
On a new family of automata

Alexander Okhotin
okhotin@cs.queensu.ca

Technical report 2002–456

Department of Computing and Information Science,
Queen’s University, Kingston, Ontario, Canada K7L 3N6

March 2002

Abstract

This paper introduces a new family of automata that turns out to be
computationally equivalent to linear conjunctive grammars.

Although, if viewed as a practical tool for describing practical lan-
guages, these automata are not nearly as convenient as linear conjunctive
grammars are, they can be reasonably expected to be highly suitable for
use in applications as a low-level computational model, due to low compu-
tational complexity and the extreme simplicity of their implementation.

1 Introduction

The main properties of linear context-free grammars and the languages they
generate have been uncovered already in the early days of formal language the-
ory [1]. One of the most attractive properties of these generative devices is their
low computational complexity: the general membership problem is known to be
NLOGSPACE-complete [6], and for every linear context-free language there
exists a square-time and linear-space Turing machine that accepts it.

The latter recognition algorithm uses dynamic programming method to com-
pute the collection of sets {Tij}16i6j6n (where n is the length of the input
string), such that each Tij is the set of nonterminals that generate the substring
of the input string from the i-th symbol to the j-th. Since every Tij completely
depends on Ti,j−1, Ti+1,j , the i-th and the j-th symbols of the input string, this
leads to O(n2) time complexity. On the other hand, it not hard to note that
if we arrange the sets Tij in lines of the form T1,1+k . . . Tn−k,n (0 6 k < n),
then only the (k − 1)-th line is needed to compute each k-th line, and thus the
algorithm can store only two lines at a time, making the space requirements
linear.

This algorithm is known to have a simple generalization for the case of
linear conjunctive grammars [2], in which all rules are of the form A →

1

u1B1v1& . . . &umBmvm (where m > 1, Bi are nonterminals and ui, vi are ter-
minal strings) or A → w (where w is a terminal string). These grammars are
known to be effectively transformable to a normal form similar to the context-
free linear normal form, for which the mentioned sets Tij can be computed with
the same simplicity as in the context-free case, because each of them is fully
dependent on the same four entities.

Aiming to generalize and refine this kind of computation, the present paper
introduces a new family of automata, which operate by first converting a given
string into a string of states using a definite mapping from the input alphabet Σ
to the set of states Q, and then transforming these strings to shorter strings using
another function δ : Q × Q → Q, so that at each step of computation a string
of states q1 . . . qm gets converted to the string δ(q1, q2)δ(q2, q3) . . . δ(qm−1, qm),
which is one symbol shorter. This is being done until the string shrinks to a
single state, which will determine whether it is accepted.

The main motivation for the study of these automata is given by their compu-
tational equivalence to linear conjunctive grammars: in this paper we show that
while these automata can simulate both linear context-free and linear conjunc-
tive grammars, they can in turn be simulated by linear conjunctive grammars
as well.

2 Definition

Let us introduce the family of automata we are going to study in this paper.

Definition 1. An automaton is a quintuple M = (Σ, Q, I, δ, F), where

• Σ is the input alphabet.

• Q is a finite nonempty set of states.

• I : Σ → Q is a function that sets the initial states.

• δ : Q×Q → Q is a binary operator on the set Q that works as the transition
function.

• F ⊆ Q is the set of final states.

An automaton M = (Σ, Q, I, δ, F) takes a nonempty string w = a1 . . . an

(ai ∈ Σ, n > 1) as an input and then carries out the following computa-
tion: first, w is converted to the string of states I(a1) . . . I(an), as shown
in Figure 1(a); then, new strings of states are constructed out of existing
strings of states by replacing a string of the form q1 . . . qm with the string
δ(q1, q2), δ(q2, q3), . . . , δ(qm−1, qm) (see Figure 1(b)). This is being done until
the string of states shrinks to a single state; then the string is accepted if and
only if this single state belongs to the set F .

Now let us formally define the computation of an automaton.

2

a1 an

I I
. . .

q1 qn

q1 qm-1q2 q3 qm

q'1 q'm-1q'2
δ δ δ

. . .

. . .(a) (b). . .

Figure 1: One step of computation.

Definition 2. An instantaneous description of an automaton (Σ, Q, I, δ, F) is
an arbitrary nonempty string over Q.

The successor of an instantaneous description q1q2 . . . qn (where n > 2),
denoted as δ(q1q2 . . . qn), is the instantaneous description q′1q

′
2 . . . q′n−1, such

that q′i = δ(qi, qi+1) for all i.
An instantaneous description is said to be accepting if it consists of a single

state from F . An instantaneous description is said to be rejecting if it consists
of a single state not in F .

A sequence of instantaneous descriptions α1, . . . , αn (n > 1) is called a com-
putation of the automaton if αi+1 = δ(αi) for all i (1 6 i < n) and αn is either
accepting or rejecting (i.e. |αn| = 1 and in general |αi| = n − i + 1). The
computation is said to be either accepting or rejecting depending on its final
instantaneous description.

Note that the computation is deterministic, i.e. every next instantaneous
description is completely determined its predecessor. Therefore, the last instan-
taneous description is completely determined by the first instantaneous descrip-
tion, and thus a computation starting from any given nonempty string of states
has a definite outcome, which we denote as a mapping ∆ : Q+ → Q:

Definition 3. For each instantaneous description q1q2 . . . qn, denote the fi-
nal instantaneous description of the computation starting from q1q2 . . . qn as
∆(q1q2 . . . qn).

Observation 1. The following holds:

• ∆(q) = q.

• ∆(q1 . . . qn) = δ
n−1

(q1 . . . qn).

• For all 0 6 m < n,

δ
m

(q1q2 . . . qn) = ∆(q1 . . . q1+m)∆(q2 . . . q2+m) . . . ∆(qn−m . . . qn) (1)

• ∆(q1 . . . qn) = δ(∆(q1 . . . qn−1), ∆(q2 . . . qn)).

It is left to define the initial instantaneous description of the automaton on
the given input string:

Definition 4. Let A = (Σ, Q, I, δ, F) be an automaton. For each string w ∈ Σ+,
define I(w) = I(a1)I(a2) . . . I(an).

3

The computation of the automaton A on the string w is the computation
starting from the instantaneous description I(w). The automaton is said to
accept the string w if the computation starting from I(w) is an accepting com-
putation, i.e. if ∆(I(w)) ∈ F ; otherwise, the automaton is said to reject the
string. The set of strings accepted by the automaton is called the language gen-
erated by the automaton:

L(A) = {w |∆(I(w)) ∈ F} (2)

One evident limitation of the new automata is their inability to accept or
reject the empty string; however, this is only a technical limitation which does
not affect their generative power on longer strings.

∆11 ∆22 ∆33 ∆nn

∆12 ∆23

∆13

∆1,1+i

∆1,n-1 ∆2,n

∆1n

∆2,2+i ∆n-i,n. . .

. . .

.
.

. .
.

∆n-1,n

∆n-2,n

. . .

. . .

. . .

I(w) =

δ
2(I(w)) =

δ(I(w)) =

δ
i(I(w)) =

δ
n-1(I(w)) =

δ
n-2(I(w)) =

a1 a2 a3 anw =

Figure 2: The computation of an automaton on a given input string.

The general form of a computation of an automaton is given in Figure 2,
where a short notation ∆ij for ∆(I(ai . . . aj)) is adopted.

3 Linear conjunctive grammars and automata

In this section we provide a short overview of linear conjunctive grammars,
consequently proving them to be computationally equivalent to the newly in-
troduced automata.

3.1 Preliminaries

Let us start with a formal definition of conjunctive grammars [2]:

Definition 5. A conjunctive grammar is a quadruple G = (Σ, N, P, S), where
Σ and N are disjoint finite nonempty sets of terminal and nonterminal symbols;
P is a finite set of grammar rules of the form

A → α1& . . . &αn (A ∈ N, n > 1, for all i αi ∈ (Σ ∪N)∗), (3)

4

where the strings αi are distinct, and their order is considered insignificant;
S ∈ N is a nonterminal designated as the start symbol.

Three additional special symbols will be used: ’(’, ’&’ and ’)’; it is assumed
that none of them is in Σ ∪ V .

For each rule of the form (3) and for each i (1 6 i 6 n), A → αi is called a
conjunct. Let conjuncts(P) denote the sets of all conjuncts.

A conjunctive grammar generates strings by deriving them from the start
symbol, generally in the same way as the context-free grammars do. Intermedi-
ate strings used in course of a derivation are actually formulae under the basis
of concatenation and conjunction:

Definition 6. Let G = (Σ, N, P, S) be a conjunctive grammar. The set of
conjunctive formulae F is defined inductively:

• The empty string ε is a conjunctive formula.

• Any symbol from Σ ∪N is a formula.

• If A and B are nonempty formulae, then AB is a formula.

• If A1, . . . ,An (n > 1) are formulae, then (A1& . . . &An) is a formula.

Definition 7. Let G = (Σ, N, P, S) be a conjunctive grammar. Define G=⇒ ,
the relation of one-step derivability on the set of conjunctive formulae.

1. For any s′, s′′ ∈ Σ ∪N ∪ {’(’, ’&’, ’)’}∗ and A ∈ N , such that s′As′′ is
a formula, and for all A → α1& . . . &αn ∈ P ,

s′As′′ G=⇒ s′(α1& . . . &αn)s′′ (4)

2. (the gluing rule) For any s′, s′′ ∈ Σ ∪ N ∪ {’(’, ’&’, ’)’}∗, n > 1 and
w ∈ Σ∗, such that s′(w& . . . &w︸ ︷︷ ︸

n>1

)s′′ is a formula,

s′(w& . . . &w︸ ︷︷ ︸
n

)s′′ G=⇒ s′ws′′ (5)

Let G=⇒ ∗ denote the reflexive and transitive closure of G=⇒ .

Definition 8. Let G = (Σ, N, P, S) be a conjunctive grammar. The lan-
guage of a formula is the set of all terminal strings derivable from the formula:
LG(A) = {w ∈ Σ∗ | A G=⇒ ∗ w}. The language generated by the grammar is the
language generated by its start symbol: L(G) = LG(S).

The semantics of conjunctive grammars is well characterized by the following
equalities [2]:

5

Theorem 1. Let G = (Σ, N, P, S) be a conjunctive grammar. Let A1, . . . ,An,B
be formulae, let A ∈ N , let a ∈ Σ. Then,

LG(ε) = {ε} (6a)
LG(a) = {a} (6b)

LG(A) =
⋃

A→α1&...&αm∈P

LG((α1& . . . &αm)) (6c)

LG(AB) = LG(A) · LG(B) (6d)

LG((A1& . . . &An)) =
n⋂

i=1

LG(Ai) (6e)

Let us now restrict general conjunctive grammars to obtain the subclass of
linear conjunctive grammars, which will play an important role throughout this
paper:

Definition 9. A conjunctive grammar G = (Σ, N, P, S) is said to be linear, if
each rule in P is of the form

A → u1B1v1& . . . &umBmvm (ui, vi ∈ Σ∗, Bi ∈ N) (7a)
A → w (w ∈ Σ∗) (7b)

It has been proved in [2] that every linear conjunctive grammar can be
effectively transformed to an equivalent grammar in the so-called linear normal
form:

Definition 10. A linear conjunctive grammar G = (Σ, N, P, S) is said to be in
the linear normal form, if each rule in P is of the form

A → bB1& . . . &bBm&C1c& . . . &Cnc (m + n > 1; A,Bi, Cj ∈ N ; b, c ∈ Σ),
(8a)

A → a (A ∈ N, a ∈ Σ), (8b)
S → ε, only if S does not appear in right parts of rules (8c)

Linear conjunctive grammars are known to be able to generate the classi-
cal non-context-free languages {anbncn | n > 0}, {ambncmdn | m,n > 0} and
{wcw |w ∈ {a, b}∗} [2], as well as more complex languages, such as the language
{ba2ba4b . . . ba2n−2ba2nb |n > 0} with square growth property and the language
of all derivations within a finite string-rewriting system [5].

Despite the increased generative power in comparison with linear context-
free grammars, any language generated by a linear conjunctive grammar is, as
we shall now demonstrate, still a square-time language.

3.2 Recognition algorithm for linear conjunctive gram-
mars

Efficient recognition and parsing was originally one of the main reasons for
the study of conjunctive grammars [2], and the subclass of linear conjunctive

6

grammars is characterized by even better upper bound for complexity than that
of general conjunctive grammars. The original paper [2] presents a quadratic-
time and linear-space algorithm for the grammars in the linear normal form; the
paper [3] defines a more practical parsing algorithm for arbitrary conjunctive
grammars, which is generally cubic-time, but is known to use no more than
O(n2) time and O(n) space on any linear conjunctive grammar.

Let us review the simpler algorithm of [2]. For a given input string w =
a1 . . . an ∈ Σ+ (n > 1), define Tij = {A |A ∈ N, A

G=⇒ ∗ ai . . . aj} for all i and
j (1 6 i 6 j 6 n). The sets Tii can be computed immediately:

Tii = {A |A ∈ N, A → ai ∈ P} (9a)

In order to compute the sets Tij for i < j, it suffices to note [2] that

Tij = {A |A ∈ N, there is a rule A → bB1& . . . &bBm&C1c& . . . &Cnc ∈ P,

such that b = ai, c = aj , for all p (1 6 p 6 m) Bp ∈ Ti+1,j and
for all q (1 6 q 6 n) Cq ∈ Ti,j−1},

(9b)

and that the computation of (9b) takes constant time. This yields the following
square-time algorithm [2]:

Algorithm 1. Let G = (Σ, N, P, S) be a conjunctive grammar in the linear
normal form. Let w = a1 . . . an ∈ Σ+ (n > 1) be the string being recognized.

for i = 1 to n
Tii={A |A ∈ N, A → ai ∈ P}

for k = 1 to n− 1
for i = 1 to n− k
{

let j = k + i
Tij = (as in (9b))

}
if S ∈ Tij, then return “yes”, else return “no”.

It is easily seen that each iteration of the outer loop depends only on the
input string and on the products of the previous iteration. That allows us to
discard earlier portions of the matrix in course of the computation and thus use
only O(n) space.

This implies that every linear conjunctive language is deterministic context-
sensitive; this inclusion was also shown to be proper by investigating the unary
case, where the generative capacity of linear conjunctive grammars does not
exceed that of finite automata [5].

3.3 Simulation of linear conjunctive grammars by au-
tomata

Let us show that our automata can accept any language generated by a
linear conjunctive grammar by just simulating the computation of Algorithm 1.

7

Each state of the automaton will be associated with some subset of N , so
that the state ∆(I(ai . . . aj)) “know” the set Tij . In order to eliminate the
direct dependence of every step of computation on the input string, the char-
acters of the input string will also be encoded in the states, so that each state
∆(I(ai . . . aj)) will remember the symbols ai and aj .

The first loop of the algorithm will be done by the function I on the basis of
(9a). The assignment (9b) to every Tij (i < j) will be modeled by the function
δ; thus, each iteration of the second loop (the outer) of the algorithm will be
simulated by a single application of δ. The acceptance condition in the last
statement of the algorithm will be checked with the help of the set F .

Formally, let G = (Σ, N, P, S) be a linear conjunctive grammar in the linear
normal form. We construct the automaton M = M(G) = (Σ, Q, I, δ, F), where

Q = Σ× 2N × Σ, (10a)
I(a) = (a, {A |A → a ∈ P}, a), (10b)

δ((b, Q, b′), (c′, R, c)) =
(b, {A | ∃A → bB1& . . .bBm&C1c& . . . &Cnc : Bi ∈ R, Cj ∈ Q}, c), (10c)

F = {(a,R, b) |R ⊆ N, S ∈ X, a, b ∈ Σ} (10d)

The following statement can be established by a trivial induction on the
length of the string:

Observation 2. For each string w ∈ Σ+, if ∆(I(w)) = (b,R, c), then the first
symbol of w is b and the last symbol of w is c.

The correctness of our construction is proved in the following lemma:

Lemma 1. For each string w ∈ Σ+, let ∆(I(w)) = (b,R, c).
Then, for each nonterminal A ∈ Q, A

G=⇒ ∗ w if and only if A ∈ R.

Proof. Induction on |w|.
Basis |w| = 1. Let w = a ∈ Σ. Then, ∆(I(w)) = (a,R = {A | A → a ∈

P}, a), and A ∈ R if and only if A → a ∈ P if and only if a ∈ L(A).
Induction step. Let w = bxc (b, c ∈ Σ, x ∈ Σ∗). Then, by Observation 2,

∆(I(bxc)) = (b,R, c) for some R ⊆ N ; by the same reasoning, ∆(I(bx)) =
(b, Q1, b

′), where b′ is the last symbol of bx and Q1 ⊆ N , and ∆(I(xc)) =
(c′, Q2, c), where c′ is the first symbol of xc and Q2 ⊆ N . By Observation 1,

δ((b,Q1, b
′), (c′, Q2, c)) = (b,R, c) (11)

⇒© Let A ∈ N be some nonterminal. The nonterminal A generates bxc if and
only if there exists a rule of the form

A → bB1& . . . bBm&C1c& . . . &Cnc ∈ P, (12)

such that xc ∈ L(Bi) and bx ∈ L(Cj) for all i, j.

By induction hypothesis, this means that Bi ∈ Q2 and Cj ∈ Q1 for all i, j,
which, by the rule (12) and by the construction of δ, implies that A ∈ R.

8

⇐© If A ∈ R, then there exists some rule of the form (12), where all Bi are
all in Q2 and all Cj are in Q1. By induction hypothesis, Bi =⇒∗ xc and
Ci =⇒∗ bx, which allows to construct a derivation of the string w from
the nonterminal A.

Theorem 2. For every linear conjunctive grammar G = (Σ, N, P, S) there
exists and can be effectively constructed an automaton M = (Σ, Q, I, δ, F), such
that L(M) = L(G) (mod Σ+).

3.4 Simulation of automata by linear conjunctive gram-
mars

It was proved in Section 3.3 that our automata are at least as powerful as
linear conjunctive grammars. In this section we show that, on the other hand,
their generative power does not exceed that of linear conjunctive grammars,
because linear conjunctive grammars can simulate the computation of automata.
Together, these two results will show that the automata are computationally
equivalent to linear conjunctive grammars.

Let M = (Σ, Q, I, δ, F) be an automaton. We construct the grammar G =
G(M) = (Σ, NQ ∪ {S}, P, S), where NQ = {Aq | q ∈ Q} and P contains the
following rules:

S → Aq (for all q ∈ F) (13a)
AI(a) → a (for all a ∈ Σ) (13b)
Aδ(q1,q2) → bAq2&Aq1c (for all q1, q2 ∈ Q and b, c ∈ Σ) (13c)

Lemma 2. For each string w ∈ Σ+ and for each state q ∈ Q, Aq
G=⇒ ∗ w if

and only if ∆(I(w)) = q.

Proof. Induction on |w|.
Basis |w| = 1. Let w = a ∈ Σ. Aq

G=⇒ ∗ a iff Aq → a ∈ P iff q = I(a) iff
q = ∆(I(a)).

Induction step. Let w = bxc (b, c ∈ Σ, x ∈ Σ∗).

⇒© If Aq
G=⇒ ∗ bxc, then there exists a rule

Aq → bAq2&Aq1c ∈ P (14a)

such that

Aq2 =⇒∗ xc, (14b)
Aq1 =⇒∗ bx, (14c)

where, by the construction of P (13c), the rule (14a) must have q =
δ(q1, q2); by induction hypothesis, (14b) holds if and only if q2 =
∆(I(xc)) and (14c) holds if and only if q1 = ∆(I(bx)). Therefore,
q = ∆(I(bx), I(xc)) = ∆(I(bxc)).

9

⇐© Let q1 = ∆(I(bx)), q2 = ∆(I(xc)). By Observation 1, δ(q1, q2) =
∆(I(bxc)) = q. By induction hypothesis, this implies Aq1 =⇒∗ bx,
Aq2 =⇒∗ xc, and, by the rule (13c), Aq = Aδ(q1,q2) =⇒∗ bxc.

Corollary 1. For each automaton M , L(M) = L(G(M)).

Proof. L(M) = L(G(M)) (mod Σ+) follows from Lemma 2. Since ε /∈ L(M)
and ε /∈ L(G(M)), the languages of the automaton and the grammar coincide
completely.

Theorem 3. For every automaton M = (Σ, Q, I, δ, F), there exists and can be
effectively constructed a linear conjunctive grammar G = (Σ, N, P, S), such that
L(G) = L(M).

Together with the earlier Theorem 2, this allows to make the following con-
clusion:

Theorem 4. A language L ⊆ Σ+ is accepted by some automaton if and and
only if it is generated by some linear conjunctive grammar.

3.5 Shortened linear normal form

Besides giving the computational equivalence of linear conjunctive grammars
and newly introduced automata, the combination of Theorems 2 and 3 leads us
to one more noteworthy result related to linear conjunctive grammars alone.

It turns out that the linear normal form of Definition 10, originally intro-
duced in [2], is not optimal in the sense that it can be further restricted, at the
same time preserving the generative power.

Definition 11. A linear conjunctive grammar G = (Σ, N, P, S) is said to be in
the shortened linear normal form, if each rule in P is of the form

A → bB&Cc (A,B, C ∈ N, b, c ∈ Σ), (15a)
A → a (A ∈ N, a ∈ Σ), (15b)
S → ε, only if S does not appear in right parts of rules (15c)

Theorem 5. For every linear conjunctive grammar there exists and can be
effectively constructed an equivalent linear conjunctive grammar in the shortened
linear normal form.

Proof. Let G1 = (Σ, N1, P1, S1) be an arbitrary linear conjunctive grammar.
We use the transformations of Section 3.3 to obtain the automaton M(G1),
and then apply the transformation given in Section 3.4 to get the grammar
G2 = G(M(G1)) = (Σ, N2, P2, S2).

It follows from Theorems 2 and 3 that the languages L(G1) and L(G2)
are equivalent modulo Σ+. Additionally, by the construction from Theorem 3,
the grammar G2 is “almost” in shortened linear normal form, with the only
exception of the rules of the form (13a) for the dedicated start symbol S2.

10

In order to bring G2 to conformity with Definition 11, we apply the trans-
formation called substitution of unit conjuncts [2], replacing every rule S2 → A
of type (13a) with a collection of rules

S2 → α1& . . . &αm (m = 1, 2; A → α1& . . . &αm ∈ P2) (16)

Finally, if ε ∈ L(G1), then the rule S2 → ε should be added to the resulting
grammar, making it completely equivalent to G2.

4 Example

Let us consider the following linear conjunctive grammar for the language
{anbnan | n > 0}:

S → Ka&aR | ε
K → aA | Ka
P → aA
A → Pb | b
R → Ba | aR
Q → Ba
B → bQ | b

The grammar is in the linear normal form. The cardinality of the set
Σ× 2N × Σ is 2 · 128 · 2 = 512, but in fact only fourteen out of these will
be potentially reachable from the initial state.

These reachable states are enumerated in Table 1.

0 (a, ∅, a)
1 (a, ∅, b)
2 (a, {S,K, R}, a)
3 (a, {K}, a)
4 (a, {K,P}, b)
5 (a, {K, P,A}, b)
6 (a, {A}, b)
7 (a, {R}, a)
8 (b, ∅, a)
9 (b, ∅, b)
10 (b, {A, B}, b)
11 (b, {R,Q}, a)
12 (b, {R,Q, B}, a)
13 (b, {B}, a)

Table 1: The states of the automaton.

The initial function I and the set of final states F are shown in Table 2.

11

a b
0 10

0 1 2 3 4 5 6 7 8 9 10 11 12 13
− − + − − − − − − − − − − −

Table 2: The function I and the membership of states in F .

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 1 7 0 1 4 4 7 0 1 4 7 7 0
1 0 1 7 0 1 4 4 7 0 1 4 7 7 0
2 3 1 2 3 1 4 4 2 3 1 4 2 2 3
3 3 1 2 3 1 4 4 2 3 1 4 2 2 3
4 3 6 2 3 6 5 5 2 3 6 5 2 2 3
5 3 6 2 3 6 5 5 2 3 6 5 2 2 3
6 0 1 7 0 1 4 4 7 0 1 4 7 7 0
7 0 1 7 0 1 4 4 7 0 1 4 7 7 0
8 8 9 8 8 9 9 9 8 8 9 9 13 13 8
9 8 9 8 8 9 9 9 8 8 9 9 13 13 8
10 11 9 11 11 9 9 9 11 11 9 9 12 12 11
11 8 9 8 8 9 9 9 8 8 9 9 13 13 8
12 11 9 11 11 9 9 9 11 11 9 9 12 12 11
13 11 9 11 11 9 9 9 11 11 9 9 12 12 11

Table 3: The function δ.

The transition function δ : Q×Q → Q is given in Table 3.
Finally, a sample computation of this automaton on the input string w =

aaaaabbbbbaaaaa is presented in Table 4.

5 Concluding remarks

We have introduced a new family of relatively simple computing devices that
turned out to be equivalent to linear conjunctive grammars.

The relationship between linear conjunctive grammars and the automata
introduced in this paper resembles that between regular expressions and finite
automata: while grammars and regular expressions are usually more convenient
for humans, the automata are much better suitable for machine implementation.
Thus it is reasonable to expect that the newly introduced automata will prove
useful as a low-level model in practical language-processing applications.

The techniques studied in this paper have been implemented in the parser
generator [7]; it could also be mentioned that all the tables given in this paper
were constructed automatically (in TEX format) and simply included in this
document using \input directive.

12

2
3 7

3 0 7
3 0 0 7

3 0 0 0 7
4 0 0 0 0 11

1 6 0 0 0 13 8
1 4 1 0 0 8 11 8

1 1 6 1 0 8 13 8 8
1 1 4 1 1 8 8 11 8 8

0 1 1 6 1 9 8 13 8 8 0
0 0 1 4 1 9 9 8 11 8 0 0

0 0 0 1 6 9 9 9 13 8 0 0 0
0 0 0 0 4 9 9 9 9 11 0 0 0 0

0 0 0 0 0 10 10 10 10 10 0 0 0 0 0
a a a a a b b b b b a a a a a

Table 4: Computation of the automaton on the string w = aaaaabbbbbaaaaa.

References

[1] M. A. Harrison, Introduction to formal language theory, Addison-Wesley,
Reading, Mass., 1978.

[2] A. Okhotin, “Conjunctive grammars”, Journal of Automata, Languages
and Combinatorics, 6:4 (2001), to appear.

[3] A. Okhotin, “A recognition and parsing algorithm for arbitrary conjunctive
grammars”, submitted to Theoretical Computer Science.

[4] A. Okhotin, “Linear conjunctive languages are closed under complement”,
Technical Report 2002–455, Department of Computing and Information
Science of Queen’s University, Kingston, Ontario, Canada.

[5] A. Okhotin, “On the closure properties of linear conjunctive languages”,
submitted to Theoretical Computer Science.

[6] I. H. Sudborough, “A note on tape-bounded complexity classes and linear
context-free languages”, Journal of the ACM, 22:4 (1975), 499–500.

[7] Whale Calf, a parser generator for conjunctive grammars, available at
http://www.cs.queensu.ca/home/okhotin/whalecalf/

13

