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Abstract 
 
This paper examines the exchange of software representations among reverse engineering tools. 
Background information on maintenance related activities and their importance in the software 
development lifecycle are outlined. An overview of tool support for software maintenance 
demonstrates the need for a standardized means for facilitating the exchange of information 
among reverse engineering tools. A variety of techniques for exchanging software represen-
tations are examined with respect to their relative advantages and disadvantages. The 
characteristics of a number of software exchange formats are summarized among various 
taxonomies. Four different types of exchange are characterized. Each is evaluated on how it 
satisfies the requirements for a standard exchange format. The paper concludes with a look at the 
direction research efforts are taking towards enabling the exchange of software representations 
among reverse engineering tools in the near future. 
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1 Introduction 

Much of the focus within the field of software engineering over the past 50 years has been on the 

creation of new software products. As a result, many complex, large-scale software systems have 

been constructed. The past decade has seen an increased awareness of the challenges involved in 

maintaining these systems. Software maintenance involves many tasks of which reverse 

engineering [CC 90] is perhaps the most important. It involves analyzing a system to determine 

how it is constructed, resulting in the creation of representations that aid in system 

comprehension. Various tools designed to assist maintainers in carrying out reverse engineering 

have been created. Most of these tools are effective for specific types of analysis but are weak in 

other areas. No single tool exists that provides all the functionality and flexibility that most 

software maintainers need. For this reason, research attention has been focused on getting 

reverse engineering tools to interoperate with each other.  

The interchange of software representations is widely considered the key enabler of 

interoperability among reverse engineering tools. Recently, a debate on how to exchange 

software representations among reverse engineering tools has been pursued more rigorously. A 

number of conferences and research groups from the reverse engineering and graph drawing 

community have stimulated discussion and brought about some progress in this area.  

This paper will examine the exchange of software representations among reverse engineering 

tools. First we provide background information on maintenance related activities and outline 

their importance in the software development lifecycle. An overview of tool support for software 

maintenance will demonstrate the need for a standardized means for facilitating the exchange of 

information among reverse engineering tools. A variety of techniques for exchanging software 

representations will be outlined and examined with respect to their relative advantages and 
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disadvantages. The characteristics of a number of software exchange formats will be summarized 

among various taxonomies.  We go on to characterize various types of exchange and evaluate 

them on how they satisfy the requirements for a standard exchange format. One format in 

particular has been widely accepted among researchers for exchanging software representations. 

The motivation behind this recognition will be outlined. We conclude with a look at the direction 

research efforts are taking towards enabling the exchange of software representations among 

reverse engineering tools in the near future. 

1.1 Focus of Discussion 

Software representation, as a subtopic within the broad field of data representation, has 

applications in both forward and reverse engineering disciplines. In this paper our focus is 

specifically directed towards the interchange of software representation among reverse 

engineering tools. 

The use of graphical means to design and drive the development of software is a well-

established practice in forward software engineering. In the last decade the popularity of object-

oriented analysis and design methods has led to the creation of tools that support the creation and 

modification of Unified Modeling Language (UML) [OMG 01a] diagrams and other object-based 

software representations. In a forward engineering process, software is initially represented as 

highly abstracted architectural or design artifacts. Subsequent development steps see the software 

represented at lower levels of abstractive detail concluding with abstraction-free source code.  

Reverse engineering starts with source code artifacts and, through manual or automated 

techniques, proceeds to increase the level of abstraction in the software representation as 

progression is made toward the recovery of design and architectural elements. At the outset, 

reverse engineering requires an abstraction-free means for representing source code. Forward 
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engineering, with its focus on abstraction, does not offer a representational semantics that is 

compatible with reverse engineering. It is not surprising that Demeyer, Ducasse and Tichelaar 

[DDT 99] argue that UML lacks “concepts that are necessary in order to adequately model 

source-code”.  

Needless to say, interchange of software representations among forward engineering tools 

has been achieved in a limited fashion. Computer-Aided Software Engineering (CASE) tools 

typically provide a cohesive means (although often a proprietary, internalized format) for 

representing software through different phases of a structured development process. More 

recently, a number of formats for exchanging UML and object-based models in the context of 

forward software engineering have been proposed including Microsoft’s XIF [Mic 99], IBM and 

the Object Management Group’s XMI [IBM 00, OMG 98], Rational Software’s UML-Compliant 

Interchange Format [RAT 97], Rivard’s UML-Xchange [Riv 00b] and Suzuki and Yamamoto’s 

UXF [SY 98a, SY 98b]. The Object Management Group is currently seeking input on a diagram 

interchange format for the second version of UML [OMG 01b]. 

It is notable that some graph-based exchange formats exist within the graph drawing 

community that are capable of representing software for reverse engineering purposes. Some 

examples are daVinci [daV 98a, daV98b, FW 94], dot [GN 99, KN 96], GEL [Kam 94], GDL 

[San 95], GML [GML 01, Him 97], GraphEd [Him 94, Him 89], GraphXML [HM 00a, 

HM 00b], GRL [PT 90], the Graph Layout Toolkit format [TSC 98] and XGMML [Cov 00]. In 

general these formats exist as a means for communicating graphs among various tools for 

visualization and graph transformation analysis. We have restricted our discussion of exchange 

formats in this paper to those that have actually been used for representing software in the 

context of reverse engineering. 
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2 Maintenance 

Maintenance involves the modification of a software system after it has been delivered. 

According to Corbi [Cor 89], maintenance is performed for one of four possible reasons: 

1. Correction. Problems found after the software has been delivered need to be fixed. 

2. Required Changes. External factors force a change in existing software to accommodate 

new functionality. 

3. Enhancement. Existing software is changed to provide new features or functionality for 

users. 

4. Pre-emptive Changes. The system is upgraded to facilitate future maintenance ease.  

In Figure 1 the incidences of each type of maintenance is shown. It is notable that only 20% of 

all maintenance activity involves the correction of defects in existing software. The remaining 

80% (i.e. enhancement, required changes and pre-emptive changes) accounts for maintenance 

that goes beyond the goals of the original development effort. 

Maintenance is the most time consuming and costly phase of the software development 

lifecycle. For every dollar spent on creating a new software system, nine dollars is spent on 

maintaining it throughout its useful life. By the late 1980s maintenance spending accounted for 

an estimated $30 billion worldwide. At that time programmers working within an organization 

typically spent over 55% of their time performing maintenance [Cor 89]. By 2020 it is expected 

that over 67% of all programmers will be working exclusively on maintaining pre-existing 

software systems [DKV 99]. Any activity that even minimally reduces maintenance efforts 

would yield significant cost savings within the software industry [CC 90]. 

One reason why maintenance is such a prevalent activity is the sheer quantity of software 

that exists. In 1999 the total volume of software was estimated at 640 billion statements 
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[DKV 99]. Based on this figure and the software quality expectations of Jones [Jon 98], an 

estimated 35 billion programming errors stemming from all phases of the development lifecycle 

remain in code that exists today [DKV 99]. 

Correction
20%

Required 
Changes

25%

Enhancement
50%

Pre-Emptive 
Changes

5%

 

Figure 1: Types of Maintenance 

 

The abundance of legacy information systems is another reason why maintenance is such a 

widespread practice. A legacy information system is defined as “any information system that 

significantly resists modification and evolution” [BS 95]. Bisbal, Lawless, Wu and Grimson 

[BLW+ 99] have identified several problems with legacy systems: 

• The costs for maintaining them are very high. 

• The hardware a legacy system runs on is often obsolete. 

• Compared to modern standards, legacy systems are often very slow. 

• There is often a lack of documentation and very little detailed knowledge on how the 

system operates. 

• Legacy systems are difficult to interface to other systems. 
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• Legacy systems are not usually extensible. 

Many businesses such as banks or insurance companies have legacy systems that perform 

mission critical tasks. The systems are so important that their failure would have a very serious 

impact on the operations of the business. It is vital to keep these systems running. Yet ever-

changing business practices and technical requirements such as Year 2000 compliance 

necessitate modification. 

An example of the need for maintenance is exemplified in the use of the legacy programming 

language COBOL. The 40-year-old language [Bra 99] is commonly regarded as outdated. 

Nevertheless, COBOL is still widely used in industry. According to a widely cited report by 

Gartner Inc. [Bro 01, Ulr 01, Wil 01], COBOL is used for storing 85% of the world’s data. 

Around 200 billion lines of COBOL code existed in the year 2000. Over the next four years it is 

expected that an additional 20 billion lines of new COBOL code will be added to this figure. In 

North America alone, 90,000 programmers work in COBOL maintenance and development. The 

use of Cobol to facilitate Customer Information Control Systems (CICS) transactions on the 

Internet is widespread. According to IBM, more Cobol/CICS transactions are executed in a day 

than the total number of web page hits [Wei 01]. 

2.1 Maintenance Activities 

Given the critical importance of many software systems and the inevitability that maintenance 

will involve making changes, how can this be accomplished?  Five options for maintainers are 

summarized in Table 1. We distinguish maintenance activities by how they affect internal and 

external properties of an existing software system. Internally we refer to the source code as the 

fundamental system component. For the sake of this discussion, the observable behaviour of the 

system and the functionality it provides (i.e. the ‘feature set’ of the system) are the external 
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properties we refer to. Each of the maintenance activities listed in the left column impacts one or 

more of the system properties as indicated in the columns on the right. A discussion of each of 

the five maintenance activities follows. 

 

Software System Properties  

Source Code Behaviour Functionality 

Redevelopment Discarded Newly Created Newly Created 

Wrapping Unchanged New Interface Unchanged 

Migration Modified Modified Unchanged 

Restructuring Modified Unchanged Unchanged 

M
ai

nt
en

an
ce

 A
ct

iv
ity

 

Reengineering Modified Modified Modified 

Table 1: The Impact of Maintenance Activities on Software System Properties

 

2.1.1 Redevelopment 

Redevelopment involves replacing an existing system with a new one [BLW+ 99]. One 

advantage of this method is that it provides an opportunity for a new system to be designed and 

developed from the ground up. Many of the problems associated with legacy systems are 

ameliorated with new equipment and freshly minted software. The problem is that newly 

developed software often has a lot of bugs in it. Even after a thorough cycle of testing, some 

bugs do not become apparent until well after the software is put into actual use. At some point in 

time the old system is retired and the new system replaces it. Often there is no way to revert back 

to the old system. In a mission critical environment, any failure of the system can be 

catastrophic, leading for instance to loss of life or a severe disruption of business operations. The 

high risk of failure is often unacceptable for redevelopment to be considered a feasible means for 

changing a system. 

 7



2.1.2 Wrapping 

Wrapping is commonly implemented as a means for dealing with legacy systems [BLW+ 99]. It 

involves the encapsulation of an existing system with an outer shell, which acts as an interface to 

the system it encloses. Users see the system only from the front end of the shell, which usually 

consists of a graphic user interface that permits specific operations. Wrapping is usually a short-

term solution that provides better access, but does nothing to address the other problems with 

legacy systems mentioned above. One of the drawbacks of wrapping is that it actually increases 

maintenance costs. This is because the original system and the wrapper software must be 

maintained. 

2.1.3 Migration 

Migration endeavors to keep the data and functionality of the original system while shifting it to 

a more adaptable and maintainable environment [BLW+ 99]. This method is advantageous for a 

number of reasons. It is a long-term solution for dealing with legacy systems. From a functional 

and economic perspective, the outcome of the migration yields a system that has the potential for 

resolving all the problems with legacy systems mentioned above. Unlike wrapping, migration 

does not mask an existing problem; it evolves the system into more maintainable, problem-free 

state. Unlike redevelopment, migration incrementally leads to a new system, thereby reducing 

the risk of catastrophic failure. A well-planned and implemented migration should not cause a 

severe disruption of mission critical systems. Nevertheless, the main drawbacks of migration are 

that the process is complex and it takes longer to achieve. Migration requires a disciplined 

approach to program and database understanding before changes are introduced into the system. 

A variety of strategies for populating databases, testing the new system and handling cut-over are 

required. 
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2.1.4 Restructuring 

Maintenance can involve making internal changes without affecting the external behaviour of the 

system. Chikofsky and Cross [CC 90] define restructuring as: 

“the transformation from one representation form to another at the same relative abstraction level, 

while preserving the subject system’s external behaviour (functionality and semantics)” 

Cleaning up code to make it easier to read, implementing structural improvements or making 

changes to conform to a particular coding style are all examples of restructuring activities. In this 

way, restructuring can be characterized as preventative maintenance for the software system. 

2.1.5 Reengineering 

Reengineering, also known as renovation or reclamation is defined by Chikofsky and Cross 

[CC 90] as: 

“the examination and alteration of a subject system to reconstitute it in a new form and the 

subsequent implementation of the new form.” 

Unlike migration, which focuses on keeping the data and functionality of the original system, 

reengineering involves making broad changes that transform the existing system into a new one. 

In general, reengineering is considered a very difficult and highly complex task. Bergey et al. 

[BST+ 99] suggest that software reengineering is at least as difficult as designing and 

implementing a new system from scratch. Failure is a common result: 

“Reengineering efforts are replete with examples of failures. In fact, the documented record 

suggests that there are far more failures than there are successes … There are just as many failures 

in trying to evolve systems as there are building them in the first place.” 

A process for carrying out software reengineering tasks outlined by Kazman, Woods and 

Carrière [KWC 98] is shown in Figure 2. It consists of a horseshoe shaped model for the steps 

undertaken to transform a system. Starting with original source code on the lower left side, a 

series of steps extract details and abstract information. This is known as architecture recovery 
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and conformance evaluation. The goal is to gain a high level understanding of the existing code 

and its conformance to the original design intent. Once this level of program understanding is 

accomplished, adjustments to the architecture can be outlined. This is known as architectural 

transformation. This “bridge step” brings the process from the left side over to the right side of 

the horseshoe. Based on the revised architecture, development efforts work down the right side 

of the horseshoe towards the goal of creating source code for the new system. This is known as 

architecture-based development.  

Original
Source Code

New 
Source Code

Original
Architecture

Revised
Architecture

Architectural
Recovery/

Conformance
Evaluation

Architecture-Based
Development

Architectural
Transformation

 
 

Figure 2: A Horesehoe Model for Software Reengineering Tasks 
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3 Reverse Engineering 

In Chapter 2 we typified software maintenance, demonstrating its necessity and outlined five 

paradigms for changing systems. The ultimate goal of maintenance is to facilitate change in a 

system, however large or small, that does not bring about adverse side effects. This is a 

challenging task that requires the maintainer to have a good grasp of the system being altered. 

Reverse engineering is the key endeavor within the maintenance activity that provides the 

knowledge maintainers need to effectively do their jobs.  

The term reverse engineering has it roots in the analysis of hardware. In this context, Rekoff 

[Rek 85] defines it as “the process of developing a set of specifications for a complex hardware 

system by an orderly examination of specimens of that system.” In a software context, reverse 

engineering is about system comprehension at a functional and behavioural level [TPS 96]. 

Functional comprehension provides insight into what the system does. For instance, a software 

maintainer might be interested in finding out if a payroll system automatically deducts pension 

contributions along with required deductions for taxes and insurance premiums from employee 

pay cheques. Behavioural comprehension highlights how a system works. Continuing with our 

example, the maintainer might be interested in determining if pension plan deductions are 

calculated using a formula, or obtained from a table using the employee’s income as a key.  

It is important to note in these examples that the maintainer may not necessarily have 

knowledge of the domain in which a system operates. A programmer who is required to make 

changes to a payroll system may not have a background in accounting. At the same time, it is 

likely that accounting managers do not have experience with the dynamics of software and the 

challenges involved in maintaining the software for a payroll system. For this reason it is 
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important to consider the comprehension of a system’s application domain as an integral part of 

the work role for software maintainers.  

A study by von Mayrhauser and Vans [MV 92] indicates that in industrial practice, 

maintainers use a variety of strategies for comprehending systems. Lethbridge and Anquetil 

[LA 97] examined the daily work routines of programmers and system analysts, revealing that 

much of their time is spent gaining an understanding of how the system works as a precursor to 

making changes to it. Most often the concern is only focused on understanding the portion of the 

system that is relevant to the change being introduced. After the change is made, concern focuses 

on changing another portion of the system. As a result, an overall understanding of the function 

of the system is never developed on the part of those who make changes to it. For this reason, 

tools that support Just In Time Comprehension of source code for very large software systems 

would be highly beneficial. 

3.1 Objectives 

Chikofsky and Cross [CC 90] have identified a number of objectives for reverse engineering. 

Very large systems in particular are difficult to maintain because of their sheer size and the 

complexity of their structure. Reverse engineering endeavors to provide the tools and processes 

to help maintainers cope with the complexities of large systems. One way of dealing with 

complexity is to find alternate ways for representing information about a system to maintainers. 

The goal is to present a simplified view of system in terms of specific characteristics. In 

particular, graphical views have been effective as and aid to comprehension. 

The development process is essentially a collection of decisions that are made on how a 

solution that satisfies a set of requirements is formulated. It is often the case that after a project is 

completed, these decisions and the original intentions of the developers are lost. This is 
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especially true with legacy systems where it is often the case that a great deal of time has passed 

since the system was originally implemented. Source code is an artifact whose analysis in a 

reverse engineering context provides a means for recovering lost information about the system 

and the reasoning behind it’s original construction. 

As we mentioned in the previous section, maintenance is really about managing change in a 

software system. One objective of reverse engineering is to assist in the identification of negative 

side effects that changes to a system might bring about. Effective mechanisms for fostering 

comprehension and evaluating the effects of change can go a long way towards ensuring the 

integrity of the system being maintained. 

One positive side effect of system comprehension is the identification of generalized 

solutions for specific problems. For instance, continuing with our payroll system example, 

consider the situation where deductions for taxes and insurance premiums are calculated through 

the use of a lookup table. A maintainer interested in adding the ability for the system to handle 

pension plan deductions can make use of a lookup table similar to that used for taxes and 

insurance premiums. In this way, reverse engineering facilitates the reuse of a previously 

thought-out solution for a specific requirement of the payroll system. 

One of the most important objectives of reverse engineering is to provide a means for 

extracting and representing information about software at various levels of abstraction. At the 

lowest level source code is usually represented as a tree or graph structure that corresponds 

closely to the internal representation found in most software compilers [HWS 00, KWC 98]. 

Concern is focused on extracting information such as control flow, global variables, data 

structures and resource interactions.  
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At a medium level of abstraction, behavioural, procedural or modular features of the system 

might be the concern. For example, behavioural characteristics such as the usage of memory, 

uninitialized variables, ranges of values and plans for algorithms might be extracted [MWT 94].  

At a high level of abstractive detail architectural characteristics are typically represented. 

Business rules, policies, responsibilities [MWT 94] and requirements [DKV 99] may also be 

characterized. Woods, Carrière and Kazman [WCK 99] and Riva [Riv 00a] contend that 

architecture can be thought of as a collection of design decisions that provide an overall vision of 

the functional requirements of a system. The implementation process translates the architectural 

vision into functioning code. If an implementation correctly follows the architectural vision, then 

mappings will exist from the architectural concepts to the code produced. These mappings 

represent reasoning on the part of developers on how to translate the architecture into a working 

system. This information is usually not recorded in the source code nor is it often available 

directly from the original developers or from available documentation [BKV 96b, MJS+ 00]. 

Architectural recovery is typically a manual process [HWS 00] that involves analyzing code and 

making an attempt at coming up with reasons why the system was constructed the way it was. 

For instance, a process known as lifting involves the induction of file information from 

functional details about a system [WCK 99]. The recovery of architecture is comparable to 

archeology [GAK 99]. In both fields the goal of researchers is to recover meaning from artifacts 

that they are presented with. 

Knowledge of a system from an architectural perspective provides the maintainer with much 

more useful information than that which would be obvious through source code inspection. This 

is especially true in the case of very large systems where a complete examination of the entire 

source code base is not possible.  
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3.2 Software Representation 

Reverse engineering activities involve the collection, manipulation and analysis of software 

representations. Graphs are typically used for these purposes for a number of reasons. At an 

intuitive level, graphs effectively present intangible concepts. Software is not a physical entity, 

so graphs provide a means for analyzing and manipulating software from a visual perspective. 

Other properties make graphs an effective instrument for representing software.  

Graphs can be constrained. Rules based on the application domain can be applied which 

dictate how a graph is constructed. For instance, in a relational graph two vertices may not be 

connected by two edges of the same type [EKW 99]. In certain circumstances, these constraints 

provide a formal means for verifying the validity of a graph. 

Graphs are often used as a way of modeling relationships [PT 90]. In this context, nodes are 

representative of concepts or objects that are relevant to a particular problem domain. Edges are 

used to establish relationships among concepts or objects that have been defined. Other 

properties such as names or line numbers that describe entities and relations can also be added to 

the graph. These are commonly referred to as node or edge attributes. This Entity-Relationship 

(E-R) model [Che 76] provides a powerful representational framework that can be applied to 

scores of application areas within the reverse engineering domain. For instance, a call graph is 

commonly used by maintainers to identify source code dependencies. In such a graph nodes are 

representative of program modules. Edges between the nodes represent module invocations. The 

resulting graph provides a visual indicator of the interconnectedness of the software being 

evaluated. By simply changing what the nodes and edges represent (i.e. changing the node and 

edge semantics), new models can be created. In a state transition graph the nodes and edges are 

used to respectively represent states and transitions among states. A Program Evaluation and 
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Review Technique (PERT) chart represents nodes as activities with edges representing orderings 

for the activities.  

E-R models are important in the context of reverse engineering for two reasons. First, they 

provide a clean separation between the information that defines the allowable characteristics of a 

graph and the data that is represented by a graph. The former is known as schema and the latter 

as instance. A graph schema defines the constraints and node and edge semantics for a class of 

graphs [BGH 99]. An instance is data represented as a graph constructed in accordance with the 

graph schema. 

Second, E-R models are one of the common techniques used to outline the structural 

characteristics of databases [Som 01]. This quality is of particular importance to the reverse 

engineering community. Reverse engineering analyses typically involve the storage and 

manipulation of extremely large quantities of information. Using E-R models to structure the 

graphical representation of software aids significantly in defining database structures that support 

reverse engineering analysis efforts. So any graphical representation of software is really based 

on an E-R schema that can be represented as a database. Within the reverse engineering 

community these are referred to as repositories or design databases [Cor 01]. 
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4 Tool Support 

Chapter 3 provided an introduction to the goals of reverse engineering practice within the 

software domain. In this chapter we focus on characterizing tool support for reverse engineering. 

We discuss how tools are constructed, how they are used and provide insight into research issues 

that have had an impact on the adoption of reverse engineering tools in industry. 

4.1 Reverse Engineering Activities Supported 

Software engineers carry out a number of different activities to achieve the maintenance goals 

outlined in Chapter 2. Only small subsets of these activities are supported by reverse engineering 

tools [Til 98]. In many instances, a tool provides assistance but still requires significant manual 

intervention on the part of the user. Research in automated techniques is ongoing but has largely 

been unachieved. 

Much of the achievement in tool support for reverse engineering has been in the area of code 

analysis. At this low level of abstraction the source code is generally examined from a syntactic 

perspective to support the following activities: 

• Disintegration. Breaking larger systems into subsystem components. 

• Pattern Matching. Identification of instances within the source code where an identical 

coding pattern occurs. 

• Program Slicing. Isolation of all code that relates to or in some way impacts the 

execution of a specific point in the source code. 

• Dependency Analysis. Evaluation of the reliance of system components on other internal 

or external components. 
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• Metrics Evaluation. Measurement of the code according to accepted standards for 

various characteristics such as size, complexity, quality, maintainability, etc. 

• Exploration. Support for navigation throughout the source code. 

• System Visualization. Generation of views for examining the system visually. 

Müller et. al. [MJS+ 00] argue that code analysis provides incomplete information about a 

system because the source code artifact does not contain everything there is to know. For 

instance, architectural concepts, design decisions, tradeoffs and knowledge of the application 

domain are all missing from the source code. It is difficult to make changes to a large system 

without this kind of high-level abstractive detail.  

One solution to this problem involves the adoption of a continuous program understanding 

process [MJS+ 00]. In such a practice, emphasis is placed on recording knowledge about changes 

made to a system and establishing relationships between this information and the code affected 

by it. The benefit of this process is the ability to trace the historical evolution of the code from 

the original developers to its current state. Over time the value of this chronological record 

would increase significantly. Though managers, developers, maintainers and others with 

knowledge of the system might change, a persistent chronicle of accumulated information about 

the system would exist for anyone involved with it in the future. 

4.2 Tool Construction 

Although many reverse engineering tools exist, most feature the same underlying architecture 

[CC 90] and operate in a similar fashion. In general, reverse engineering tools consist of the 

following three components [BGH 99, Dev 99, God 01, HWS 00, WOL+ 98]: 

1. Information Extractor. The front ends of reverse engineering tools typically input the 

source code and extract information from it. A lexer reads the code and breaks it into 
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lexical tokens. These tokens represent the keywords and basic building blocks for the 

program based on the specific programming language that is being used. Next, a parser 

groups the lexical tokens into programming constructs like statements, expressions, 

declarations, etc. A tree structure called an Abstract Syntax Tree (AST) is used to 

represent these constructs. Some tools make use of a semantic analyzer to add additional 

information about symbols such as scopes, types and values to the AST. These comments 

change the structure of the AST to yield an Abstract Semantic Graph (ASG). 

An example from [LL 00] demonstrates the differences between an AST and an ASG. 

A small C++ program is shown in Figure 3. The corresponding AST representation for 

the program is shown in Figure 4. The tree consists of a hierarchy of nodes representing 

source code entities. Entities at the top of the hierarchy are decomposed into various sub-

components via edges that identify the relationship between each of the nodes. The ASG 

is shown in Figure 5. Dashed lines indicate where changes from the AST have been 

made. Two differences between the AST and ASG are observable in this example: 

• In the AST, multiple nodes with the same type exist. In the ASG, only one node for 

each type is permitted, so multiple instances of the same type nodes are combined 

into a single type node. In the Figure 3, two different instances of object(x) have 

been created (one in class A and one in function main). Both are instances of type 

int, so both have an instance edge leading to the same type(int) node. 

• In the AST, references by name to objects and by types to classes are permitted. In 

the ASG, these indirect references are removed and replaced by direct references to 

the corresponding objects and classes. In the Figure 5, we see object(y) now 

shown as an instance of class(A). The opd(1) and opd(2) edges that referred to 
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 Class A 
 { 
   public: 
     int x; 
 }; 
 main() 
 { 
   int x; 
   A y; 
   x = 0; 
   y.x =1; 
 }   

Figure 3: A Small C++ Program 

 
name(x) and name(y) nodes in Figure 4 now refer directly to object(x) and 

object(y) nodes respectively. 

2. Repository. The quantity of information extracted from source code can be substantial. 

For this reason, information extracted from the source code is typically organized and 

stored in a database rather than preserved in memory. 

3. Analyzer/Visualizer. The information in the repository is processed and analyzed with 

the results presented visually or through reports. 

 A number of reverse engineering tools exist in the research community. Taking a look at only 

information extractors, many differences become apparent [God 01]: 

• Some are better than others at extracting facts from source code. 

• The languages evaluated by each information extractor are limited and different from 

each other.  

• The level of abstraction varies considerably. For example, some extract facts at the code 

level, while others return code modules, functions and procedures. 

Repository managers also vary in their ability to assist in handling large quantities of data. 
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Figure 4: The AST for the Program in Figure 3 
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4.3 Tool Usage 

Despite the existence of a number of reverse engineering tools, not much is known about how 

maintainers use them. Few empirical studies exist that document what is known as the cognitive 

aspect [TPS 96] of reverse engineering. This refers to the approach taken by maintainers towards 

understanding and managing the complexities of large software systems. Research has explored 

how different tool designs and capabilities can aid in program comprehension [SWF+ 96, 

SFM 97, SWM 97].  

Lethbridge and Singer [LS 97] have researched the practices and needs of software engineers 

who perform maintenance tasks on large-scale telecommunications software. In particular, they 

were interested in determining which tools were being used and for what purpose in relation to 

maintenance tasks. Results were obtained using questionnaires, interviews, observations and logs 

that recorded the use of tools automatically. Although the study could hardly be considered 

representative of the work processes of software maintainers in general (only about a dozen 

software engineers who work within the same group were involved), the results provide a unique 

insight into what maintainers do and what they need to help them do their jobs better. 

There is a significant need for tools that assist maintainers in searching through source code. 

A number of tools were already in use for this purpose. Positive comments were that the tools 

were easy to use, provided functionality that was useful and provided the results quickly. Lack of 

tool integration and incompatibility was the leading complaint about reverse engineering tools 

voiced by software maintainers. Other negative comments centered on the fact that needed 

features are nonexistent and those that do exist are not powerful enough. Features are important 

as Müller et. al. [MJS+ 00] estimate that less than 20% of the capabilities of a reverse 

engineering tool are used 80% of the time. 
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4.4 The Need For Integration And Interoperability 

While progress has been made towards increasing the performance and usefulness of reverse 

engineering tools, most continue to exist in isolation, lacking any means for sharing information 

among each other [EKW 99, Per 00]. Lack of integration and interoperability has become a 

major barrier to the advancement of a cohesive reverse engineering environment [LA 97, 

WOL+ 98]. For example, early adoption of the C++ programming language was hindered by a 

lack of integrated tools to assist in the development and maintenance of C++ code [RW 91]. 

A myriad of reverse engineering tools exist, each with a specific strength or specialized 

application area [Let 98]. Analysis from different tools can help speed up the reverse engineering 

process [LA 97, Riv 00a]. Holt et al. [HWS+ 00] lists eighteen reverse engineering, software 

modeling, analytical and graphing tools that provide many different types of analyses that 

reverse engineering practitioners make use of. Maintainers would like to leverage their results by 

combining the output of different analyses from different tools [BGH 99, God 01, KWC 98, 

MWT 94, Nag 96]. Without an integrative component, maintainers are forced to work 

independently with each tool starting from scratch [BGH 99, KWC 98]. Manually integrating 

results from different tools is tedious and time consuming [DRW 96, Per 00, Riv 00a]. Bergey et 

al. [BST+ 99] describe how integration problems seriously hindered a major software 

reengineering effort: 

“The new strategy involved reengineering current code to a scaled down set of requirements … 

The environment consisted of a set of proven tools, each of which was well regarded as among the 

leaders in its class. However, the plan depended on integrating the tools in a seamless way and on 

using this environment for production of the system … The integration did not work … the project 

lost precious time and millions of dollars in getting back on track. The lesson is that … even when 

individual components are proven, integration aspects can come back to haunt a project” 
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Considering these results, it is not surprising that reverse engineering tools have a low level of 

adoption among maintainers [MJS+ 00]. 
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5 Integration Approaches 

So far we have demonstrated the need for integration and interoperability among reverse 

engineering tools. But how can this be achieved? A variety of integration standards exist 

including Microsoft’s Object Linking and Embedding (OLE) [Cha 96], Java’s serialization 

interface [GJS 96] and the Object Management Group’s Interface Definition Language (IDL) 

[OMG 97]. Although these standards facilitate the exchange of structured and unstructured 

information among programs, they have not been applied in the reverse engineering community 

for one or more of the following reasons [BJK+ 00]: 

• They operate only on particular hardware or software platforms. 

• They are unnecessarily complex. 

• They do not represent and transfer data in an efficient manner. 

• They are not language independent. 

• They lack extensibility in providing a means for storing extraneous information in 

addition to the standard information being exchanged. 

Without the benefit of an existing standard to work with, members of the reverse engineering 

community have embarked on creating their own solutions for tool integration. Three approaches 

have been pursued: Intermediate Representations (IRs), Application Programming Interfaces 

(APIs) and Standard Exchange Formats (SEFs). 

5.1 Portable Intermediate Representations 

As was mentioned in Section 4.2, the front-end activities of reverse engineering tools are very 

similar to compilers. Both process source code yielding a tree (an AST) or graph structure (an 

ASG) that organizes lexical, syntactic and semantic information. What happens next is what 
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differentiates them from each other. A compiler carries out a number of tasks with code 

generation as the goal. A reverse engineering tool carries out a number of tasks with analysis and 

generation of high-level abstraction as the goal. Needless to say, the construction of an AST or 

ASG is an integral part of the process. The tree or graph structure is known as the Internal 

Representation (IR) that corresponds to the source code input.  

One of the early ideas for enabling integration among reverse engineering tools involved 

storing the IR so that it can be shared among different tools. The idea behind exchanging IRs is 

not new. Programs for writing compiler IRs to a file have existed for some time. In the compiler 

domain they are known as picklers [BJW 87], creating what is referred to as a Portable IR.  

Within the reverse engineering domain, portable IRs never really caught on because of a 

number of fundamental problems. First, there was no standard IR format that compiler picklers 

wrote to. This made it difficult to select an IR appropriate for the reverse engineering 

community. According to Rugaber and Wills [RW 96], there were too many IRs to consider. 

Some examples are ANDF [OSF 91], ASFIX [BKO 99], CCG [KM 94], DIANA [GW 81], Eli 

[GHL+ 92], Hoof [ADH+ 99], versions of the Interface Description Language (IDL) from Lamb 

[Lam 87] and the Object Modeling Group [OMG 91], IRIS [BFS 88], Jordan’s Modula-3 IR 

[Jor 90], Ponder [GA 95] and the Slim Binary Format [FK 96]. 

A second problem was that IRs are not language independent. They are built to represent 

only a specific programming language. IRs lack the generality and extensibility that a reverse 

engineering representation requires [Kie 01]. Changing the syntax of an IR so that it will support 

the representation of another programming language is a very difficult task. 

Third, IRs fall short in terms of interaction, representation and performance [KGW 98]. 

Reverse engineering tools often feature interactive environments where users can generate 
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different views of a system based on different analyses. Because of their fixed nature, these 

views are impossible to create with IRs as the representational foundation. Support for the 

representation of software at multiple levels of abstraction is a key requirement for reverse 

engineering environments. IRs only represent source code at a low level of abstraction which 

severely limits their applicability in reverse engineering. A high level of performance is a 

necessity when handling the analysis of millions of lines of source code. Unfortunately, recent 

advances in optimizing compiler technology have not been passed on to IRs. This makes it 

difficult to make use of IRs for analyzing large-scale software systems. 

5.2 Application Programming Interfaces 

An Application Programming Interface (API) refers to a method whereby one program provides 

the means for another program to interface to it. According to Sim [Sim 00a] there are three 

approaches by which APIs can be used to integrate reverse engineering tools: 

Library. One tool provides functions that other tools use to access it.  

Communication Protocol. CORBA or some other peer-to-peer or client-server architecture 

is used to manage exchange among tools. 

Hybrid. A combination of both the library and communication protocols is employed. Tool 

developers agree on a library of functions that each will make available and on the protocol 

each will use to exchange information between them. 

The primary advantage of using APIs to integrate reverse engineering tools is that dynamic 

inter-tool communication increases performance. Tools communicate directly with each other, 

eliminating the overhead involved in writing to and reading from external files. Disk storage 

requirements may also be reduced. In a non-integrated environment, each tool independently 
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stores data in their own proprietary format. Well-integrated tools eliminate redundant 

repositories, as one repository is used freely among all the tools in use. 

There are some disadvantages to using APIs for reverse engineering tool integration. 

Different tools have different features that users may want to take advantage of. Although the use 

of APIs significantly improves the speed and ease of interaction among tools, they still need to 

know how they can interact with each other. A tool must be aware of the requests it can make of 

another tool it interfaces with. Likewise, each tool must be aware of the structure of the data that 

is exchanged between them [LA 97]. Coming to an agreement on how two tools will interact is 

challenging. The situation is further complicated by the fact that API functionality is typically 

built into the code for each tool. 

5.3 Exchange Formats 

An exchange format arises from an agreement made between tool developers on the syntax and 

semantics of information to be exchanged between two or more reverse engineering tools. 

Syntax refers to the structure of the information contained in the exchange format. Semantics 

relates to the meaning of the information being exchanged. A schema is typically used to define 

the information that the exchange format can consist of and how it should be interpreted 

[KCE 00b]. Files are typically used to facilitate the exchange, although Internet-based document 

exchange technologies have been used for this purpose as well. 

There are a number of advantages to using exchange formats to integrate reverse engineering 

tools. An exchange format is typically much simpler to implement than a portable IR or an API. 

Often a simple converter is all that is necessary to get information stored from one tool into the 

format supported by another tool. Typically the information exchanged is represented in a textual 

format so it is human readable. Since an exchange format is based on an agreement between two 
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or more parties, there is very little ambiguity in the software representation. Everyone is aware of 

what each entity stands for in the format. Unlike portable IRs, an exchange format is not tied to 

representing software written in a particular programming language. 

The main disadvantage of exchange formats is similar to that for APIs. It is difficult to get all 

those interested in using the format to agree on what information it should transfer and how it 

should be structured. The process is time consuming and changes are difficult to manage among 

all interested parties. The extensibility of an exchange format only partially mitigates this 

problem. Although the addition of proprietary extensions to an exchange format is easily 

accommodated, managing this extraneous information can be a challenge. Other tools that do not 

make use of the extensions still need to maintain them as part of the information exchanged. The 

integrity of the extensions can be affected by changes that another tool makes to information in 

the format.  

Another disadvantage of exchange formats is the overhead involved in writing to and reading 

from files. Reverse engineering analysis often involves the manipulation of information relating 

to millions of lines of source code. At this level of magnitude, file management and in-memory 

storage issues [KCE 00b] significantly affect the integrative performance of reverse engineering 

tools. 

5.4 The Need for a Standard Exchange Format 

The lack of a consistent model for the structural makeup of software representations is a major 

barrier to reverse engineering tool integration. Such a model would eliminate data redundancy 

and provide a representational foundation for tool developers interested in integrating their tools 

with others [KCE 00b, LA 97, Let 98]. Within the reverse engineering community this model is 

referred to as a Standard Exchange Format (SEF). Unlike the practical approaches that IRs, APIs 
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and various exchange formats provide, the development of an SEF is a more abstract goal. It lays 

out a structural map for software exchange information that would be applicable to all integration 

approaches [Sim 00a]. 

The establishment of an SEF would also facilitate the creation of source code repositories for 

program understanding researchers. This collection of ‘software guinea pigs’ [Hol 00, MRE 01] 

would contain standardized SEF-structured representations of software extracted from various 

systems. Such a collection would eliminate the labor involved in parsing and pre-processing 

source code for research purposes [Let 98]. 
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6 Exchange of Software Representations 

In the previous chapters we have established reverse engineering as an integral activity for 

software maintainers. In general, tools provide assistance in carrying out reverse engineering 

tasks in isolation. The creation of an integrated reverse engineering environment has been 

hindered by the lack of an element that enables the exchange of software representations among 

different tools. It has been argued that a standard format should be created to make 

interoperability among reverse engineering tools possible. 

In this chapter we take a look at fourteen formats that have been used in the reverse 

engineering community to exchange software representations. Most of the formats have a very 

specific application area, for example, enabling exchange among programs that make up a 

particular toolset. Nevertheless, it is useful to review their characteristics to understand how each 

format achieves its exchange purpose. 

6.1 Characteristic Properties 

To aid in our review of exchange formats we summarize their characteristics using various 

categories for classifying their properties. A description of each of these categories follows. 

6.1.1 Abstract Syntax 

One of the most important properties of an exchange format is the data structure used to 

represent software. This is referred to as the abstract syntax for the format. In relation to 

software exchange formats, the abstract syntax can be divided into three general categories: 

structured data, trees and graphs. Each of these is outlined as follows. 

Structured Data. The format uses a structure for data that is not a tree or a graph. The 

arrangement of the data exchanged may be proprietary or very simple, consisting only of 

atomic units. 
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Trees. The format exchanges tree structures but not graphs. Although trees are graph 

structures, this category distinguishes formats that cannot represent graphs in general from 

those that can. 

Graphs. The format exchanges various graph structures including trees. These formats may 

be capable of representing many different types of graphs, but not necessarily all types of 

graphs. For the purpose of this review formats that support the following graph 

characteristics are identified: 

• Typed. Support for a classification scheme for nodes and edges is provided.  

• Attributed. Attribute labels consisting of strings or values can be associated with 

nodes or edges. 

• Inheritance. Nodes and edges can take on the properties of other nodes and edges in 

the graph.  

• Hierarchical. Support for the representation of graphs within graphs is provided. 

6.1.2 Levels of Abstraction 

As we mentioned in Chapter 3, one of the primary goals of reverse engineering is to represent 

software at various levels of abstractive detail. Consequently, it is important to consider the level 

of abstraction that an exchange format is designed to convey between tools. Three levels of 

abstraction are considered in this review: 

Low. Program statements from the source code are represented as structured data, most often 

organized into an AST or ASG representation. 

Medium. Program components above the statement level are represented. Some examples 

are functions, types and global variables.  
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High. Architectural entities such as modules, subsystems, classes and packages are 

represented. Other characteristics related to the architectural development of a system such as 

plans, policies, requirements, business rules and responsibilities may also be recorded. 

It should be noted that within the reverse engineering community there is some contention as to 

what is represented at each level of abstraction. For instance, Kazman, Woods and Carrière use a 

four-layer nomenclature that distinguishes between source code and AST/ASG representations 

[KWC 98, WCK 99]. Our categorization scheme is based on a view of abstraction that is 

commonly accepted among reverse engineering practitioners [God 00a, God 00b, HWS 00, 

MWT 94]. 

6.1.3 Type of Encoding 

In general, two encoding types are used by exchange formats: 

Text. All data and any formatting statements such as tags or labels are exchanged in plain 

ASCII text. One of the advantages of textual exchange is that it is human readable and can 

easily be edited in a standard text editor. The main drawback of this type of encoding is the 

size of the data being transmitted. No effort is made to compress the information being 

exchanged. 

Binary. A compression algorithm is used to convert textual information into a binary format 

for exchange. The main advantage of this method is that the size of the transmission is 

substantially reduced. A binary encoding is much more compact than text. Nevertheless, the 

overhead involved in encoding and decoding information at each end of the transmission can 

affect the performance of the exchange between each tool. It also requires that each tool use 

the same method for encoding and decoding data. 
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6.1.4 Transfer Mechanism 

The transfer mechanism is a characterization of the method used carry out data exchange. The 

following categories are distinguished: 

File. One tool writes data to a file. Another tool reads data from the file. Simplicity is the 

obvious advantage of this transfer mechanism. The main detractor is scalability. Large files 

are difficult to manage and the overhead involved in accessing them is often unacceptable. 

Structured Text Stream (STS). Text stored in a structured format is packaged and 

exchanged from one tool to another through a communications medium such as the Internet.  

Within the reverse engineering community Hypertext Markup Language (HTML) 

[WWW 99] was originally thought of as a means for facilitating exchange [TS 97]. Since 

then, more flexible technologies such as CASE Data Interchange Format (CDIF) [Ern 97, 

Lem 98, PKS 98] now known as XML Metadata Interchange (XMI) [IBM 00, OMG 98, DBI 

00] and Extensible Markup Language (XML) [Cov 98, WWW 00, ZK 01] have been used. 

XML in particular is an emerging standard that has been widely embraced by many academic 

and commercial software developers. The notation is verbose with lots of HTML-like tags 

but is readable by humans and automated processors. A convenient distinction is made 

between the structure of data to be transmitted and the data itself. Structural characteristics of 

the data are defined in an XML Document Type Definition (DTD). An initial transmission of 

the DTD outlines how instance data in subsequent transmissions will be structured. This 

partitioning between structure and data provides a flexible environment for exchanging 

information that is gaining popularity among tool integrators. 

Direct Inter-Tool Functionality (DIF). Exchange between tools is facilitated through direct 

tool-to-tool interfaces. The type of interface may be local (for example, the communication 
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between two executing processes) or wide ranging (for example, client-server 

communications across an Intranet or the Internet). DIF integration is typically “hard-coded” 

into each of the tools involved. It generally offers high performance at the cost of flexibility. 

6.1.5 Schema Type 

As we mentioned in Section 5.3, a schema defines the information that an exchange format can 

consist of and how it should be interpreted [KCE 00b]. In our review of exchange formats we 

distinguish the schemas for each of the exchange formats as follows: 

Fixed. The structure and interpretation of data exchanged using the format is predetermined 

and not changeable.  

Modifiable. The exchange format is based on flexible framework where the structure and 

interpretation of data can be modified. This is an important advantage for integrators because 

it eases the effort involved in synchronizing the structure for data that each tool will accept. It 

also makes it easier to add proprietary extensions to the exchange format as the need arises.  
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 Abstract Syntax Level of Type of Schema 
 Struct.     Tree Graph Abstraction Encoding

Transfer Mechanism 
Type 

 Data         Only Typed Attrib. Inher. Hierar. Low  Med High Text Bin. File STS DIF Fixed Mod.
ASIS                 
Aterms                 
IML                 
RG                 
CORUM                 
CORUM II                 
Datrix-TA                 
FAMIX                 
GraX                 
GXL                 
PROGRES                 
RSF                 
TA                 
TA++                 

Key: 
  = Designed for supporting the property indicated 
  = Capable of supporting the property indicated 
 

Table 2: Characteristic Properties of Software Exchange Formats 



6.2 Software Exchange Formats 

Table 2 provides a summary of the characteristic properties of 14 formats for exchanging 

software representations that have been used in the reverse engineering field. Each of these 

exchange formats is described in more detail below. 

6.2.1 ASIS 

The Ada95 Compilation Environment (ACE) stores syntactic and semantic information about 

compiled Ada source code in a proprietary IR format. A linker makes use of this IR to create an 

executable Ada application. Although CASE tool and application developers can access 

information in ACE through the use of proprietary interfaces, they are difficult, time-consuming 

and expensive to develop. The Ada Semantic Interface Specification (ASIS) is an open source 

API written in Ada95 for accessing ACE information. It has been designed to be a portable 

means for developers to get syntactic and semantic information about Ada source code without 

being burdened with understanding the complexities of proprietary ACE internal representations. 

A number of types and subtypes are defined along with a set of operations that query the ACE 

and pass results back to the calling application [ASI 98a, ASI 98b, ASI 98c]. 

An example of ASIS in action from Rybin and Fofanov [RF 00] is shown below. In Figure 6 

the package Asis.Interator is defined, providing procedures and operators that support the 

traversal of tree structures. In Figure 7 an instantiation of Traverse_Element from the 

Asis.Interator package is used as part of a tool operation that traverses the AST for Ada code 

checking for conformance to a specific coding style. 

ASIS has been widely accepted within the Ada development community. The International 

Organization for Standardization ratified ASIS as an international standard in 1999 [ISO 99]. 

Dozens of code-level analysis tools have been built based on the ASIS API. Especially useful is 
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the ability for developers to create tools that “snap on” [CT 99] to Ada compilation systems such 

as the freely available GNU NYU Ada 9X Translator (GNAT) [RF 00, SB 94].  

 package Asis.Iterator is 
 
    generic 
       type State_Information is limited private; 
 
       with procedure Pre_Operation 
              (Element : in     Asis.Element; 
               Control : in out Traverse_Control; 
               State   : in out State_Information) is <>; 
 
       with procedure Post_Operation 
              (Element : in     Asis.Element; 
               Control : in out Traverse_Control; 
               State   : in out State_Information) is <>; 
 
    procedure Traverse_Element 
       (Element : in     Asis.Element; 
        Control : in out Traverse_Control; 
        State   : in out State_Information); 
 
 end Asis.Iterator; 
 

Figure 6: The Asis.Iterator Package is Defined 

 
 Type Style_Check_State is (Not_Used); 
 
 procedure Check_Style_Rules is ... end Check_Style_Rules; 
 
 procedure No_Operation (...) is begin null; end No_Operation; 
 
 procedure Recursive_Style_Check is new 
    Asis.Iterator.Traverse_Element 
       (State_Information => Sytle_Check_State, 
        Pre_Operation     => Check_Style_Rules, 
        Post_Operation    => No_Operation); 
 
 procedure Process_Construct (Construct : Asis.Element) is 
    Process_Control : Traverse_Control := Continue; 
    Process_State   : Style_Check_State; 
 begin 
    Recursive_Style_Check 
    (Construct, Process_Control, Process_State); 
 end Process_Construct; 
 

Figure 7: A Coding Style Checker that Recursively Traverses the AST for Ada Code 
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6.2.2 ATerms 

Annotated Terms (ATerms) represent an exchange format and a library of API functions for 

manipulating them. The exchange format is designed to represent the data produced by parsers, 

structural editors, compilers and other components in software reengineering tools. The API was 

developed to encourage tool authors to integrate ATerms into their reengineering tools [BJO 00].  

ATerms are constructed out of the following components [BKV 96a, BKO 98]: 

• Integer and real numeric values. 

• Function applications – A function symbol followed by 0 or more function arguments. 

• Lists – Consisting of one or more ATerms. 

• Tags – Each indicating an ATerm type. 

• Binary Large data OBjects (BLOBs) – Binary data in ATerms format. 

• Annotations – A list of label and corresponding annotation pairs, both in ATerms format. 

Although only structured data is exchanged, ATerms are capable of representing tree structures 

such as ASTs [BJO 00]. 

A number of operations for working with ATerms are implemented in the API. The 

operations are organized into two categories. Thirteen Level 1 operations for creating, matching, 

reading, writing and annotating ATerms have been created. These are the standard operations 

most commonly used by tool developers. Level 2 operators provide advanced functionality for 

developers who, for some reason or another, need to access the core functionality of the API 

[BJO 00, BJK+ 00]. 

ATerms have a text and a binary format. The text format is designed to be readable and 

easily understood by humans. The main drawback of the text format is that it requires excessive 

storage space when being used to represent large systems. To get around this problem, a binary 
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format for ATerms called Binary ATerms Format (BAF) is available. Storing an ATerms node in 

memory requires 4.5 bytes while only 1.54 bytes are required to store the same node in BAF. 

The use of BAF also significantly reduces the time it takes to read and write to an ATerms file 

[BJK+ 00]. BAF is platform independent because it uses indexes rather than memory addresses 

to store and retrieve entities [BJO 00]. 

Let the sets C, N, L and F be defined as follows: 

 C = {a, b, c} 
 N = {1, 2, 3} 

 L = C ∪ N 
 F = {(f,1),(g,2),(h,3)} 
 

Given these definitions some of the following types of ATerm instances can be constructed: 

 Constants: Abc 

 Numerals: 123 

 Literals: “abc” 
“123” 

 Lists: [] 
[1, “abc”, 3] 
[1, 2, [3, 2], 1] 
 

 Functions: f(“a”) 
g(1,[]) 
h(“1”, f(“2”), [“a”,”b”]) 
 

 Annotations: f(“a”){g(2,[“a”,”b”])} 
“1”{[1,2,3],”abc”} 

Figure 8: Example ATerms 

 

ATerms examples from [BKV 96a] are shown in Figure 8. ATerms are defined through the 

instantiation of a set of constants (C), a set of numerals (N), a set of literals (L) and a set of 

functions (F). The functions that make up set F consist of function symbols and a number that 

represents the number of parameters for the function (also known as the arity of the function). 

Square brackets are used to enclose lists. Curly brackets are used to enclose annotations. 
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6.2.3 IML and RG 

Bauhaus is a joint research project among the University of Stuttgart and the Fraunhofer Institut 

für Experimentelles Software Engineering in Kaiserslautern, Germany. The goal of the project is 

to build tools that help in the software reengineering process [Bau 01]. In particular, Bauhaus 

Group researchers are interested in providing a means for recovering architectural characteristics 

of software systems. To facilitate their distal research efforts, two formats for exchanging 

software representations among project participants have been developed [CEK+ 00]. 

The InterMediate Language (IML) is a portable IR that makes use of an attributed tree 

structure to represent details at the source code level. The semantics of the programming 

language constructs used in the code are preserved. Once the source code has been processed and 

represented in IML, advanced data-flow and control-flow analyses can be carried out. Although 

the format was not designed to be flexible, it is very efficient at representing software details at a 

low level of abstraction.  

Unlike IML, the Resource Graph (RG) format represents source code at medium and high 

levels of abstraction. An E-R model is used to record information in a graph structure with 

entities and relationships respectively corresponding to nodes and edges on the graph. Entity and 

relationship instances are determined through direct source code examination and through a 

variety of analyses. For example, entities such as functions, types and variables are determined 

directly from the source code. Other entities such as abstract data types, components and 

subsystems are determined from analysis. 

A simple schema is used to define the meaning for each node and edge type in the RG 

format. Instances are identified with unique labels and a corresponding type declared in the 

schema. Both the schema and the data being represented are stored in a single file. A graph with 
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its corresponding representation in RG format is shown in Figure 9. This simple example is 

based on a modified version of the example provided in [CEK+ 00].  A graph visually represents 

the source code statement i = j. Two nodes of type variable and an edge of type equals are 

defined in the schema section at the beginning of the file. Node and edge instances are defined in 

the subsequent section. Note that an optional list of attributes (shown italicized) can be 

associated with each node and edge in the graph. 

i j

variable variable

equals

 
 

NODE_TYPES 
> variable NT1; 
> variable NT2; 
EDGE_TYPES 
> equals ET1; 
NODES 
#1 i NT1 list-of-attributes ; 
#2 j NT2 list-of-attributes ; 
EDGES 
#1 #2 ET1 list-of-attributes ; 

Figure 9: A Simple Graph and It’s Representation in RG Format 

 

6.2.4 CORUM and CORUM II 

Kazman et. al [KWC 98] describe the Common Object-based Re-engineering Unified Model 

(CORUM) as an API-based environment for integrating software reengineering tools. The 

original system outlined in [WOL+ 98] focuses on integrating tools that work at the source code 

level. Support for representing ASTs, symbol tables, Control Flow Graphs, Data Flow Graphs, 

Data Slices and Programming Plans is provided. A hierarchical format based on a Multi-Layer 

and Multi-Edge-Set (MLMES) graph [LCH+ 98] is used for all internal representations. On the 

MLMES graph each nodes corresponds to a node on the AST. Each edge records data and 

control flow information. Additional information is stored along with the graph as annotations. 
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The architecture for CORUM is shown in Figure 10 [WOL+ 98]. The API functions as the 

primary integrator of language gateways that bring in code for analysis, a component repository 

for storing records and processing tools that provide analysis and end user access to information. 

The API itself is built around an information model that supports the many representations for 

software mentioned above. 

Language
Gateways

Information
Model

Processing
Tools

Component
Repository

CORUM API

 
Figure 10: The CORUM Architecture 

 

The CORUM II framework is a proposal for enhancing CORUM to provide advanced 

functionality for analysis of a system at the architectural level of abstraction. This analysis 

includes identification of design patterns and coding styles. Architectural semantics are 

supported in CORUM II through temporal and static views of the system. Temporal views 

correspond to behavioural observations of the system that take place while the system is running 

such as: 

• The time when the system accepts or relinquishes control. 

• The time that the system accepts or transmits data. 

• The new processes the system creates.  
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• The circumstances when the system preserves the state of a process.  

Static views provide a functional perspective of the system based on information extracted from 

the source code such as: 

• The scope for data and control. 

• Changes that are made to data. 

• Suspension of a process when control is transferred. 

• Instances where control is given up voluntarily. 

• Inputs and outputs for data and control. 

• How many input or output elements can be connected to the same channel at the same 

time. 

CORUM II supports the horseshoe software reengineering process outlined in Section 2.1.5 

[KWC 98]. 

6.2.5 Datrix-TA 

Bell Canada’s Datrix system evaluates the maintainability of software. It can evaluate source 

code for reusability, track its evolution, perform rudimentary architectural analysis and 

characterize how clearly the code is written and structured. The system consists of Java, C and 

C++ parsers and linkers that take in the source code, analyzers that produce reports and an 

import/export module that facilitates exchange of information. All of these components are built 

around a central in-memory representation of source code called Datrix-ASG [Lap 00]. One of 

the advantages of the Datrix system is that the same ASG is used for representing Java, C and 

C++ source code. 

Datrix-ASG is structured as a graph consisting of attributed nodes and edges. All nodes and 

edges have a type that fits into a hierarchy of ASG elements. The generic node type <cAsgNds> 
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is defined as an abstract class. Within this class there are abstract classes for identifiers, scopes, 

objects, functions, expressions, control statements and other classes. These classes are further 

subdivided into other classes and types. The same is true for edges. The <cArc> abstract class is 

subdivided into reference and syntax classes that are further subdivided into different types based 

on referential and syntactic relationships that can exist between nodes. Although the ASG is 

designed to be as language independent as possible, the format is flexible so that new nodes or 

edges can be added to support language specific concepts when necessary.  

The representation currently has very little support for representing architectural components 

of the system being evaluated. One ASG element provides a means for considering scope in a 

global sense. A future goal is to provide elements that support the representation of modules, 

subsystems and other architectural components. Currently, obtaining a system-wide ASG 

requires the merging together of ASGs for each of the code sources that make up the system 

[LLL 01]. 

The ASG produced by the Datrix parsers is distinct from the Abstract Syntax Tree (AST) that 

parsers typically produce. The addition of semantic information introduces relationships that 

create circuits through the data structure yielding a strongly typed, attributed, directed graph. For 

example, in an AST an entity reference is represented by an edge that points to a terminal node 

in the tree structure. In the Datrix-ASG a subgraph is used for the declaration of an entity. This 

subgraph is shared among all instances of the entity. A reference to an entity is indicated as an 

edge that points to the top node of the declaration subgraph. Despite the graph structure, Datrix-

ASG still holds a parser-produced AST for the source code within it. The additional semantic 

information simply decorates the AST, transforming the representation into a graph structure 

[LL 00].  
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An external format called Datrix-TA is used to exchange Datrix-ASGs among the different 

tools that make up the Datrix system. It is largely based on Holt’s Tuple Attribute (TA) language 

(see Section 6.2.11) except that it has a fixed schema and some proprietary enhancements have 

been added to the language. Datrix-TA is a text-based format that stores information in a linear 

fashion without nested statements. This makes it easily readable by humans and efficiently 

parsed by computers. All nodes are uniquely identified. No naming or ordering restrictions for 

nodes have been established. 

An example from [LL 00] is shown below. In Figure 11 a small C++ program called 

alias.cpp is shown. In this program a typedef is used to set up the identifier foo as a 

substitute for the int type. Two integers are declared, one using type int and one using type 

foo. The ASG for the code is shown in Figure 12. Although the graph is cluttered, it is easily 

understood. In a nutshell, the top node (cScopeGlb) refers to the global scope of the program. 

This is decomposed into the compilation scope (cScopeCompil) and the scope of the source file 

(cScopeFile), both of which are limited to the code that makes up the program. Two objects are 

instantiated: x is an instance of a cBuiltInType named “int” and y is an instance of a 

cAliasType called “foo” (which is also an instance of a cBuiltInType named “int”). The 

attributes beg and end show the line number and character position on the line where the entity 

being described is located. The visb attribute summarizes the visibility of each of the objects 

and alias that make up the program. All are pub meaning they are publicly visible within the 

scope of the program. It is interesting to note how much information is contained in the ASG for 

such a small program. The ratio of extracted information to code is very high. 
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 // alias.cpp 
 typedef in foo; 

 int x; 

 foo y; 

Figure 11: A Small C++ Program 

              

cScopeCompil
name:"alias.cpp"

cScopeFile
beg: 0.0
end: 0.0
name:"alias.cpp"

cBuiltInType
name:"int"

cObject
beg: 2.5
end: 2.5
name:"x"
visb:pub

cObject
beg: 3.5
end: 3.5
name:"y"
visb:pub

cAliasType
beg: 1.13 
end: 1.15 
name:"foo"
visb:pub  

cScopeGlb
name:""

cArcSon
13

cArcSon
2

cArcSon
1

cArcSon
3

cArcSon
1

cArcSon
2

cInstance

cInstance cInstance

 

Figure 12: The ASG for the code in Figure 11 
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$INSTANCE 1 cAliasType 
1{ 
beg = 1.13 
end = 1.15 
name = "foo" 
visb = pub 
} 
$INSTANCE 2 cBuiltInType 
2{ 
name = "unsigned char" 
} 
$INSTANCE 3 cBuiltInType 
3{ 
name = "char" 
} 
$INSTANCE 4 cBuiltInType 
4{ 
name = "float" 
} 
$INSTANCE 5 cBuiltInType 
5{ 
name = "long double" 
} 
$INSTANCE 6 cBuiltInType 
6{ 
name = "double" 
} 
$INSTANCE 7 cBuiltInType 
7{ 
name = "unsigned long" 
} 
$INSTANCE 8 cBuiltInType 
8{ 
name = "unsigned short" 
} 
$INSTANCE 9 cBuiltInType 
9{ 
name = "unsigned int" 
} 
$INSTANCE 10 cBuiltInType 
10{ 
name = "short" 
} 
$INSTANCE 11 cBuiltInType 
11{ 
name = "long int" 
} 
$INSTANCE 12 cBuiltInType 
12{ 
name = "int" 
} 
$INSTANCE 13 cBuiltInType 
13{ 
name = "void" 
} 
$INSTANCE 14 cSystem 

14{ 
name = "" 
} 
$INSTANCE 15 cScopeGlb 
15{ 
name = "" 
} 
$INSTANCE 16 cScopeCompil 
16{ 
name = "alias.cpp" 
} 
$INSTANCE 17 cScopeFile 
17{ 
beg = 0.0 
end = 0.0 
name = "alias.cpp" 
} 
$INSTANCE 18 cObject 
18{ 
beg = 2.5 
end = 2.5 
name = "x" 
visb = pub 
} 
$INSTANCE 19 cObject 
19{ 
beg = 3.5 
end = 3.5 
name = "y" 
visb = pub 
} 
(cInstance 19 1) 
{ 
} 
(cArcSon 17 19) 
{ 
order = 3 
} 
(cInstance 18 12) 
{ 
} 
(cArcSon 17 18) 
{ 
order = 2 
} 
(cArcSon 17 1) 
{ 
order = 1 
} 
(cInstance 1 12) 
{ 
} 
(cArcSon 16 17) 
{ 
order = 1 
} 

(cArcSon 15 16) 
{ 
order = 13 
} 
(cArcSon 15 2) 
{ 
order = 12 
} 
(cArcSon 15 3) 
{ 
order = 11 
} 
(cArcSon 15 4) 
{ 
order = 10 
} 
(cArcSon 15 5) 
{ 
order = 9 
} 
(cArcSon 15 6) 
{ 
order = 8 
} 
(cArcSon 15 7) 
{ 
order = 7 
} 
(cArcSon 15 8) 
{ 
order = 6 
} 
(cArcSon 15 9) 
{ 
order = 5 
} 
(cArcSon 15 10) 
{ 
order = 4 
} 
(cArcSon 15 11) 
{ 
order = 3 
} 
(cArcSon 15 12) 
{ 
order = 2 
} 
(cArcSon 15 13) 
{ 
order = 1 
} 
(cArcSon 14 15) 
{ 
order = 1 
} 

Figure 13: The Datrix-TA Representation for the ASG in Figure 12 
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The ASG is represented in Datrix-TA format in Figure 13. The lengthy output has been 

compacted into three columns to save space. The graph nodes with their corresponding attributes 

are created first using $INSTANCE declarations. Next the edges between nodes and their 

appropriate orderings are defined. 

6.2.6 FAMIX 

The FAMOOS project at the University of Berne supports the reengineering of object-oriented 

software systems developed in Ada, C++, Java and Smalltalk. It provides an intermediate 

representation of object-oriented source code using the FAMOOS Information Exchange Model 

(FAMIX). This representation is portable among a variety of reverse engineering tools from a 

variety of vendors. This is notable, since most exchange formats are developed to integrate 

among tools that exist within the same tool environment. 

Demeyer, Ducasse and Tichelaar [DDT 99] argue against the use of UML for representing 

object-oriented source code in reverse engineering environments: 

“since UML is specifically targeted towards OOAD [Object-Oriented Analysis and Design], it 

lacks some concepts that are necessary in order to adequately model source-code … Of course it is 

possible to extend UML to incorporate these concepts, but then the protection of the standard is 

abandoned and with that the reliability necessary to achieve true interoperability.” 

FAMIX is presented as a superior alternative to UML. Its core model supports the representation 

of classes, methods and attributes. Within these entities, relations such as inherits, belongs-to, 

invokes and accesses can be established. A diagram of the core model is shown in Figure 14. The 

core model has been augmented to include other items such as functions, local variables, global 

variables and parameters. Each entity is given a unique name in the model, which facilitates the 

establishment of relationships. Unique names have other benefits as well. They eliminate the 

need to establish explicit relations that exist only in the transfer. This makes the information 
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being transferred more human readable. It also benefits query functions that often involve the 

accumulation or merging of information from diverse sources [TDD 00]. 

Method Attribute

Class

invokes

access

belongs-to

inherits

 
Figure 14: The Core Model of FAMIX 

 

Originally CDIF was used as the transfer mechanism for FAMIX structured data. Although 

CDIF was well suited for this purpose, the OMG and other reverse engineering tool vendors 

discontinued their support for it. Consequently, the FAMOOS project shifted its focus towards 

XMI for their transfer requirements. To make use of XMI, tool developers must first create a 

Meta Object Facility (MOF) compliant model that provides a structure for the information to be 

exchanged. Because of the object-oriented nature of FAMIX, the creation of such an MOF 

compliant model was not difficult. Following a number of standardized production rules, the 

MOF model is used to generate an XML DTD. Using this DTD, the structure of valid XMI files 

for exchanging FAMIX data is determined. 

Other tool developers may not want to use XMI, especially those that provide representations 

for the significant quantity of legacy code that is not object-oriented. The FAMOOS project is 

interested in investigating possible mappings between FAMIX and UML. Since UML is also 

 50



 package gui; 
 

 class Widget { 
   int wTop; 
      ... 
   void print() { 
     System.out.println("Top = " + wTop); 
   } 
 } 

Figure 15: A Small Extract of Java Code 

based on an MOF model, converting FAMIX to a MOF model was a logical first step towards 

this goal. 

  (Class FM1 
  (name "Widget") 
  (uniqueName "gui::Widget") 
 ) 
 …  
 (Attribute FM5 
  (name "wTop") 
  (uniqueName "gui::Widget.wTop") 
  (belongsToClass "gui::Widget") 
 ) 
 …  
 (Method FM8 
  (name "print") 
  (uniqueName "gui::Widget.print()") 
  (belongsToClass "gui::Widget") 
 ) 
 …  
 (Access FM12 
  (accesses "gui::Widget.wTop") 
  (accessedIn "gui::Widget.print()") 
 ) 

Figure 16: FAMIX Representation For Java Extract From Figure 15 In CDIF 

 

 An example from [TDD 00] demonstrates the difference between FAMIX structured data in 

CDIF and XMI. In Figure 15 a small snippet of Java code is provided. The corresponding 

FAMIX representation for the code is shown in CDIF in Figure 16 and XMI in Figure 17. The 

model definitions and headers for each example have been excluded for clarity. CDIF is well laid 

out and easy to read. XMI is considerably more verbose and compact, and is much more 

challenging for humans to understand. 
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6.2.7 GraX 

<Famix.Package xmi.id="_1"> 
 <Famix.Entity.name>gui</Famix.Entity.name> 
 <Famix.Entity.uniqueName>gui</Famix.Entity.uniqueName> 
</Famix.Package> 
<Famix.Class xmi.id="_2"> 
 <Famix.Entity.name>Widget</Famix.Entity.name> 
 <Famix.Entity.uniqueName>gui::Widget</Famix.Entity.uniqueName> 
 <Famix.Class.belongsToPackage>gui</Famix.Class.belongsToPackage> 
</Famix.Class> 
<Famix.Method xmi.id="_3"> 
 <Famix.Entity.name>print</Famix.Entity.name> 
 <Famix.Entity.uniqueName>gui::Widget.print()</Famix.Entity.uniqueName> 
<Famix.BehaviouralEntity.signature>print()</Famix.BehaviouralEntity.signature>
 <Famix.Method.belongsToClass>gui::Widget</Famix.Method.belongsToClass> 
</Famix.Method> 
<Famix.Attribute xmi.id="_4"> 
 <Famix.Entity.name>wTop</Famix.Entity.name> 
 <Famix.Entity.uniqueName>gui::Widget.wTop</Famix.Entity.uniqueName> 
 <Famix.Attribute.belongsToClass>gui::Widget</Famix.Attribute.belongsToClass> 
</Famix.Attribute> 
<Famix.Access xmi.id="_5"> 
 <Famix.Access.accesses>gui::Widget.wTop</Famix.Access.accesses> 
 <Famix.Access.accessedIn>gui::Widget.print()</Famix.Access.accessedIn> 
</Famix.Access> 

Figure 17: FAMIX Representation For Java Extract From Figure 15 In XMI  

 

 GraX [EKW 00, EKW 99] is used as a means for exchanging software representations between 

the KOGGE Computer-Aided Software Engineering (CASE) and the GUPRO Computer-Aided 

Reengineering (CARE) tools from the University of Koblenz-Landau in Germany. At the core of 

GraX is a graph model known as TGraphs. TGraphs have the following characteristics 

[EWD+ 96]: 

• They are directed. One starting and ending vertex for each edge is defined. 

• They are typed. Different classes are used to group edges and vertices. Multiple 

inheritance is supported using typing. 

• They are attributed. Descriptive information can be associated with vertices and edges 

that make up a graph. The attributes that are allowed depend on the type for the vertex or 

edge that the attribute relates to. Attributes are recorded using pairs (tuples) that associate 
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a given attribute with the id for the vertex or edge. Attributes are not just simple strings. 

Structured information can also be stored as an attribute. 

• Edges are ‘first-class’ entities. That is to say, edges are equal to all other entities with 

respect to their individual properties. 

• They are ordered. All the edges that are incident to a particular vertex are numbered, 

providing a means for articulating entity sequences. This numbering is distinct from the 

edge identifier, which is presumably also a number. 

Note that the above-mentioned characteristics are all optional. They may or may not be present 

in a TGraph. For example, TGraphs can be used to represent undirected, typed, attributed, 

unordered graphs. 

One feature of TGraphs is that they are very general. They can be used to represent trees, 

DAG-like graphs, undirected, relational graphs and many other types of graphs useful in the 

reengineering tool domain. TGraphs are capable of representing software at various levels of 

abstraction.  

A number of examples are provided in [EKW 99]. A TGraph representation of the ASG for 

the code fragment in Figure 18 is shown in Figure 19. Each of the edges and vertices have a 

unique identifier and type. Vertices v3, v4, v5, v8, v10, v11, v13 and v16 have additional 

attributes where values or identifiers are instantiated. The four outgoing edges on vertex v3 are 

ordered to indicate four instances where variable x is referenced. 

 53



 while x > 0 do 
    repeat 
      y := y + 1 
    until (y = x); 
    x := x _ 1 
 od 

Figure 18: A Fragment of Source Code 

Figure 19: TGraph of the ASG for the Source Code Fragment in Figure 18 [EKW 99] 
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 In another example, an extract of a coarse-grained TGraph representation for a multi-

language system in a large insurance company is shown (Figure 20). Extensive use is made of 

TGraph’s ability to store attributes for vertices and edges. For instance, edge e1 has an attribute 

that provides information on the isCalledin relationship between vertices v1 and v2. These 

examples demonstrate how effective TGraphs are for fine-grained representation of source code 

to coarse-grained architectural modeling of multi-language systems. 

 

Figure 20: Extract of a TGraph for a Large Multi-Language System [EKW 99] 

 

 GraX exchanges TGraph representations using XML as a wrapper and transport mechanism. 

One nice feature of TGraphs is that they can be used to represent schema information and data 
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information. In this way, the XML DTD only needs to define TGraphs. Once the DTD is in 

place, reengineering tools can exchange schema information and data information as TGraphs 

using XML. An example of this capability from [EKW 00] is shown. In Figure 21 the conceptual 

model for a class of attributed graphs is shown on the left. An equivalent representation of the 

model is shown as a TGraph on the right. The corresponding GraX document for the model is 

shown in Figure 22. This GraX document acts as a schema for a class of attributed graphs that 

can subsequently be represented as TGraphs and exchanged as GraX documents. 

      
Figure 21: A Conceptual Model for Attributed Graphs and Its TGraph Representation 

 

6.2.8 GXL 

The Graph Exchange Language (GXL) [HW 00a, HW 00b] is designed to exchange software 

representations at all levels of abstraction. It takes advantage of many of the characteristics found 

in other popular exchange formats. In particular, the exchange formats GraX, PROGRES, RSF 

and TA as well as a means for manipulating them (Relational Partition Algebra [FV 99, Kri 97]), 

have all contributed significantly to GXL. Holt, Winter and Schürr [HWS 00] list 42 instances 

where TA, GraX, PROGRES and RSF have been used facilitate tool interoperability and support 
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the reverse engineering of large-scale software systems. Drawing on this successful legacy, GXL 

is a scaleable and flexible integrator for reverse engineering tools operating on large sized 

industrial software systems. 

<?xml version="1.0" ?> 
<!DOCTYPE grax SYSTEM "grax.1.0.dtd" > 
<grax schema = "meta.1.0.scx" > 
    <vertex id = "v1" type = "Attribute" > 
        <attr name = "name" value = "aAttr"/> 
    </vertex> 
    <vertex id = "v2" type = "EntityType" > 
        <attr name = "name" value = "A"/> 
    </vertex> 
    <vertex id = "v3" type = "RelationshipType" > 
        <attr name = "name" value = "s"/> 
    </vertex> 
    ... 
    <edge id = "e7" type = "isA" 
        alpha = "v6" omega = "v2" > 
    </edge> 
    <edge id = "e8" type = "comesFrom" 
        alpha = "v3" omega = "v2" > 
        <attr name = "limits" value = "(1,*)" /> 
    </edge> 
    <edge id = "e9" type = "goesTo" 
        alpha = "v3" omega = "v4" > 
        <attr name = "limits" value = "(1,1)" /> 
    </edge> 
    ... 
</grax>  

Figure 22: The GraX Document Used To Exchange the TGraph in Figure 21 

 

GXL came about from extensive discussions among members of the reverse engineering 

community [EKW 01, Hol 98b, Hol 98c, Mül 98, Sch 00, SHK 00b, Sim 00c]. As a result, the 

format incorporates many features that are a direct benefit to reverse engineering practitioners. 

GXL represents attributed, typed, directed and undirected graphs in a straightforward and 

compact format. Hypergraphs, graphs with ordered edges and hierarchical graphs are also 

supported. Provision is made for storing complex values for attributes. GXL is designed to be 

extensible so that new graph elements or attribute types can be added [Win 01].  
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GXL uses XML as the transport mechanism for information exchange. The GXL DTD 

defines the syntactical structure of the information that will be passed between participating 

tools. At both ends of a transmission the GXL DTD can be used to check the validity of the 

information to be sent or received. Many checkers, parsers and other tools that work with XML 

documents are available. This makes it easier to integrate GXL exchange functionality into 

existing reverse engineering tools. Converters are also available for data stored in PROGRES, 

RSF and TA formats [HWS+ 00, HW 00c]. 

The representational backbone of GXL is based on GraX’s TGraphs. TGraphs provide a 

means for ordering the nodes and edges that are incident to a given node. This feature is useful 

when modeling ordered relationships or graphing algorithms. The generality of TGraphs allows 

them to be used for all kinds of software representations. Conceptual models of schemas can be 

represented as typed graphs using TGraphs. Like GraX, GXL exchanges both schema and 

instance data using the same XML channel. A number of tools handle typed graphs in general. 

These tools can be ‘oriented’ to deal with specific kinds of typed graphs through the exchange of 

the GXL DTD, schema information and appropriately structured instance data. 

GXL does have some shortcomings. XML adds a lot of overhead in the form of tags to the 

information being exchanged. Reverse engineering domains are typically concerned with very 

large-scale systems. As a consequence, GXL formatted XML documents are very large. The 

notational overhead makes it difficult to process GXL-encoded data efficiently. Access to the 

vast quantity of information involved in reengineering analyses would be better achieved using 

an API accessing a repository. GXL is better suited as an integration enabler, providing an XML 

stream for exchanging software representations between tools. 
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A number of graphs and their corresponding representation in GXL reproduced from 

[Win 01] are shown. In Figure 23 a directed graph shows the call and reference relations among 

two procedures (P and Q) and two variables (v and w) in a hypothetical software system. Dashed 

lines are used to associate relation attributes to their corresponding relations (shown as solid, 

directed lines). Note that node and edge attributes are not simply stored as string phrases. In this 

P

File = "main.c"

Q

File = "test.c"

w

Line = 316

v

Line = 225

Reference1

Line = 127

Reference2

Line = 27

Call

Line = 42

 

<gxl> 
<graph> 
    <node id = "P" >  
        <attr name = "File">  
        <string> main.c </string> 
        </attr>  
    </node>  
    <node id = "Q" >  
        <attr name = "File">  
        <string> test.c </string> 
        </attr>  
    </node>  
    <node id = "v" >  
        <attr name = "Line">  
        <int> 225 </int>  
        </attr>  
    </node>  
    <node id = "w" >  
        <attr name = "Line">  
        <int> 316 </int> 
        </attr>  
    </node>   
    <edge id = "Reference1"  
        from = "P" to = "v">  
        <attr name = "Line">  
        <int> 127 </int>  
        </attr>  
    </edge>  
    <edge id = "Reference2"  
        from = "Q" to = "w">  
        <attr name = "Line">  
        <int> 27 </int>  
        </attr>  
    </edge>  
    <edge id = "Call" 
        from = "P" to = "Q">  
        <attr name = "Line">  
        <int> 316 </int> 
        </attr>  
    </edge>  
</graph> 
</gxl>  

Figure 23: A Directed Graph Represented in GXL 
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V

U

W

e

f

g

1

2

3

4

<node id = "U" /> 
<node id = "V" /> 
<node id = "W" /> 
<edge id = "e"  
    from = "V" to = "U" 
    fromorder = "1" /> 
<edge id = "f"  
    from = "W" to = "V" 
    toorder = "2" /> 
<edge id = "g"  
    from = "V" to = "V" 
    toorder = "3" 
    fromorder = "4" /> 

Figure 24: A Directed Graph with Ordered Edges Represented in GXL 

example, a name and a corresponding string or integer value are defined for each attribute. Any 

number of attributes can be defined for an entity in GXL in this manner. 

  

U

V W
e

g
T

f h

 

<node  id = "T"> 
    <graph id = "g">  
        <node  id = "V"/> 
        <node  id = "W"/>  
        <edge  id = "e" 
            from = "V" to = "W"/> 
    </graph> 
</node> 
<node  id = "U"/>  
<edge  id = "f" 
       from = "T" to = "U"/> 
<edge id = "h" 
      from = "U" to = "W"/> 

Figure 25: A Hierarchical Graph Represented in GXL 

 

 In Figure 24 a directed graph with ordered edges is shown. The edge attributes fromorder 

and toorder provide a means for ordering edges, even when the source and destination node are 

the same (as is the case for edge g). 
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Hierarchical graphs are easily represented in GXL. Figure 25 provides an example. Node T 

consists of a directed graph g. Within graph g the nodes V and W are joined by the directed 

edge e. Although node U is instantiated adjacent to node T, edges f and h establish a hierarchical 

relationship to nodes T and W. This simple example demonstrates how GXL can be used to 

represent complex structures in a compact format. Despite the verbosity of the XML tags, only 

10 lines were required to create this 3-level hierarchical graph.  

6.2.9 PROGRES 

The PROgramming with Graph Rewriting Systems (PROGRES) [Sch 97a, Sch 97b] environment 

consists of an integrated set of freeware tools that help developers create, analyze, compile and 

debug specifications for graph rewriting systems. Some of the significant tools in the 

environment are: 

• Syntax-Directed Editor. Developers can create graph specifications that conform to the 

context-free syntax for the language they are working with. 

• Analyzer. This tool performs an evaluative pass on a specification, detecting many types 

specification errors and identifying possible typographical errors. 

• Interpreter. A tool used for validating specifications interactively. Productions based on 

the context-free syntax for the language can be implemented, checked and repaired. 

Additional functionality includes support for tracing, replaying and undoing changes to a 

specification. 

• Compiler Backends. These tools generate code in C and Modula-2 that can be integrated 

into graph rewriting systems. 

The representational backbone of PROGRES is based on directed, attributed graphs. Types 

for nodes and directed edges are established using labels. Node instances take on the properties 
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defined by the type that the node belongs to. Based on their type, edge instances are restricted to 

specific node types for their source and destination. Attributes can be associated only with nodes. 

At a higher level of semantics, different types of node types – referred to as node classes – can 

be established. This notion is useful for organizing common properties among different node 

types. PROGRES graphs are stored in a proprietary repository system called GRAS [JSZ 96, 

KSW 95]. 

An example of a PROGRES specification for a list data structure reproduced from [AE 95] is 

shown in Figure 26. At the beginning of the specification in the Graph_Scheme section all the 

allowable node and edge entities are defined. In the subsequent section called Productions all 

allowable operations on the node and edge entities with appropriate restrictions to their 

behaviour are outlined. The third section of the specification is shown in Figure 27, where a 

program (referred to as a transaction) makes use of the entities and productions defined to 

create a list structure consisting of three nodes. 

PROGRES has been used to support the development of integrated tools for developing and 

maintaining large-scale software systems. For instance, the Integrated Project Support 

Environment (IPSEN) [Nag 96] uses graphs extensively as a foundation for all activities. Formal 

specifications represented as graph grammars are processed to create graph-based configurations 

for the system. Research into the recovery and transformation of software architecture 

representations by Fahmy, Holt and Cordy [FHC 01, FH 00a, FH 00b] has greatly benefited from 

the graph manipulation features of PROGRES. 
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Figure 26: A PROGRES Specification For A List Structure [AE 95] 

 
Figure 27: A PROGRES Transaction Creates A List Structure With 3 Nodes [AE 95]

 
 

6.2.10 RSF 

Rigi [Won 98, MOT+ 93] is a repository-based modeling tool that supports the analysis of 

programs and documents from a reverse engineering perspective. It assists in process of 

extracting, organizing and abstracting information from source documents. Output from the tool 

is displayed in a graphical format for users. The main component of Rigi is rigiedit, a graph 

editor that supports the display, modification and analysis of graphical models produced from 
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documents being analyzed. Other components in Rigi include parsers for C, C++ and Java and 

tools for processing, sorting and storing information extracted from document artifacts. 

Rigi is flexible, extensible and scalable. Different views of the software system being studied 

are supported. These views are interactive and provide output in an organized fashion similar to 

database views. A powerful scripting language provides the user with the means for automating 

and customizing different analyses. Besides built-in operations, other external algorithms can 

also be utilized for clustering, pattern matching, graph layout, slicing and other analyses. Rigi 

has been used successfully within an industrial setting to analyze systems with large source code 

bases (57,000 and 82,000 lines of code). 

Integration among the components that make up Rigi is facilitated by the Rigi Standard 

Format (RSF). Although the name implies a standard format, there are actually four different 

flavours of RSF [Mar 99]: Unstructured RSF, Partly Structured RSF, Structured RSF and 

4-Tuple Unstructured RSF. At its core, RSF is a simple, text-based interchange format that stores 

typed graphs with attributes and relations along with layout options for color. Nodes are listed by 

name. Edges and attributes are constructed using tuples. Small structural differences distinguish 

each of the flavours. According to Martin [Mar 99] all of the RSF flavours are inadequate 

because they do not support the storage of domain information and they do not handle double 

quotes in strings correctly. Unstructured RSF and 4-Tuple Unstructured RSF in particular do not 

support attributes for edges. A fifth RSF flavour is proposed that would supercede 4-Tuple 

Unstructured RSF and resolve these shortcomings. 

Within the context of software architecture transformation, Fahmy, Holt and Cordy [FHC 01] 

provide a small example of RSF in use as a means for exchanging information among various 

tools that make up the Portable Bookshelf (PBS) Toolkit [PBS 01, FHK+ 97, Hol 97]. The graph 
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in Figure 28 shows the architecture of a sample system S. The graph consists of two types of 

entities: systems/subsystems (shown as rectangles) and modules (shown as circles). Three 

directed relationships among the entities are defined: contains (shown as a solid arrow), uses a 

variable (shown as a broken arrow) and uses a procedure (shown as a dotted arrow). The 

information contained within the graph can be expressed in terms of sets as shown in Figure 29. 

The same information is shown in Unstructured RSF in Figure 30. This token example shows the 

simplicity and compactness of RSF. There is no need to predefine entities. They are established 

‘on the fly’ as the each of the relationships is declared. 

S

e

T

W

c d

V

a b

System/Sub-System

Module

Contains
Uses Variable
Uses Procedure  

Figure 28: The Architecture of System 

 

 

 65



6.2.11 TA   

Nodes = {S, T, V, W, a, b, c, d, e} 
Contains = {(S, T), (S, V), (T, e), (T, W), (W, c), (W, d), (V, a), (V, b)} 
UsesVariable = {(a, d), (c, b), (a, c)} 
UsesProcedure = {(a, b), (a, c), (d, e)} 
  

Figure 29: The Information In Figure 28 Expressed As Sets of Entities and Relations 

Contains S T 
Contains S V  
Contains T W 
Contains T e 
Contains W c 
Contains W d 
Contains V a 
Contains V b 
UsesVariable a d 
UsesVariable a c 
UsesVariable c b 
UsesProcedure a b
UsesProcedure a c
UsesProcedure d e 

Figure 30: The Information In Figure 28 Expressed As Unstructured RSF 

 

The Tuple-Attribute (TA) language [Hol 98a] expresses graphs that represent large software 

programs. The TA language is divided both horizontally and vertically. Horizontally a distinction 

is made between tuples and attributes. Tuples are pairs that are used to define entities and 

relationships. Entities are represented as graph nodes while relationships are represented as graph 

edges. Vertically, TA is divided into two sub-language levels. The lower language level records 

instance information that is essentially the graph data. Holt refers to this as the “facts” level. The 

upper language level is used to define the structure for each type of entity and relation that is 

allowed in the graph. Holt refers to this as the “scheme” level. The scheme essentially describes 

the E-R diagram for graphs that can be fashioned from the structural characteristics provided. 

Table 3 shows the four sections that make up the TA format. They are summarized using 

Holt’s terminology as follows: 
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  Entity Type 

  Tuple Attribute 

Scheme Scheme 
Tuple 

Scheme 
Attribute 

La
ng

ua
ge

 
Le

ve
l 

Fact Fact 
Tuple 

Fact 
Attribute 

Table 3: Sections of the TA Format 
 

 
1. Scheme Tuple. This section defines the structural characteristics for all entities and 

relations that can exist between them. 

2. Scheme Attribute. This section defines the structural characteristics for all attributes that 

are used to describe the entities and relations defined in the Scheme Tuple. 

3. Fact Tuple. This is the “data” section, where all entities and relations are instantiated. 

4. Attribute Tuple. Attributes for the entity and relation instances in the Fact Tuple section 

are recorded. 

The TA language is simple yet powerful. The text-based entries are easy to read and 

understand. Inheritance is supported at the scheme level as a property for entities and relations 

[EKW 99] using a special $INHERIT relation label. Nesting of attributes can also be set up at the 

scheme level. Given a graph, its conformance to a given scheme can be checked. The scheme in 

combination with the facts can be thought of as a graphical database for the software it 

represents. 

An example based on one provided in [Hol 98a] is shown below. The graph in Figure 31 

shows the call and reference relations among procedures P and Q and variable V. In Figure 32 the 

graph is represented in TA format. Line numbering has been added to the example to make it 

easier to explain the different parts of the TA file.  
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In the SCHEME TUPLE section two relations among procedure and variable entities are 

established. The name for the relation is stated first followed by the pre- and post-fixated entity 

arguments. So on lines 2 and 3 the statements “procedures call procedures” and “procedures 

reference variables” are respectively being defined. In the SCHEME ATTRIBUTE section various 

attributes for entities and relations are defined. For example, all Procedure entities have (x, y) 

coordinates, a shape and a description attribute associated with them (line 5).  

P

print.c

Q

driver.c
V

Procedure

Call Reference

Procedure Variable  

Figure 31: A Small Call/Reference Graph 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

SCHEME TUPLE : 
Call Procedure Procedure 
Reference Procedure Variable 
SCHEME ATTRIBUTE : 
Procedure { x y shape description } 
Variable { x y shape } 
Call   { line } 
Reference { line } 
FACT TUPLE : 
$INSTANCE P Procedure 
$INSTANCE Q Procedure 
$INSTANCE V Variable 
Call P Q 
Reference Q V 
FACT ATTRIBUTE : 
P { shape = rectangle x = 50 y = 100 } 
Q { shape = rectangle x = 150 y = 100 } 
V { shape = “sm circle” x = 250 y = 100 } 
P { description = print.c } 
Q [ description = driver.c } 
(Call P Q) { line = solid } 
(Reference Q V) { line = dashed }  

Figure 32: The Graph in Figure 31 Represented in TA Format 

 

In the FACT TUPLE and FACT ATTRIBUTE sections the entities, relations and their associated 

attributes are instantiated. Only the entities, relations and attributes defined in the SCHEME TUPLE 

 68



and SCHEME ATTRIBUTE sections are allowable. Entities are instantiated using the $INSTANCE 

label in lines 10, 11 and 12. The Call and Reference relations are instantiated in lines 13 and 

14. On lines 16 to 22 various attributes for the entities are set. Only those attributes defined in the 

SCHEME ATTRIBUTE section are allowed. TA is flexible in its handling of text labels. Single 

words are accepted as they are. Phrases consisting of words separated by spaces are accepted if 

they are enclosed in double quotes. This is demonstrated on line 18 where the sm circle shape 

attribute for variable V is set. 

6.2.12 TA++ 

The goal of the Knowledge-Based Reverse Engineering of Legacy Telecommunications Software 

(KBRE) project at the University of Ottawa is to assist software engineers in the exploration and 

modification of large complex software systems. To this end, they have developed a graphical 

code-browsing tool called TkSee that works with telecommunications system code written in 

Pascal at Mitel Corporation. A modified version of TA is used for representing and manipulating 

software representations among components that make up the tool. The format is referred to as 

TA++. The only major difference between TA and TA++ is the implementation of a fixed 

schema for TA++. This simply means that the SCHEME TUPLE and SCHEME ATTRIBUTE sections 

of TA++ are not modifiable.  

TA++ makes extensive use of the inheritance capabilities of TA to create a hierarchy of 

entity classes used in TkSee. The complete scheme for TA++ [Let 98] is shown in Figure 33. 

The allowable entities and relations show that TA++ is suitable for representing software at the 

code level and at a medium level of abstraction. 
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TA++ uses an interesting convention for identifying objects. A unique identifier is followed 

by an exclamation mark (‘!’) and then the name of the object. This helps to distinguish multiple 

objects with the same name in a software representation. Although the format is more difficult to 

read, it is more efficient for computer processing. In Figure 34, a description for the source code 

 SCHEME TUPLE : 
 $INHERIT SoftwareObject $ENTITY 
 $INHERIT SourceUnit SoftwareObject 
 $INHERIT Definition SoftwareObject 
 $INHERIT ReferenceExistence SoftwareObject 
 $INHERIT Subsystem SoftwareObject 
 $INHERIT SourceFile SourceUnit 
 $INHERIT SourceWithinFile SourceUnit 
 $INHERIT RoutineSource SourceWithinFile 
 $INHERIT ClassSource SourceWithinFile 
 $INHERIT TypedDefinition Definition 
 $INHERIT EnumerationConst Definition 
 $INHERIT StandaloneDefinition TypedDefinition 
 $INHERIT Field TypedDefinition 
 $INHERIT TypeDef StandaloneDefinition 
 $INHERIT DatumDef StandaloneDefinition 
 $INHERIT RecordTypeDef TypeDef 
 $INHERIT EnumeratedTypeDef TypeDef 
 $INHERIT CommentTermExistence ReferenceExistence 
 $INHERIT FileInclusionExistence ReferenceExistence 
 $INHERIT DataUseExistence ReferenceExistence 
 $INHERIT RoutineCallExistence ReferenceExistence 
 $INHERIT ManifestConstExistence DataUseExistence 
 $INHERIT TypeUseExistence DataUseExistence 
 potentiallyIncludedIn FileInclusionExistence SourceUnit 
 definedBy StandaloneDefinition SourceUnit 
 containingSource SourceWithinFile SourceUnit 
 declaredAsFormalArgsIn DatumDef RoutineSource 
 returnType RoutineSource TypeUseExistence 
 potentiallyCalledBy RoutineCallExistence RoutineSource 
 foundInSource CommentTermExistence SourceUnit 
 usedInSource DataUseExistence SourceUnit 
 ofType TypedDefinition TypeUseExistence 
 isEnumerationMemberOf EnumerationConst EnumeratedTypeDef 
 isFieldMemberOf Field RecordTypeDef 
 isMemberOf SourceFile Subsystem 
  
 SCHEME ATTRIBUTE : 
 SourceFile { path version dateChanged size } 
 SourceWithinFile { startChar endChar } 
 RoutineSource { isClassMethod, visibility } 
 StandaloneDefinition { startChar endChar } 
 DatumDef { isConst } 

Figure 33: The TA++ Scheme Definitions 
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of an assembly language program is shown in TA++ format. The FACT ATTRIBUTE section 

demonstrates how TA++ (and also TA) supports loosely wrapped text for the list of attribute 

settings. 

 FACT TUPLE: 
 $INSTANCE 0!ftfmctab.asm SourceFile 
 $INSTANCE 81!ftfmctab SpecialCodeExistence 
 foundInSource 81!ftfmctab 0!ftfmctab.asm 
 $INSTANCE 171!tabmac.inc FileInclusionExistence 
 potentiallyIncludedIn 171!tabmac.inc 0!ftfmctab.asm 
 $INSTANCE 186!list RoutineCallExistence 
 potentiallyCalledBy 186!list 0!ftfmctab.asm 
 $INSTANCE 193!ftfmctab SpecialCodeExistence 
 foundInSource 193!ftfmctab 0!ftfmctab.asm 
 $INSTANCE 261!ftf_tbl DataUseExistence 
 usedInSource 261!ftf_tbl 0!ftfmctab.asm 
 $INSTANCE 253!tabstrt RoutineCallExistence 
 potentiallyCalledBy 253!tabstrt 0!ftfmctab.asm 
 $INSTANCE 272!tabadd RoutineCallExistence 
 potentiallyCalledBy 272!tabadd 0!ftfmctab.asm 
 $INSTANCE 292!tstart RoutineCallExistence 
 potentiallyCalledBy 292!tstart 0!ftfmctab.asm 
 $INSTANCE 307!chartab RoutineCallExistence 
 potentiallyCalledBy 307!chartab 0!ftfmctab.asm 
 $INSTANCE 231!ftf_tbl DatumDef 
 definedBy 231!ftf_tbl 0!ftfmctab.asm 
 $INSTANCE 231!ASSEMBLER_TYPE TypeUseExistence 
 type 231!ftf_tbl 231!ASSEMBLER_TYPE 
 usedInSource 231!ASSEMBLER_TYPE 0!ftfmctab.asm 
 FACT ATTRIBUTE: 
 0!ftfmctab.asm { 
     dateChanged = 19970101 
     path = /usr/bigsystem/version4/source/ 
     size = 329 
     version = 1} 
 231!ftf_tbl { 
     endChar = 238 
     isConst = 0 
     startChar = 231} 

Figure 34: Description of an Assembly Language Program in TA++ Format 
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7 Towards a Standard Exchange Format 

In Section 5.4 we noted that efforts towards integrating reverse engineering tools have been 

severely hindered by the lack of a consistent model for the structural makeup of software 

representations. The development of a Standard Exchange Format (SEF) for software is seen as 

the desired solution to this problem. Schemas that accommodate the representational needs of 

various reverse engineering tools are an essential part of an SEF. In this chapter we justify their 

necessity and classify them according to two distinguishing characteristics. Based on the use of 

schemas, four different exchange patterns are distinguishable. The relative benefits and 

drawbacks for each exchange pattern are discussed along with examples of their use within 

existing exchange formats. Next we evaluate how each of the exchange patterns satisfies thirteen 

requirements that an SEF would need to fulfill to make it attractive to tool developers. From this 

we determine the exchange pattern that is best suited for standardization into an SEF. Finally, we 

discuss a number of other challenges related to software representations that hinder efforts to 

integrate reverse engineering tools. 

7.1 The Need For Schemas 

Much of the discussion related to the establishment of an SEF in the literature and at conferences 

and meetings has centered not so much on how to negotiate exchange, but rather on what 

information model should be used [DE 94a, EKW 99, God 01, RW 91, Sim 00b]. More recently 

this discussion has focused on the makeup of a standardized model that would form the 

representational basis for an SEF [Sim 00c]. But can a single information model accommodate 

the needs of the entire reverse engineering community while at the same time satisfy all the 

requirements listed above? The answer is no for a number of reasons. The most significant 

deterrent relates to semantic differences that exist between models for different programming 
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languages [DDT 99]. Many programming languages have fundamental differences that cannot be 

accommodated in a single information model. For instance, in object-oriented languages such as 

Java all entities are organized within a hierarchy of classes. Instantiation outside the class 

hierarchy is not possible. Modular languages such as COBOL allow the creation of global 

external variables and records. These entities are nonexistent in object-oriented programming 

languages. 

Some reverse engineering tools create extensions to software representations for storing 

proprietary information. These extensions may be solely for the internal use of the tool that 

created them or other selected tools may use them. For this reason there is a need to preserve the 

persistence of proprietary extensions in an exchange format, even if the destination tool does not 

make use of them. A single information model tends to force tool developers to subscribe to a 

rigid structure for representing software that does not permit the inclusion of proprietary 

extensions.  

A single information model cannot capture all the views of software supported by reverse 

engineering tools [EKW 00]. In Section 6.1.2 we identified three levels of abstractive detail that 

are commonly used within the reverse engineering community. But there is a lot of debate over 

how many levels of abstraction are appropriate. Some reverse engineering tools look at software 

from unique perspectives that cannot be characterized within an echelon of abstraction. Certain 

types of metrics tools fall into this category. A single information model that accommodates all 

views of software in existence today would still be insufficient for future needs. This is 

especially important when considering the use of software within the context of different 

application domains. For example, the software that supports financial systems, user interface 

systems and scientific computing systems all have different characteristics. 
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What is needed is a representational foundation that is flexible so that it can accommodate 

support for a wide variety of representations for software. The use of E-R models constrained 

using schemas provides this flexibility. E-R models provide the generic means for representing 

software as a graph. The schemas apply constraints to the E-R model depending on the 

representational requirements of the application domain. Standardization comes through schema 

design rather than through adherence to a monolithic information model. 

7.2 Schema Classification 

We have established the need for schemas as a means for providing flexible support for the 

representation of software systems in various application domains. Ultimately the way a schema 

is used in an exchange format dictates how a tool will negotiate exchange among other tools that 

use the format. We classify the use of schemas into two categories: schema definition and 

schema locality. 

7.2.1 Schema Definition 

The Schema Definition category characterizes how the schema is defined. Within this category 

two classifications are identified: 

Implicit. The structure of the representation is implied by the context in which the 

representation is used.  

Explicit. The structure of the representation is provided, either through a specification or 

some other means. 

7.2.2 Schema Locality 

The Schema Locality category distinguishes where the schema is defined. Within this category 

two classifications are identified: 
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Internal. The schema is an integral part of the tool. As a consequence, the schema is not 

required to participate in the exchange. 

External. The source for the schema definition is external to the tool. Because of this 

detachment, the schema is a participant in the exchange that occurs between tools. The 

schema is received by each of the tools either simultaneously with instance data or separately 

as a precursor to subsequent transmissions of instance data. 

7.3 Exchange Patterns  

According to the schema classifications outlined above, four different types of exchange can be 

negotiated among reverse engineering tools. We refer to these types of exchange as exchange 

patterns. In this section we characterize the exchange patterns and provide examples for each. 

The figures below provide a visual perspective on the exchange pattern as it relates to each 

individual tool participating in an exchange episode. Each figure consists of the following 

components: 

• A tool T. 

• A schema S. 

• I and I’ respectively representing the state of a software representation instance before 

and after it is processed by tool T.  

In Figure 35 an exchange that uses an implicit/internal schema is shown. The schema is 

embedded in the code, so it is found in many locations within the tool. Tools that are built to 

make use of an API to exchange software representations fall into this category. APIs essentially 

have a fixed schema, so the tools that use them are constructed according to an implicit yet 

predetermined concept of the software representation being exchanged. 
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Figure 35: Exchange Using An Implicit/Internal Schema 
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Figure 36: Exchange Using An Explicit/Internal Schema 
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Figure 37: Exchange Using An Explicit/External Schema 
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Figure 38: Exchange Using An Implicit/External Schema 
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Exchange that uses an explicit/internal schema is shown in Figure 36. Although the schema 

remains an integral part of the tool, it is provided as a specification so the schema is shown in a 

single location. Tools constructed within the PROGRES environment make use of schemas in 

this fashion. The tool developer first provides a schema in the form of a specification that 

outlines the graph-based structure of data to be represented and the operations that can be 

performed on them. Transactions that work with graph instances provide the functionality for the 

tool being constructed. 

In Figure 37 we see two exchange varieties that use an explicit/external schema. The tool 

shown in (a) receives the schema first followed by the instance data. The exchange format GraX 

works in this fashion. In GraX and GXL, schema and instance data are stored separately. All data 

instances provide a link to the file where the schema is stored. In (b) the schema and the instance 

data are received simultaneously. TA works this way. The schema information stored in the 

scheme tuple and scheme attribute sections are exchanged with instance data stored in the fact 

tuple and fact attribute sections of the same file. 

Exchange that uses an implicit/external schema is shown in Figure 38. In this case, the 

schema does not ‘exist’ (so it is shown in a box with a dashed border) yet it does dictate the 

structural semantics of the information exchanged. RSF is an example of an exchange format 

that works this way. The tuple notation used in each of the four RSF flavours is a syntactic 

requirement. The implicit schema for the information exchanged is an unconstrained E-R model. 

Tools such as Rigi and Holt’s Grok [Hol 98d] accept E-R models in RSF. These tools have been 

pre-configured to handle constraint-free E-R instance data, so there is no need for a schema. 

The exchange pattern used by each of the exchange formats we outlined in Chapter 6 are 

summarized in Table 4. 
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7.4 Considerations 

  Schema Definition 
  Implicit Explicit 

 

Internal 

ASIS 
CORUM 

CORUM II 
IML 

 
ATerms 

PROGRES 
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y  
 
 

External 

 
 
 

RSF 

Datrix-TA1 
FAMIX2 

GraX2 
GXL2 

RG1 

TA1 

TA++1 

Table 4: The Exchange Pattern Used By Each Exchange Format 
 

 

As we mentioned in Section 7.2, schema definition is a characterization of how the schema is 

defined, while schema locality relates to where the schema definition takes place. In this section 

we consider the advantages and disadvantages of each schema classification category in relation 

to their use in exchange. 

7.4.1 Implicit Schema Definitions 

The main advantage of an implicit schema definition is that it provides good performance. There 

is no need to carry out any additional processing or manage specifications for the representation 

being used. When the implicit definition is located internally, the representation is close at hand, 

being built into the code for the tool. Even when the implicit definition is external, the tool 

knows the structure of the information being exchanged so the opportunity to handle it 

appropriately is provided. This typically translates into the ability to processes large quantities of 

                                                 

1 Employs simultaneous receipt of schema and instance. 
2 Employs consecutive receipt of schema and instance(s). 
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information in a fast and efficient manner. This is especially beneficial for reverse engineering 

tools that work with source whose magnitude is measured in millions of lines of code.  

A number of disadvantages offset the performance advantages of an implicit schema 

definition. Because the definition is static by nature, the representation is not extensible. This is a 

major problem for tools that are built around a particular information model. In such a situation, 

making changes to the representation involves a wholesale revision of code. Documentation is 

also a problem when the schema definition is implicit. A separate document outlining the 

structure and semantics of the representation is a necessity. Maintaining this documentation is 

time consuming and keeping it in sync with tool or exchange format changes is especially 

challenging.  

A third problem with implicit schema definitions relates to the manner in which tools 

typically accept input from the exchange channel. It is often useful to verify the integrity of 

information being exchanged. This usually involves a check to ensure that the input is well 

formed. When the schema definition is implicit, such a test is difficult to implement and 

maintain. The tool functions that handle representations are often deeply embedded and widely 

distributed throughout the code for the tool. A test that effectively checks incoming information 

must be based on all uses of the representation by the tool. In addition, the check must stay in 

sync with any modifications that are made to the exchange format or the internal representation 

within the tool over time. The effort involved in creating such a check in essence duplicates the 

efforts originally involved in handling the representation within the tool in the first place. As a 

consequence, it is unlikely that a tool that negotiates exchange using an implicit schema 

definition will include a check for well-formed input. 
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7.4.2 Explicit Schema Definitions 

Exchange involving an explicit schema definition offers many benefits. The tool makes use of a 

specification or some other explicit means that identifies the structure and semantics of the 

information input from the exchange channel. A clear separation exists between schema and 

instance data, no matter if the schema definition is internal or external. Because the definition is 

dynamic by nature, the representation is highly extensible. Modification of the representation is 

easily accomplished through changes made to the schema specification. All the information 

relating to the representation is located in a single location. This makes it easier for humans to 

get an overall understanding of the structure and semantics supported. The representation is 

always well documented and up to date. The explicit definition for the schema is itself the 

documentation. 

Checking for well formed input is a straightforward process when the schema definition is 

explicit. The schema specification holds all the requirements that must be satisfied for the 

information to pass the checker. Implementing the checker is simple because the schema 

specification is complete and close at hand. The checker does not need to be maintained because 

the schema specification always outlines the current representation in use. For these reasons, it is 

likely that a tool that negotiates exchange using an explicit schema definition will include a 

check for well-formed input. 

The main drawback of an explicit schema definition is that it requires interpretation. The 

schema must be processed first before the tool can accept information from the exchange 

channel. This intermediate step ultimately affects the performance of the tool. More importantly, 

there is a requirement for the tool to ‘orient’ itself towards the representation provided in the 

schema. The tool must be flexible to accommodate this kind of functionality. In a best-case 
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scenario, the tool would be able to accommodate any representation. In reality, it is likely that 

the representational capabilities of many tools will be limited. Building flexibility into a tool may 

also add significant complexity to the development effort. 

7.4.3 Internal Schemas 

The main advantage of an internal schema is accessibility. The tool does not need to venture out 

to an external source to determine the structure and semantics of the information model. This is 

an obvious advantage in terms of performance. 

The difficulty with an internal schema definition becomes apparent when there is a need to 

change the information model. Maintaining conformity among two or more tools is difficult to 

achieve. This is especially challenging when the schema definition is implicit in all the affected 

tools.  Changes must be implemented exhaustively throughout the code for each of the tools 

affected. Clearly an internal schema tends to make all tools participating in the exchange 

conform to a rigid representational structure and semantics. 

7.4.4 External Schemas 

With an external schema definition, managing conformity among two or more tools participating 

in the exchange is easily accomplished. A single schema definition is all that is necessary to 

ensure that each tool is using the correct structure and semantics for the representation being 

exchanged. Complete representational conformity among each tool participating in the exchange 

is assured as long as each tool makes use of the same schema definition. An external schema 

definition eliminates the need for a complete overhaul of the code for each tool when a change is 

made to the representation. 

Nevertheless, the rules that each tool uses to process and analyze exchanged information can 

come out of sync with the schema because its definition is separated from the tool. Maintaining 
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consistency between the code for a tool and the schema is challenging. The problem is 

exacerbated by the fact that external schemas are easily changed. The more often a schema is 

changed, the more likely that a loss of consistency will occur. The code in essence defines what 

the tool does with the information once it is successfully exchanged. But how this is 

accomplished is completely dependent on the structure and semantics of the representation 

defined externally by the schema. 

  Advantages Disadvantages 

 

Implicit 

 
• High performance no matter 

how large the input 

• Not extensible 
• Hard to document 
• Difficult to implement check for 

well formed input 
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m
a 
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Explicit 

• Highly extensible 
• Easily understood 
• Well documented 
• Check for well formed input is 

easier to implement 

 

• Low Performance 
• Tool code is more complicated 

Internal • High performance • Difficulties managing changes 
among two or more tools 

Sc
he

m
a 
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External • Easier to manage changes 
among two or more tools 

• Keeping the code consistent 
with the schema is difficult 

Table 5: Advantages and Disadvantages of Schema Definition and Locality on Exchange 

 

7.4.5 Comparative Summary 

Table 5 summarizes the relative advantages of disadvantages of each of the schema classification 

categories mentioned in this section. 

7.5 Exchange Pattern Satisfaction of SEF Requirements 

Requirements of an SEF that would best support integration and interoperability among reverse 

engineering tools have been widely considered (for example, see [TDD 00], [BJO 00], [Let 98] 

and [MWT 94]). In particular, St-Denis, Schauer and Keller [SSK 00] list 13 requirements for an 

exchange format based on their past experiences and various requirements outlined in [BGH 99,  
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1. Transparency. No loss, alteration or gain in the information transferred occurs due to 
the use of encoders and decoders by the exchange format. 
 

2. Scalability. The format is usable for exchanging information of all sizes, including 
representations for very large software applications. 
 

3. Simplicity. The format is not complex or intricate. This makes it efficient, easier to 
describe, comprehend, apply and maintain while statistically reducing the prospects for 
errors and making it easier to process in an automated fashion.  
 

4. Neutrality. The representation is independent so that as many tools as possible can 
integrate with it. 
 

5. Formality. A formal definition reduces the chances for misinterpretation and ensures 
that it is well understood by all parties. 
 

6. Flexibility. The format accommodates different tools, languages and syntax for data 
and schemas. It also accommodates the exchange of incomplete information. 
 

7. Evolvability. The format can be changed easily to accommodate future needs. 
 

8. Popularity. Adoption of the format is widespread so that as many tools as possible can 
take advantage of it.  
 

9. Completeness. Everything needed to exchange information successfully is included. 
The user does not have to look after details relating to the exchange. 
 

10. Schema Identity. Transformation of instance data while preserving its identity is 
supported. The exchange format is capable of converting instance data from one 
schema into instance data of another schema. The instance data remains the same; it is 
just represented differently from one schema to the next. 
 

11. Solution Reuse. Wherever possible, use existing techniques and methods with the goal 
of reducing the amount of time and effort spent in testing and deploying the format. 
 

12. Legibility. A human reader can easily understand the format. 
 

13. Integrity. Special mechanisms ensure information is exchanged without errors. 
 

Source: [SSK 00] 
 

Table 6: Requirements For A Standard Exchange Format 
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Bra 98, Cov 98, Hol 98a, LA 97, Mül 98, OMG 98, WCK 99]. These are shown in Table 6. 

Based on these requirements, in this section we identify the exchange pattern that is best suited  

  The exchange pattern does not satisfy the requirement. 

 The exchange pattern satisfies the requirement. 

 The exchange pattern satisfies the requirement in a way that is 

particularly beneficial. 

– The exchange pattern neither satisfies nor does not satisfy the 

requirement because it does not relate to the requirement. 

 

Table 7: Markers Used to Indicate SEF Requirement Satisfaction 

 

for standardization in an SEF.  

Each requirement from [SSK 00] is listed in a separate sub-section below. A short 

description followed by an evaluative statement of the merits or shortcomings of each exchange 

pattern is provided. Visual markers (shown in Table 7) are used to provide an overall indicator 

how the exchange pattern satisfies the requirement.  

7.5.1 Transparency 

No loss, alteration or gain in the information transferred occurs due to the use of encoders and 

decoders by the exchange format. 

Implicit/Internal (–)  

Explicit/Internal (–) 

Implicit/External (–) 

Explicit/External (–) 
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This requirement specifically deals with information handling procedures at both ends of 

the exchange channel. None of the exchange patterns involve the use of encoders or 

decoders. 

7.5.2 Scalability 

The format is usable for exchanging information of all sizes, including representations for very 

large software applications. 

Implicit/Internal ( ) 

Although an implicit schema definition provides high performance, the fact that the 

schema definition is embedded in the code means that the tool’s capacity is fixed. 

Making variations to the code to accommodate different magnitudes of information is 

difficult. 

Explicit/Internal ( ) 

Although the explicit schema definition reduces the performance of the tool, it provides 

flexibility that makes it easier to adjust the representation to address scalability issues. 

For instance, one strategy for managing large bodies of information is to exchange only 

specific pieces of it rather than the whole thing. When the schema definition is explicit, 

adjusting the amount of information exchanged is much easier than when the definition is 

implicit. 

Implicit/External ( ) 

The implicit schema definition provides high performance but once again the tool is 

tailored to handle information in a particular way only. Although the schema might be 

easy to change because it is external, the tool may not be able to handle large volumes of 

information without significant code changes. 
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Explicit/External ( ) 

The advantages of this exchange pattern are identical to those for the explicit/internal 

exchange pattern, although the performance degradation may be more significant because 

the locality of the schema is external. 

7.5.3 Simplicity 

The format is not complex or intricate. This makes it efficient, easier to describe, comprehend, 

apply and maintain while statistically reducing the prospects for errors and making it easier to 

process in an automated fashion.  

Implicit/Internal ( ) 

The schema is indeed complex and intricate, being disseminated throughout the code for 

the tool. It is difficult to understand and maintain making it prone to erroneous 

modification. 

Explicit/Internal ( ) 

The non-embedded nature of the schema specification simplifies the exchange and makes 

it much easier to understand and maintain. The close proximity of the schema to the tool 

code provides greater efficiency over the explicit/external exchange pattern. 

Implicit/External ( ) 

The schema does not ‘exist’ which simplifies the exchange process and provides an 

environment where the throughput of information can be maximized. 

Explicit/External ( ) 

The schema specification simplifies the exchange process, but its separation from the tool 

makes it less efficient than the explicit/internal exchange pattern. 
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7.5.4 Neutrality 

The representation is independent so that as many tools as possible can integrate with it. 

Implicit/Internal ( ) 

There is no neutrality of the representation as it is embedded into the code for the tool. 

Explicit/Internal ( ) 

The explicit nature of the schema definition provides a degree of neutrality. Nevertheless, 

the schema locality is internal to the tool, which impedes the integration of other tools to 

a standard representation. 

Implicit/External ( ) 

The schema is independent from the tool, which provides it with some degree of 

neutrality. Nevertheless, the schema is non-existent, so it is difficult to define a standard 

for other tools to integrate with it. 

Explicit/External ( ) 

Neutrality is maximized. The schema definition is completely separate from all tools and 

is explicitly defined. This makes it easier to integrate other tools to a standard 

representation. 

7.5.5 Formality 

A formal definition reduces the chances for misinterpretation and ensures that it is well 

understood by all parties. 

Implicit/Internal ( ) 

There is no formal definition of the representation so it is very difficult to transfer 

knowledge of it to others. This is especially problematic because of the embedded nature 

of the representation. 
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Explicit/Internal ( ) 

By default, the explicit schema definition is formal. Because it is internal to the tool, all 

concerns relating to the tool implementation are together in the same place. 

Implicit/External ( ) 

The implicit nature of the representation means there is no formal definition. Because the 

schema locality is external, documentation must be relied upon for information on the 

representation. 

Explicit/External ( ) 

The explicit schema definition is itself a formal means for expressing the structure of the 

data instances. The external schema locality makes it easier for all tool integrators to 

understand the representation. 

7.5.6 Flexibility 

The format accommodates different tools, languages and syntax for data and schemas. It also 

accommodates the exchange of incomplete information. 

Implicit/Internal ( ) 

The exchange pattern offers no flexibility at all. The tool itself must handle any 

accommodation for different tools, languages or data/schema syntax. 

Explicit/Internal ( ) 

The explicit schema provides flexibility for changing the representation. This is partially 

negated by the fact that the schema is defined internally, which ties it very closely to the 

tool it is contained in. 

Implicit/External ( ) 
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A certain degree of flexibility is offered by the implicit schema definition because it is 

external from all tools that participate in the exchange. Nevertheless, because the schema 

definition is implicit, it is difficult to offer representational flexibility. Each tool must 

conform to the same non-existent schema definition. This tends to force developers to 

keep to a rigid representational standard. 

Explicit/External ( ) 

Flexibility is maximized. First the schema definition is external, so it is not tied to any 

one tool. Second, the schema is explicitly defined so the representation is clear and easily 

modified.  

7.5.7 Evolvability 

The format can be changed easily to accommodate future needs. 

Implicit/Internal ( ) 

Change is difficult to manage because the representation is embedded in the code for 

each tool. 

Explicit/Internal ( ) 

Although the explicit schema definition supports evolutionary changes, the internal 

locality of the schema ties the representation too closely with the tool. Changes to the 

representation must be implemented on a tool-by-tool basis. 

Implicit/External ( ) 

Although the schema definition is located externally, change is difficult to accommodate 

because the schema definition is implicit. Evolutionary changes are difficult to implement 

when all parties involved must approve it. 

Explicit/External ( ) 
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Evolvability is maximized. The external schema definition does not tie the representation 

to any one tool. The explicit definition encourages evolutionary change in a collaborative 

manner.  

7.5.8 Popularity 

Adoption of the format is widespread so that as many tools as possible can take advantage of it.  

Implicit/Internal (–) 

Explicit/Internal (–) 

Implicit/External (–) 

Explicit/External (–) 

Exchange patterns that have external schemas may become more popular because they 

facilitate the use of well-accepted document exchange methods such as XML. 

Nevertheless, the success of a particular exchange format ultimately rests with those who 

use it within the reverse engineering community. 

7.5.9 Completeness 

Everything needed to exchange information successfully is included. The user does not have to 

look after details relating to the exchange. 

Implicit/Internal (–) 

Explicit/Internal (–) 

Implicit/External (–) 

Explicit/External (–) 

We have differentiated between schema and instance data in the exchange process. 

Although these two components are required to carry out exchange (and in this way they 

typify how the exchange is managed) they do not represent a complete exchange format. 
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7.5.10 Schema Identity 

Transformation of instance data while preserving its identity is supported. The exchange format 

is capable of converting instance data from one schema into instance data of another schema. 

The instance data remains the same; it is just represented differently from one schema to the 

next. 

Implicit/Internal ( ) 

The implicit nature of the schema definition makes it very difficult to support 

transformation of instance data. The use of the representation is embedded into the code 

for the tool. Identifying instance data and transforming it into an equivalent alternate 

representation is challenging. 

Explicit/Internal ( ) 

The schema definition is explicit which greatly assists in identifying the structure and 

semantics of instance data. At the same time, the schema is internal so it reflects the 

tool’s view of instance data. Transformation of this schema to an external schema for 

exchange is all that is necessary. 

Implicit/External ( ) 

Once again, the implicit nature of the schema definition makes it very difficult to support 

transformation of instance data. The external schema definition is non-existent, which 

makes it difficult to identify a transformation to another schema that will preserve the 

identity of the instance data. 

Explicit/External ( ) 
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The explicit schema definition lays out the representation in a single location external to 

the tool. Schema transformation can be carried out away from each of the tools 

participating in the exchange.  

7.5.11 Solution reuse 

Wherever possible, use existing techniques and methods with the goal of reducing the amount of 

time and effort spent in testing and deploying the format.  

Implicit/Internal ( ) 

The representation is embedded into the tool code, which makes it very difficult to reuse. 

Explicit/Internal ( ) 

Although explicitly defined, the representation remains closely tied to the tool. This tool 

centricity makes it difficult to reuse the representation outside the tool environment. 

Implicit/External ( ) 

The non-existent schema definition is not easily described which makes it difficult to 

reuse. 

Explicit/External ( ) 

The representation is defined explicitly and is not tied to any one tool. This tends to make 

it easier to reuse and makes it easier to implement and test. 

7.5.12 Legibility 

A human reader can easily understand the format. 

Implicit/Internal ( ) 

The embedded nature of the representation makes it difficult to understand, especially for 

non-programmers. Well-documented code may partially offset this problem. 

Explicit/Internal ( ) 
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Understanding of the representation is much easier when it is explicitly specified in a 

single location within the tool. 

Implicit/External ( ) 

The non-existent nature of the schema definition impedes understanding of the 

representation. This combined with the fact that the schema locality is external means 

that independent documentation must be relied upon to get information about the 

representation. 

Explicit/External ( ) 

An explicit schema definition eases the legibility of the representation. The external 

locality of the schema ensures that the representation is tool independent. 

7.5.13 Integrity 

Special mechanisms ensure information is exchanged without errors. 

Implicit/Internal (–) 

Explicit/Internal (–) 

Implicit/External (–) 

Explicit/External (–) 

The integrity of the exchange ultimately rests on the underlying technology used to 

communicate information. 

7.5.14 Comparative Summary 

Table 8 summarizes our evaluation of the SEF requirements listed in [SSK 00]. It is clear that the 

use of an explicit schema definition with external schema locality satisfies all the requirements 

that relate to exchange. In fact, five of the nine exchange-related requirements are strongly 

satisfied by the explicit/external exchange pattern. Following a distant second is the 
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explicit/internal exchange pattern. Both of the exchange patterns with an implicit schema 

definition are the least satisfactory. Between these two, the implicit/external pattern is strongly 

beneficial solely because of its simplicity. 

 

  Exchange Pattern 
  Implicit/

Internal 
Explicit/
Internal 

Implicit/ 
External

Explicit/ 
External 

Transparency – – – – 
Scalability     
Simplicity     
Neutrality     
Formality     
Flexibility     
Evolvability     
Popularity – – – – 
Completeness – – – – 
Schema Identity     
Solution Reuse     
Legibility     

R
eq

ui
re

m
en

ts
 

Integrity – – – – 

Table 8: Exchange Pattern Satisfaction of SEF Requirements 

 

To summarize our evaluation, the use of schemas with an explicit definition and external 

locality are the preferred choice for an SEF. The schema definition appears to be the most 

important factor in the evaluation. Schema locality matters as well, but it is a more minor option 

to consider. 

7.6 Additional Challenges 

So far we have shown that schemas are an essential component in the exchange process, their use 

defining how tools interact with each other. After a critical evaluation of schema use, we have 

concluded that schema definitions that are explicit and external best facilitate exchange among 

reverse engineering tools. Nevertheless, other problems exist that relate to the software 

representations themselves that hinder exchange and integration efforts. 
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7.6.1 The Naming Problem 

E-R models require that unique names known as identifiers be assigned to each entity instance. 

When integrating information from two or more tools it is important that all identifiers be 

reconciled. Two problematic situations arise [BGH 99, Let 98] 

1. Aliasing. More than one identifier is used for the same entity instance.  

2. Nondiscrimination. The same identifier is used to represent different entities. This is 

most problematic when entities with the same name occur among different scopes within 

the program. 

Together these two situations exemplify what is known as the naming problem [BGH 99]. One 

way to get around the naming problem is to create an identifier based on the name of the entity 

the identifier refers to. But this solution breaks down easily, since some programming languages 

allow the same name to be used for different program elements. Another solution known as 

mangled names creates an identifier based on a combination of the class name for the entity and 

its corresponding scope information. Compilers and linkers use special algorithms for generating 

mangled names. But they differ from one programming language to the next and they do not 

usually support unique naming for local variables and data types.  

Clearly, if tool integration is ever to be successful, a consistent scheme for uniquely 

identifying entities within a software representation must be established [God 99, God 01]. 

7.6.2 Target Resolution 

In E-R models, references among entities in a software representation are recorded as relations. 

Target resolution refers to the identification of the entity that a given entity relates to. Tools 

operate differently in the way they carry out target resolution. In general one of the following 

approaches are used [BGH 99, God 99]: 

 95



Declaration. The reference targets the declaration in a header file. 

Static Definition. The reference targets the static definition in the body of the code. 

Dynamic Definition. The reference targets the dynamic definition (as is the case for virtual 

functions and pointers). 

No target resolution. No record of contextual information about an entity is made. This 

makes it impossible to resolve relation references. Each reference to a source code element 

results in the creation of a new entity. 

Inconsistencies in the way that tools perform target resolution can hinder tool integration efforts. 

For example, consider the challenge involved in integrating instance data from a tool that 

performs no target resolution with instance data from a tool that performs declaration target 

resolution. Depending on the number of references in the source code, the former will have a 

number of redundant entities. This redundancy must be eliminated before the information can be 

merged with information from the second tool. 

Methods for integrating information from tools that perform different types of target 

resolution do not always work correctly. This can lead to a situation where the entity referred to 

in a relation is the wrong one. 

7.6.3 The Line Number Problem 

It is often desirable to relate entities in a representation back to the place in the source code 

where they originated. The physical line number within the source code is commonly used as the 

location identifier. But this is not the best approach because line numbering may be inconsistent 

among different systems. Worse still, a group of possibly non-contiguous lines within the source 

code may relate to an entity. For example, consider high-level architectural entities that originate 

from various clusters or conglomerations of source code. 
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These challenges relate to the line number problem [BGH 99, God 99, God 01]. To be able to 

integrate information from various reverse engineering tools, a common basis for referencing 

entities to source code elements must be established. 

7.6.4 System-Wide Representation 

Obtaining a system-wide representation for software involves managing various integration 

issues. For example, Datrix tools parse Java at the source code level, while C and C++ are parsed 

before they are fully preprocessed and linked. This means that analysis is carried out on each 

constituent artifact of the system, rather than on the whole thing all at once [LLL 01]. Obtaining 

a representation such an ASG for an entire system is non-trivial, involving at least two steps. 

First, the linkage relationships between libraries, executables and the system must be determined. 

Next the semantic relationships among the code segments must be determined. These 

relationships are not apparent until linking has occurred. Reverse engineering tools must support 

integration of information from all these sources. 

Another problem relates to the analysis of modules of one or more systems. It is often the 

case that semantic links exist between two or more modules that affect the information that 

independent module analysis provides. An example is provided in Figure 39. Two design 

recovery instances from the source code for two different modules of a single system are shown. 

The function application P(y) has been recovered from module A, yet no information about y is 

provided. In module B a declaration for x and an application of P to x has been recovered. We 

can deduce that y from module A contains a date because x in module B contains a date and is a 

parameter for function P. The semantic link between each of the design recovery instances is 

P(a) representing the application of function P to the unknown parameter a. It is clear that a 
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complete design recovery of module A is impossible unless it includes specific information 

integrated from the design recovery of module B. 

  x:='12.1.98'
  P(x)

P(y)

P(a)

Design Recovery Instance:
Module A

Design Recovery Instance:
Module B

Semantic link between 
Modules A and B

 

Figure 39: A Semantic Link Between Submodules A and B 
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8 The Road Ahead 

So far we have provided an in-depth overview of existing formats for exchanging software 

representations among reverse engineering tools. The need for an SEF is widely acknowledged 

as a necessity for enabling data integration and tool interoperability. We have evaluated four 

exchange patterns in their ability satisfy the requirements for an SEF. In this chapter we 

summarize the steps that have been taken within the reverse engineering community towards the 

creation of an SEF and provide a perspective on the future direction these efforts will take. At the 

same time, we offer an alternative solution to the integration problem that may be the focus of 

our future research. 

8.1 GXL – The Standard Representational Exchange Mechanism 

In Section 6.2.8 we discussed GXL as an exchange format among others in use currently within 

the reverse engineering community. Like some of the other exchange formats, GXL provides a 

flexible means for exchanging all sorts of software representations. As we determined in 

Chapter 7, its use of explicit, externally defined schemas provides a number of advantages for 

integrating reverse engineering tools. Nevertheless, GXL is distinctive in a way that makes it 

particularly superior over other exchange formats. 

GXL’s E-R representational foundation consists of a three-layer hierarchy. This is shown in 

Figure 40. At the lowest level, data instances consisting of entities and relations are represented 

as E-R graphs. These graph instances are constrained by schemas defined at the schema level. 

Schemas are often represented as conceptual models, which are also E-R graphs. For example, 

the conceptual model for GXL attributes is shown in Figure 41. In this example from [Win 01], a 

UML class diagram is used to establish attribute entities and the relationships among them. The 

conceptual model is itself an E-R graph consisting of attributes that define multiplicities and 
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other information. These schema graphs are constrained by metaschemas defined at the 

metaschema level. Metaschemas are simply schemas that set out the characteristics for a class of 

schemas. In GXL, the metaschema is interesting because it is self-referential: an E-R graph is 

used to define the allowable characteristics for GXL schemas, which are also represented as E-R 

graphs. 

Constrained By

Metaschema

Schema

Instance
Data

Constrained By

Constrained By

 

Figure 40: GXL’s Three-Layer Representational Hierarchy 

 

The metaschema layer is the main advantage that GXL has over other formats for exchanging 

software representations. The metaschema definition is a consistent foundation from which all 

other schema level representations can be defined. So in the case of GXL, a metaschema for E-R 

graphs provides a common base from which any schema for representing software is derived. A 

consistent means for defining and exchanging software representations is built into GXL. For 

this reason the reverse engineering community has embraced GXL as a standard representational 

exchange mechanism. Although the E-R metaschema for GXL is not yet complete, enough of it 

is in place so that work on creating standard schemas for representing software can begin. 
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Figure 41: A Conceptual Model for GXL Attributes 
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8.2 The Next Step – Standard Schemas for Software Representations 

Now that GXL has been established as the format of choice for exchanging software 

representations, the next step involves the creation of GXL schemas for the representations 

themselves. Much of the work in this area has focused on defining representations at the various 

levels of abstraction. As we discussed in Section 6.1.2, three levels of abstraction are referred to 

in general within the reverse engineering community: low, medium and high.  

At the lowest level of abstraction, the ASG representation established by the Datrix group is 

popular. This is evidenced by tools such as CPPX that translate the IR from the Gnu GCC  

[Gnu 01] compiler into Datrix [CPP 01, DMH 01]. Nevertheless, discussion on a standard 

schema for representing programming languages such as C and C++ continues [FGS+ 01]. In 

particular, the schema used for representing software in the Columbus system is an ongoing 

effort [Fer 01, FMB+ 01]. 

At the medium level of abstraction, the Dagstuhl Middle Model (DMM) [Let 01] has been 

developed in an ongoing fashion since the Dagstuhl Seminar on Interoperability of 

Reengineering Tools took place in January 2001.  DMM consists of four classes of hierarchical 

representations: 

1. Top Level Model. Provides an overall view of the DMM hierarchy of classes. The 

current DMM top-level model shown in UML from [Let 01] is shown in Figure 42. 

2. ModelObjects. Provides an abstract view of a program ignoring the layout of the source 

code.  

3. SourceObjects. Refers to sections of source code that define, declare and refer to 

ModelObjects. 

4. Relationships. Defines relationships among SourceObjects and ModelObjects.  
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DMM is not yet complete. Aside from the representational makeup of the model, a 

significant issue that needs to be resolved relates to what a minimal representation consists of. 

When a DMM instance is exchanged, which elements are required and which are optional? This 

is in fact an important issue for all representations that are exchanged. Reverse engineering tools 

differ in the information that they process. When these tools are integrated together, some will 

not recognize certain parts of an exchanged representation. Other parts of the representation that 

a tool might expect to be present may not be. Tools that participate in an exchange must be 

capable of operating with insufficient or incomplete data while at the same time be ready to look 

after extraneous information that might exist in a representation. 

SourceModelRelationship

ModelObjectSourceObject Relationship

ModelRelationship

StructuralElement BehaviouralElement

ModelElement

SourceRelationship

* *

Figure 42: The DMM Top-Level Model 

 

 Standard GXL schemas for representing software at high levels of abstraction have not yet 

been explored. Nevertheless, RSF or TA may provide appropriate high-level schemas as some 

design recovery tools for representing architectural concepts currently use them. For example, 
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the TA Exchange Format (TAXForm) is a repository-based system for sharing information 

extracted from source code between reverse engineering tools that work at the architectural level 

[BGH 99, God 99, God 00b]. It makes use of TA for the language syntax, making use of 

schemas for structuring the representation of information in the repository. 

8.3 The Need for Adaptive Integration 

Admittedly, our discussion on schema use and exchange patterns has so far focused on a 

conformist approach to integration. Success of an SEF relies heavily on the willingness of tool 

developers to agree on a common schema for their representational requirements. So even 

though GXL has been accepted as a standard exchange mechanism, there is still much work to be 

done in coming up with schemas for all the different representations that integration among 

reverse engineering tools would require. 

A better approach is to take an adaptive view of integration. Each tool uses their own internal 

schema that defines the structure, semantics and constraints for the information that they work 

with. An adapter maps the internal tool schema to an external schema. This external schema 

defines the structure, semantics and constraints for the information that is exchanged. Once a 

mapping adapter from the internal schema to the external schema is defined, the data is easily 

transformed to follow suit. 

Figure 43 shows how adaptive integration could be used to make a software representation 

carried by an exchange format available to a reverse engineering tool. Consider an exchange 

format E that consists of a schema (SE) and instance data (IE). IE consists of many individual data 

instances (i.e. factual information about a software system) that conform to SE. Each of these 

instances are indicated as i . So the expression { indicates the collection of 

individual data instances that together make up I

En
},,, 21 EEE niii K

E.  
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Tool T processes data instances that are structured according to it’s own internal schema ST. 

The problem is that T cannot access IE because of differences between SE and ST. An adaptive 

integration solution involves the creation of adapter AET. This adapter provides a means for 

transforming IE instances to IT instances and vice-versa on an individual basis. On request, 

adapter AET provides tool T with individual instances from IE in a form that is compliant with ST. 

The tool processes the information and then returns the changes to AET. The adapter then 

transforms the individual IT instances into a form that is compliant with SE. Within this scenario, 

the real challenge comes in integrating the changed instance data with the original instance data. 

Aside from managing the replacement of modified information, the adapter must also look after 

updating all dependencies that are impacted by the changes made. 

IT → IT’ 

ST 

SE ↔ ST 

AET 

IE 

SE 

IE’ 

SE 

 ik T 

 T 

 

},,,{ 21 EEE nE iiiI K=  

},,,{ 21 TTT nT iiiI K=  

Figure 43: An Adaptive Integration Example 
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The main advantage of the adaptive approach to integration is that it does not force any 

change to the internal representation used by an existing reverse engineering tool. All the 

integrative functionality is built into the schema adapter. A major developmental effort comes in 

the creation of the adapter itself. But once this is accomplished, mapping data from one 

schematic convention to another would be a straightforward process. 
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9 Conclusion 

The purpose of this paper was to examine the exchange of software representations among tools 

that support reverse engineering. To start off, we took an in-depth look at maintenance to get a 

grasp on how it is carried out and to establish the domain within the field of software where 

reverse engineering is practically applied. We examined how tools support reverse engineering 

activities and how they are constructed to gain insight into how software is represented. The need 

for integration and interoperability among reverse engineering tools was outlined and three 

approaches to integration were presented. The most important aspect of this discussion centered 

on the need for a standard means for representing software. Without an agreeable set of criterion 

for representing software, concise, efficient exchange of information among reverse engineering 

tools is not possible. We reviewed the characteristic properties of fourteen formats currently is 

use for exchanging software representations among reverse engineering tools. The need for 

schemas and their use in software exchange formats were discussed. In classifying schema use, 

we identified four patterns of exchange. These were evaluated on their own merits and against a 

set of fourteen requirements for a standard format for exchanging software representations. Some 

other representational issues that impede integration efforts were also discussed. 

We concluded by explaining the reasoning behind the selection of GXL as the standard 

representational mechanism for exchanging software representations. Although significant, this 

was not a monumental step in the progression towards a representational paradigm for software. 

Much work remains in coming up with standard schemas for representing software at various 

levels of abstraction. Our conclusive argument is that other means for enabling integration 

among reverse engineering tools may be feasible. To this end, adaptive integration may provide 

and alternative perspective on reverse engineering tool integration.  
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10 Glossary 

There is often a great deal of variability in the use of terminology within the software 

engineering community. Fortunately, within the reverse engineering domain the use of terms 

outlined by Chikofsky and Cross [CC 90] have been widely accepted. For consistency we have 

adopted their terminology wherever possible. Definitions quoted directly from [CC 90] and other 

sources are appropriately indicated. 

 

AST 

Abstract Syntax Tree. A tree structure consisting of a hierarchy of nodes representing 

source code entities. Entities at the top of the hierarchy are decomposed into various sub-

components via edges that identify the relationship between each of the nodes. The AST 

for a simple source code example is shown in Figure 4 on page 21. 

ASG 

Abstract Semantic Graph. A graph structure consisting of an AST that has been modified 

to eliminate indirect references to names and classes. Multiple occurrences of nodes with 

the same type are also combined into a single type node. The ASG for a simple source 

code example is shown in Figure 5 on page 21. 

Abstract Syntax 

The data structure used to represent software in an exchange format. 

Abstraction 

 See Levels of Abstraction. 
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API 

Application Programming Interface. An approach to integrating reverse engineering tools 

where one program provides the means for another program to interface to it. 

ASIS 

Ada Semantic Interface Specification. An open source API written in Ada95 for 

accessing the IR of the Ada95 Compilation Environment. 

ATerms 

Annotated Terms. An exchange format for representing data produced by parsers, 

structural editors, compilers and other components in software reengineering tools. A 

library of API functions for manipulating ATerms is also available. 

CORUM/CORUM II 

Common Object-based Re-engineering Unified Model. An API-based environment for 

integrating software reengineering tools. CORUM works at the source code level. 

CORUM II is a proposal for enhancing CORUM to provide advanced functionality for 

analysis of a system at the architectural level of abstraction 

Datrix-TA 

A format very similar to TA for exchanging software representations among the different 

tools that make up the Datrix system. See also TA. 

DIF 

Direct Inter-Tool Functionality. A transfer mechanism used by a software exchange 

format. Exchange between tools is facilitated through direct tool-to-tool interfaces. 
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DTD 

An XML Document Type Definition. “A DTD is a formal description in XML 

Declaration Syntax of a particular type of document. It sets out what names are to be used 

for the different types of element, where they may occur, and how they all fit together.” 

[Fly 01]. See also XML.  

E-R Model 

Entity-Relationship Model. Chen’s [Che 76] convention for modeling relationships using 

graphs. Graph nodes represent entities that are relevant to a particular problem domain. 

Graph edges establish relationships among the entities that have been defined. Other 

properties that describe entities and relations are respectively added to the graph as node 

and edge attributes. 

Exchange Format 

An approach to integrating reverse engineering tools where an agreement is made 

between tool developers on the structure and meaning of information to be exchanged. A 

schema is typically used to define the information that the exchange format can consist of 

and how it should be interpreted [KCE 00b]. 

Exchange Pattern 

Characterizes how exchange among reverse engineering tools is carried out. Each pattern 

is differentiated by how it makes use of schemas (expressed in terms of schema definition 

and schema locality). Four exchange patterns have been identified: Implicit/Internal, 

Explicit/Internal, Explicit/External and Implicit/External. Refer to Section 7.3 and in 

particular the examples on page 76 for more information. 
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Explicit/External Exchange 

See Exchange Pattern. 

Explicit/Internal Exchange  

See Exchange Pattern. 

Explicit Schema Definition 

See Schema Definition. 

External Schema Locality 

See Schema Locality. 

FAMIX 

FAMOOS Information Exchange Model. A model developed at the University of Berne 

for exchanging object-oriented source code representations among reverse engineering 

tools. 

Forward Engineering 

“the traditional process of moving from high-level abstractions and logical, 

implementation-independent designs to the physical implementation of a system” 

[CC 90] 

GraX 

An XML-based format developed at the University of Koblenz-Landau for exchanging 

software representations among their KOGGE and GUPRO tools. 

GXL 

Graph Exchange Language. A popular XML-based format for exchanging graphs (in 

particular graphs representing software) among a variety of tools. GXL is the product of a 

broad, collaborative effort within the reverse engineering community to come up with a 
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standard mechanism for exchanging software representations among reverse engineering 

tools. 

HTML 

HyperText Markup Language. A popular publishing language for formatting documents 

available on the World Wide Web. 

IML 

InterMediate Language. A portable IR developed by the Bauhaus Group that makes use 

of an attributed tree structure to represent details at the source code level. 

Implicit/Internal Exchange 

See Exchange Pattern. 

Implicit/External Exchange 

See Exchange Pattern. 

Implicit Schema Definition 

See Schema Definition. 

Instance 

Data represented as an E-R graph constructed in accordance to the conventions outlined 

in the schema for the class of graphs it belongs to. 

Internal Schema Locality 

See Schema Locality. 

IR 

Internal Representation. A representation for software stored internally in a compiler. 

Legacy Information System 

“Any information system that significantly resists modification and evolution.” [BS 95] 
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Levels of Abstraction 

A hierarchy of perspectives from which details about a software system can be viewed. 

Three levels of abstraction are commonly distinguished: low, medium and high. 

Maintenance 

The modification of a software system after it has been delivered. 

Metaschema 

A definition for a class of schemas. It lays out the characteristics that each schema within 

the class must conform to.  

Migration 

A maintenance activity that involves shifting a software system to a more adaptable and 

maintainable environment. The data and functionality of the original system is preserved. 

[BLW+ 99] 

Portable IR 

Portable Internal Representation. An approach to integrating reverse engineering tools 

that involves storing and exchanging software representations produced from the 

information stored internally in a compiler. 

PROGRES 

PROgramming with Graph Rewriting Systems. An environment consisting of an 

integrated set of freeware tools that help developers create, analyze, compile and debug 

specifications for graph rewriting systems. 

Reclamation 

See Reengineering. 
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Redevelopment 

A maintenance activity that involves the replacement of an existing software system with 

a new one. [BLW+ 99] 

Reengineering 

A maintenance activity that involves “the examination and alteration of a subject system 

to reconstitute it in a new form and the subsequent implementation of the new form” 

[CC 90]. 

Renovation 

See Reengineering. 

Repository 

A database where facts and detailed information relevant to the reverse engineering of a 

software system are stored. 

Restructuring 

A maintenance activity that involves “the transformation from one representation form to 

another at the same relative abstraction level, while preserving the subject system’s 

external behaviour (functionality and semantics)” [CC 90] 

Reverse Engineering 

“the process of analyzing a subject system to 

• identify the system's components and their interrelationships and  

• create representations of the system in another form or at a higher level of 

abstraction.” [CC 90] 
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RG 

Resource Graph. An exchange format developed by the Bauhaus Group for representing 

source code at medium and high levels of abstraction. 

RSF 

Rigi Standard Format. A format for exchanging information among the components that 

make up the Rigi tool developed at the University of Victoria. 

Schema 

A definition for a class of graphs (typically E-R graphs) that lays out the allowable 

characteristics that each graph can take on. Graph constraints and node and edges 

semantics are typically outlined.  

Schema Definition 

A classification category for schema use that characterizes how a schema is defined. 

When the schema definition is implicit, the structure of a software representation is 

implied by the context in which the representation is used. When the schema definition is 

explicit, the structure of a software representation is provided, either through a 

specification or some other means. 

Schema Locality 

A classification category for schema use that characterizes where a schema is defined. 

When the schema definition is internal, the schema is an integral part of the tool so the 

schema does not participate in the exchange of information among tools. When the 

schema definition is external, the schema is detached from the tool and as a consequence 

must participate in the exchange. 
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Schema Type 

Distinguishes software exchange formats between those that have a flexible schema 

(which can be altered to accommodate changes) and those that have a fixed schema. 

SEF 

Standard Exchange Format. A standard way of representing software for exchange 

among reverse engineering tools.  

STS 

Structured Text Stream. A transfer mechanism used by a software exchange format. Text 

stored in a structured format is packaged and exchanged from one tool to another through 

a communications medium such as the Internet 

TA 

Tuple-Attribute. A flexible language that makes use of a tuple notation for expressing 

graphs of large software systems.  

TA++ 

A modified version of TA (see above) used for representing and manipulating software 

representations among components that make up the TkSee reverse engineering tool 

developed at the University of Ottawa. 

Transfer Mechanism 

The method used by a software exchange format to carry out data exchange. Three types 

of transfer mechanisms are discussed in this paper: Files, Structured Text Stream (STS) 

and Direct Inter-Tool Functionality (DIF). 

 116



Type of Encoding 

The data characteristics of the information exchanged by a software exchange format. 

Typically information is exchanged as text or in a binary format. 

Wrapping 

A maintenance activity that involves the encapsulation of an existing system with an 

outer shell, which acts as an interface to the system it encloses. [BLW+ 99] 

XML 

Extensible Markup Language. “XML is a markup specification language with which you 

can design ways of describing information (text or data), usually for storage, 

transmission, or processing by a program” [Fly 01] 
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