind that initially p(A) >> p(B) >> p, we take
p(A) = O(1), p(B) = O(n™®) and p = O(n2*), where @ > 1. Under these conditions,
the improvement in the quality of the solution is on the order of n® .

Theoretically, this result proves that the improvement in the quality of the solution,
gained by using a parallel algorithm, is unbounded, in the sense that o can be arbitrarily
large. In practice, when a has some reasonable value (for example o = 2), this result still
demonstrates a superlinear improvement in the average transmission cost with respect to
the number of processors employed.

5 Discussion

The paper addresses two important classes of real-time paradigms. The real-time setup
defined for the equal demand rates case belongs to the data-accumulating paradigm. Any
algorithm in charge of solving such a problem is faced with processing an increased amount of
data at every time interval. On the other hand, the real-time environment where the demand
rates are arbitrary belongs to the data-correcting paradigm. The size of the problem remains
constant throughout the computation, but the algorithm in charge faces a new instance of
the problem (even if not totally new) every time interval. To the same class belongs the
paradigm in which a stream of edge-weight corrections is received by the communication
network.

It might be worthwhile to study a third possible real-time arrangement, in which nodes
may become disconnected from the network, thus decreasing the size of the problem. How-
ever, in this case, additional complications may arise. If the node to be removed is an internal
node, then the removal operation will split the tree into several connected components. Still,
if the removed node is only a leaf, then we believe that results similar to those obtained in
this paper could be derived. The next step on this research path would be to investigate the
performance achieved through parallelism in a real-time paradigm where any one of these
cases is possible during one time interval.

From another perspective, the paper confirms that the classic approach in measuring
the performance of a parallel algorithm (namely, by analyzing the speedup achieved) is not
appropriate for real-time paradigms of the type defined herein (see also [4, 2, 3, 5, 6, 7, 8]).
The true superiority of a parallel algorithm over its sequential counterpart, in the real-time
area, can be fully exposed only if alternative performance measures are employed. These
include the generated error and the quality-up, as defined in Sections 3 and 4, respectively.
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It is also important to note that the synergy in the quality of the solution, proved for
arbitrary demand rates, is even more remarkable if we realize that it was obtained for prac-
tical values of the parameter «, and is not just an abstract result that has no relationship
with the real world.
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