The Case for Datacentric Grids

D.B. Skillicorn
Department of Computing and Information Science
Queen’s University, Kingston, Canada
skill@cs.queensu.ca

November 2001
External Technical Report
ISSN-0836-0227-
2001-451

Department of Computing and Information Science
Queen’s University
Kingston, Ontario, Canada K7L 3N6

Document prepared November 15, 2001
Copyright (©2001 D.B. Skillicorn

Abstract

We argue that the properties of online data make it effectively immovable. Massively parallel
computations involving such data must therefore be constructed in a completely different way —
one that replaces the processor-centric assumptions that underlie almost all programming models

by datacentric assumptions. We discuss the implications of this change for grid architectures and
their programming models.



The Case for Datacentric Grids

D.B. Skillicorn
skillQcs.queensu.ca

Abstract: We argue that the properties of online data make it effectively immovable. Mas-
sively parallel computations involving such data must therefore be constructed in a completely
different way — one that replaces the processor-centric assumptions that underlie almost all pro-
gramming models by datacentric assumptions. We discuss the implications of this change for

grid architectures and their programming models.

1

Grids are geographically distributed platforms for computation, accessible to their users
via a single interface. They provide computational power beyond the capacity of even the
largest parallel computer system, and merge extremely heterogeneous physical resources into
a single virtual resource. There is considerable variation in what is meant by a grid, but the

Perhaps surprisingly, it can be argued that the information revolution has caused
managements to be less well informed than they were before. They have more
data, to be sure, but most of the information so readily made available BY IT
is about internal company matters. ...the most important changes affecting an
institution today are likely to be outside ones, about which present information
systems offer few clues.

One reason is that information about the outside world is not usually available
in computer-useable form. It is not codified, nor is it usually quantified. This is
why IT people, and their executive customers, tend to scorn information about
the outside world as “anecdotal”. Moreover, far too many managers assume,
wrongly, that the society they have known all their lives will remain the same
forever.

Outside information is now becoming available on the Internet. Although this is
still in total disorganized form, it is now possible for management to ask what
outside information they need, as a first step towards devising a proper informa-
tion system for collecting relevant information about the outside world.

Peter Drucker, The Way Ahead, A Survey of the Near Future, in The
Economist, November 3rd 2001, pl4.

Introduction

following properties are common [3]:

e Grids are large both in terms of the number of potentially available resources, and the

geographical distances between them.

e Grids are distributed, that is the latencies involved in moving data between resources

are substantial and may dominate applications.



e Grids are dynamic, that is the available resources change on the same time scale as the
lifespan of a typical application.

e Grids are heterogeneous, that is the form and properties of sites differ in significant
ways.

e Grids cross the boundaries of human organizations, so that policies for access to and
use of resources differ at different sites.

Grids present significant research challenges in finding ways to provide a single interface to
such underlying complexity.
Three different kinds of grids have been proposed in the literature:

1. Computational grids: These represent the natural extension of large parallel and dis-
tributed systems, and exist to provide high-performance computing. They assume a
set of available compute servers, and individual users who use a single point of con-
tact with the grid to execute single computations that require more than one compute
server.

2. Access grids: The emphasis here is on constructing a virtual environment in which
a number of users, potentially from different organizations and perhaps only for a
short time, can interact as if they used a single dedicated hardware platform. This
requires managing access to many specific, small resources that are actually located
inside large, complex, organizational computer systems and networks. Performance is
typically much less of a priority than it is for computational grids [4].

3. Data grids: These exist in order to allow large datasets to be stored in repositories
and moved about with the same ease that small public files can be moved today. They
represent an intersection of concerns from computational and access grids, driven by
the need to handle large datasets without constant, repeated authentication. Data
grids seem at present to be largely motivated by the data handling needs of next-
generation particle accelerators (for example, the EU Data Grid, the Particle Physics
Data Grid and the Globus Data Grid [1]).

In this paper we suggest a fourth kind of grid, datacentric grids, whose special focus is appli-
cations that use large amount of data (which we will argue are effectively immovable). His-
torically, data-intensive applications tended not to require much computation. New classes
of applications are being developed that are both data-intensive and computation-intensive.
Datacentric grids provide the massively parallel infrastructure for such applications.

2 Motivation for datacentric grids

There are six factors about online data that motivate a new kind of grid.

One of the most interesting statistics today is that, while the processing power of leading-
edge processors doubles every eighteen months, the amount of data stored online quadruples
over the same time period. Of course, the number of processors also increases, but not nearly



as quickly. The divergence between these two rates of growth is large and makes it clear
that examining online data in its raw form is increasingly a luxury.

The amount of data already stored online is large. Computations that regard data as a
commodity to move around the internet face two difficulties. First, the amount of bandwidth
required is substantial, even given the present and potential capacity of fiber. Second, the
latencies involved are significant. At planetary distances, most of this latency is time of flight,
so there is not much potential for technological improvements once low-latency (i.e. NIC-
based) interfaces become standard. Computations that use remote data must necessarily
perform as if they are accessing a deep memory hierarchy. The practice of accounting for
performance only after programs begin to execute conceals the effects of this latency at
present, but it is, in the end, unavoidable.

Large amounts of data behave as if they possessed inertia. It is relatively easy and cheap
to store data and, once it is in flight, it is relatively easy to keep it moving. However, the
transitions between these two states are both slow and expensive.

Increasingly there are political and legal constraints on the movement of data. For
example, privacy considerations often prevent information about the behavior of individuals
from being moving between jurisdictions.

There are also social constraints on the movement of data. If data is perceived to have
value, its owners may let others access it, but only by retaining control of it and acting as
gatekeepers.

These six factors:

the rate of growth of online data,

the bandwidth required to move raw data,
latency at global distances,

inertial properties of data,

legal and political restrictions, and

social restrictions

suggest that online data should be regarded as essentially immovable in its raw form. Indeed
some data repositories about to be built will be so large that there will be nowhere else with
enough space to hold them.

This has a number of immediate implications:

e Storage repositories will be paired with substantial computational engines or compute
servers so that raw data can be processed locally.

e A major computational goal will be the reduction of raw data to more condensed forms
that are small enough to be moved away from their site of origin. These condensed
forms will be more sophisticated than simple compressing the raw data; they will have
to encapsulate information extracted from the data.

e There will be advantages to storing condensed forms as well as raw data, since they
will typically have required much effort to extract. Storage repositories may therefore
become increasingly hierarchical, with highly condensed representations most accessible
and raw data least accessible. In other words, storage repositories will be arranged as
knowledge caches.



e A new programming model will be required that reflects the reality that computations
must move to data, rather than data to computations.

3 A datacentric programming model

We have suggested that a programming model suitable for applications that use online
data must take into account both the immovability of the data and its organization into a
hierarchy of levels representing more and more conceptual (and compact) representations
of it. Existing programming models have a deeply processor-centric view, although there is
already a serious mismatch between this view and the performance characteristics of modern
processors. A setting in which data is immovable forces a new programming model in which
computations move to data, rather than data to computations; in other words a datacentric
model.

There are a number of other factors that will constrain the design of such a datacentric
programming model. Parallel programming models already deal, to some extent, with the
placement of data. However, the usual assumption is that the data is under the programmer’s
control: it can be divided equally among the available processors, for example. This (implicit)
assumption does not hold in a datacentric grid. The way in which the data is divided among
physical locations depends on a myriad of organizational, political, legal, and pragmatic
considerations. Therefore, a program must take the arrangement and placement of data as
it finds them. A datacentric programming model must be able to handle this.

Many of today’s data intensive applications do not require much computational power
— their costs are dominated by the times to retrieve the relevant data from slow storage
devices. Datacentric grid applications are likely to require both access to data, and large
amounts of computation. A good example of a datacentric application is data mining, a
class of applications whose performance demands are climbing rapidly towards a teraflop
and access to a terabyte of data. Thus a programming model for datacentric applications
is not so much different from programming models for computational grids as extensions to
them with major new requirements.

The third factor arises from concerns about leakage of information. Much of the writing
about grids assumes (sometimes implicitly) that grids will be public in the sense that the
applications of any authorized user of the grid might execute on any site belonging to that
grid. T have argued elsewhere [6] that it is very unlikely that any level of security will entice
commercial organizations into a framework with an assumption like this. A much more
likely scenario is the existence of (a small number of) public grids executing applications
where leakage of information is not a major concern; and a much larger number of virtual
private grids, each within a single organization. These virtual private grids will act as the
computational resource for all kinds of enterprise computation.

From a datacentric point of view, the worldwide web can be seen as a rudimentary form
of public grid, especially as both search engines and servlets allow users to execute code on
the computers that host data. A much more common datacentric application in the future
is likely to involve both datasets stored within a virtual private grid and public datasets
that exist outside it. For example, a company may wish to discover a correlation between
some internal action and the content at (public) news media sites. A programming model to

4



Public Grid Virutal Private Grid

Datasets

Local extraction; local computation;
perhaps distributed global computation

Exchange

Remote global computation(s)

User Execution planning

Figure 1: A typical datacentric application

implement such an application must be aware of the boundary between private and public
data sources and compute servers, and must arrange activities in the public space in a way
that does not reveal, directly or indirectly, the part of the computation in the private space.

A typical scenario for a datacentric application is shown in Figure 1. A user, who may be
using a thin and perhaps mobile client, wants to start an application. This may be expressed
in a kind of query language, which would have the advantage of opening up datacentric grids
to a wider range of users, but might also be a programmed application. Let us assume that
the user’s point of contact is within a virtual private grid. The application now enters the
execution planning phase. This involves discovering where appropriate data is located, where
resources are available to execute the cycles required by the application, and translating the
application into a set of tasks to be executed at these locations. This is fairly conventional
in the sense that these issues arise in computational grids. However, there are several extra
constraints: computations that condense data or extract conceptual information from it
must be colocated with the data on which they will act; there will often be communication
between these computations during the process of knowledge extraction, so the choice of
which versions of datasets to use is further constrained by considerations of communication
bandwidth and latency; and there will often be further processing of the results of knowledge
extraction which can take place at other compute servers. Those parts of the computation
involving public datasets must be further specialized to avoid revealing information. Finally,
the results of the application must be rendered appropriately for the user’s client and returned
to it.



4 Differences

There are many commonalities between programming applications for datacentric grids and
for other large-scale distributed systems. Here we emphasize some of the differences.

Middleware systems used for distributed databases serve something of the same role as
datacentric grids. The main difference is that databases have a strong client-server structure,
whereas datacentric grids allow much more truly distributed computation. For example, the
results of a computation at one dataset might trigger a new computation at a different
dataset, and this might continue for a number of steps. This would typically require a
centralized control process in a middleware setting.

PMML (Predictive model markup language) has many of the same goals as the datacen-
tric grid but, like the web, it presents a distributed model to the user but uses a centralized
model internally. A PMML query gathers data to the user’s location and processes it there,
rather than distributing the necessary computations to the locations of the data. It’s chief
strength is a strong technology for handling data in varying formats, by allowing each dataset
to describe its semantics using an XML DTD.

Another set of techniques that interset this space are the .NET plans of Microsoft and
Sun’s Enterprise Java Beans. These techniques aim to automate the effort required to connect
business applications across organizations. The main differences are that (a) datacentric grids
dynamically create the infrastructure required to allow useful work at different sites while
these other techniques must put together each particular pattern of collaboration, and (b)
datacentric grids have performance as one of their most important criteria while these other
techniques do not.

The issue of data formats is indeed an important one for all data-intensive applications.
Distributed datasets will inevitably fail to conform to centralized formatting standards. In
a datacentric setting, applications that dispatch code to remote datasets must allow them
to adapt to the data formats they find there. Text data, in particular, tends to vary widely
in its format even when its content is essentially the same. For example, consider how many
different ways there are to mark up an html page that produces exactly the same rendering.
Little work has been done on this problem.

A second new problem for datacentric grids is finding the right dataset(s) for each problem
instance. For many applications, datasets may be replicated for locality, or individual data
items may exist in more than one dataset. It may be impractical to completely index datasets,
so an application searching for a particular item or kind of item may have to explore or search
a hierarchy of indexes in order to find it. This further complicates execution planning.

A third problem for datacentric grids is to find representations for extracted knowledge
that can be shared across an application. For example, suppose an application uses three
different datasets and wants to compute a single result from them. Many organizations
acquire information about their customers via a number of channels: telephone, web sites,
and stores. Building profiles about their customers requires accessing information from all
three channels, but this is often stored in different locations. It is impossible to decide, in
advance, what the best representation of the information at each site is, because nothing
is known about the values and distributions present at each. The problem, therefore, is to
extract knowledge locally in a way that can be meaningfully combined into a global picture.



Some progress has been made with this problem (for example [5]) but it is extraordinarily
difficult.

This problem is also relevant to the eventual construction of knowledge caches for large
datasets. This requires even more, the design of knowledge representations that are likely
to be useful to multiple applications using each dataset, not all of which can be clearly
envisaged beforehand.

5 Applications of datacentric grids

The most compelling application for datacentric grids is distributed data mining. Much
online data concerns, in some way, the activities of people and devices, and so contains
useful information that could be used to improve such activities. Data mining is already
a major application for high-performance computing (although a somewhat shadowy one).
There tends to be an upper limit to the size of a cost-effective data storage system, which
drives organizations to partition their data. There is also a steady pressure towards privacy,
as awareness grows of how much information about individuals is stored online. This has led
to governmental regulations about movement of personal information across borders, again
forcing organizations to process data where it is stored. Hence, data mining increasingly
means distributed data mining, which we have argued must be expressed as a datacentric
computation. Interestingly, resource discovery in grids can itself be regarded as a distributed
data mining problem.

However, there are other applications for datacentric grids as well. For example, component-
based application construction (“cloud computing” [2]) has many of the same characteristics.
In this setting, an organization wishing to use a complex application, but only for a short
time, uses a template to gather code fragments from remote storage locations, assembles
them into a complete application, deploys it for a time, and then throws it away. The com-
plexity of the problem arises from the degree of customization that is possible. The user
may be able to select very precisely the behavior of the application; it may be configured
carefully for the user’s exact execution platform; and the pieces may exist in many places, so
that the closest copy must be found. This fits very well with the structure of a datacentric
application, but the ‘data’ in this case is fragments of program code.

Mobile agents can also be regarded as a datacentric application. The point of a mobile
agent is to move to a location remote from the user to carry out some action, rather than
fetching the appropriate data to the user’s location and acting on it there. This application
domain also makes it clear that execution planning need not be a centralized, initial task,
but may be allowed to evolve as an application executes.

6 Conclusions

We have argued that the characteristics of online data increasingly suggest that it should
be used in place, rather than copied around. Almost all existing computing technologies are
deeply processor-centric; the immovability of data requires a complete change of perspective,
and the development of frameworks that are datacentric. We have suggested that datacentric



grids share many properties with computational grids, but are substantially more complex
because of the extra constraints imposed by the arrangement and location of data. This small
change in perspective necessitates a large change in programming framework Datacentric
grids represent a new kind of massive and geographically distributed parallelism.

References

[1] W. Allcock, A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The
data grid: Towards an architecture for the distributed management and analysis of large
scientific datasets. Journal of Network and Computer Applications, 23:187-200, 2001.

[2] A survey of software: The age of the cloud. The Economist, April 14th 2001.

(3] L. Foster and C. Kesselman (eds.). The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann, San Francisco, 1999.

[4] L. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable
virtual organizations. International Journal of Supercomputer Applications, 2001.

[5] D.E. Hershberger and H. Kargupta. Distributed multivariate regression using wavelet-
based collective data mining. J. Parallel and Distributed Computing, 61(3):372-400,
March 2001.

[6] D.B. Skillicorn. Motivating computational grids. Technical Report 2001-450, Queen’s
University, Department of Computing and Information Science, November 2001.



