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Abstract

Linear conjunctive grammars are conjunctive grammars in which the
body of each conjunct contains no more than a single nonterminal symbol.
They can at the same time be thought of as a special case of conjunctive
grammars and as a generalization of linear context-free grammars.

While the problem of whether the complement of any conjunctive lan-
guage can be denoted with a conjuctive grammar is still open and conjec-
tured to have a negative answer, it turns out that the subfamily of linear
conjunctive languages is in fact closed under complement and therefore
under all set-theoretic operations.

1 Introduction

Conjunctive grammars, introduced in [1, 2], are context-free grammars aug-
mented with an explicit set-theoretic intersection operation.

A grammar is defined as a quadruple G = (Σ, N, P, S), where Σ and N are
disjoint finite nonempty sets of terminal and nonterminal symbols respectively;
P is a finite set of grammar rules, each of the form

A → α1& . . . &αn (A ∈ N, n > 1, ∀i αi ∈ (Σ ∪N)∗), (1)

where the strings αi are distinct, and their order is considered insignificant in
the sense that there are no two rules in P that differ only in the order of these
strings; S ∈ N is a nonterminal designated as the start symbol. For each rule
of the form (1) and for each i (1 6 i 6 n), A → αi is called a conjunct. Let
conjuncts(G) denote the set of all conjuncts.
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Terminal strings are derived by a conjunctive grammar by transforming
strings over the alphabet Σ ∪ N{“(”, “&”, “)”} in the following way: non-
terminals can be replaced with rule bodies enclosed in parentheses (e.g., by the
rule (1) “A” can be replaced with “(α1& . . . &αn)”), and conjunction of several
terminal strings in parentheses can be replaced with one such string (e.g., a
substring “(u&u)” can be replaced with “u”). The language generated by a
conjunctive grammar is the set of all strings over Σ that can be derived from S.

Similarly to the linear context-free grammars, linear conjunctive grammars
are those where the body of each conjunct contains no more than one nonter-
minal symbol, i.e. each string αi in (1) is either in Σ∗ or in Σ∗ ·N ·Σ∗. There is
no loss of generality in the stronger assumption that every rule is either of the
form

A → u1B1v1& . . . &umBmvm (ui, vi ∈ Σ∗, Bi ∈ N) (2a)

or of the form

A → w (w ∈ Σ∗) (2b)

It has been proved in [2] that every linear conjunctive grammar can be
effectively transformed to an equivalent grammar in the so-called linear normal
form, where each rule is of the form

A → bB1& . . . &bBm&C1c& . . . &Cnc (m + n > 1; A,Bi, Cj ∈ N ; b, c ∈ Σ),
(3a)

A → a (A ∈ N, a ∈ Σ), (3b)
S → ε, only if S does not appear in right parts of rules (3c)

Both the family of linear conjunctive languages and the whole family of
conjunctive languages are obviously closed under union and intersection, since
for any two given conjunctive (linear conjunctive) grammars Gi = (Σ, Ni, Pi, Si)
(i = 1, 2) it is possible to construct the conjunctive (linear conjunctive) grammar
G = (Σ, N1 ∪N2 ∪{S}, P1 ∪P2 ∪P3, S), where P3 = {S → S1, S → S2} for the
case of union and P3 = {S → S1&S2} for the case of intersection.

Concerning the closure under complement, it has been conjectured [2] that
the whole family of conjunctive languages is not closed under this operation
and that the co-context-free language {ww |w ∈ Σ∗} is not conjunctive for any
alphabet of cardinality 2 or more. This conjecture has neither been proved nor
disproved, and it remains unknown whether the family of conjunctive languages
is closed under complement.

In this paper we prove that for each linear conjunctive grammar G there
exists a linear conjunctive grammar that generates the complement of L(G),
which means the closure of this language family under complement. The in-
formal reasoning behind the construction is given in Section 2, and Section 3
describes an algorithmic grammar transformation that yields the grammar for
the complement of the given language.
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In Section 4 we prove that the constructed grammar indeed generates the
complement of the language generated by the source grammar.

Finally, in Section 5 we apply this formal transformation to construct a linear
conjunctive grammar for the complement of the language {wcw | w ∈ {a, b}∗}.

2 General idea

A string w is generated by some nonterminal A if and only if there is a rule

A → s11 . . . s1n1& . . . &sm1 . . . smnm
(sij ∈ Σ ∪N) (4)

in the grammar, such that for every i (1 6 i 6 m) there is a factorization
w = u1 . . . uni

, where uj ∈ L(sij) for all j (1 6 j 6 ni).
By writing out a formal negation of this statement, we get that a string w is

not generated by some nonterminal A if and only if for every rule of the form (4)
there exists some i (1 6 i 6 m), such that for every factorization w = u1 . . . uni

there is j (1 6 j 6 ni), for which uj /∈ L(sij).
While those universal and existential quantifiers in the latter statement that

refer to rules and conjuncts could be implemented by the means of set-theoretic
intersection and union (represented with conjunction of several strings in one
rule and multiple rules for one nonterminal respectively), there is no obvious way
to express within the formalism of conjunctive languages that some condition
must hold for every factorization. That is why no method to construct a direct
negation of a given conjunctive grammar is known, and it is conjectured [2] that
the family is not closed under complement.

However, the situation changes if we restrict ourselves to linear conjunctive
grammars. If a conjunct is of the form A → uBv, where u, v ∈ Σ∗, then
there is no more than one “meaningful” factorization of each string, because
w ∈ L(uBv) if and only if w = uxv for some x ∈ L(B); the same is true in
respect to the conjuncts of the form A → u.

In light of this singularity the difference between the existential and the uni-
versal quantifier on factorizations vanishes, and thus the aforementioned condi-
tion of a string’s not being derivable from a nonterminal can be reformulated
as follows: If a conjunctive grammar is linear, then a string w is not generated
by some nonterminal A if and only if for every rule of the form (4) there ex-
ists a number i (1 6 i 6 m), a factorization w = u1 . . . uni , and a number j
(1 6 j 6 ni), such that uj /∈ L(sij).

This condition turns out to be expressible in the terms of linear conjunctive
grammars. Let us develop an effective method to construct a linear conjunc-
tive grammar for the complement of the language generated by a given linear
conjunctive grammar.

3 Construction

Let G = (Σ, N, P, S) be an arbitrary linear conjunctive grammar in the
linear normal form.
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We construct the following linear conjunctive grammar:

G′ = (Σ, NX ∪NY ∪NZ ∪NU ∪NV ∪NW , P ′, S′) (5a)

where

NX = {X¬A |A ∈ N}, (5b)
NY = {Y¬A→α1&...&αm

|A → α1& . . . &αm ∈ P}, (5c)
NZ = {Z¬a | a ∈ Σ} ∪ {Z¬ε}, (5d)
NU = {U¬aΣ+ | a ∈ Σ}, (5e)
NV = {V¬Σ+a | a ∈ Σ}, (5f)
NW = {W}, (5g)
S′ = X¬S (5h)

The nonterminals of the new grammar are meant to generate the following
languages:

• For each nonterminal symbol A ∈ N of the original grammar, the nonter-
minal X¬A generates the complement of LG(A), i.e.

LG′(X¬A) = Σ∗ \ LG(A) (6)

• For each rule A → α1& . . . &αm ∈ P , the nonterminal Y¬A→α1&...&αm

generates those and only those strings that are not generated by this rule
in the original grammar:

LG′(Y¬A→α1&...&αm) = Σ∗ \ LG((α1& . . . &αm)) (7)

• For each terminal symbol a ∈ Σ, the nonterminal Z¬a generates all strings
but the string a. Z¬ε generates Σ+.

• For each a ∈ Σ, the nonterminal U¬aΣ+ generates all strings except those
in a · Σ+, i.e. ε, all one-symbol strings and and all strings of the form bw
(w ∈ Σ+, b ∈ Σ, b 6= a).

• Similarly, V¬Σ+a generates all strings except those that are end with a and
are at least two symbols long.

• Finally, the nonterminal W generates Σ∗.

Now let us construct P ′, the set of rules of the new grammar:

• For each nonterminal A ∈ N of the original grammar, if there are no rules
for A in P , then P ′ contains the following single rule for X¬A:

X¬A → W (8a)

Otherwise, if P contains some rules for A, let {A → A1, . . . A → Am}
denote all these rules. Then the new grammar contains the following rule
for X¬A:

X¬A → Y¬A→A1& . . . &Y¬A→Am (8b)
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• For each rule A → bB1& . . . &bBm&C1c& . . . &Cnc ∈ P (m + n > 1) of
the original grammar, the new grammar contains the following rules:

Y¬A→bB1&...&bBm&C1c&...&Cnc → U¬bΣ+ (if m > 0) (9a)
Y¬A→bB1&...&bBm&C1c&...&Cnc → V¬Σ+c (if n > 0) (9b)
Y¬A→bB1&...&bBm&C1c&...&Cnc → bX¬Bi

(for all i ∈ {1, . . . , m}) (9c)
Y¬A→bB1&...&bBm&C1c&...&Cnc → X¬Cj

c (for all j ∈ {1, . . . , n}) (9d)

• For each rule A → a ∈ P of the original grammar, the new grammar has
the rule

Y¬A→a → Z¬a (10)

• If the original grammar contains the rule S → ε, then there is a rule

Y¬S→ε → Z¬ε (11)

• The languages generated by the nonterminals from NZ ∪NU ∪NV ∪NW

are all regular and thus linear conjunctive; writing the rules for them does
not pose any difficulty.

4 Proof

Let us prove the correctness of our construction.

Lemma 1. Let G = (Σ, N, P, S) be a linear conjunctive grammar in the linear
normal form. Let G′ be a grammar constructed from G using the method given
in Section 3.

Then for every n > 0 and for every nonterminal A ∈ N , LG(A) = Σ∗ \
LG′(X¬A) (mod Σ6n).

Proof. Induction on n.

Basis n = 1 Let w ∈ {ε} ∪ Σ and let A ∈ N . Due to G’s being in the linear
normal form, w ∈ LG(A) if and only if A → w ∈ P (which is either S → ε
or A → a).

Let A → w ∈ P . Then Y¬A→w does not generate w, because the only rule
for Y¬A→w is Y¬A→w → Z¬w. Therefore, the only rule for X¬A contains
a conjunct (X¬A → Y¬S→ε ∈ conjuncts(P ′)) that does not generate the
string w, and hence ε /∈ LG′(X¬A).

Now let A → w /∈ P . This means that all rules for A are either of the
form

A → bB1& . . . &bBm&C1c& . . . &Cnc ∈ P (m + n > 1) (12a)

or of the form

A → a (a ∈ Σ, a 6= w) (12b)
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For each rule of the form (12a) the corresponding nonterminal
Y¬A→bB1&...&bBm&C1c&...&Cnc has at least one of the rules (9a) and (9b)
and hence generates ε. The same holds in respect to each rule of the form
(12b), because the nonterminal Y¬A→a has the rule (10), which can gen-
erate any string except a, and hence the string w. Since every conjunct of
the only rule for nonterminal X¬A generates w, so does the nonterminal
X¬A.

Induction step Assume LG(A) = Σ∗\LG′(X¬A) (mod Σ6n−1) for some n > 2
and consider an arbitrary nonterminal A ∈ N and an arbitrary string
w ∈ Σn. Denote w = bxc, where b, c ∈ Σ and x ∈ Σn−2.

w ∈ LG(A) if and only if there exists some rule

A → bB1& . . . &bBm&C1c& . . . &Cnc ∈ P (m + n > 1) (13)

such that there exist derivations

Bi
G=⇒ . . .

G=⇒ xc (for all i: 1 6 i 6 m) (14a)

Cj
G=⇒ . . .

G=⇒ bx (for all j: 1 6 j 6 n) (14b)

By induction hypothesis, (14) holds if and only if for some rule (13)

xc /∈ LG′(X¬Bi) (for all i: 1 6 i 6 m) (15a)
bx /∈ LG′(X¬Cj ) (for all j: 1 6 j 6 n) (15b)

Now let us see that Y¬A→bB1&...&bBm&C1c&...&Cnc does not generate w if
and only if (15) is the case. Indeed, if we assume (15), then none of the
rules (9) derive w: (9a) cannot derive bxc because it starts with b and is
at least two symbols long, (9b) does not derive it because it starts with c,
and the rules of the form (9c) and (9d) are of no use due to (15).

If (15) is untrue, then xc is in LG′(X¬Bi) for some i (or bx is in LG′(X¬Cj )
for some i), and hence one of the rules

Y¬A→bB1&...&bBm&C1c&...&Cnc → bX¬Bi (16a)
Y¬A→bB1&...&bBm&C1c&...&Cnc → X¬Cj c (16b)

derives w.

Putting together the results we have established so far, w ∈ LG(A) if and
only if there exists a rule (13) of the original grammar, such that

w /∈ LG′(Y¬A→bB1&...&bBm&C1c&...&Cnc) (17)

But the existence of such a rule implies the existence of a conjunct of the
rule (8b) that does not derive w. Since (8b) is the only rule for X¬A, we
conclude that w ∈ LG(A) if and only if w /∈ LG′(X¬A), which, due to the
arbitrariness of the choice of w, proves the induction step.
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This completes the proof.

Corollary 1. The languages LG(A) and Σ∗ \ LG′(X¬A) coincide.

Corollary 2. L(G) = Σ∗ \ L(G′).

Theorem 1. The family of linear conjunctive languages is closed under com-
plement.

5 Example

Consider the following linear conjunctive grammar for the language L =
{wcw | w ∈ {a, b}∗} [1, 2]:

S → C&K
C → aCa | aCb | bCa | bCb | c
K → aA&aK | bB&bK | cE
A → aAa | aAb | bAa | bAb | cRa
B → aBa | aBb | bBa | bBb | cRb
R → aR | bR | ε

After converting it to linear normal form using the method given in [2] we
obtain the following equivalent grammar:

S → Da&aA&aK | Db&aA&aK | Ea&bB&bK | Eb&bB&bK | c
C → Da | Db | Ea | Eb | c
D → aC
E → bC
K → aA&aK | bB&bK | cR | c
A → aI | aJ | bI | bJ | Fa
I → Aa
J → Ab
B → aM | aN | bM | bN | Fb
M → Ba
N → Bb
R → aR | bR | a | b
F → cR | c

The resulting grammar for the complement of L contains the following rules:

X¬S → Y¬S→Da&aA&aK&Y¬S→Db&aA&aK&Y¬S→Ea&bB&bK&
Y¬S→Eb&bB&bK&Y¬S→c

Y¬S→Da&aA&aK → U¬aΣ+ | V¬Σ+a | X¬Da | aX¬A | aX¬K

Y¬S→Db&aA&aK → U¬aΣ+ | V¬Σ+b | X¬Db | aX¬A | aX¬K

Y¬S→Ea&bB&bK → U¬bΣ+ | V¬Σ+a | X¬Ea | bX¬B | bX¬K

Y¬S→Eb&bB&bK → U¬bΣ+ | V¬Σ+b | X¬Eb | bX¬B | bX¬K

Y¬S→c → Z¬c
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X¬C → Y¬C→Da&Y¬C→Db&Y¬C→Ea&Y¬C→Eb&Y¬C→c

Y¬C→Da → V¬Σ+a | X¬Da
Y¬C→Db → V¬Σ+b | X¬Db
Y¬C→Ea → V¬Σ+a | X¬Ea
Y¬C→Eb → V¬Σ+b | X¬Eb
Y¬C→c → Z¬c

X¬D → Y¬D→aC

Y¬D→aC → U¬aΣ+ | aX¬C

X¬E → Y¬E→bC

Y¬E→bC → U¬bΣ+ | bX¬C

X¬K → Y¬K→aA&aK&YK→bB&bK&YK→cR&YK→c

Y¬K→aA&aK → U¬aΣ+ | aX¬A | aX¬K

Y¬K→bA&bK → U¬bΣ+ | bX¬A | bX¬K

Y¬K→cR → U¬cΣ+ | cX¬R

Y¬K→c → Z¬c

X¬A → Y¬A→aI&Y¬A→aJ&Y¬A→bI&Y¬A→bJ&Y¬A→Fa

Y¬A→aI → U¬aΣ+ | aX¬I

Y¬A→aJ → U¬aΣ+ | aX¬J

Y¬A→bI → U¬bΣ+ | bX¬I

Y¬A→bJ → U¬bΣ+ | bX¬J

Y¬A→Fa → V¬Σ+a | X¬F a

X¬I → Y¬I→Aa

Y¬I→Aa → V¬Σ+a | X¬Aa

X¬J → Y¬J→Ab

Y¬J→Ab → V¬Σ+b | X¬Ab

X¬B → Y¬B→aM&Y¬B→aN&Y¬B→bM&Y¬B→bN&Y¬B→Fb

Y¬B→aM → U¬aΣ+ | aX¬M

Y¬B→aN → U¬aΣ+ | aX¬N

Y¬B→bM → U¬bΣ+ | bX¬M

Y¬B→bN → U¬bΣ+ | bX¬N

Y¬B→Fb → V¬Σ+b | X¬F b

X¬M → Y¬M→Ba

Y¬M→Ba → V¬Σ+a | X¬Ba

X¬N → Y¬N→Bb

Y¬N→Bb → V¬Σ+b | X¬Bb

X¬R → Y¬R→aR&Y¬R→bR&Y¬R→a&Y¬R→b

Y¬R→aR → U¬aΣ+ | aX¬R

Y¬R→bR → U¬bΣ+ | bX¬R

Y¬R→a → Z¬a

Y¬R→b → Z¬b

X¬F → Y¬F→cR&Y¬F→c

Y¬F→cR → U¬cΣ+ | cX¬R

Y¬F→c → Z¬c

8



Z¬a → ε | bW | cW | aaW | abW | acW
Z¬b → ε | aW | cW | baW | bbW | bcW
Z¬c → ε | aW | bW | caW | cbW | ccW
Z¬ε → aW | bW | cW

U¬aΣ+ → ε | a | bW | cW
U¬bΣ+ → ε | aW | b | cW
U¬cΣ+ → ε | aW | bW | c

V¬Σ+a → ε | a | Wb | Wc
V¬Σ+b → ε | Wa | b | Wc
V¬Σ+c → ε | Wa | Wb | c

W → aW | bW | cW | ε

6 Conclusion

We have proved that the family of linear conjunctive languages is closed
under complement and hence, due to its obvious closure under union and inter-
section, is closed under all set-theoretic operations. In all cases the construction
is effective in the sense it can be done by an algorithm.

The given method essentially uses the linearity of the grammar, and it seems
very unlikely that it could be applied to the conjunctive grammars of general
form. Thus the conjecture that the whole family of conjunctive languages is not
closed under complement [2] remains in effect.
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