Technical Report No. 2001-453

DISCRETE STEEPEST DESCENT
IN REAL TIME*

Selim G. Akl
Department of Computing and Information Science
Queen’s University
Kingston, Ontario K7L 3N6

Canada

Email: akl@cs.queensu.ca
Phone: (613) 533 6062
Fax: (613) 533 6513

November 28, 2001

Abstract

A general framework is proposed for the study of real-time algorithms. The framework
unifies previous algorithmic definitions of real-time computation. In it, state space traversal
is used as a model for computational problems in a real-time environment. The proposed
framework also employs a paradigm, known as discrete steepest descent, for algorithms
designed to solve these problems. Sequential and parallel algorithms for traversing a state
space by discrete steepest descent are then analyzed and compared. The analysis measures
the value (or worth) of a computed solution. The quantity used in the evaluation may be
the time required by an algorithm to reach the solution, the quality of the solution obtained,
or any similar measure. The value of a real-time solution obtained in parallel is shown to be
consistently superior to that of a solution computed sequentially by an amount superlinear

in the size of the problem.
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1 INTRODUCTION

Several recent studies have compared the behavior of sequential algorithms to that of their
parallel counterparts in a real-time computational environment. Two criteria were used to

assess the performance of these algorithms:

1. Running time: The primary purpose of parallel computation is to perform time-
consuming computations faster than is possible sequentially. Parallel algorithms are
evaluated using the speedup that they achieve over their sequential counterparts. This
measure of performance is defined as follows. Let T} be the time required (in the worst
case) by the best sequential algorithm for solving the problem at hand. Similarly, let
T, be the time required (also in the worst case) by the n-processor parallel algorithm
being evaluated, where n > 1. Denoting the speedup by speedup(1,n), we have:
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speedup(1,n) = T
A number of real-time computations have been described in recent publications for
which speedup(1,n) is superlinear in n. Examples include data-accumulating compu-
tations [1, 10, 13, 17, 18, 19], computations with multiple data streams [1, 12|, and
computations involving one-way functions [1, 4]. In these computations, speedup(1,n)

is typically on the order of n”®, or even x™, for some x > 1.

2. Solution quality: A second equally important motivation for using parallel computa-
tion is that a solution to a problem computed in parallel can in some circumstances be
better than that obtained sequentially. The improvement in the quality of a solution
is measured by a ratio known as the quality-up [3]. Let V; be the value of the solution
to the problem obtained sequentially. Similarly, let V,, be the value of the solution to
the same problem obtained in parallel using n processors. Then

quality-up(1,n) = VT

As with speedup, it was shown recently that within the real-time mode of com-
putation, some classes of problems have the property that a solution to a problem in
the class, when computed in parallel, is far superior in quality when compared to the
best solution obtained on a sequential computer. Specifically, quality-up(1,n) in these
cases is superlinear in n. Evidently, what constitutes a better solution depends on the
problem under consideration. Thus, for example, ‘better’ means ‘closer to optimal’ for
optimization problems [2, 8, 15, 20, 21], ‘more accurate’ for numerical problems [7],
and ‘more secure’ for cryptographic problems [6].
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Different models of computation were used to develop the parallel solutions described in
the cited references. They include the linear array, the reconfigurable multiple bus model,
and the parallel random-access machine. Furthermore, and partly as a consequence of the
particular choice of a computational model, the parallel algorithms used by previous studies
varied widely in their design.

This paper proposes a generalization of these earlier efforts. Specifically, four aspects of

real-time computation are generalized:

1. State space traversal is used as a general framework for the computation to be per-
formed (that is, the problem to be solved).

2. Discrete steepest descent is used as a general paradigm for the algorithm to be applied

when solving the problem at hand.

3. The model of parallel computation is as general as can be for our purpose: Any model
that is able to compute the minimum of n values using n processors in time that grows

as the logarithm of n could be adopted.

4. The number of stages traversed in going from the initial to the final state of the com-

putation measures the value or worth of a solution.

Sequential and parallel algorithms for traversing a state space by discrete steepest descent
are analyzed and compared. The analysis measures the value (or worth) of a solution, which
may be the time required by an algorithm to reach such solution, or the quality of the
solution obtained, and so on. The value of a real-time solution obtained in parallel is shown
to be consistently superior to that of one computed sequentially.

The remainder of this paper is organized as follows. We begin in Section 2 by providing an
algorithmic definition of real-time-computation. Section 3 introduces state space traversal
as a computational framework. The algorithmic paradigm to be applied to the solution
of problems within state space traversal, namely, discrete steepest descent, is defined in
Section 4. An interpretation of state space traversal within a real-time environment is
developed in Section 5. Section 6 outlines the characteristics required for sequential and
parallel models of computation to be used for the design of algorithms. Sequential and
parallel solutions to the problem of state space traversal by discrete steepest descent in real
time are designed and analyzed in Sections 7 and 8, respectively. Some conclusions are

offered in Section 9.



2 WHAT IS REAL-TIME COMPUTATION?

The notion of real time is an intuitive one. The term evokes simultaneity, liveness, and
immediacy; it even conveys a sense of urgency and the need for an instantaneous action.
Yet, real-time computation is difficult to capture. The numerous definitions in the literature
attest to this fact [11]. One reason for this situation is the fact that, in today’s fast-paced
society where computers can perform billions of operations per second, every computation
seems to be performed in real time. Whether we are dealing with a bank machine or running
a flight simulator, we have become accustomed to expect the result of our computations now.

In a recent textbook on the subject [16], the authors acknowledge the difficulty in delin-
eating what computations to characterize as real-time ones. They proceed to define real-time
computations as those computations in which failure to produce the answers after a certain
time would be catastrophic, involving loss of human life.

This paper avoids the extremes of the previous two paragraphs. Our working definition
of real-time computation is an algorithmic one. It can be adapted to apply at any point
on the above spectrum, depending on the circumstances and requirements of a particular

application.

2.1 An Algorithmic Definition

In real-time computation all the data required by an algorithm are not available when it
starts working on the problem to be solved. Instead, the algorithm receives its data from an
external source, one or several at a time, during the computation, and must incorporate the
newly arrived inputs in the solution obtained so far.

A fundamental property of real-time computation is that certain operations must be
performed by specified deadlines. Thus, one or more of the following conditions may be

imposed:

1. Each received input (or set of inputs) must be processed within a certain time after its

arrival.

2. Each output (or set of outputs) must be returned within a certain time after the arrival

of the corresponding input (or set of inputs).

In some applications these deadlines may be crucial, especially (as pointed out earlier) when
human lives are at stake.

In this paper, we make the following assumptions:



1. A time unit is the length of time required by an algorithm to read a constant number
of fixed-size data from the input, perform a fixed-number of constant-time operations
(such as adding two numbers, comparing two numbers, and so on), and produce a

constant number of fixed-size data as output.

2. Time is divided into intervals. Each time interval is 7 time units long, where T
depends on a number of factors, including the problem being solved, the environment
in which the computation is performed, and the timeliness requirements imposed by

the application.

3. The external source provides at most A" new data at the beginning of each time interval,

where N also depends on the problem being solved.

4. The algorithm for solving the problem at hand can, based on its calculations, directs
the external source as to which data to provide when the next batch is to be sent.
Should the algorithm not issue such directions, the external source selects the inputs
by itself and sends them to the algorithm.

5. All deadlines are tight, that is, they are measured in terms of one time interval, and

they are firm, meaning that missing a deadline causes the computation to fail.

3 STATE SPACE TRAVERSAL

A certain computation has the following characteristics:

1. There is an initial configuration of data called the START state and a goal configuration
called the FINISH state. These two states are distinct and well defined for a given

instance of the problem to be solved.

2. Tt is required to go from the START state to the FINISH state by a series of transfor-
mations. This takes the data through a sequence of intermediate states S(1), S(2), ...,
S(m), where 1 < m < M, for some positive integer M. For convenience, we denote
the START state in what follows by S(0). We also use a sequence 7(0), 7(1), ..., r(m),
in which r(7) is the index of the state selected (perhaps among several) to be S(i).
Evidently, r(0) = 0.

3. Each of the states S(i), 1 < i < m, is obtained as follows. Beginning at S(0), n states
can be reached, denoted by a,(),1(1), @r@)2(1), -, Gr0)n(1), where n is a positive
integer larger than 1. From among these states, one is selected as S(1), say ar(0)x(1),
where 1 < k < n. Thus, r(1) = k. Now, starting at S(1), n new states can be reached,
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namely, a,1)1(2), a,1)2(2), ---, arq)n(2), and one of these is chosen as S(2). This
continues until S(m) is selected among a,(s—1),1(M), Gr(m-1)2(M), ..., Crn_1),n(Mm).
Now S(m) leads directly to FINISH. This is illustrated in Fig. 1.

S(0)

Ao @ Ay @

START FINISH

ar(O),n 1) ar(l),n @

Figure 1: State space traversal.

4. The sequence S(1), S(2), ..., S(m) satisfies the following properties:

(a) Regardless of how S(i) is selected, 1 < i < m, a sequence of transformations
always exists that leads from START to FINISH.

(b) The value of m is neither a constant, nor is it known in advance. For some choices
of S(i), the sequence S(1), S(2), ..., S(m) may be larger or shorter than for other
choices. However, m is at least 1 and at most M, for some given positive integer
M (as stated earlier).

(c) A function d(z,y) measures the distance from one state x to another state y as the
number of intermediate states on a shortest path from z to y. Suppose that for
some 7, where 2 < i < m, the same rule is used to obtain S(i —1) and S(¢). Then,
regardless of how S(i — 1) and S(i) are computed, S(7) is guaranteed to be closer
to FINISH than S(i—1), for i > 2, that is, d(S(i), FINISH) < d(S(i—1), FINISH).
In other words, the structure of the problem is such that, when one moves from
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state S(7 — 1) to state S(i) the distance to the goal state is always reduced (it
never stays the same or grows), provided that the algorithm used to reach S(i—1)
is also used to reach S(i). In Fig. 1, S(i) is closer to FINISH than S(i — 1) for

i=1,2,...,m.

Henceforth, we refer to this computation as State Space Traversal (SST) [9]. Note that
SST describes a computational framework (that is, a setting within which a family of com-
putations sharing a set of properties can be defined), rather than a specific computational
problem. It may be helpful in what follows to think of the index i, where 1 < 7 < m, as
denoting the ith stage of the state space. Thus S(i) is the state reached in the ith stage of
the computation.

4 DISCRETE STEEPEST DESCENT

We begin we a simple metaphor. A skier at the top of a mountain wants to reach the valley
as quickly as possible. The fastest way to accomplish this is to take the path of steepest
descent. All other routes lead to the same destination but take more time.

Now back to our problem, suppose that we wish to go from START to FINISH while
visiting the fewest number of intermediate states. In other words, m is to be minimized. To

this end we can choose S(i), for every i, 1 <1i < m, as follows:

1. There are at most n states, namely,

r(i—1),1(2), Ar(i=1),2(), - - - 5 Ar(i=1),(7),
to choose from, where 1 < r(i — 1) < n.

2. Among the states that can be reached, we select S(i) as a,i—1)x (i), where 1 <k <n,
such that

d(aT(i_l),k (’L), FINISH)
1s minimum.

The above approach is referred to as the Steepest Descent Algorithm (SDA). It is a discrete
version of the well-known steepest descent method [23] and a variant of best-first search [22]
and the greedy algorithm [14]. We assume that when SDA is used, as described above,
m = mgpa = n. Otherwise, m = M = Q(2"). In Fig. 1, the sequence S(1), S(2), ..., S(m)
selected by SDA is shown with thick lines. It is important to note that if for any 7, ¢ > 1,
S(7) is not chosen as the state for which the distance to FINISH is the smallest, then, as a
result, the number of stages of the computation is at least exponential in n.
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5 STATE SPACE TRAVERSAL IN REAL TIME

In a real-time environment, SST has the same characteristics described in Section 3 with one

important difference: The reachable states change as the computation proceeds. Specifically,

1. We assume that N'=n and T = c7logn, for a positive integer cr.

2. Each stage of the SST computation is identified with a time interval. Thus, S(7) is

reached during the sth time interval, for 1 <17 < m.

3. All but one of the states in the set {a,;_1),1(%), @ri-1),2(%),- -, ari-1)(7)} that are
reachable during time interval 7, become unreachable during time interval i + 1 (and
thereafter).

4. Tt is not possible to predict which states become unreachable.

5. State S(i), selected during time interval 4, is the only state still reachable during time

interval 7 + 1. This state is determined in one of two ways as follows:

(a) Either S(7) has indeed been selected and reached by the algorithm during time

interval 7,

(b) Or the algorithm fails to notify the source of its choice during time interval 7 and

the external source selects S(7) arbitrarily.

6. It is the role of the external source to provide all the states reachable from S(¢) during

time interval 7 + 1.

As a result, none of the potential intermediate states a; (%), where 1 < j,k <nand 1< <
m, are known in advance.

With these observations, we now define the real-time version of SST:
1. At the end of time interval i, where ¢ > 1,

(a) Either the algorithm informs the external source of its choice for S(i); for example,

S(i) is api—1),j(@), for some 1 < j < n, which means that r(i) = j.

(b) Or (the algorithm having failed to inform the source of its choice) the external

source selects a,(;_1),(¢) arbitrarily.
2. At the beginning of time interval ¢ + 1, where ¢ > 1, the external source
(a) Makes all states a,(i—1)¢(7), where 1 < ¢ < n and £ # j, unreachable, and
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(b) Transmits to the algorithm all the states a,(;) (i + 1), for 1 < k < n, that are
reachable from S(7).

3. During time interval ¢ + 1, where i > 1, S(i + 1) is selected.

Note that there are no explicit deadlines to be met. The only difference between one
solution and another is the total length of time required to go from START to FINISH. An
implicit deadline is imposed by the source which needs to be told, by the end of time interval

i, what values to send at the beginning of time interval ¢ + 1.

6 MODELS OF COMPUTATION

In order to study the effect of parallelism on real-time state space traversal, we define two
distinct models of computation to solve the problem at hand.

The first model of computation is sequential: It consists of one processor along with some
memory and internal registers. This is the standard model used in conventional algorithm
analysis. Despite its familiarity, however, there are many instances of this model. To be
specific, in what follows we assume that the Random Access Machine (RAM) version of
the model [5] is the one used to solve the SST problem sequentially. For a given i, where
1 <4 < m, this model requires cgn time units, where cg is a positive constant, in order to

perform the following two steps:
1. Compute d(ar(i-1),;(), FINISH), for all 1 < j < n, and
2. Find the minimum of the n values computed in step 1.

Note that csn > 7. In what follows, we assume for simplicity that cs = cr.

The second model of computation is parallel: Tt consists of several processors, each execut-
ing its algorithm. These processors work simultaneously on the solution to a computational
problem. Here, again, there are many options from which to choose. Our only requirement
is that the model be able to execute steps 1 and 2 above in ¢plogn time units, where cp is
a positive constant no larger than cy. Possibly the simplest model satisfying this condition
is the (complete) binary tree of processors, with n leaf processors [5]. Note here that the
number of processors used by the parallel model (that is, 2n — 1) is a linear function of the
size of the problem (namely, the number n of states received from the external source at
the beginning of each time interval). Again for simplicity, we assume in what follows that
cp = CT.

Both models described use the same type of processors. In particular, the sequential
processor has the same computational capabilities as each parallel processor. Furthermore,



both processors run at the same speed (which we assume to be the maximum speed possible
theoretically). Finally, note that we adopt for each processor the common definition of time
unit, as given in Section 2.1. This is the unit traditionally used to measure the running time
of an algorithm [5]. It is important to keep in mind that the length of a time unit is not
an absolute quantity. Instead, the duration of a time unit is defined in terms of the speed
of the processors available (namely, the single processor on the RAM and each processor on
the binary tree).

7 SEQUENTIAL SOLUTION

In order to compute S(7), for any i > 1, the sequential algorithm needs to determine among

Ar(i-1),1(2), Ar(i-1),2(2), - - - Cr(i=1),n (%)

that state a,—1),(¢), for which d(ar(i—1),(?), FINISH) is the smallest. This would require
csn time units. However, because 7 = ¢y logn, only logn of the n candidate states can be
examined and one of them chosen as S(i). The probability that the latter is indeed a,(i—1)(7)
equals logn/n. Therefore, with probability approaching 1, the number of stages required in
this case to reach FINISH is 2(2").

8 PARALLEL SOLUTION

For each set of states

Qr(i—1),1 (l), QAr(i—1),2 (l), <5 Ar(i—-1),n (Z)

received from the external source at the beginning of time interval ¢, the parallel algorithm
computes S(i) as that state a,;_1),(7), for which d(a,¢—1)x (), FINISH) is the smallest. This

requires cp logn. Since 7 = cylogn, and cp = ¢, the entire computation requires n stages.

9 CONCLUSION

The analyses of Sections 7 and 8 show that with overwhelming probability, the ratio of
the number of stages traversed sequentially to the number of stages traversed in parallel
is exponential in the number of processors used by the parallel algorithm. This suggests
that the number of stages m may serve to compare the performances of the sequential and
parallel algorithms, respectively. Indeed, the number of stages traversed by an algorithm
can be interpreted in general as a measure of the value or worth of a computed solution. It is
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not difficult to see that the meaning of m can be specialized to fit the needs of a particular

analysis. Thus, for example:

1. In some computational problems, we may want m to represent the running time of the
solution. In these cases, a smaller number of stages means a faster and less expensive

solution to compute.

2. In other circumstances, m may be related to the timeliness of a solution. A result

requiring a large number of computational stages would be out-of-date in this context.

3. Finally, m may stand for the quality of a solution. Here, the value of a solution may

decrease with an increasing number of stages traversed.

The following comments are now in order regarding some of the assumptions made in

this paper.

1. The state space defined in Section 3 has two charateristics: Every state has n successor
states and there is always a path from any state to the FINISH state. Both of these
assumptions were made to simplify the analysis. The first assumption guarantees
that all paths will offer the same computational challenge to every algorithm. The
second assumption guarantees that all algorithms (particularly those not using steepest
descent) will be able to obtain a solution. Clearly, both of these conditions can be easily
lifted, leading to a more general definition of the state space.

2. In Section 5 we assumed that the length of a time interval, namely, 7 is ¢y logn, for
a positive integer c¢y. The value of 7 is the implicit deadline in the computation:
At the end of the ith time interval the algorithm must inform the external source of
its choice for S(i). It may be argued that in some applications such a time interval
is too long for large values of n and hence the computation may not qualify as being
performed in ‘real time’. This point is a valid one: While in most real-life computations
the size of the problem does not grow without bound (and therefore logn is usually
very small for all practical purposes), it is indeed true that in many circumstances a
tighter deadline (in fact a constant-time one) may be required. We note here that our
choice of T = crlogn was motivated by a desire to use as weak a model of parallel
computation as possible while still obtaining a reasonable performance (the idea being
that the weaker the model, the more powerful the result). As it turns out, the weakest
eligible model is one that computes a simple function of n variables (specifically, the
minimum) in time that grows as the logarithm of n. Evidently, a stronger model, that
is, one that can compute a function of this sort in constant time, could also be used.
Such a model would easily meet a constant-time deadline.

11



3. As described in Section 4, the steepest descent algorithm chooses S(i) among a,;—1y,1(7),
ar(i—1),2(%), - -+, Gri—1),n (), as the state a,;_1)x(7), for which d(a,;—1)(7), FINISH) is
minimum. One further generalization can be obtained by extending the way in which

the next state S(7) is computed in the specification of SST. For example, we may have:

S(i) = Flari-1),1(2), arii-1)2(2), - - -, r(i=1),n (%)),

for some function F. Thus, F may be defined such that S(i) is equal to one of the
arguments of F; for instance F may return that state which minimizes the distance to
FINISH (as in Section 4). In other cases, S(i) is obtained by combining the values of
the arguments of F; for example, S(i) may be the average of these values. Regardless
of how F is defined, however, the following holds:

(a) If S(7) is obtained by applying F to all of the a,;_1),(i), for 1 < k < n, then

m=n.

(b) If S(7) is obtained by any other means, then m = 2". Specifically, if S(7) is com-
puted by applying F to some of the a,;_1)x(%)’s, or by choosing S(i) arbitrarily

as one of the a,;_1),(¢)’s then m = 2.

It remains as an interesting avenue for future research to uncover additional practical

problems that fit the general framework for real-time computation proposed in this paper.
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