
Technical Report No. 2001-448

Computing Nearest Neighbors In Real Time
�

Marius Nagy and Selim G. Akl

Department of Computing and Information Science

Queen's University

Kingston, Ontario K7L 3N6

Canada

Email: fmarius,aklg@cs.queensu.ca

July 4, 2001

Abstract

The nearest-neighbor method can successfully be applied to correct possible errors

induced into bit strings transmitted over noisy communication channels or to classify

samples into a prede�ned set of categories. These two applications are investigated

under real-time constraints, when the deadlines imposed can dramatically alter the

quality of the solution unless a parallel model of computation (in these cases, a linear

array of processors) is used. We also study a class of real-time computations, referred to

as reactive real-time systems, that are particularly sensitive to the �rst time constraint

imposed.

1 Introduction

A traditional computational paradigm is based primarily on the following assumptions:

1. The entire data set that has to be processed in order to obtain the desired result is

available at the outset.

2. Once the computation is initiated, no additional data is taken into account by the

algorithm elaborating the solution to the problem at hand.

3. The output is expected to be produced as soon as the resources of the machine solving

the problem allow it, with no precise deadlines speci�ed.

�This research was supported by the Natural Sciences and Engineering Research Council of Canada.

1



Probably, the majority of the computations carried out today fall into this category.

However, an increasing number of computations do not �t into this paradigm. Time is in

these cases a factor of capital importance. When the computation begins, only a fraction

of the data to be processed is available to the algorithm in charge. The rest arrives as the

computation proceeds, generating a multitude of possible real-time paradigms. The data

arrival rate might be constant, increasing, decreasing or non-monotonic over time. Also, the

data received at one given moment in time might represent an independent subproblem, or it

might have to be incorporated into a global solution, inuencing the subsequent computation.

Another feature of real-time paradigms, underlining the role of time in these computa-

tions, is the presence of deadlines. Deadlines can be imposed on when the input data should

be processed and/or when the results are to be produced. The particular nature of some

real-time paradigms makes a parallel machine the only viable alternative in the competition

with their sequential counterparts. The presence of deadlines has been identi�ed as a source

of superunitary behavior with respect to the quality of the solution computed by parallel

machines to real-time problems [1, 2, 3, 4, 5, 8, 9, 10].

This paper focuses on real-time paradigms that resort to the nearest-neighbor method

in order to compute the desired result. Generally, this method implies computing distances

between objects in a conveniently chosen metric. From the multitude of possible applications,

two are selected in this paper to investigate the e�ciency of a parallel implementation of the

nearest-neighbor method. In the �rst case, the problem is one of error correction. Codewords

from a prede�ned code are sent, in the form of bit strings, through a communication channel

subjected to perturbations. At the other end, an algorithm using the nearest-neighbor

method tries to recover, to the best possible extent, the original codewords sent.

The second example is taken from pattern recognition. Here, the nearest-neighbor method

is used to classify a new sample as belonging to one of several existing categories. The real-

time environment in this case is of special importance due to the following two characteristics:

1. The data arrival rate as well as the output rate are not constant, but slowly decrease

over time

2. The output generated is actively involved in processing the new data received.

We call such a system a reactive system, as opposed to the case in which the output

becomes inactive as soon as it is produced and does not inuence the subsequent computation

in any way.

In all the paradigms investigated, the use of a parallel model of computation brings an

impressive gain in the quality of the solution computed.

The paper is organized as follows. Section 2 briey describes the models of computation

employed. The use of a unidirectional linear array of processors for correcting errors induced

in bit strings (when transmitted over a noisy communication channel) is analyzed in Section

3. Section 4 deals with classi�cation problems in pattern recognition. Both a simple real-

time setting and a reactive system are investigated. Conclusions are formulated in Section

5.

We assume throughout the paper that the nearest-neighbor rule always gives the correct

classi�cation. Speci�cally, in no case does the nearest neighbor to an item belong to a class

other than the proper class to which that item belongs.

2



y x x x x xnn-1321

P P P P Pnn-1321

Input Output

Figure 1: Unidirectional linear array of processors.

2 Models of computation

Using a parallel machine when trying to solve a computational problem in a real-time en-

vironment often brings a remarkable improvement in the quality of the solution computed,

with respect to the best sequential solution for the problem at hand. The results obtained

in [3, 8, 9, 10] for some graph problems support this claim. In order to achieve those results,

di�erent variants of the PRAM [3, 8, 9] and RMBM [10] models of parallel computation

have been used. Although the power that the PRAM or RMBM brings into play is essential

for dealing with the problems addressed therein, similar results can be obtained on weaker

models of parallel computation (see [1, 2, 4, 5]). In this paper we focus on (arguably) the

weakest model of parallel computation, namely the linear array (Figure 1).

The model consists of n processors P1; P2; � � � ; Pn arranged into an array such that each

processor Pi is connected to Pi�1 and Pi+1, except for P1 (which is only connected to P2)

and Pn (which is only connected to Pn�1). We restrict the communication links between the

processors to be unidirectional. Consequently, all inputs are read by P1. Data then ows

into the linear array from P1 towards Pn, which is the only processor in charge of the output

to the outside world. Each processor is assumed to have access to a local memory of size

O(n) bits. During one time unit each processor can:

1. Read (receive) a constant number of �xed-size data,

2. Perform a �xed number of constant-time operations involving two operands (such as

adding two numbers or comparing two numbers), and

3. Write (transmit) a constant number of �xed-size data.

In order to successfully face the constraints imposed by the second real-time paradigm

investigated in the paper, a bidirectional linear array of processors is assumed as a model

of parallel computation. In this model, there are two communication links between any two

neighboring processors Pi and Pi+1: one from Pi to Pi+1 and the other from Pi+1 back to Pi.

In this way, data can ow into the linear array in both directions simultaneously.

The sequential model of computation assumed throughout this paper is the random access

machine (RAM) with a processing unit identical to those forming the linear array.

3 Error correction

The following subsection covers some basic de�nitions and explains those notions that are

necessary in order to understand the problem addressed in this section.

3



3.1 Background

Coding theory, the study of codes, including error detecting and error correcting codes, has

been studied extensively for the past forty years. It has become increasingly important with

the development of new technologies for data communications and data storage. When infor-

mation, in the form of bit strings, is manipulated, errors may occur due to various reasons.

Messages transmitted over a communication channel may be altered by electrical interfer-

ence or equipment error. Similarly, static information may be modi�ed unintentionally; for

example, errors are introduced into data stored over a long period of time on magnetic tape

as the tape deteriorates. To guarantee reliable transmission or to recover degraded data,

techniques from coding theory are used.

A bit string encoding a certain message and traveling through a communication channel

is called a codeword. A set of codewords forms a code. Some codes incorporate redundant

information in their codewords in order to detect and/or correct errors (a parity check bit

attached to a bit string is a common way of detecting errors). Usually, a more redundant

code allows for a larger number of errors to be detected and/or corrected.

However, e�cient codes exist that do not use redundancy. Special care must be taken

when constructing such codes and the methods used for error correction are generally more

involved. One such method is called nearest-neighbor decoding and is based on the Hamming

distance between two bit strings.

De�nition 1 The Hamming distance d(a; b) between the bit strings a = a1a2 � � �an and

b = b1b2 � � � bn is the number of positions in which these strings di�er, that is, the number of

i(i = 1; 2; � � � ; n) for which ai 6= bi.

Example

The Hamming distance between the bit strings 01110 and 11011 is d(01110; 11011) = 3.

Suppose now that when a codeword x from a code C is sent, the bit string y is received. If

the transmission was error-free, then y would be the same as x. But if errors were introduced

by the transmission, then y is not the same as x. Suppose that y =2 C. The nearest-neighbor

method of decoding y is to compute the Hamming distance between y and each of the

codewords in C. Then we take the codeword of minimum Hamming distance to y. If the

distance between the closest pair of codewords in C (called the minimum distance of C,

according to the de�nition below) is large enough and if su�ciently few errors were made in

transmission, this codeword should be x, the codeword sent.

De�nition 2 The minimum distance of a binary code C is the smallest distance between

two distinct codewords, that is,

d(C) = minfd(x; z)jx; z 2 C; x 6= zg:

The following result ([7]) establishes the relation between the minimum distance of a

code C and the number of errors it can correct.

Theorem 1 A binary code C can correct up to k errors in any codeword if and only if

d(C) � 2k + 1.

4



If the transmission channel is a binary symmetric channel, that is, each bit sent has the

same probability p of being received incorrectly and p < 1=2, then nearest-neighbor decoding

produces the most likely codeword that was sent from a binary string that was received.

3.2 Real-time setting

We now describe the real-time environment in which the performances of both the sequential

and parallel machines are to be evaluated. Let C be a code composed of n codewords, with

each codeword consisting of n bits. At the beginning of the computation, the n codewords

are stored in the memory of the machine in charge of solving the problem at hand. This

means that each of the processors of the linear array will store one codeword in its local

memory, while the sequential computer will store all n codewords in its memory.

A stream of messages is sent over a binary symmetric channel to be received by the

error recovering machine at the other end. Each bit string received is decoded using the

nearest-neighbor method in order to produce the original codeword sent. The transmission

rate is of one bit per time unit, with one time unit break between two consecutive messages.

Evidently, the task of the receiver is to recover (to the best possible extent) the original

codeword transmitted from the bit string received, knowing that the message could have

been altered during transmission.

The output stream, composed of the recovered codewords is subjected to the same con-

straints as the input stream. More precisely, one bit, part of a decoded message, has to

be produced each time unit, with a one time unit break between two consecutive decoded

messages. However, we allow an initial delay of at most 2n time units before the �rst bit of

the �rst recovered codeword has to be produced.

3.3 Performance comparison

We analyze in this section the performances of both (sequential and parallel) machines in the

real-time environment described above. A measure of the performance will be the accuracy

achieved in decoding a message in the worst case. To be more speci�c, if the Hamming

distance between the recovered codeword y and the actual codeword sent x is d(x; y) then

accuracy = n� d(x; y):

Note that in the given real-time paradigm, storage of input data in memory for later

processing is not prohibited. Furthermore, a capacity limit for the memory of the sequential

machine is not even speci�ed. The sequential computer is free to store in its virtual unlimited

memory all the data that cannot be dealt with in the current time unit or that is needed for

some subsequent computation.

Storage for later processing might seem a good idea in the case of the �rst message

received, due to the delay allowed for its decoding. This delay increases the time available

for decoding the �rst message to 2n time units. Unfortunately, after the initial delay has

elapsed, a new bit has to be output every time unit. Therefore, each of the subsequent

messages must be decoded in no more than n time units. To the advantage of the sequential

5



machine, we analyze in the following the accuracy of the decoding operation performed on

the �rst message received, for which we have the largest amount of processing time available.

In order to compute the Hamming distance between the received bit string and all the

n codewords in C, the sequential computer would need n2 time units. Since the admitted

delay is of only 2n time units, a result has to be produced without knowing the Hamming

distances to all the n codewords. In fact, the available time is just enough to compute the

distance to two of the n codewords.

In the worst case, this decision based on partial information has dramatic e�ects on the

result produced. For example, consider that the following four bit strings are the codewords

of C: 0000, 0011, 1100, and 1111. Suppose now that the codeword x = 1111 is transmitted

over the binary symmetric communication channel and that the message received by the

sequential machine is y = 1110. In this example, a number of k = 1 errors a�ected the bit

string transmitted. The sequential computer will only have time to compute the Hamming

distances from y to the �rst two codewords: d(1110; 0000) = 3, and d(1110; 0011) = 3.

Based only on these two pieces of information it will now have to decide which was the

original codeword sent. Since the two computed Hamming distances are equal, one of the

two corresponding codewords is arbitrarily chosen as the original codeword. In the worst

case, the �rst codeword (0000) will be output as the decoded message. The accuracy achieved

in this case is

sequential accuracy = 0:

In general, if k(k � 1) errors are induced during transmission, the same worst-case

scenario can happen for codes C with the minimum distance d(C) � 2k.

How can the linear array of Figure 1 deal with this problem? We recall that each of the n

processors stores one codeword in its local memory. Processor P1 is in charge of receiving the

stream of bits arranged in messages, while Pn has to produce the output stream, containing

the recovered codewords. For a certain message y, processor Pi is in charge of computing

the Hamming distance between y and the codeword xi stored in its local memory. This is

done as follows. Initially, all processors set d(y; xi) = 0, i = 1; 2; � � � ; n. Once the �rst bit

of y is received, P1 compares it with the �rst bit of x1 and updates d(y; x1) accordingly. P1

then passes this �rst bit along to P2. In the next step, while P1 deals with the second bit of

y, P2 performs the same operation between the �rst bit of y and the �rst bit of x2. In this

way, after n steps (when y is completely received), the Hamming distances between y and

xi, i = 1; 2; � � � ; n are at di�erent stages of computation in the processors of the linear array.

For instance, the computation of d(y; x1) is completed, while Pn has just started to work on

d(y; xn).

P1 now sends d(y; x1) together with the �rst bit of x1 to P2 and takes a one time unit

break before starting to work on the next transmitted message. However, this is more of a

computational break because P1 continues to send the codeword x1 further to P2, one bit per

time unit, until completely transmitted. When P2 receives d(y; x1) and the �rst bit of x1,

it compares d(y; x1) with d(y; x2) (whose computation has just been completed) and sends

the minimum to P3. If d(y; x1) was found smaller than d(y; x2), then P2 will forward the

�rst bit of x1 to P3 and, in the following steps, all the remaining bits of x1 received from

P1. Otherwise, it will ignore these bits and start sending x2 to P3, also at a rate of one bit

6



per time unit, until fully transmitted. Following this path, 2n � 1 steps after the �rst bit

of y was received by P1, Pn is able to start outputting the codeword corresponding to the

global minimum Hamming distance. The same sequence of steps is repeated for each of the

messages received by P1.

In order to evaluate the performance of this algorithm we consider the same case as for

the sequential machine, in which k errors have been generated during the transmission of

a particular message y, and the minimum distance of C is d(C) � 2k. It is not di�cult

to see that this is the worst possible case for the parallel machine too, since a code C with

d(C) � 2k + 1 ensures the correction of all k errors.

Since the distance between y and the original codeword sent x is k, x is competing for the

place of recovered codeword only with those codewords that are at a Hamming distance of

at most k from y. In the worst case, if a di�erent codeword than x is chosen as the recovered

codeword, this can only be at a distance of at most 2k from x. Therefore, the accuracy

achieved by the linear array in this case is

parallel accuracy = n� 2k:

If the communication channel is a relatively reliable one, that is, the number k of errors

generated during transmission is small when compared with the size n of the message, then

the parallel accuracy is �(n).

The ratio of the parallel accuracy to the sequential accuracy is therefore

accuracy ratio =
n� 2k

0
= 1:

This result can be interpreted in the sense that even if the amount of resources available

and the case analyzed were in favor of the sequential computer, the improvement in accu-

racy brought about by the parallel computer is unbounded. We observe that the parallel

model of computation used (namely, the unidirectional linear array) is the simplest possible

among those assuming some kind of communication among processors. Further, the amount

of memory available for the sequential machine was not limited in any way. Finally, the per-

formance of the sequential machine was analyzed with respect to the �rst message decoded,

for which time resources were the most generous.

4 Classi�cation

The error-correcting codes analyzed above use the nearest-neighbor method in order to re-

cover the original codeword sent through a noisy communication channel. This method,

however, is not speci�c only to error-correction applications. Other areas, such as pattern

recognition, bene�t from using the nearest-neighbor method or some other related tech-

niques (such as the k-nearest-neighbors rule) [6]. These methods are particularly helpful

in clustering and classi�cation algorithms. Labeling a given set of samples as belonging to

distinct groups, based on the relative distance between them in a prede�ned metric, is called

clustering. When the clusters are already identi�ed and we want to determine to which of

the given categories a new sample belongs, the problem is a matter of classi�cation.

7



We show in what follows that when a real-time solution is required, parallel processing

is as important in classi�cation as it is in error correction.

4.1 Simple setting

Imagine that, after an initial scene analysis procedure involving clustering, n samples are

grouped into c distinct clusters. Suppose now, that at regular intervals, a new sample

is acquired by the sensors monitoring the scene, and has to be classi�ed into one of the

c existing categories. Following the nearest-neighbor method, the distance from the new

sample to each of the n labeled samples has to be computed according to the metric at

hand. The label of the nearest sample found will dictate the category into which the new

sample is placed.

Let us de�ne the time interval between two consecutive sample acquisitions as a time unit.

The same deadline imposed for the error-correcting problem is set here too. Speci�cally, after

an initial delay of n time units, a newly acquired sample must be labeled at the end of each

time unit. The model of parallel computation used remains the unidirectional linear array.

Each processor Pi stores a pair (Ai; ci), where Ai is a vector describing the i-th initial sample

and ci denotes its classi�cation.

Vector X, corresponding to the new sample acquired, enters the array at P1 and then

travels towards Pn, reaching a new processor each time unit. Processor Pi computes the

distance between vectorsX and Ai, compares it with the current minimum received from Pi�1

and transmits further to Pi+1 three elements: the vector X, the updated minimum and the

label of the sample achieving that minimum. All of these (computation and communication)

steps are carried out by processor Pi during one time unit.

Computing the distance between two samples is the most time-consuming operation, and

we base our analysis on the assumption that only one such distance can be determined during

one time unit. In this way, n time units after X has been received by P1, Pn is able to output

the label associated with the sample represented by X. Furthermore, from that moment on,

subsequent samples are accurately labeled at a rate of one sample per time unit, due to the

pipeline capabilities of the linear array of processors.

The sequential processor has just enough time to determine the nearest neighbor only

for the �rst sample acquired. Starting with the second one, the time available to classify the

current sample is of one time unit. Since only the distance to one of the n existing samples

can be computed before the deadline, in the majority of cases the sequential machine will fail

to correctly classify the newly acquired sample. Once more, parallelism makes the di�erence

between failure and success.

We notice that this conclusion is true, even if the sequential processor is faster than a

processing element of the linear array. Indeed, in the worst case, even if the computation of

up to n� 1 distances can be successfully completed during one time unit, the single sample

left over might be the nearest neighbor of the sample being classi�ed. This can lead to an

incorrect classi�cation, as shown in Figure 2. Sample X is incorrectly classi�ed as a square

because the distance from X to A was not computed due to the limited time. The sequential

machine has falsely declared B as the nearest neighbor of X.

8



X

?

A

B

Figure 2: Misclassi�cation by the sequential machine.

4.2 Reactive real-time system

The real-time paradigm constructed for the classi�cation problem has some features that

might justify an argument characterizing it as simplistic. Input data arrive at a constant

rate and the same is true for the results produced. The computational e�ort spent in order

to produce a result is the same for any of the outputs. Finally, once a result is output, there

is no way in which it can inuence subsequent computation. In the following, we de�ne and

analyze a real-time paradigm for classi�cation, based on the nearest-neighbor method, that

is more complex, at least in the aspects mentioned above.

The most important element of change is the fact that each new sample classi�ed is used

together with the rest of the labeled samples to classify the subsequent samples acquired.

This change has two major consequences. First, the real-time paradigm becomes a data-

accumulating paradigm. At any given step, the number of samples that have to be processed

in order to avoid a misclassi�cation is one more than in the preceding step. Secondly, the

decision taken in one step depends on the decisions taken in the previous steps, thus making

the classi�er a reactive system. This can have a major impact on the correctness of the

classi�er's results, especially when time constraints are imposed.

The real-time computation starts with the acquisition of the �rst new sample, at the

beginning of the �rst time unit. Only one sample can be acquired during one time unit, but

not every time unit is characterized by the acquisition of a new sample from the scene being

monitored. The frequency of these gaps in the stream of newly acquired samples is described

by the following function:

fin(i) = b
i� 1

n
c; for i = 1; 2; 3; � � �

This means that after the i-th new sample has been acquired, at the beginning of the

current time unit, a gap of fin(i) time units will follow, that is, no new sample is received

during the next b i�1
n
c time units. In other words, at a global scale, the data-arrival rate

slightly declines over time.

The rate at which the outputs must be produced is restricted by a very similar law. An

interval of n time units is allowed for the �rst new sample to be classi�ed. Afterwards,

the discontinuities in the output stream of labeled samples have to appear with a frequency

described by the following function:

9



A1
xn

A2
xn-1

A3
xn-2

An-1
x2

An
x1

xn+1
xn xn-1 xn-2 x2x3

P P P P Pnn-1321

Input Output

Figure 3: Synchronous storing step in the bidirectional linear array.

fout(i) = d
i

n
e; for i = 1; 2; 3; � � �

According to this function, if the i-th sample acquired is output along with its computed

label at the end of the current time unit, then the class to which the (i+1)st sample belongs

must become known fout(i) time units later. Equivalently, the gap in the output stream,

between the ith and the (i+1)st labeled samples should not exceed d
i

n
e time units.

The computational steps performed for the correct classi�cation of the �rst sample re-

ceived by P1 are much the same as in the case of the simpler real-time paradigm described

in the previous section. Indeed, the distances between X1 (the vector representing the �rst

new sample acquired) and A1 to An (the vectors stored in the processors of the linear array

before the beginning of the computation) are successively computed by P1 to Pn, keeping

track of the current minimum. At the end of the n-th time unit, the vector X1 along with

the label of its nearest neighbor are output by Pn. In the same time unit, X2 has reached

Pn�1, while the distance between Xn and A1 has been computed by P1. At this moment,

each processor stores in its local memory a copy of the new sample they currently hold. The

situation is depicted in Figure 3.

During the following n time units, each processor Pi has to compute two distances for

each new sample it receives, one to Ai and the other to Xn�i+1. Since this has to be

done sequentially, and the assumption that only one such distance can be computed during

one time unit is still valid, it results that a new sample is processed for two time units in

each element of the linear array. This will generate a one time unit gap between any two

consecutive labeled samples of the �rst n+ 1 output.

After Xn+1 and its corresponding label are output by Pn, each processor stores a third

sample in its local memory. The three vectors in the memory of Pn are now An, X1 and

Xn+1, while P1 possesses a copy of A1, Xn and X2n. The immediate consequence is that

the length of the gaps in the output stream increases to two time units. As more and more

new samples are acquired, this length will continue to increase by one time unit after each

group of n samples received. We note in passing that the gaps in the input stream allow for

an immediate processing of the new samples upon arriving, without storing them for a later

processing stage.

We end the presentation of the parallel algorithm which solves the classi�cation problem

in the new real-time environment with a technical detail. When the current minimum is

passed along to the next processor in the linear array, the class identi�er of the sample

realizing this minimum distance has to be transmitted also. On the other hand, when a new

set of n samples are stored in the local memories of the n processors composing the linear

array, only one of them (namely the one stored by Pn) is already labeled. The classi�cation

10



of the others is not yet known, at the time they are stored. This may lead to the situation in

which the current minimum is achieved by an unlabeled sample, therefore making impossible

the transmission of the class identi�er to the next processor in the array.

In such cases, only the index i of the vector Xi representing the current nearest neighbor is

transmitted further. The label ofXi will become known only afterXi is completely processed

by Pn. At this moment, after it is produced as output, the computed label (paired with the

index i) is also transmitted backwards through the array, down to the processor storing Xi.

When such a pair (i; label of Xi) encounters at some point in the array an index i traveling

in the opposite direction, the index i is substituted with the class identi�er label of Xi and

sent forwards.

Following the procedure highlighted above, the parallel machine is able to handle the

input stream and produce the requested output within the given deadlines. Each newly

acquired sample is correctly classi�ed while the speci�cations of the real-time paradigm are

fully respected. Theoretically, the parallel machine can accurately classify an in�nite number

of samples, acquired at a rate dictated by fin. The only limitation comes from the size of

the memory available to each of the processors in the bidirectional array.

By contrast, the sequential machine can guarantee a correct classi�cation only for the �rst

sample received, taking advantage of the relaxed deadline for the �rst output. After that,

it simply cannot cope with the high output rate imposed by fout. The natural consequence

is a high probability of misclassi�cation for any of the subsequent samples received. This

is true despite the fact that output deadlines become more relaxed over time. The data-

accumulation nature of the paradigm demands an increasing computational e�ort in order

to produce a correct classi�cation result.

The performances of the sequential and parallel machines in the complex real-time envi-

ronment analyzed can be measured from at least two points of view. On one hand, we can

compare the correctness of the classi�cation for a single (arbitrarily chosen) sample in the

worst possible case. In this respect, we are advancing from a total misclassi�cation in the se-

quential case to a perfect classi�cation achieved by the parallel model. Another alternative,

and probably a more realistic one, would be to monitor the number of correct classi�cations

produced by each of the algorithms over a certain period of time. It is not di�cult to see

that, in the worst case, this number equals 1 for the sequential machine, regardless of the

length of the time interval monitored. For the bidirectional array of processors, the number

of correct classi�cations tends to in�nity, when the length of the time interval taken as refer-

ence approaches in�nity. If we take this number as a measure of the quality of the solution

produced by the respective algorithm, we can conclude that the quality improvement pro-

vided by the parallel algorithm is unbounded at the cost of an in�nitely long time interval

elapsed.

5 Conclusion

We have analyzed in this paper the impact of time constraints on computational processes

employing the nearest-neighbor method. In both domains investigated, the sequential so-

lution was compared to the one arrived at using a parallel model of computation, namely,

the linear array of processors. The results obtained prove that in a real-time environment

11



parallelism can change the outcome of a computation from failure to success, or provide

an unbounded improvement in quality. The paper also con�rms that even weak models of

parallel computations are capable of remarkable improvements in the quality of the solution

computed, when compared with a sequential machine.

However, we believe that the most interesting results were obtained in the study of

reactive real-time systems. To date, in all theoretical analyses of real-time computations,

improvements in the quality of the solution, brought about by parallelism, were due to the

�rm deadlines imposed on when the solution has to be produced. To our knowledge, this is

the �rst real-time paradigm investigated (from an algorithmic point of view), in which the

a priori deadlines, establishing when the output is needed, are not all equally important.

To be more speci�c, it su�ces to set as �rm only the �rst two deadlines and relax all the

others so that the sequential machine has enough time to compute the distances to all of

the existing samples. In the worst case, a single error in the classi�cation of the second

new sample acquired will generate a theoretically in�nite series of misclassi�cations for the

subsequent samples received.

Although limited time resources are directly responsible for the �rst misclassi�cation,

it is the reactive nature of the system that triggers the subsequent classi�cation errors.

This observation seems to support the idea that a reactive system placed in a real-time

environment with deadlines set for producing the output is extremely sensitive to these

deadlines (especially the �rst). If only one such deadline is too tight for the machine's

capabilities, the e�ect on all of the outputs generated afterwards might be dramatic. In

other words, a reactive system with insu�cient computational resources may never recover

from an error generated in its output. This suggests that the behavior of reactive systems

in real-time conditions and the inuence of parallelism on them are worthy of further study.

References

[1] S.G. Akl, Superlinear performance in real-time parallel computation, Proceedings of the

Thirteenth Conference on Parallel and Distributed Computing and Systems, Anaheim,

California, August 2001.

[2] S.G. Akl, Nonlinearity, maximization, and parallel real-time computation, Proceedings

of the Twelfth Conference on Parallel and Distributed Computing and Systems, Las

Vegas, Nevada, November 2000, pp. 31{36.

[3] S.G. Akl and S.D. Bruda, Parallel real-time optimization: beyond speedup, Parallel

Processing Letters, 9, 1999, pp. 499{509.

[4] S.G. Akl and S.D. Bruda, Parallel real-time cryptography: Beyond speedup II, Proceed-

ings of the International Conference on Parallel and Distributed Processing Techniques

and Applications, Las Vegas, Nevada, June 2000, pp. 1283{1289.

[5] S.G. Akl and S.D. Bruda, Parallel real-time numerical computation: Beyond speedup

III, International Journal of Computers and their Applications, Special Issue on High

Performance Computing Systems, 7, 2000, pp. 31{38.

12



[6] R.O. Duda and P.E. Hart, Pattern classi�cation and scene analysis, John Wiley & Sons,

1973.

[7] J.G. Michaels and K.H. Rosen, Applications of Discrete Mathematics, McGraw-Hill,

1991.

[8] M. Nagy and S.G. Akl, Real-time minimum vertex cover for two-terminal series-parallel

graphs, Proceedings of the Thirteenth Conference on Parallel and Distributed Computing

and Systems, Anaheim, California, August 2001.

[9] M. Nagy and S.G. Akl, Locating the median of a tree in real time, Technical Report

No. 2001-445, Department of Computing and Information Science, Queen's University,

Kingston, Ontario, May 2001.

[10] N. Nagy and S.G. Akl, The maximum ow problem: A real-time approach, Proceed-

ings of the Thirteenth Conference on Parallel and Distributed Computing and Systems,

Anaheim, California, August 2001.

13


