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Abstract

Semidiscrete decomposition (SDD) is usually presented as a storage-efficient analogue of singular
value decomposition. We show, however, that SDD actually works in a completely different way,
and is best thought of as a bump-hunting technique; it is extremely effective at finding outlier
clusters in datasets. We suggest that SDD's success in text retrieval applications such as latent
semantic indexing is fortuitous, and occurs because such datasets typically contain a large number
of small clusters.
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1 Introduction

A dataset in tabular form, with n rows representing objects, and m columns representing
attributes, has a natural geometric representation. Each object can be considered as a point
in the m-dimensional space spanned by the attributes. A common data mining approach is
to cluster these points as a way to resolve structure in the dataset. For example, objects
that are similar may fall in the same cluster.

When m is large, this geometrical insight is not as useful as it might be because high-
dimensional spaces are hard to work with. For example, the distance from a point to its
nearest and farthest neighbour tends to be almost the same. Hence, although many clustering
techniques are known, they are not necessarily effective as m becomes large (say > 15).

Singular Value Decomposition (SVD) [5] is a dimension-reduction technique that can be
used to generate a low-dimensional representation of a high-dimensional dataset. Clusters
may be immediately apparent in this representation, or it may be used as input to other
clustering techniques. We present SVD in some detail because it is, in some ways, analogous
to semidiscrete decomposition.

SVD transforms an m-dimensional space into a new m-dimensional space whose axes
have two useful properties: they are orthonormal, and there is an ordering of the axes such
that the variation in the original data is concentrated, as far as possible, along the earlier
axes. Hence ignoring dimensions associated with later axes provides a faithful representation
of the original data in a lower dimensional space. SVD has been used successfully, under the
name latent semantic indexing [1,2], for information retrieval in text. In this application,
the early dimensions capture much of the information about the correlated use of terms, and
retrieval performance is very strong.

Given an n X m matrix A with n > m , the singular value decomposition of A is

A =UxvT

where U is n x m, X is m x m, and V is m X m. U and V are orthonormal, and X is a
diagonal matrix whose elements are a set of non-negative, decreasing singular values, oy,
09, ..., 0 (where r is the rank of A, r < m). The rows of U represent coordinates of the
corresponding rows of A in a space spanned by the columns of V. Symmetrically, the rows
of V represent the coordinates of the corresponding columns of A in a space spanned by the



columns of U. A rank k£ approximation to A can be computed by multiplying the matrix
consisting of the first £ columns of U, the upper left k£ x k£ submatrix of ¥ and the first &
rows of V71,

The semidiscrete decomposition (SDD) [9,10] was developed for image compression, but
has been used more often as a substitute for latent semantic indexing [6-8]. It is usually
presented as a weak analogue of SVD, in which the axes of the transformed space are no longer
orthonormal, and the coordinates of points in the transformed space are taken only from the
set {-1,0,1}. The transformation itself is a mixed programming optimization problem. Its
complexity is (n+m)3, which makes exact solutions feasible for some data mining problems.
There is also a heuristic approximation algorithm which is described below. The benefit
of SDD over SVD is usually considered to be the compactness of the representation of the
transformed space, since each coordinate can be stored in 2 bits.

Given a matrix A, the semidiscrete decomposition of A of dimension k£ (now unrelated
to the rank of A) is

A = Xi D Yy

where the entries of X and Y} are from {-1,0,1}, and D, is a diagonal matrix. X is n x k,
Dis k x k,and Y is k x m. We drop the subscripts if they are not important.

Let x; be the ith column of X, d; the ith diagonal element of D, and y; the ith row of Y.
The standard algorithm for computing the SDD generates a new column, diagonal element,
and row on each step. Let Ay by the n X m matrix of zeroes. The algorithm is, for each step
i

1. Subtract the current approximation, A; 1, from A to get a residual matrix R;.
2. Find a triple (z;, d;, y;) that minimizes
I Ri — dzy; ||” (%)
where z; isn x 1 and y; is 1 x m. The standard algorithm uses the following heuristic:

Choose an initial y;.

(a)

(b) Solve (x) for z; and d; using this y;.

(c) Solve (x) for y; and d; using the z; from the previous step.
)

(d) Repeat until some convergence criterion is satisfied.
3. Repeat until 7 = k.

Matlab and C code for this algorithm is available from www.cs.umd.edu/users/oleary/
SDDPACK/.

The rows of X are a description (really the coordinates) of an object in the space defined
by the new axes described by Y. Therefore, if we divide the objects according to whether
they have a —1, 0, or 1 in the first column of X, we have separated them into three classes.
The second and subsequent columns can be used to further subdivide the objects, producing
a ternary decision tree structure. Note that, unlike conventional decision trees, this is an
unsupervised process — we have found clusters in the original data. A further step is required



to examine the leaves of this tree to see, for example, whether they contain a homogeneous
grouping of related objects. However, we have not discussed the order in which the axes (of
Y') are chosen so, while we know that the dataset can be partitioned into subsets, we do not
know which of these partitions are most significant. This turns out to be a difficult question,
which we address in the next section.

2 What SDD is doing

We illustrate the way in which SDD constructs axes of the transformed space using a small
matrix with an obvious structure. Suppose that

1 1 111111
11111111
11121211
A — 11111111
11111111
11111111
11121211
11111111,
The (first 5 columns of the) X matrix produced by SDD are
1 0 -1 0 —117
1 0 -1 0 -1
11 -1 1 -1
1 0 -1 0 -1
X=110-10 -1
10 -1 0 -1
11 -11 -1
10 -1 0 -1
and the first 5 columns of (the transposed matrix) Y are
[1 01 0 1]
1 0101
1 0101
. 11111
= 1 01 01
1 1111
1 0101
1010 1]
The values of D are
1.0625
0.9375
D = 0.058594
0.058594
0.0036621
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Figure 1: A decision tree based on the example showing partitioning by row number (i.e.

object)

The decision tree that corresponds to the matrix X is shown in Figure 1.
conventional decision tree, this one is ternary. It also does not necessarily contain every
possible branch — in other words, for some new data, the only possible classification implied

by this decision tree is ‘unknown’.

Consider the approximation matrices that are subtracted from A at each stage of the
algorithm. On the first step, this matrix is the product dyx,y;, where x; is the first column

3,7

1,2,4-6,8

of X and ¥, is the first column of Y7 above. The product of z; and v is

and d; is 1.0625, so the matrix that is subtracted from A is the matrix

[ 1.0625
1.0625
1.0625
1.0625
1.0625
1.0625
1.0625

| 1.0625

In other words, if the matrix is represented in a side view as a histogram as in Figure 2, then
the effect of the subtraction has been to remove a slice from the original matrix, leaving four
positive peaks and the rest of matrix slightly negative.

On the second step, the matrix that is subtracted is given by the product of x5 and ys,

1.0625
1.0625
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1.0625
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Figure 2: A side view of A showing the effect of the first subtraction

which is

1
OO OO oo o
SO OO O o oo
OO OO oo o
_— o oo +HOO
SO OO oo o
_— o oo +HOO
SO OO O oo
SO O OO oo

0

In other words, this product picks out the shape of the remaining peaks. Note also that the
value of dy is 0.9575, which is exactly the height of the peaks. The effect of the subtraction
of the second matrix is to leave a matrix that is almost filled with small negative values.

We can see from this example that the general effect of SDD is to find regions of the
matrix in which the magnitude of the values is relatively large. In fact, it is the volume, in
the sense of Figure 2, that determines which region is selected, since both the magnitude of
the values and the size of the region over which they occur are used. SDD is a form of bump
hunting — on each step, it finds a region of the dataset that sticks out above (below) the
rest of the data when values are considered as heights. The product of z; and y; selects the
position of the region, while d; selects the height of the bump. (This is slightly simplified
because SDD can also remove bumps with negative correlation with a selected pattern of rows
and columns.) The use of the 2-norm in the objective function being maximized means that
height has more effect on bump selection than the size of the dataset covered by the bump.
This means that the algorithm tends to first remove high, but local, bumps in preference to
flatter but more widespread bumps. In other words, it tends to find outlier clusters in the
data. This explains the order in which axes are chosen by SDD.

Given this discussion, it seems odd that the first bump removed in the example above is
a large flat one, rather than the more localized bump that is removed second. The reason is
that the localized bump is not very high, so the number of locations of the large flat bump
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overwhelm the height of the small number of locations in the smaller bump. When the height
of the peaks are increased, then the localized bump is removed first. For example, if we start
with this matrix:

1 1 1 11111
11111111
11191911

A = 11111111
S ]l1 1111111
11111111
11191911
1111111 1]
then the X matrix becomes
[0 1 01 0]
01 01 0
11 -1 1 -1
01 01 0
X = 01 01 0
01 01 0
11 -1 1 -1
| 0 1 01 0 |
and Y becomes i i
01010
01010
01010
11111
Y = 01010
11111
01010
|01 01 0]
with the values of D
_ 9 -
0.9375
0.9375
D = 0.058594
0.058594
| 0.0036621 |

It is clear that now the peaks are removed first, and the large flat slice from the bottom
second. It is important to note that the order in which slices are removed matters — if the
flat slice had been removed first, its corresponding d value would have been 2 (= 128/64,
the average value of the matrix) and the second d value would have been 7.

Although SDD was originally developed as a storage-efficient representation approximat-
ing SVD, these examples make it clear that it is actually computing something quite different.
When the natural structure of a dataset is many small clusters then SVD and SDD will tend
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Figure 3: Plot of sparse clusters, position from SVD, shape (most significant) and colour
from SDD

to produce similar results: SVD because it captures a faithful low-dimensional representation
of the cluster structure of the data, but SDD because each cluster looks like a small bump.
This is shown in Figure 3 which uses a dataset typical of text retrieval applications — many
zeroes, the remaining values small positive integers.. Here the position of points (in 3 dimen-
sions) is determined by SVD but the shape and colour used to render them is determined
by SDD. It is clear that each cluster (in the SVD sense) is homogeneously labelled by SDD.
Hence the two techniques agree.

The critical fact is that any congruence between outcomes is a form of coincidence, since
each technique works in a completely different way. This explains both the success of SDD
as a substitute for SVD in latent semantic indexing (because document-text matrices tend
to contain many small clusters) and the lack of success of SDD we had experienced in other
data mining applications. SDD is an outlier detector and so will tend to emphasize the most
unusual patterns in a dataset — using it as if it were an analogue of SVD leads to frustration.

The heuristic embedded in the basic SDD step leads to two problems, one of them
solvable, the other not. The algorithm is quite sensitive to the initial choice of y;. This
means that it does not always find the largest possible slice to remove from the matrix at
each step. Hence later steps can find a large slice that was missed on previous steps. It is
therefore possible that the values of D are not always decreasing.

We apply the following modification to the algorithm. After the X, Y, and D matrices
have been computed, we do the following:



1. Form the product of the d;s with the number of non-zero entries in the corresponding
columns of Y.

2. Sort the columns of X, elements of D and rows of Y into decreasing order of the
products from the first step.

3. Form a decision tree using the new arrangement of the columns of X.

This has the effect of reordering the slices so that those with the largest volume appear first,
in other words, the strongest outliers appear closest to the top of the decision tree.

The second problem occurs because the height of a slice removed depends on the current
contents of the matrix, which depends on the order in which previous slices were removed.
Reordering at the end cannot therefore reproduce exactly the effect of having chosen a
different removal order during the algorithm’s execution. The problem occurs because the
height of a slice is determined by the average height of the locations that will be removed.
In the second example above, the peaks of height 9 are completely removed at the first step.
However, if the matrix is changed slightly like this:

g S g S G e g sy
G e e st
S g S g S G o g
— O O
O G S S G G S g
I e T G N
U G S G S g G g
S g S g S g S g

then the slices are removed in exactly the same places and orders, but the values of D are

now
8.75

0.9375
D = 1.6875
0.51562
0.51562

in other words, slightly less of the peaks is removed. In some fundamental sense, the way in
which the d; are computed prevents the original matrix from being partitioned as cleanly as
it might otherwise be. There seems to be no simple solution to this problem.

3 Examples of outliers discovered by SDD

We now give some examples illustrating how SDD finds outliers, and how its clusters relate
to those produced by SVD.

In a geochemical dataset containing 1670 sample points measuring the concentration of
33 elements, SDD produced the decision tree shown in Figure 4. The outlier clusters that
appear near the top of the tree are:
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Figure 4: The decision tree for a geochemical dataset

Cluster 1: a cluster of size 3 containing high concentrations of Ce, Hf, La, Sr, Th,
and Zr — these appear to be samples from pegmatites, which are of interest
because they may contain gemstones;

Cluster 2: a cluster of size 2 containing high concentrations of Co, Cr, and Ni
— these suggest mafic rocks and perhaps the presence of a nickel or platinum
ore body;

Cluster 3: a single sample containing high concentrations of Cd and Sb — this
probably represents a measurement problem since concentrations of cadmium
are notoriously hard to measure accurately;

Cluster 4: two samples containing high concentrations of Sn;

Cluster 5: a cluster of size 8 containing high concentrations of Cu, Pb, and Zn —
this represents typical sulphide mineralization;

Cluster 6: a cluster of size 3 containing all the samples in the dataset with high
concentrations of gold;

These clusters appear to have some inherent significance. In experiments using a number
of other techniques (neural networks, genetic algorithms, decision trees, Autoclass, k-means,
and support vector machines) no other technique was able to find outlier clusters such as
these in such a complex and highly correlated dataset.

A dataset containing observed properties of galaxies, with 8 attributes and 460 rows is
shown in Figure 5. Here the positions of the points are from an SVD and the colour-coding
from SDD. The resulting SDD tree is:
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Figure 5: Top-level outlier classes in a galactic dataset

10



0 41 red points
1 1 9 green points

0 1 0 103 blue points
1 1 red cross point
0 1 162 blue points

—1 2 magenta points
—1 1 142 blue points

It is clear that the visible outliers in the plot have been captured by the SDD decision
tree. More strikingly, the SDD decision tree has partitioned the single cluster generated by
SVD into a set of subclusters reflecting finer detail. Figure 5 makes the distinction between
SVD and SDD clear — points near a colour boundary will be interpreted as very similar by
any technique based on SVD but as completely dissimilar using SDD.

It is difficult to validate the results given by either technique in astrophysical terms.
However, at least some of the noticeable outliers are in fact unusual galaxies.

4 Related work

Friedman and Fisher [4] introduced PRIM, a technique for bump hunting that seems to be
quite effective. However, it is a top-down technique that finds bumps by removing slices in
one dimension at a time. In contrast, SDD finds bumps using a heuristic approximation to
a mixed programming problem.

Rule-based techniques can also be considered as finding bumps (regions of the dataset
with high confidence but small support). Some of these techniques (i.e. association rules) use
exhaustive search, and therefore do not necessarily scale well. Others use various heuristics
(e.g. beam search) to reduce the computational cost.

There are also a class of methods based on SVD that result in decision trees, notable
Boley’s principal direction divisive partitioning [3], which separates a dataset based on its
variation in the direction of the first singular value axis, and then repeats this process on
each partition of the dataset independently.

We conclude by comparing the classifications produced by SVD, SDD, and PDDP on a
small dataset with an obvious structure:

el e T e T e T e T S S S S T S S e S
e e e e e e == e e
el e T e T e e T S S S S S e i e Bl e Bl
e i e i = R = R e R en R e
e e e i i i =R == R e I e R e
e el = N o o e B e B e B e B e B e

C OO O R HREFE HREF -
O OO OO = ==
OO O R HREFE HRF -
OO O R HREF R
O OO R KRR KEREPR KRR KRHRRR
ORr R R KRR KEREPRRRKRRKR
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Figure 6: The decision tree produced by PDDP, partitioned by rows
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Figure 7: 2-D plot of dataset, positions from SVD, shape and colour from SDD

The tree produced by PDDP is shown in Figure 6. Figure 7 shows the position of points
in the first two dimensions produced by SVD (with the points colour coded using the SDD
classification which is shown as a decision tree in Figure 8). The decision tree produced by
SDD is more discriminating than the tree produced by PDDP. It also agrees better with the
apparent distinctions between points captured by the SVD representation.

5 Conclusion

We have shown that SDD works by finding regions of a dataset with anomalously large
(positive or negative) values and extracting them. It is therefore best regarded as a bump
hunting technique. SDD removes bumps with the largest ‘volume’; a quantity that is based
both on the magnitude of values and the number of positions in the dataset where they
occur. This has the general effect of selecting outlier clusters early in the process. We have
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8-9 10-11
Figure 8: The decision tree produced by SDD, partitioned by rows

demonstrated how this happens in some typical (small) datasets. We have also suggested a
modification to the basic algorithm designed to make outliers even more obvious.

The SDD technique works in marked contrast to singular value decomposition, which
is a space-transforming technique that attempts to model decreasing amounts of variation.
SDD and SVD agree on datasets that contain many small clusters, but do not agree when
datasets contain a few large clusters. This explains the observation that SDD can be used
quite effectively in latent semantic indexing.
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