
Technical Report No. 2001-446

On the Relation Between Parallel Real-Time Computations and

Sublogarithmic Space�

Stefan D. Bruda and Selim G. Akl

Department of Computing and Information Science

Queen's University

Kingston, Ontario K7L 3N6, Canada

Email: fbruda,aklg@cs.queensu.ca

June 16, 2001

Abstract

We show that all the problems solvable by a nondeterministic machine with logarithmic work space

(NLOGSPACE) can be solved in real time by a parallel machine, no matter how tight the real-time

constraints are. We also show that, once real-time constraints are dropped, several other real-time

problems are in e�ect solvable in nondeterministic logarithmic space. Therefore, we conjecture that

NLOGSPACE contains exactly all the computations that admit e�cient (poly(n) processors) real-time

parallel implementations. The issue of approximate real-time solutions for problems not solvable in real

time is also investigated. In the process, we determine the computational power of recon�gurable multiple

bus machines (RMBMs) with polynomially bounded resources (processors and buses) and running in

constant time, which is found to be exactly the same as the power of fusing directed RMBM with

O(n2) processors and O(n) buses, each of width 1, as well as exactly the same as the power of directed

recon�gurable networks (DRNs) of polynomially bounded size and constant running time.

1 Introduction

The area of real-time computations has a strong practical grounding, in domains like operating systems,
databases, and the control of physical processes. Besides these practical applications, however, research in
this domain is primarily focused on formal methods and on communication issues in distributed real-time
systems. Considerably less work has been done in the direction of algorithms and complexity theory.

One direction within this research area was, however, started by the introduction of well-behaved timed
!-languages [5]. Unlike previous models of real-time computation (such as, for example, the real-time Turing
machine [19]), timed languages bridge the long standing gap between the complexity theorists and the real-
time systems community. Indeed, the systems researchers use \real-time" to refer to those computations
in which the notion of correctness is linked to the notion of time [18]. In theoretical circles, on the other
hand, this term is used as a synonym for on-line or linear time. While well-behaved timed !-languages
create a formal model, they also capture all the features of real-time computations as understood by the
systems community. Such a claim is supported by the work from [6], where the formalism is used in order to
model real-time computations encountered in highly practical areas. Real-time complexity classes, as well
as complexity theoretic properties of real-time computations, are studied in [7]. In particular, it is shown
that real-time computations form an in�nite hierarchy with respect to the number of processors, and such a
hierarchy is independent of the underlying parallel abstract machine.

�
This research was supported by the Natural Sciences and Engineering Research Council of Canada.

1

However, the real-time computations analyzed in [7] do not exhibit explicit deadlines. Instead, the
real-time quali�er is given to those computations by the input (and its real-time characteristics). Still, most
practical applications do require that computations are carried output within well-de�ned deadlines. For this
reason, our main focus in this paper consists in computations with explicit deadlines. Based on the theory
of timed !-languages, we study (classical) languages that can be recognized in nondeterministic logarithmic
space (NLOGSPACE), augmented with real-time constraints (including but not limited to deadlines). We
show that all such computations can be carried out successfully in parallel, no matter how tight the time
constraints are. Conversely, we show that, although hard to recognize in real time, the languages developed
and analyzed in [7] can be accepted in deterministic logarithmic space once the time constraints are elimi-
nated. Thus, we conjecture that sublogarithmic space contains in e�ect exactly all the computations that
admit e�cient (poly(n) processors) real-time parallel implementations.

Supported by such a conjecture, we identify as a promising research direction the process of identifying
those problems that, even if not solvable in the real-time environment imposed by their use, admit good
approximate, real-time computable solutions. In particular, we show that the bin packing problem does
admit a good approximation parallel real-time algorithm, even if the exact variant is NP-complete.

Besides these main results, we also o�er a tight characterization of constant time computations on
recon�gurable multiple bus machines (RMBMs). We show that constant time directed RMBMs have the
same computational power as the directed recon�gurable networks. We also �nd an interesting gap result.
Indeed, as far as constant time computations on RMBMs are concerned, we show that processors and buses
in excess of O(n2) and O(n), respectively, are useless: Any constant time computation that can be performed
on RMBMs with polynomially bounded resourced can be in fact carried out with only O(n2) processors and
O(n) buses. Furthermore, the same result holds for the bus bandwidth: A unitary bus width is enough for
all the computations on RMBM. That is, a wire as bus will do.

The results in this paper are presented as follows: In Section 3 we show that exactly all nondeterministic
logarithmic space languages can be recognized in constant time using a directed fusing recon�gurable multiple
bus machine (F-DRMBM) with O(n2) processors and O(n) buses, each of width 1. Based on this result, we
establish the computational power of RMBMs. Our main results on real-time computations are the subject
of Section 4, where we establish that any NLOGSPACE language is computable in real time on RMBMs,
no matter how tight the real-time restrictions actually are, and we state the aforementioned conjecture.
We sketch a possible future research direction on approximation real-time algorithms in Section 5, and we
conclude in Section 6.

2 Preliminaries

For some set �, P(�) stands for the power set of �, that is, P(�) = fxjx � �g. The cardinality of IN, the
set of natural numbers is denoted by !. poly(n) expresses the upper bound for polynomial functions of one
variable n, that is, poly(n) = nO(1). The empty word is denoted by �.

Given some total function f : IN ! IN, we denote by SPACE(f(n)) (NSPACE((f(n)))) the set of lan-
guages that are accepted by a deterministic (nondeterministic) Turing machine which uses at most O(f(n))
space (not counting the input tape) on any input of length n. LOGSPACE (NLOGSPACE) is a short-
hand for SPACE(logn) (NSPACE(logn)). The class P (NP) contains exactly all the languages accepted in
deterministic (nondeterministic) polynomial time. Finally, NC denotes the class of languages accepted in
polylogarithmic time by some parallel machine using poly(n) processors.

2.1 Timed !-languages

A sequence � = �1�2 : : : 2 IN! is a time sequence if it is an in�nite sequence of positive values, and �i � �i+1
for all i > 0. Any subsequence of a time sequence is a time sequence. A well-behaved time sequence is a time
sequence for which, for every t 2 IN, there exists some �nite i � 1 such that �i > t. A (well-behaved) timed
!-word over some alphabet � is a pair (�; �), where � 2 INk is a (well-behaved) time sequence, k 2 IN[f!g,
and � 2 �k. Some �i from � represents the time at which �i becomes available as input. For some timed
!-word w = (�; �), detime(w) = �. By abuse of notation, detime(L) = fdetime(w)jw 2 Lg.

2

The concatenation of two timed words is de�ned as the union of their sequences of symbols, ordered in
nondecreasing order of their arrival time. Given two timed !-languages L1 and L2, the concatenation of L1
and L2 is L1L2 = fw1w2jw1 2 L1; w2 2 L2g. The notation

Qn
i=1 wi (

Qn
i=1 Li) is a shorthand for w1w2 � � �wn

(L1L2 : : : Ln).
A real-time algorithm A consists in a �nite control, an input tape that always contains a (not necessarily

well-formed) timed !-word, and an output tape containing symbols from some alphabet �. The input tape
has the same semantics as a timed !-word. During any time unit, A may add at most one symbol to the
output tape. The content of the output tape of A working on w is denoted by O(A;w). There exists a
designated symbol f 2 �. A real-time algorithm A accepts the timed !-language L if, on any input w,
jO(A;w)jf = ! i� w 2 L.

Let w = (�; �) be some timed !-word. For i0 = 0 and any j > 0, let sj = �ij�1+1�ij�1+2 : : : �ij , such that
(a) �ij�1+1 = �ij�1+2 = � � � = �ij , and (b) �ij+1 6= �ij . Then, the size jwj of w is jwj = maxj>0 jsj j. Given a

total function f : IN ! IN, and some model of parallel computation M , the class rt � PROCM (f) includes
exactly all the well-behaved timed !-languages L for which there exists a real-time algorithm running on
M that accepts L and uses no more than f(n) processors on any input of size n. By convention, the class
rt� PROCM (1) of sequential real-time algorithms is invariant with M .

Pursuit and evasion on a ring For k > 0, the languages Lk, modeling the k-dimensional version of the
pursuit and evasion on a ring problem [4] are developed in [7]. We shall give here a very brief overview of
these languages, directing the interested reader to [7]. For a given k, and for given positive constants r, p,
and c, Lk is a well-behaved subset of the language L0

Q
i>0 Lci, where detime(L0) 2 fa; bgr. Each wi 2 Lci

denotes the move made by the pursuee at time t = ci, under the form of a modulo k direction and a sequence
of at most p a's and/or b's. The sequence is to be inserted into the j-th segment (of length r=k and viewed
as a conceptual circle) of the initial word expressed by w0 2 L0, according to the given direction (both j
and the direction being given by what we called above \the modulo k direction."

A word w 2 Lk is accepted i� it can be decided at some �nite time T that the word available at that
moment in time has an equal number of a's and b's (intuitively speaking, the accepting real-time algorithm
catches the pursuee|or the input|at time T). In order to eliminate the ambiguity generated by the
somehow generic notations used in [7], we shall denote henceforth Lk by Pursuitk, for any k > 0.

2.2 Models with recon�gurable buses

Two main models with recon�gurable buses have been developed in the literature: the recon�gurable network
(or RN for short) [3] and the recon�gurable multiple bus machine (or RMBM) [17]. While both models have
similar characteristics, RMBM features a clear separation between buses and processors. Throughout this
paper, RMBM is thus our model of choice. We shall, however, brie
y de�ne RN, since we also refer to this
model.

The recon�gurable multiple bus machine An RMBM [16, 17] consists a set of p processors and
b (electronic, nondirectional) buses. For each processor i and bus b there exists a switch controlled by
processor i. By these switches, a processor have access to the buses by being able to read or write from/to
any bus. As well, a processor may be able to segment a bus, obtaining thus two independent, shorter buses.
Any processor is allowed to fuse any number of buses together by using a fuse line perpendicular to and
intersecting all the buses. A fuse line can be electrically connected to any number of buses, simultaneously.
Two buses that are connected to the same fuse line are said to be fused, and act as a unique, longer bus.

As far as the process of reading and writing on the buses is concerned, one can distinguish between CREW
(concurrent-read, exclusive write) and CRCW (concurrent-read, concurrent write) RMBMs. Theoretically,
exclusive read, exclusive write (EREW) RMBMs are possible as well, but we shall not consider such, since
we believe that the ability of all the processors to listen to a common bus is a trivial feature (that is, some
extra e�ort in order to insure exclusive read appears to be necessary). For CRCW RMBMs, two methods of
resolving write con
icts (that is, con
icts generated by two processors writing simultaneously on the same
bus) are usually considered: COMMON (two processors are allowed to simultaneously write on the bus only

3

if the values written by them are identical) and COLLISION (two values simultaneously written on a bus
result in the placement of a special collision (or error) value on that bus).

Unless otherwise stated, we shall deal with the COLLISION model, which appears to be the most realistic
(after all, such a technique is widely used nowadays in the MAC network layer protocols, like CSMA-CS
from which the Ethernet protocol is derived [15]). Thus, whenever we refer to CRCW RMBM (or CRCW
DRMBM and the other variations as detailed below) we assume the COLLISION con
ict resolution.

DRMBM, the directed variant of RMBM [17], is identical to the undirected model (in particular, the
buses continue to be nondirectional), except for the de�nition of fuse lines. In a DRMBM, each processor
features two fuse lines (down and up) perpendicular to and intersecting all buses. At the processor's control,
each of these fuse lines can be electrically connected to any bus. Assume that, at some given moment, buses
i1, i2, ..., ik are all connected to the down (up) fuse line of some processor. Then, a signal placed on bus ij
is transmitted in one time unit to all the buses il such that l � j (l � j). It is argued in [16] that the fuse
lines must use active components anyway, such that a directional connection is as practically realizable as a
nondirectional one.

For ease of presentation, one can consider RMBM as a special case of DRMBM, in which the up and
down fuse lines are \synchronized," in the sense that the down fuse line of some processor pi is connected
to some bus j i� the up fuse line of pi is connected to bus j. We shall adopt in the following this uniform
characterization, and thus we assume that each processor in any RMBM variant has two (up and down) fuse
lines, even if these fuse lines may in fact act as one bidirectional line. Furthermore, as we shall emphasize
below, it is clear from this construction that, for any nondirectional RMBM there exists a DRMBM simulating
it, that uses the same amount of resources (time, processors, buses, bus width).

If some RMBM (DRMBM) is not allowed to segment buses, then this restricted variant is denoted by
F-RMBM (F-DRMBM).

As for most models of computation, the word size of each processor in an (D)RMBM is limited to
O(logn) [17]. Furthermore, we are interested in constant time computations. Thus, we can assume without
loss of generality that a processor has only a constant number of internal registers (indeed, even if there
are an in�nite number of registers, a processor can access only a constant number of them given the time
restrictions). It follows that the internal con�guration or internal state ci of some processor pi (which
contains the content of pi's registers and the state of pi's �nite control) in an RMBM can be expressed by a
word of size O(log n). For similar reasons (O(logn) word size and constant running time) and by information
theoretic arguments, it follows that, at any given time, one can fully describe which buses are fused together
or segmented by a given processor, using a word of size O(logn). These limitations can be formally captured
by introducing the concept of uniform family of RMBMs, similar to the concept of RN family [3].

An RMBM (DRMBM, F-DRMBM, etc.) family R = (Rn)n�1 is a set containing one RMBM (DRMBM,
F-DRMBM, etc.) construction for each n > 0. A family R solves a problem P if, for any n, Rn solves all
inputs for P of size n.

A description of some (D)RMBM family using p(n) processors and b(n) buses is a list of p(n) tuples
(i; ci; upi; downi; segmenti), 1 � i � p(n). Such a tuple describes the con�guration of processor pi. Specif-
ically, ci denotes the internal con�guration of pi, and upi (downi, segmenti) represents a set of rules that
determine which buses are fused by the up fuse line (fused by the down fuse line, segmented), depending on
ci. In the case of F-RMBM or F-DRMBM, the set segmenti is always empty (no buses are ever segmented).

We say that some RMBM family R is a uniform RMBM family (or that R is uniformly generated in
SPACE(log p(n) � b(n))) if there exists a Turing machine M that, given n, produces the description of
Rn using O(log p(n) � b(n)) cells on its working tape. Since we deal only with uniform families here, we
henceforth drop the \uniform" quali�er, with the understanding that any RMBM family described in this
paper is uniform.

Assume that some family R = (Rn) solves a problem P , and that each Rn, n > 0, uses p(n) processors,
b(n) buses, and has a running time t(n). We say then that P 2 RMBM(p(n); s(n); t(n)) (or P 2 F �

DRMBM(p(n); s(n); t(n)), etc.), and that R has size complexity p(n) � b(n) (it is customary [10, 17] to
consider the size of a network as being the product between the number of processors and the number of
buses) and time complexity t(n).

It should be noted that, as shown above, a directed RMBM can simulate a nondirected RMBM by simply
keeping all the up and down fuse lines synchronized with each other:

4

Observation 1 X YRMBM(x(n); y(n); z(n)) � X Y DRMBM(x(n); y(n); z(n)) for any x; y; z : IN ! IN,
X 2 fCRCW;CREWg, and Y 2 fF�; �g.

The bus width of some RMBM (DRMBM, etc.) denotes the maximum size of a word that may be placed
(and read) on (from) any bus in one computational step. It is immediate that the bus width of any RMBM
from an RMBM family is upper bounded by O(logn).

The recon�gurable network An RN [3] is a network of processors that can be represented as a connected
graph whose vertices are the processors and whose edges represent �xed connections between processors. Each
edge incident to a processor corresponds to a (bidirectional) port of the processor. A processor can internally
partition its ports such that all the ports in the same block of that partition are electrically connected (or
fused) together. Two or more edges that are connected together by a processor that fuses some of its ports
form a bus which connects ports of various processors together. CREW, COMMON CRCW, COLLISION
CRCW, etc. are de�ned as for the the RMBM model.

The directed RN (DRN for short) is similar to the general RN, except that the edges are directed. The
concept of (uniform) RN family is identical to the concept of RMBM family. The class RN(s(n); t(n))
(DRN(s(n); t(n))) is the set of problems solvable by RN (DRN) uniform families with s(n) processors (s(n)
is also called the size complexity) and t(n) running time.

3 RMBM and NLOGSPACE computations

In this section, we �rst show that the graph accessibility problem (GAP) can be solved by a DRMBM in
constant time. Then, we investigate the relation between RMBM and NLOGSPACE computations. We
show that RMBMs with polynomially bounded resources and constant running time recognize exactly all
the languages in NLOGSPACE.

De�nition 3.1 (Graph accessibility problem) GAP1;n denotes be the following problem: Given a di-
rected graph G = (V;E), V = f1; 2; :::; ng (expressed, for example, by the (boolean) incidence matrix I),
determine whether vertex n is accessible from vertex 1. In general, the problem of determining whether
vertex j is accessible from vertex i is denoted by GAPi;j .

Lemma 3.1 GAP1;n 2 CRCWF�DRMBM((n2 � n)=2; n; 2). Furthermore, the F-DRMBM family solving
GAP1;n has bus width 1.

Proof. The following RMBM algorithm is a variant of the algorithm that computes the shortest path
in a directed graph [10] (which is itself an adaptation of the algorithm for the minimum spanning tree
[16]). However, we are not interested in the length of an eventual path, so that our construction requires
considerably less resources.

For convenience, each processor is denoted by pij , 1 � i < j � n. When we say that some processor fuses
buses k and l, we imply that this fusion is directional, such that a signal placed on bus k is seen on bus l,
but not vice versa. We assume that each processor pij knows the value of both Iij and Iji, where I is the
incidence matrix. Then, the algorithm performs the following steps:

1. Each processor pij , 1 � i < j � n fuses buses i and j i� Iij = True. Simultaneously, pij fuses buses j
and i i� Iji = True.

2. p13 places a signal on bus 1, and p12 listens to bus n. p12 reports
1 True if it receives some signal (either

the original one emitted by p13 or the signal corresponding to a collision), and False otherwise.

We must show that p12 reports true i� vertex n is accessible from vertex 1. In fact, it can be easily
proved by induction on the length of the path from s to t that, for any s, t, 1 � s; t � n, a signal placed on
bus s reaches bus t i� vertex t is accessible from vertex s, and this completes the proof (just put s = 1 and
t = n). Indeed, both steps of the algorithm can be clearly performed in one machine cycle each. As well,
note that the content of the signal emitted by p13 is immaterial, so that a bus width 1 su�ces. 2

1
In fact, neither p13 nor p12 have any special characteristics, and any pair of distinct processors will do.

5

Corollary 3.2 If the input graph G = (V;E) of GAP1;n is given by a list of vertices L instead of an incidence
matrix, then GAP1;n 2 CRCWF�DRMBM(m;n;O(1)), wherem = jEj and n = jV j.

Proof. Identical to the algorithm in the proof of Lemma 3.1, except that, at step 1 of the above algorithm,
processor pij fuses buses i and j i� (i; j) 2 L. 2

It is worth mentioning that the algorithm presented in [16] uses a CREW DRMBM (as opposed to
the CRCW F-DRMBM used in Lemma 3.1 and Corollary 3.2). Furthermore, this algorithm computes the
shortest path between two vertices. Therefore, it implicitly computes GAP1;n. This lets us conclude that
GAP1;n 2 CREWDRMBM(2mn; n2; O(1)). However, in what follows, we will use the result based on the
CRCW F-DRMBM since, on one hand, it uses resources more e�ciently, and, on the other hand, we believe
that a COLLISION con
ict resolution rule is just as realistic as exclusive write.

Consider now some language L in NSPACE(logn). It follows that there exists a nondeterministic Turing
machine M = (K;�; �; s0) that accepts L and uses O(logn) working space (by abuse of notation, we call
M an NSPACE(logn), or NLOGSPACE, Turing machine). Without loss of generality, consider that the
working (and input) alphabet of M is � = f0; 1g. Let k be the number of states of M , that is, k = jKj. The
transition function is denoted by �, � : (K ��)! P((K [fhg)� (� [fL;Rg)), and the initial state by s0.
For the sake of simplicity, we consider that M has one working tape only (the extension for multiple working
tapes is immediate [9, 14]). It should be noted that M also has a (read-only) input tape. A con�guration
of M working on input x is de�ned as containing the current state, the content of its tapes, and the head
position on each tape. Denote such a con�guration by (s; i; w; j), where s is the state, i and j are the
positions of the heads on input and working tape, respectively, and w is the content of the working tape.
Note that the content of the input tape is established at the beginning of the computation (indeed, the input
tape contains the input x) and does not change. Therefore, the input tape does not change the con�guration,
except for its head position.

Since M is nondeterministic, the set of possible con�gurations of M working on x forms a directed graph
(denote it by G(M;x) = (V;E)) as follows: V contains one vertex for each and every possible con�guration
of M working on x, and (v1; v2) 2 E i� the con�guration corresponding to v2 can be reached from the
con�guration corresponding to v1 in one step of M (that is, i� (v2; �) 2 �(v1; �) for some � 2 fL:Rg and
� 2 �). In the following, we refer to both a con�guration and the vertex denoting that con�guration in the
associated graph simply as \con�guration," as long as the exact meaning is understood from the context.

It is clear that x 2 L i� some con�guration (h; ih; wh; jh) is accessible in G(M;x) from the initial
con�guration (s0; i0; w0; j0). One should also note that there are O(n) possible con�gurations of M . Indeed,
for any con�guration (s; i; w; j), i can take n = jxj values. Furthermore, since L 2 NSPACE(logn), jwj �
logn. Thus, there are at most n possible contents of the working tape. As a consequence, j can take logn
values. Given that the set of statesK is �xed, the number of possible con�gurations is k(n+n+logn) = O(n).

Therefore, for any languageL 2 NSPACE(logn) and for any x, determining whether x 2 L can be reduced
to the problem of computing the graph accessibility problem (GAP) for the graph G(M;x) = (V;E), where
M is some Turing machine deciding L, M 2 NSPACE(logn). In fact, a stronger result is immediate: Given
x, L, M , and G(M;x) as above, we consider without loss of generality that the initial state is represented by
vertex 1 and the (unique) �nal state by vertex n in G(M;x). Then, any problem in NSPACE(logn) can be
reduced to GAP1;n. Indeed, we are interested only in the reachability of vertex n (�nal state) from vertex 1
(initial state).

Lemma 3.3 Fix a language L 2 NSPACE(logn). Let M = (K;�; �; s0) be an NSPACE(logn) Turing
machine that accepts L. Then, given some word x, jxj = n, there exists a CREW F-DRMBM algorithm
that computes G(M;x) (as an incidence matrix) in O(1) time, and uses O(n2) processors and O(n) buses of
width 1.

Proof. The con�gurations of G(M;x) do not depend on x, but only onM . Therefore, we consider that these
con�gurations are known in advance. That is, the set V of vertices of G(M;x) is known beforehand, even if
the set E of edges changes with x. In addition, the transition function � is known to all the processors.

Put n0 = jV j (n0 = O(n)). Then, the RMBM algorithm uses (n + (n02 � n0)=2) processors, as follows:
The �rst n processors, denoted by pi, 1 � i � n, contain the current input x (in the sense that each pi

6

contains xi, the i-th symbol of x). At the beginning of each computational step, pi writes xi to bus i. Since
xi 2 f0; 1g, a bus width 1 is enough.

We shall refer to the remaining (n02 � n0)=2 processors as pij , 1 � i < j � n0. Initially, a processor pij
holds a false initial value for the elements Iij and Iji of the incidence matrix I . Then, each pij considers
the (potential) edges (vi; vj) and (vj ; vi) corresponding to Iij and Iji, respectively. If such edge(s) exist,
pij writes True to Iij and/or Iji as appropriate. Otherwise, it does nothing. There is no interprocessor
communication between processors pij , 1 � i < j � n0, thus any RMBM model is able to carry on this
computation.

It remains to show that determining whether there exists an edge (vi; vj) is computable in constant
time by one processor (pij or pji). Clearly, given a con�guration vi, pij can compute in constant time any
con�guration vl accessible in one step from vi (if vi = (s; z; w; y), then vl is obtained by possibly changing
the state s, incrementing, decrementing or keeping z and/or y unchanged, and changing at most one symbol
from w, everything according to �). Recall now that � : (K � �) ! P((K [fhg) � (� [fL;Rg)), and
note that jP((K [fhg) � (�UfL;Rg))j = 24(k+1) (since j�j = 2, and jKj = k). That is, the number of
con�gurations that are accessible from some given con�guration is constant (upper bounded by 24(k+1)). In
other words, pij computes (in constant time) a constant number (at most 2

4(k+1)) of possible con�gurations.
Note that, in addition, pij can hold s and w in two of its registers, and it has access to any symbol xi of the
input by simply reading bus i. After this, pij can decide whether vj is accessible from vi in constant time
by simply checking the membership of vj in the set of the newly computed con�gurations. It follows that
pij computes Iij and Iji in constant time, and this completes the proof. 2

Some comments on the RMBM algorithm developed in the proof of Lemma 3.3 are in order. One can
note that the constant running time of this algorithm may be quite large (of the order of 24(k+1); furthermore
it depends on the number of states in the initial Turing machine). On the other hand, the subsequent use
of Lemma 3.3 will emphasize the need for the RMBM algorithm to be as fast as possible. Thus, even if
theoretically sound, the dependency of the running time to the number of states is not a desirable feature.

However, given some nondeterministic Turing machine M = (K;�; �; s0), one can build an equivalent
Turing machine M 0 = (K 0;�0; �0; s0) such that, for any s2 = �0(s1), js2j � 2. Indeed, take some state s 2 K
such that S0 = �(s), and jS0j > 2. Then, introduce a set Ks of new, distinct states (which do not change the
tapes' content or head positions) to K 0, such that the graph corresponding to �0 restricted to Ks [fsg is a
binary tree rooted at s, with exactly all the terminal nodes in S0, and with all the nonterminals (except the
root) from Ks. Clearly, M

0 is equivalent to M , in the sense that they accept the same language and use the
same amount of space.

One can now build the algorithm A from Lemma 3.3 based onM 0 instead ofM . Then, although G(M;x)
may grow (still, jV j remains O(n)), the running time of A is now upper bounded by a very small constant,
and this constant no longer depends on the number of states of M (or M 0 for that matter).

From Lemma 3.1 and Lemma 3.3, it follows that

Lemma 3.4 NLOGSPACE � CRCWF � DRMBM(O(n2); O(n); O(1)), with COLLISION resolution rule
and bus width 1.

Proof. Given some language L in NSPACE(logn), letM be the (NSPACE(logn)) Turing machine accepting
L. For any input x, the F-DRMBM algorithm that accepts L works as follows: Using Lemma 3.3, it obtains
the graph G(M;x) of the con�gurations of M working on x (by computing in e�ect the incidence matrix I
corresponding to G(M;x)). Then, it applies the algorithm from Lemma 3.1 in order to determine whether
vertex n (halting/accepting state) is accessible from vertex 1 (initial state) in G(M;x), and accepts or rejects
x, accordingly. In addition, note that the values Iij and Iji computed by (and stored at) pij in the algorithm
from Lemma 3.3 are in the right place as input for pij in the algorithm from Lemma 3.1. It is immediate given
the aforementioned lemmas that the resulting algorithm accepts L and uses no more than O(n2) processors
and O(n) buses of constant width. 2

Conforming to Lemma 3.4, any NLOGSPACE language can be accepted in constant time by a directed
RMBM. In fact, the relation between directed RMBMs and NLOGSPACE languages is even stronger:

Lemma 3.5 CRCWDRMBM(poly(n); poly(n); O(1)) � NLOGSPACE, for any write con
ict resolution
rule and any bus width.

7

Proof. Let R be some RMBM in CRCWDRMBM(poly(n); poly(n); O(1)) performing step d of its computa-
tion (d � O(1)). Then, there exists a Turing machine Md that generates the description of R using O(logn)
space. By standard techniques [9], one can modify Md (obtaining M

0

d) such that M 0

d receives n and some i,
1 � i � n, and outputs the (O(log n) long) description for processor i instead of the whole description.

Now, let MR be a machine that simulates R. MR works as follows: For each computational step d
performed by R, MR computes (sequentially) the con�guration of each processor pi of R. If that con�gu-
ration does not depend on the values on the buses, then MR simply uses M 0

d. Otherwise, MR additionally
determines which processors write on the buses that are read by pi. This implies the computation of GAPj;i
for all 1 � j � poly(n). Each GAPj;i is clearly computable in nondeterministic O(logn) space (since it
is a simpli�cation of GAP, which is NLOGSPACE-complete [14]. After each GAPj;i, MR computes the
con�guration of pj , using M

0

d again, possibly going into a recursive computation of some GAPk;j ; however,
such a recursion terminates after at most (poly(n))3 GAP computations, since any path containing no cycles
has a length of at most poly(n). Finally, MR updates the con�guration of pi. The space required by this
computation is the space for the con�guration of pi itself, plus the space for the con�guration of some pj ,
plus the space required by the value passed on the current bus chain between from pj to pi. The latter value
cannot be of size larger than O(log n) (since the word size of pj is O(logn)), and the con�gurations clearly
take O(logn) space. It follows that the whole space used by MR is O(logn).

MR repeats such a simulation for each step of the computation performed by R. The number of such
steps is �nite (in fact, constant). 2

Lemma 3.4 and Lemma 3.5 imply the following results:

Theorem 3.6 CRCWDRMBM(poly(n); poly(n); O(1)) = NLOGSPACE, for any write con
ict resolution
rule and any bus width.

For any write con
ict resolution rule and any bus width, CRCWDRMBM(poly(n); poly(n); O(1)) =
CRCWF�DRMBM(O(n2); O(n); O(1)) with COLLISION resolution rule and bus width 1.

Corollary 3.7 DRMBM(poly(n); poly(n); O(1)) = DRN(poly(n); poly(n); O(1)).

Proof. Immediate from Theorem 3.6, since NLOGSPACE = DRN(poly(n); poly(n); O(1)) [3]. 2

The following is a generalization of Theorem 3.6:

Corollary 3.8 For any problem P solvable in constant time by some (directed or nondirected) RMBM family
using poly(n) processors and poly(n) buses, it holds that P 2 CRCWF� DRMBM(O(n2); O(n); O(1)) with
COLLISION resolution rule and bus width 1.

Proof. From Theorem 3.6 and Observation 1. 2

The �rst part of Theorem 3.6 is an expected result. Indeed, a similar result for DRNs exists [3], and it
is known that (nondirected) RNs are as powerful as (nondirected) RMBMs [17] (and the two models using
polynomially bounded resources solve in constant time exactly all the problems in LOGSPACE). It is thus
expected that such properties hold for the directed variants of the two models (this time combined with
nondeterministic Turing machines), as formally shown in Theorem 3.6 and Corollary 3.7).

The second part of Theorem 3.6 on the other hand is very interesting: For constant time computations
on DRMBM, bus width does not matter; any problem can be solved using buses of width 1. In addition,
adding processors and buses over O(n2) and O(n), respectively, does not add computational power at all;
anything that can be solved by any RMBM is constant time requires at most O(n2) processors and O(n)
buses. Finally, as is the case of (undirected) RMBMs, it follows from Theorem 3.8 that segmenting buses
does not add computational power over fusing buses, and that the collision rule is the most powerful write
con
ict resolution method.

4 Small space computations are real-time

We have now all the necessary ingredients to state the �rst result linking real time with sublogarithmic space
computations. First though, we have to make an additional assumption: We henceforth consider that the

8

deadlines imposed on real-time computations are reasonably large compared to the processor clock frequency.
We believe that this is a reasonable assumption. Indeed, nowadays processors operate at frequencies around
(and sometimes exceeding) 1GHz; still, we are not aware of any real-time application that requires deadlines
measured in nanoseconds.

Note now that the potential existence of a deadline can be modeled as a well-behaved timed !-word [5]
by Wd = (�; �), where, for some special, designated symbols w and d,

(i) �i = w and �i = i for i > 0; or

(ii) �1 2 IN \ [max; 0), �1 = 0; for i > 0, if �i < td, then �i = i and �i = w. Let i0 be the index such that
�i = td. Then, for all i � i0, �i = i0 + b(i� i0)=2c, and

�i =

�
d if i� i0 is even
0 otherwise; or

(1)

(iii) Same as case (ii), except that equation (1) becomes

�i =

�
d if i� i0 is even
u(�i) otherwise.

(2)

The above description of Wd has the following semantics: The special symbol w is present whenever the
current time does not exceed the deadline; if the deadline passed, then the symbols that arrive as input are
all d. If the computation is completed at a moment in which the input symbol is w, then it has met the
associated deadline; otherwise, the deadline has passed.

Case (i) models a computation without deadlines. Such a case is provided for completeness, since, even in a
real-time environment, it is possible that some tasks have no associated deadline. Provided that it terminates
at all, any such a computation meets its deadline (that is, terminates at some time when the arriving input
is w). Case (ii) represents a computation with a �rm deadline at time td. A computation completing after
the deadline is useless, and this is expressed by the presence of the zeroes (meaning zero utility) arriving
together with the symbols d that signal the fact that the deadline has passed. Finally, case (iii) models a
computation featuring a soft deadline at time td with the utility function u : IN\ [td; !)! IN\ [0;max]. At
any moment t > td, the signal d comes together with the usefulness of the associated computation (between
0, meaning useless, and some maximum value max), provided that the computation completes at time t.

With this de�nition of Wd, and for any problem P 2 NSPACE(logn), let P� = f(��d; �)j � is some input
for P , �d = detime(Wd) for some timed word Wd modeling a deadline, and � is some well-behaved time
sequenceg. In other words, P� represents the problem P in the (potential) presence of deadlines. Then, the
relation between NLOGSPACE and real-time computations can be informally stated as follows: Suppose
one has a (possibly in�nite) set of inputs for a bunch of problems in NLOGSPACE. We impose some (any)
deadline for each of these inputs, and we feed them at various time moments to some machine. If that
machine happens to be a CRCW F-RMBM, then it is able to handle the input successfully. Formally, given
Theorem 3.6 (and noting that the size complexity of an RMBM with O(n2) processors and O(n) buses is
O(n3)), we have the following relation linking NLOGSPACE with real-time computations.

Theorem 4.1
S�Q

P2NSPACE(logn) P�

�
� rt � PROCCRCWF�DRMBM(O(n3)), where n is the maximum

input size for problems P .

Proof. All the processing implied by Theorem 3.6 (namely, the algorithms from Lemmas 3.1 and 3.3)
takes very little (and constant) time, and thus accommodates any reasonable (in the sense of the above
assumption) time sequence � associated with the computation. 2

In some sense, one may argue that the inclusion relation from Theorem 4.1 is in fact an equality, conform-
ing to Theorem 3.6. Indeed, NLOGSPACE computations are the only computations in the classical sense
that can be performed in constant time by DRMBMs, no matter how many processors and buses are used;
thus, given any deadline (in e�ect imposing a constant upper bound on the running time), it follows that
no computation outside NLOGSPACE can be successfully carried out. However, this inclusion cannot be

9

improved upon, since there might exist real-time computations (for example, not exhibiting explicit deadlines
and thus not necessarily having constant time constraints) that are not in NLOGSPACE but can still be
performed within the given resource bounds (that is, a polynomial number of processors and buses).

Indeed, one candidate for such computations can be the family of timed !-languages Pursuitk, k � 1,
presented in [7] and summarized in Section 2.1. Those languages, modeling the k-dimensional version of the
pursuit and evasion on a ring problem, do not feature explicit deadlines. The real-time quali�er is instead
given by the \movements of the pursuee," that is, by the real-time input arrival. We shall try to see what
is the classical computation corresponding to this problem.

In Theorem 4.1, we added deadlines (that is, real-time constraints) to problems. We face now the reversed
problem, namely how can one eliminate the real-time quali�er from the speci�cation of some problem.
Analyzing the form of the word Wd modeling deadlines o�ers the clue. Indeed, one can notice that, from
some time on, the symbols from Wd no longer represent the input. Instead, they consists of symbols w and d
that model the timing constraints imposed on the computation. Similarly, in a real-time problem for which
the input is virtually endless, a pre�x of that input represents the same problem, except that in the case
of such a pre�x, the input \stops coming" at some time. This is the most general restriction to a classical
environment one can model, since the input is �nite in such an environment:

De�nition 4.1 Consider some well-behaved timed omega-language L. For some (�; �) 2 L, i > 0 is a
progression point i�2 �i 6= �i+1.

Let Ls = f�0jthere exists some �nite progression point n such that (�; �) 2 L and �0 = �1:::ng (each
word in Ls is constructed by taking a word from L, restricting its length to some �nite n, and discarding
the time sequence). If, for some complexity class C, Ls 2 C, then we say that L 2 C=rt (L is the real-time
counterpart of Ls; alternatively, Ls solves the same problem as L, but without real-time constraints, and
thus Ls is the static version of L).

Note in passing that De�nition 4.1 not only allows us to study the pursuit problem in the context of
Theorem 4.1, but it o�ers a more concise formulation of Theorem 4.1 itself:

Theorem 4.2 NSPACE=rt(log n) � rt� PROCCRCWF�DRMBM(O(n3)).

It is immediate that the two formulations are equivalent, while the one expressed by Theorem 4.2 is easier
to understand.

We now show that pursuing something is easy outside the real-time paradigm: Recall from Section 2.1
that Pursuitk denotes the \k-dimensional version" of the pursuit and evasion problem [7]. Then,

Theorem 4.3 For any k > 0, Pursuitk 2 SPACE=rt(logn).

Proof. Let C be a class such that Pursuitk 2 C=rt. We shall show that C = LOGSPACE and we are
done. According to De�nition 4.1, a word ws in the static version of Pursuitk has the following structure:
Denote jwsj by n; then, ws contains

� An initial word w0 2 fa; bgr for some r � n; this is the initial con�guration, which the pursuee modi�es
as time passes.

� Some number m of moves by the pursuee (denoted by some words wi 2 Lci, 1 � i � m); such a move
in e�ect changes a maximum of p symbols from w0, p < r.

It is clear that r; p;m � n, since n is the length of the whole input. Consider now a deterministic Turing
machine M accepting the static version of Pursuitk. In order to determine the number of a's and b's in
w0, M simply keeps two counters Ca and Cb, one for a's and the other for b's, respectively. As the input is
scanned, the two counters are incremented accordingly.

Once the end of w0 is reached, M performs the following step for each wi, 1 � i � m: M identi�es that
portion of w0 which is changed by wi. Then, M scans this portion, decrementing Ca or Cb for each a or b

2
One does not want to split a bunch of symbols arriving at the same time, since such a bunch often represents a nondivisible

piece of the input. . .

10

it encounters during this procedure. Finally, M identi�es that portion of wi that changes w0 and scans it,
incrementing Ca and/or Cb accordingly. It is clear that, at the end of step m of such a computation, Ca and
Cb contain precisely the number of a's and b's, respectively, that are present in w

0 as it is changed by all wi,
1 � i � m. Therefore, when the end of the input is reached, M simply compares Ca and Cb and accepts the
input i� they are identical.

Clearly, Ca and Cb take log r space each (since there are at most r a's and at most r b's in w0). The
identi�cation procedure mentioned above uses two pairs of counters, each pair delimiting the portions of
interest of w0 and the current wi, respectively. Each of these four counters holds an index in the current
input, hence it can be stored in logn space. Finally, setting these counters involves simple arithmetic
operations on indices (that is, numbers bounded above by n), hence they are computable in LOGSPACE.
Therefore, the space required by the whole computation is O(logn), as desired. 2

Theorem 4.3 is an interesting result. Indeed, even if Pursuitk is a problem that requires a lot of
computational e�ort (in particular, it cannot be solved at all if less than 2k processors are available [7]),
it becomes a very simple problem (not only in NLOGSPACE, but even in LOGSPACE) once the real-time
constraints are eliminated. Thus, Theorem 4.3 justi�es the following conjecture:

Claim 1 NSPACE(log n) = rt� PROCCRCWF�DRMBM(O(n3)).

5 Real-time approximation schemes

As a consequence of Claim 1, the problem of �nding approximate solutions computable in real time (in
those cases when the exact solution cannot be computed within the given time restrictions) becomes a
worthy pursuit. Such an approach is common in classical complexity theory. Indeed, in the sequential case,
NP-hard problems are for all practical purpose (unless P equals NP) not computable but for the smallest
instances, and thus deterministic polynomial time approximations are usually sought [8]. Similarly, this time
in the context of parallel computations, e�cient parallel approximations to P-complete (that is, inherently
sequential unless NC equals P) problems were also investigated [9].

The identi�cation from Claim 1 of NLOGSPACE as the class containing exactly all the problems solvable
in real time naturally extends such a search for approximation algorithms: Once a problem is shown as being
likely not solvable in real time (that is, not in NLOGSPACE), then an approximate solutions may become
attractive. We now o�er a incipient discussion on this matter.

First, we de�ne the notion of \good" approximation algorithms by adapting the de�nitions already used
[8, 9] to our framework:

De�nition 5.1 Consider some algorithmA working on instance i of a minimization (maximization) problem,
and suppose that A delivers a candidate solution with value A(i). With Opt(i) denoting the value of the
optimal solution for input i, the performance ratio of A on i is RA(i) = A(i)=Opt(i) (RA(i) = Opt(i)=A(i)).
The absolute performance ratio of A is de�ned as RA = inf fr � 1jRA(i) � r for all instances ig.

An algorithm A with inputs � > 0 and i 2 � is an approximation scheme for � i� A delivers a candidate
solution with performance ratio RA(i) � 1 + � for all i 2 �. In addition, if A 2 rt � PROC(poly(jij)), then
A is a real-time approximation scheme for �.

The body of knowledge regarding NC approximations [9] gives some negative results: Once it is proved
that some problem does not admit an NC approximation algorithm, it follows that no NLOGSPACE (and
thus real-time) approximation algorithm exists either, since NLOGSPACE � NC.

Theorem 5.1 If P 6= NC, then there exists no real-time approximation scheme for the following problems:

� Lexicogra�cally �rst maximal independent set [9].

� Unit resolution (the problem whether the empty clause can be deduced from a given propositional formula
in conjunctive normal form) [13].

� Generability (given a �nite set W , a binary relation � on W , a subset V �W , and w 2 W , determine
whether w is in the smallest subset of W that contains V and is closed under �) [13].

11

� Path systems (given a path system P = (X;R; S; T), S; T � X, R � X �X �X, determine whether
there exists an admissible vertex in S) [13].

� Circuit value [13].

� High degree subgraph (given a graph G and an integer k, does G contain an induced subgraph with
minimum degree at least k?) for k � 3 [13].

� Linear programming, in both the following cases: the approximation solution should be a vector close
to the optimal one, and the approximation solution seeks the objective function to have a value close
to optimal [12].

Proof. It has been proven (reference to proofs are given within the theorem) that any approximation
scheme for these problems is P-complete. Since P 6= NC and NSPACE � NC, Claim 1 implies that the
above problems do not admit any real-time approximation scheme. 2

5.1 Bin packing

We focus now our attention to the bin packing problem. True, there is apparently little hope to �nd real-time
approximation schemes for this problem, since bin packing is NP-complete. However, bin packing is closely
related to certain scheduling problems (since the item to be packed can be viewed as tasks to be scheduled),
and it is thus conceivable that real-time approximation algorithms can be of use for scheduling tasks in real
time on a parallel machine (the utility of such a processing being evident). On the other hand, this time
with respect to the feasibility of tackling bin packing in a real-time environment, we note that good NC
approximation schemes for this problem already exist [2].

The input for the bin packing problem consists in n items, each of size within interval (0; 1). The n items
should be packed in a minimal number of bins of unit capacity.

One of the successful approaches in developing sequential (that is, in P) bin packing approximation
algorithms is the use of simple heuristics. In this respect, one should mention the �rst �t decreasing (FFD)
heuristic, which considers the items in nondecreasing order of their size, and places each item into the �rst
available (that is, with enough free space) bin. Even if simple, the length of the packing returned by FFD, of
at most 11=9�Opt+3 (where Opt is the length of the optimal solution), is a good approximation, qualifying
FFD as an approximation scheme. Still, it is not only intuitive that FFD is inherently sequential (that is,
P-complete):

Proposition 5.2 [2] Given a list of items, each of size between 0 and 1, in nonincreasing order, and two
indices i and b, it is P-complete to decide whether the FFD heuristic will pack the ith item into the bth bin.
This is true even if the item sizes are represented in unary.

Even if FFD is inherently sequential, an NC algorithm that achieves the same performance as FFD
(although by using di�erent techniques) is given in [2]. This algorithm works in two stages, as follows:

1. The �rst stage packs all the items that have a size of at least 1=6. Such a stage starts by sorting the list
of items in nonincreasing order. Then, a constant number of passes are performed, each pass involving
two algorithms: (a) merge two sorted lists of n elements each into a sorted list, and (b) in a string of
length n of opening and closing parentheses, �nd the matching pairs.

2. In the second stage, the remaining items are packed. This stage involves a (relatively large) number
of parallel pre�x computations.

Theorem 5.3 Bin packing admits a real-time approximation scheme A such that A(i) � 11=9�Opt(i) + 3
for any instance i.

Proof. We follow the algorithm from [2], showing how this algorithm can be implemented in real time.
According to Theorem 3.6, we have a choice of showing that this algorithm is in NLOGSPACE or in
DRMBM(poly(n); poly(n); O(1)). We chose the latter variant.

12

First, we note that sorting can be done in constant time on an (nondirected or directed) CREW RMBM
using poly(n) processors and poly(n) buses [16]. Then, it is immediate that merging two sequences into
a sorted sequence is also computable in constant time on RMBM. Indeed, the quick and dirty method of
sorting (using the algorithm mentioned above) the two lists concatenated together will do the trick.

The problem of matching parentheses can be implemented in two steps as follows: First, the unmatched
parentheses can be eliminated by a parallel pre�x computation. Then, there exists a constant time algorithm
on DRN using poly(n) processors for matching the remaining sequence of parentheses [1]. However, this
implies the existence of a similar algorithm on RMBM with polynomially bounded number of processors and
buses, according to Corollary 3.7.

Thus, the only algorithm that is still needed is the parallel pre�x computation, which is in
CREWRMBM(poly(n); poly(n); O(1)) according to [16] (in fact, such an algorithm is the basis for the
aforementioned sorting algorithm).

In conclusion, all the algorithms used by the two stages on the NC approximation scheme from [2] are in
CREWRMBM(poly(n); poly(n); O(1)). Since these algorithms are applied a constant number of times, the
whole processing is in CREWRMBM(poly(n); poly(n); O(1)) and thus in rt�PROC(O(n3). This completes
the proof. 2

In passing, one should note that the algorithm from the proof of Theorem 5.3 apparently requires a
large (albeit constant) amount of time to complete. However, such a construction is enough to prove
that bin packing admits a real-time approximation scheme. Indeed, the existence of an algorithm in
CREWRMBM(poly(n); poly(n); O(1)) implies the existence of another algorithm, solving the same prob-
lem, but this time in CRCWF � DRMBM(O(n2); O(n); O(1)), and whose running time is very small,
as shown in Corollary 3.8. True, we do not o�er a constructive proof for this corollary, and thus the
CRCWF � DRMBM(O(n2); O(n); O(1)) algorithm cannot be e�ectively constructed using only the results
from this paper. Still, if needed, we believe that, although not a trivial matter, developing such a constructive
transformation is feasible.

6 Conclusions

Recently, we addressed a number of questions associated with real-time computations featuring implicit
deadlines [7]. In this paper, we focused our attention on computations with explicit deadlines. Speci�cally,
we considered computations that can be performed within speci�c, �xed deadlines for any input size. Given
any language that can be accepted by a machine using sublogarithmic work space, we showed in Theorem 4.1
that such a language can be accepted by a parallel machine with polynomially bounded resources, in the
presence of any (that is, however tight) real-time constraints.

Theorem 4.3 is another interesting result: Even a timed language like Pursuitk, whose acceptance
requires considerable computational e�ort, can be accepted in logarithmic space once the real-time constraints
are dropped. This allows us to state Claim 1, which o�ers a nice counterpart of the parallel computation
thesis [9, 11]. In this thesis, NC is conjectured to contain exactly all the computations that admit e�cient
(poly(n) processors and polylogarithmic running time) parallel implementations. By contrast, we conjecture
that NLOGSPACE contains exactly all the computations that admit e�cient (poly(n) processors) real-time
parallel implementations.

In light of Claim 1, the following research direction becomes useful: Which are those problems that,
although possibly not solvable in the real-time environment imposed by some real-time application, admit
\good" approximate solutions provably achievable in any real-time environment? Do they form a well-de�ned
complexity class? If so, which are the problems pertaining to such a class? This paper o�ers a solid basis
for the pursuit of this direction, since we identify here a class of candidates for approximating algorithms.
In addition, this class of candidates is either NLOGSPACE or F-DRMBM(poly(n),poly(n),O(1)), whichever
is more natural for the given problem, since they are in fact identical as shown by Theorem 3.6. As a starter
for such a direction, along with identifying some problems not admitting real-time computable approximate
solutions, we showed that real-time approximation schemes do exists. Interestingly enough, we found with
relative ease such an approximation algorithm for quite a hard (in fact, NP-complete) problem, namely
bin packing. This is a nice argument in favor of the relations that we discovered between NLOGSPACE,

13

RMBM, and real-time computations, and a good motivation for the use of timed !-languages in the study
of (approximate or not) real-time computations.

We also determined the computational power of DRMBM running in constant time. We formally showed
that DRMBM and DRN with constant running time have the same computational power. We identi�ed a
gap in the complexity hierarchy of RMBM computations as well: As far as constant time computations are
concerned, nothing exists between O(n2) and poly(n) processors, or between O(n) and poly(n) buses, or over
a unitary bus width. In other words, all the real-time problems solvable at all with polynomially bounded
resources are in fact solvable within more reasonable bounds (O(n2) for processors, and O(n) for buses). In
addition, there is no need for a large bus width; instead, buses composed of single wires are su�cient, at
least in the real-time domain.

One interesting open problem naturally arises from the above discussion: Does a form of Theorem 3.8
hold for the DRN model? In other words, can the number of processors in a DRN be bounded tighter than
as a polynomial in the length of the input?

References

[1] S. G. Akl, Parallel Computation: Models and Methods, Prentice-Hall, Upper Saddle River, NJ, 1997.

[2] R. J. Anderson, E. W. Mayr, and M. K. Warmuth, Parallel approximation algorithms for bin
packing, Information and Computation, 82 (1989), pp. 262{277.

[3] Y. Ben-Asher, K.-J. Lange, D. Peleg, and A. Schuster, The complexity of recon�guring network
models, Information and Computation, 121 (1995), pp. 41{58.

[4] S. D. Bruda and S. G. Akl, On the necessity of formal models for real-time parallel computa-
tions, in Proceedings of the International Conference on Parallel and Distributed Processing Techniques
and Applications, Las Vegas, NV, June 2000, pp. 1291{1297. For an extended version see http://-
www.cs.queensu.ca/home/bruda/www/rttm.

[5] , Towards a meaningful formal de�nition of real{time computations, in Proceedings of the ISCA
15th International Conference on Computers and Their Applications, New Orleans, LA, Mar. 2000,
pp. 274{279. For an extended version see http://www.cs.queensu.ca/home/bruda/www/timed-langs.

[6] , Real-time computation: A formal de�nition and its applications, in Proceedings of the Workshop
on Advances in Parallel and Distributed Computational Models; in conjunction with the 15th Parallel
and Distributed Processing Symposium, San Francisco, CA, Apr. 2001, IEEE Computer Society Press,
pp. [CD{ROM]. For an extended version see http://www.cs.queensu.ca/home/bruda/www/timed-langs.

[7] , Parallel real-time complexity: A strong in�nite hierarchy, in Proceedings of VIII International
Colloquium on Structural Information and Communication Complexity, Vall de N�uria, Spain, June
2001, Carleton Scienti�c, pp. 45{59. For an extended version see http://www.cs.queensu.ca/home/-
bruda/www/pursuit/.

[8] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman and Company, 1979.

[9] R. Greenlaw, H. J. Hoover, and W. L. Ruzo, Limits to Parallel Computation: P-Completeness
Theory, Oxford University Press, New York, NY, 1995.

[10] N. Nagy, The maximum
ow problem: A real-time approach, Master's thesis, Department of Computing
and Information Science, Queen's University, Jan. 2001.

[11] I. Parberry, Parallel Complexity Theory, John Wiley & Sons, New York, NY, 1987.

[12] M. J. Serna, Approximating linear programming is log-space complete for P, Information Processing
Letters, 37 (1991), pp. 233{236.

14

[13] M. J. Serna and P. G. Spirakis, The approximability of problems complete for P, in Optimal
Algorithms, International Symposium Proceedings, H. Djidjev, ed., Varna, Bulgaria, May{June 1989,
pp. 193{204. Springer Lecture Notes in Computer Science 401.

[14] A. Szepietowski, Turing Machines with Sublogarithmic Space, Springer Lecture Notes in Computer
Science 843, 1994.

[15] A. S. Tanenbaum, Computer Networks, Prentice Hall, Upper Saddle River, NJ, 3 ed., 1996.

[16] J. L. Trahan, R. Vaidyanathan, and C. P. Subbaraman, Constant time graph algorithms on the
recon�gurable multiple bus machine, Journal of Parallel and Distributed Computing, 46 (1997), pp. 1{14.

[17] J. L. Trahan, R. Vaidyanathan, and R. K. Thiruchelvan, On the power of segmenting and
fusing buses, Journal of Parallel and Distributed Computing, 34 (1996), pp. 82{94.

[18] Usenet, Comp.realtime: Frequently asked questions, Version 3.4 (May 1998). http://www.faqs.org/-
faqs/realtime-computing/faq/.

[19] H. Yamada, Real-time computation and recursive functions not real-time computable, IRE Transactions
on Electronic Computers, EC-11 (1962), pp. 753{760.

15

