
The Spider Model of Agents

F. Y. Huang D. B. Skillicorn

Department of Computing and Information Science

Queen's University, Kingston, Canada

fhuang,skillg@cs.queensu.ca

June 2001

External Technical Report

ISSN-0836-0227-

2001-447

Department of Computing and Information Science

Queen's University

Kingston, Ontario, Canada K7L 3N6

Document prepared June 18, 2001

Copyright c
F.Y. Huang and D.B. Skillicorn

Abstract

We take the position that large-scale distributed systems are better understood, at all levels,

when locality is taken into account. When communication and mobility are clearly separated, it is

easier to design, understand, and implement goal-directed agent programs. We present the Spider

model of agents to validate our position. Systems contain two kinds of entities: spiders which

represent service providers, and arms, which represent goal-directed agents. Communication,

however, takes place only between an arm and the spider at which it is currently located. We

present both a formal description of the model using the ambient calculus, and a Java-based

implementation.

Keywords: agent models, locality, reasoning, Java.

0

The Spider Model of Agents

F.Y. Huang and D.B. Skillicorn

fhuang,skillg@cs.queensu.ca

Abstract: We take the position that large-scale distributed systems are better understood,

at all levels, when locality is taken into account. When communication and mobility are clearly

separated, it is easier to design, understand, and implement goal-directed agent programs. We

present the Spider model of agents to validate our position. Systems contain two kinds of

entities: spiders which represent service providers, and arms, which represent goal-directed agents.

Communication, however, takes place only between an arm and the spider at which it is currently

located. We present both a formal description of the model using the ambient calculus, and a

Java-based implementation.

1 Motivation

We present a distributed agent system, called the Spider Agent Model, which is designed to

be structurally transparent, both to reasoning and to agent task design, and e�cient. The

model distinguishes two kinds of entities: spiders, which rarely move and play the role of

service providers, and arms, which play the role of agents and are fully mobile.

The design of the spider agent system is motivated by two aspects of existing distributed

agent systems which we consider as weaknesses. These are:

1. Most existing systems allow goals to be achieved both by communication and by mobil-

ity. When there is only one way to accomplish any goal, it is easier to design the system

appropriately, and it is pro�table to devote resources to optimize the implementation

of the only one possible solution. When there are multiple ways to accomplish a goal,

it is hard for users to understand the system, it is hard to choose the best strategy for

implementing a particular action, and it is hard to know where best to spend resources

to improve performance. A good example is the world wide web which presents, to the

user, an illusion of mobility but where all activity is actually implemented by commu-

nication. It is hard for a novice user to become more sophisticated; for example, the

role of proxies is di�cult to comprehend if the user's mental model assumes browser

mobility.

The spider agent system implements information sharing at a distance by mobility, and

information sharing locally by communication. These two aspects are clearly di�erent

within the system.

2. Existing systems confuse two concepts that we will call virtual mobility and physical

mobility. Any distributed system of non-trivial complexity uses virtual names for its

objects and a mapping mechanism that associates physical names with them. This

mapping need not remain �xed over time.

When an object can move physically, but is still accessible using the same virtual

name, then we say that it has physical mobility. Cell phones are physically mobile:

1

their virtual name is their associated phone number, while their physical name depends

on the cell they are in at any given moment.

When an object's virtual name can also change, then we say that it has virtual mobility.

For example, when a person moves from one company to another, she exhibits virtual

mobility, since all forms of access have changed.

Humans handle physical mobility without di�culty, since it does not require changes

to our mental maps { only the virtual name needs to be remembered. Virtual mobility

is more di�cult { human organizations are not constructed to use it, except on very

slow time scales. Building arti�cial systems that are di�erent from human systems is

a recipe for opacity at best, and unusability at worst.

Many agent systems confuse these two kinds of mobility, and sometimes go to great

pains to implement virtual mobility, which we regard as misguided. For example,

ambients do not distinguish between the two kinds of mobility [3]. One ambient can

be `absorbed' by another, which is not a behaviour with many direct analogues in the

real world.

Of course, the distinction is one of degree not of quality, since it depends on how much

work is required to manage redirections. Virtual mobility could be concealed by a

further layer of indirection. In the end, the distinction is really whether a name can be

resolved to a location in a small constant number of steps (physical mobility) or more

(virtual mobility).

In the spider agent model, the service objects (spiders) are physically mobile but not

virtually mobile { they maintain the same virtual name throughout.

We show that imposing these limitations on the spider agent system makes it simple to

understand and expressive. The extra structure also makes it easier to reason about the

behaviour of agents within the system.

The spider agent system is an open architecture in which agents are light-weighted and

exible. Spiders are able to o�er arbitrary services, and arms (agents) may contain code

that interacts with some or all of the services it encounters.

The description of the spider agent system in this paper and the implementation details

represent preliminary work. Important open questions remain to be answered.

Section 2 describes some related work. Section 3 describes the spider model in detail.

Section 4 introduces two styles of reasoning about programs written using the spider model.

The ambient style is discussed in detail. Section 5 describes the prototype implementation.

2 Related Work

Wooldridge and Jennings [8] give four properties for agents: autonomy, agents can act with-

out intervention from outside; reactivity, agents can perceive their environment and act in

response; proactivity, agents are goal-directed; and social ability, agents are able to coordi-

nate their strategies with other entities. In a distributed system, one of the actions that an

agent can use is to move from one to another processor, making it a mobile agent.

2

There are many models for agents and agent systems. Useful overviews can be found in

[1] and [4]. We highlight three types:

1. Agent systems with CORBA-like goals, that is the ability to assemble components

that are physically distributed to make useful wholes. Examples include: Voyager

from Objectspace (www.objectspace.com), and Concordia from Mitsubishi Electric

(www.meitca.com).

2. Aglets, from IBM Japan, which might best be considered an agent system infrastruc-

ture or standard [5].

3. Ambients [3], a general approach to computation in space with a �rm semantics.

There are also well-developed systems for reasoning about agents, many based on exten-

sions of standard ways of reasoning in distributed systems. The Ambient model represents

a development of ideas from process calculi, and particularly the �-calculus. Such systems

are extremely general and powerful, and are often motivated by assuming an environment in

which the objects and their actions are constantly changing. This is only a realistic assump-

tion if the environment is considered to include (a substantial part of) the whole system. If

communication and mobility are decoupled, then agent actions are associated with a partic-

ular location in space. The environment in which they interact is relatively static, altered

only by arrivals and departures of other agents, and therefore easier to understand and rea-

son about. An extension of the ambient calculus, called Safe Ambients[6], de�nes co-action

capabilities corresponding to ambient actions for synchronization and interference control of

concurrent ambients.

Here is a simple example of ambient interaction synchronized by co-actions. Ambient k

in ambient m is equipped with capability to enter ambient n by prior arrangement. It moves

from m to n then continues with process Pk. Ambients m and n have their own processes

Pm and Pn as well:

m [outm: Pm j k[outm: in n: Pk]] j n [in n: Pn]

! m [Pm] j k [in n: Pk] j n [in n: Pn]

! m [Pm] j n [Pn j k[Pk]]

Other approaches to reasoning about agents use temporal [7] or modal approaches to mod-

elling what agents know or believe.

3 The Spider Model

The spider model contains two entities:

1. Spiders, which play the role of service-providing objects. Spiders have unique perma-

nent names, and occur in hierarchies, called spider domains. Spider names, therefore,

have the form spider name@domain name.

Spiders all provide certain basic services related to arm admission, resource allocation,

movement and termination. Spiders are typed, and all spiders of a given type provide

3

a known set of services associated publicly with that type. Individual spiders are also

free to provide speci�c services.

2. Arms, which play the role of mobile agents. An arm is created attached to a particular

spider (its home spider with which it remains associated in a special way as long as it

remains an arm). Arms are free to move to other spider domains (if admission policies

permit) where they may make use of the services of the (local) spiders in these domains.

Arms may return to their home spider, they may choose to die in any spider domain,

or they may choose to settle inside a spider domain and become a new (subsidiary)

spider (if policies permit).

Arms do not have accessible names.

There is a clear separation of mobility and communication. Communication is always local,

between an arm and its host spider in the domain where the arm is currently located.

Mobility is therefore necessary whenever the information required to meet goals cannot be

obtained locally. Note also that communication is always asymmetric, between entities of

di�erent kinds, so that agent programs with communication deadlocks cannot be written.

Spiders may also move, but their mobility is incidental to their function. For example,

a spider may reside on a laptop. When the laptop is disconnected from the Internet at

one location and reconnected at another, the spider has moved, but this has no e�ect on its

behaviour as a spider, nor on any agents currently located in its spider domain. Arms seeking

to move to the relocated spider must follow a di�erent path to �nd it, but this redirection is

really a function of the underlying network.

Allowing arms to communicate only through intermediary actions of spiders imposes

structure on the patterns of actions of agents. On the one hand, this is a signi�cant limitation,

since emergent complex behaviour based on the interaction of many simple agents is harder

to express. On the other hand, it does permit computations to exploit locality { and agent

need only be prepared for what it might encounter within each spider domain at a time, not

for everything it might encounter in the entire system. As the \entire system" increasingly

becomes an entity that spans the globe, this is a major saving in complexity, both intellectual

during design of the agent, and performance by reducing the amount of code an agent must

carry against contingencies. Enforcing communication via spiders also means that resources

can be held in the static pieces of the system (the spiders) rather than carried around in the

mobile pieces (the arms).

Separating communication and mobility enforces a data-centric view of a distributed

computation, in which code moves towards data rather than the other way around. This

makes better use of network bandwidth, which may be important if parts of the network are

wireless.

3.1 Spiders

A spider domain consists of a hierarchy of spiders, each of which is interacting with a set of

arms. These arms are of two kinds: the spider's own arms which it has created, typically in

response to a request from a user (located `at' this spider domain) that requires accessing

4

remote data; and arms from other spiders that are currently located at this spider (`just

visiting').

Spiders admit visiting arms based on their security policies. An arm admitted into a

spider domain must initially ask for one of three things: to die, to be moved to some other

spider domain, or to be given a set of resources. Whether, and how much of these resources

are granted by the spider depends on its local policies, but it is important that all types of

resources are requested and granted atomically to prevent resource deadlocks within spiders.

In the prototype, the only resource considered is computation cycles.

A spider provides a resource-bounded playground for each arm in which it may consume

the allocated resources in any way it wishes. However, this typically involves interactions

with the spider invoking any of the services that this spider provides.

Spiders may know the names of other spiders, and may reveal these to arms as a service.

Requests to move are at the instigation of arms, which must know the name of the spider

to which they wish to move. However, wild cards in names are possible, in which case the

current spider is free to move the arm to any matching destination spider. Including wild

cards enables arms to access services without having to know the names of individual spiders.

3.2 Arms

As described in the previous section, an arm arriving in a spider domain typically begins by

asking for a grant of resources. After this, it may interact with the spider using any of the

following actions:

� Recon�guration. Spiders guarantee to provide arm code for certain generic parts of

arm structure, and may also contain certain kinds of type-speci�c arm code. Hence

an arm only needs to carry (a) enough code to gain access to a spider domain, and

(b) code speci�c to its mission, since it can pick up other code inside spider domains.

This can be implemented using Java's mechanisms to include code from packages at

di�erent locations.

� Standard services. These include:

{ Die. Remove this agent from existence inside the spider domain.

{ Move. This requires a spider name to be given as an argument. The arm is

repackaged for movement and sent to the given destination.

{ Settle. The arm is given standard spider code and becomes a descendant of the

current spider in the hierarchy, if this is permitted. If not, control returns to the

arm to take appropriate action.

� Specialized spider services. Spiders of the same class o�er services standard to that

class. An individual spider may also o�er particular services. The interface for services

is generic, indexed by an unbounded service number. Information about which spiders

o�er which services is ordinary data and accessible in ordinary ways.

The necessary parts of the spider model have been kept as small as possible. Useful

systems require more than this basic set of services. For example, a spider name service,

5

search engine spiders, and spiders that maintain a persistent public storage area (e.g. in the

style of the MARS project [2]) are all likely to be common extensions. Notice that many

standard web-based activities are naturally implementable using the spider model, with the

important di�erence that browsing, search, and so on actually use mobility. Applications

such as cooperative search require spiders with public persistent storage. Cooperating arms

can use such storage to communicate with each other { but note that communication is

spider-mediated and asynchronous making it much harder to create trivial deadlocks.

4 Reasoning about the Spider Model

Spider programs (that is, actions taken by spiders at the request of an external user) can be

reasoned about in two styles.

The spider model is a subset of the ambient model, and so reasoning in the ambient style

is possible. For example, con�dence in the implementation can be increased by ensuring a

match between implemented actions and rewrite rules within the ambient representation.

Reasoning can also be done in a modal style based on what is known by each spider

and arm. We can, for example, de�ne predicates such as knowsname(a,s'), pathbetween(s,

s'), and admissible(a, s') where a is an arm, and s and s' are spiders. These predicates

can be automatically veri�ed from the code of each object. From these, we can de�ne a

relation, canmoveto(s, a, s'), which is re
exive and transitive, and so for which closures can

be computed. These closures allow reasoning about reachability.

If security is a concern, then we can make an assumption such as \an arm can discover

anything known to a spider it visits", and extend the reachability relation above to a can-

�ndoutabout relation which describes the way in which information
ows in the system as a

whole.

4.1 A Language for Reasoning

Based on the description of the Spider Model in section 3, two entity types of the model are

de�ned in Tables 1 and 2.

In Table 1 it is supposed that q 2 QoR where QoR is a set of values on which a partial or-

der, addition, subtraction and 0 are well de�ned. De�nition of QoR is application-dependent.

There may be both unrecoverable resources like CPU cycles and recoverable resources like

memory, and di�erent applications may focus on di�erent types. We will consider only

unrecoverable resources here.

rma in Table 2 is the resource manager for arm a created by its host spider, responsible

for resource approval, deduction of consumed resource, and termination of arm a when it

runs out of resource.

There are four types of services provided by each spider, corresponding to the four basic

types of service request arm actions. Other services can be provided and requested through

a general parametric interface service, which is linked to speci�c services that di�er from

spider to spider. A spider can contain child spiders as well as arms. Arms can only be active

within a spider and can communicate only with its host spider. The interactions between

arms and spiders are represented by the reduction rules in Table 3. (The convention of

6

Table 1: De�nition of Arm
a; b arm names

A;B := arm processes

0 inactive process

A jB parallel processes

E:A arm action

E := atomic action of an arm

C arm's internal computation action

R := arm's service request action on host spider

moveto(s) ask to be moved to spider s

die ask to be killed

reqres(q) resource request

settle(s) ask to be converted into spider s

getserv(p) request other services

q a value representing some quantity of resource

p a set of values containing service id and parameters

Table 2: De�nition of Spider
s; t spider names

S; T := spider processes

(�a)S restriction of arm name

0 inactive process

S jT parallel processes

s[T] child spider

a[A] residing arm

V := service responding to arms' requests

moveArm move an arm to a speci�c spider

receiver authenticate incoming arm

rma(q) resource manager for arm a

kill kill an arm

settleArm convert an arm into speci�c spider

service parametric interface for other local services,

returning di�erent result types for di�erent

service id speci�ed in parameter lists

r a set of values representing particular result returned

from service for particular set of parameters

x variable

7

Table 3: Reduction Rules
Mobility:

s[a[moveto(t): A] jmoveArm j rma(q)] j t[receiver]

! s[moveArm] j t[a[A] j receiver j rma(qmin)] (R-mov)

Resource authorization:

s[a[reqres(q1): A] j rma(q)]! s[a[A] j rma(q + qq1 � qrr)] (R-auth)

Resource exhaust:

s[a[A] j kill j rma(0)]! s[kill] (R-exht)

Arm internal computation:

s[a[C:A] j rma(q)]! s[a[A] j rma(q � qC)] (R-intl)

General service request:

s[a[getserv(p): A] j service j rma(q)]

! s[a[Afx rpg] j service j rma(q � qgs(p))] (R-serv)

Termination:

s[a[die] j kill j rma(q)]! s[kill] (R-die)

Settlement:

s[a[settle(t)] j settleArm j rma(q)]! s[t[T] j settleArm] (R-sett)

substitution notation is adopted: Afx valueg means substitution of all free occurrences

of variable x in process A by value.)

qmin in R-mov is an initial amount of resource that is just enough for the incoming arm

to request further resource or to move to somewhere else if local resources are not granted.

Value qq1 in R-auth is the granted resource based on the requested amount q1, the spider's

resource situation, and the resource management policy. Note that the request action itself

consumes some resource qrr (qrr < qmin). Value rp in R-serv is the returned result from

the requested service (suppose that A needs the result for variable x). Services related

to interface service can be identi�ed and invoked by their IDs or names included in the

parameter list.

For all the reduction rules except R-exht and R-die, we assume that resource q is su�cient

for the requested service. If not, the corresponding reduction cannot be completed and the

arm will be killed in-process by R-exht.

A simple but typical application of the reduction rules is an arm a moving from spider s

to t then asking for resource qset to settle down as spider sa with services V1 and V2. (Assume

that the security and resource policies permit it to do that.)
s[a [moveto(t): reqres(qset): settle(sa)] jmoveArm j rma(q)] j t [receiver j settleArm]

! s [moveArm] j t[a [reqres(qset): settle(sa)] j receiver j rma(qmin) j settleArm]

! s [moveArm] j t[a [settle(sa)] j receiver j rma(qmin + qset � qrr) j settleArm]

! s [moveArm] j t[sa [V1 jV2] j receiver j settleArm]

4.2 Encoding in the Ambient Calculus

A formal language to express and reason about any applications of the Spider Model requires

a lot more logic, such as structural congruences and related reduction rules, to be de�ned

8

for semantic soundness. Another way to work is to express it using another sound language.

It is obvious that the Spider Model is conceptually a subset of ambient model. In Table 1

and Table 2 it is clear that they are just speci�c ambients. By encoding the reduction rules

in Table 3 using ambient calculus, we show that interactions between arms and spiders are

just ambient actions.

For example, before considering resource consumption, the arm's mobility request can be

encoded as:
moveto(t):A = mt[out a: inma: openmt: h armID; attrt; in a i]

j out a: in a: open admit: (x): out a: out s: x: A
where attrt is a set of spider attributes that can be used to match spider t. The spider's

mobility service can be encoded as:
moveArm = ! (moveArm0 j open ma)

moveArm0 = ma[inma: openmt: (y1; y2; y3):

(mapt(y2): openma: out s: in s j (y4): ra(y1; y3; y4))]

mapt(y)!� hin tyi (if spider ty is known)

ra(y1; y3; y4) = ra[out s: y4: in rv: open ra: hy1; in s:y3i]

receiver = ! (receiver0 j open rv)

receiver0 = rv[in rv: open ra: (z1; z3): (veri(z1): open rv: out t j admitt(z3))]

veri(z)!� " (if arm id z passes the authentication)

admitt(z3) = admit [out t: z3: open admit: hin ti]
Including resources consumption makes the encoding is more complicated, and only un-

recoverable resource that can be represented by numerals in ambient calculus [3, p18] have

been considered.

5 Implementation

A prototype of the Spider Model has been implemented using Java, with arm mobility
based on Java object serialization. A general arm holds an unique ID and a pointer to
the current host spider, and has methods representing basic actions described in Table 1 for
programmers to invoke. These methods are light-weight because they just call corresponding
spider services.

public class Arm extends Thread implements java.io.Serializable

{

private transient Spider hostSpider;//the current host spider

private AgentID myID; //arm's ID for authentication

......

protected boolean moveMeTo(SpiderAddress spiderAddress) {...}

protected void die() {...}

protected Resource requestResource(Resource resource) {...}

protected boolean settle(Vector serviceNames) {...}

protected Result getServ(String serviceName, Vector parameters){...}

......

public AgentID showID() {...}

public void run() {...}

}

9

Figure 1: Architecture of A Spider

Based on the description in Section 3 and Table 2, the pattern of the architecture of a

spider is also clear, as illustrated in Figure 1.

First of all, each spider executes an armReceiver on a particular port number. The

armReceiver is responsible for receiving incoming arm code, authenticating for admission,

recreating the admitted arm from code and allocating initial amount of resource for it. If

the arm is rejected, the sender spider is noti�ed. Complicated systems can have a separate

security manager to maintain a sophisticated security policy.

Mobility service consists of receiving and sending services. When an arm requests move

service, the host spider will contact the receiver of the destination spider at the particular

port.

Another important part of a spider is the resource manager which maintains a resource

policy, deals with resource requests from residing arms, and monitors resource consumption.

Note that although many other models and systems use the phrase resource manager, they

usually mean a data storage/allocation manager, a completely di�erent concept.
The spider services are invoked by arms through corresponding public method calls.

These are the only way for arms to interact with their environment. Spiders keep local
pointers to residing arms private.

public class Spider extends Thread

{

private SpiderAddress hostSpider;//the location of parent spider

private SpiderAddress myLocation;//the location of this spider

private Resource resource; //resource granted by parent

private Hashtable myArms; //the residing arms

private Hashtable childSpiders; //child spiders

private Vector services; //names of provided services

private ArmReceiver armReceiver = new ArmReceiver();

private ResourceManager resMgr = new ResourceManager(this, myArms);

......

public Spider(...)

{

resMgr.start(); //start the resource manager

armReceiver.start(); //launch the arm receiver

}

10

......

public boolean moveArmTo(Arm arm, SpiderAddress destination){...}

public boolean kill(Arm arm) {...}

public Resource grantResource(Arm arm, Resource requestAmt) {...}

public boolean settleArm(Arm arm, Vector servNames) {...}

public Result service(Arm arm, String servName, Vector params){...}

}

To show the simplicity of programming using the spider model, the code of a speci�c arm

that explores a set of spiders is shown below. It is given an initial itinerary. When it arrives

at a new spider, it �rst spends some time doing local work (doMyTask), and then moves to

the next spider currently at the front of its itinerary.

public class ExplorerArm extends Arm

{ public static final int REQUIRED_CPUTIME = 5000; //in ms

public static final int NUMBER_OF_STOPS = 10;

private int requiredCPUTime = REQUIRED_CPUTIME;

private Vector itinerary = new Vector(NUMBER_OF_STOPS);

public ExplorerArm(Spider hostSpider, AgentID myID)

{ //given the itinerary

}

public void run()

{ if (itinerary.isEmpty())

{ System.out.println(this + " finished task, dying...");

die();

}

if (! showID().getOwner().equals(getHostLocation()))

{ Resource grantedRes=requestResource(new Resource(requiredCPUTime));

if (grantedRes.compareTo(new Resource(requiredCPUTime)) >= 0)

doMyTask();

}

String destName = null;

while (!itinerary.isEmpty())

{ destName = (String) itinerary.firstElement();

itinerary.remove(destName);

moveMeTo(new SpiderAddress(destName, Spider.DEFAULT_PORT));

System.out.println("No spider available at host "+destName);

}

//no more spider host available, go home.

if (!moveMeTo(showID().getOwner()))

{ System.out.println(this + " becomes homeless, dying...");

11

die();

}

}

protected void doMyTask()

{

}

}

This code is very stylized. A much more abstract language, in which agent actions were

described at the level of \move there", \search for this" can be straightforwardly mapped

(compiled) to such code. Hence users can describe the actions taken by arms without needing

to be explicit about the details of how they are accomplished.

6 Conclusions

Our position is that large-scale distributed systems are better understood, at all levels, when

locality is taken into account. It is more natural, more e�cient, and easier to reason when

the concepts of communication and mobility are clearly separated and clearly visible in the

model.

To support this position, we have designed and implemented the spider agent model.

The distinguishing features of the model are:

� Two kinds of entities: spiders, which represent service providers, and arms, which

represent goal-ful�lling distributed computations.

� Insistence that communication can only take place locally (that is, within a spider

domain), so that there is only one way to acquire remote information { by moving to

the location where it exists. Hence, mobility is not an extra, optional feature, but a

necessity.

� Because of restrictions on form, there is typically only one way to achieve any particular

goal. This helps with design clarity, and also directs attention to those system aspects

that most repay optimization.

� Because of the restrictions on form, reasoning about program behaviour is simpli�ed.

The spider agent system implementation is preliminary, and space has prevented a full

discussion of its design, and well as more detailed examples of reasoning about programs.

References

[1] P S K Booker, R K Granger, E J Guest, S A Norton, J E Price, and H Glaser. Software

agents and their use in mobile computing. Technical Report DSSE-TR-99-5, Declarative

Systems and Software Engineering Group, University of Southampton, February 1999.

12

[2] G. Cabri, L. Leonardi, and F. Zambonelli. MARS: A Programmable Coordination Ar-

chitecture for Mobile Agents. IEEE Internet Computing, 4(4):26{35, 2000.

[3] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In M. Nivat, editor, Proceed-

ings of Foundations of Software Science and Computation Structures (FoSSaCS), volume

1378, pages 140{155. Springer-Verlag, Berlin, Germany, 1998.

[4] Neeran M. Karnik and Anand R. Tripathi. Design issues in mobile-agent programming

systems. IEEE Concurrency, 6(3):52{61, 1998.

[5] Danny B. Lange. Java Aglet Application Programming Interface White Paper. IBM

Tokyo Research Lab, February 1997. Online: http://www.trl.ibm.com/aglets/JAAPI-

whitepaper.html.

[6] Francesca Levi and Davide Sangiorgi. Controlling interference in ambients. In Symposium

on Principles of Programming Languages, pages 352{364, 2000.

[7] M. J. Wooldridge. The Logical Modelling of Computational Multi-Agent Systems. PhD

thesis, University of Manchester, Manchester, UK, 1992.

[8] M.J. Wooldridge and N.R. Jennings. Intelligent agents: Theory and practice. The

Knowledge Engineering Review, 10(2):115{152, 1995.

13

