
One-Visit Caterpillar Tree Automata

A. Okhotin, K. Salomaa, M. Domaratzki
{okhotin,ksalomaa,domaratz}@cs.queensu.ca

Technical report 2002–459

School of Computing, Queen’s University,
Kingston, Ontario, Canada K7L 3N6

August 2002

Abstract

We study caterpillar tree automata [3] that are restricted to enter
any subtree at most one time (or k times). We show that, somewhat
surprisingly, the deterministic one-visit automata can already, for in-
stance, evaluate trees where the nodes represent some non-associative
operations. We show that there exist regular tree languages that can-
not be accepted by a one-visit automaton, thus proving a weakened
form of a conjecture of Brüggemann-Klein and Wood [3]. We establish
that the k-visit property is decidable.

1 Introduction

Recently formal properties and grammatical characterizations of SGML and
XML documents have been investigated in [1, 2, 3]. The work involves sev-
eral classical language-theoretic methods. For fundamental issues concerning
markup languages see also [10].

Caterpillar expressions and automata were introduced by Brüggemann-
Klein and Wood [3] for applications in specifying style sheets for XML docu-
ments and in tree pattern matching. A caterpillar automaton moves around a
tree using a sequence of atomic moves and tests defined by a context-mapping

1



of a regular language. In an atomic move the automaton can move from the
current node of the tree to its parent or to one of the children. It is shown
in [3] that tree languages accepted by caterpillar automata are regular. The
authors conjecture that this inclusion is strict.

Although it seems very likely that caterpillar automata cannot accept
all regular tree languages, we show that they can perform some surprising
computations. We show, for example, that caterpillars can evaluate trees
where the internal binary nodes represent addition and subtraction modulo
k. In all the example “caterpillar algorithms” considered here and in [3]
it is sufficient for the automaton to visit any given subtree at most once.
In fact, usually the computations can be performed by traversing the tree
depth-first in left-to-right order. These observations motivate our definitions
of left-to-right (LRCAT) and one-visit (1-CAT) caterpillar automata.

It is fairly easy to see that LRCAT automata cannot accept all regular
tree languages. We prove that there exist regular tree languages that cannot
be accepted by any deterministic one-visit automaton. The same construc-
tion establishes that two-visit caterpillars are strictly more powerful than the
1-CAT automata. We do not know whether the (deterministic or nondeter-
ministic) k-visit hierarchy is strict with respect to k. Note that any accepting
computation of a fixed caterpillar automaton can visit any subtree at most a
constant number of times (where the constant depends on the automaton).
We show that given a caterpillar automaton A it is decidable whether A has
the one-visit property or whether A admits a loop.

The conjecture from [3] that the family of tree languages accepted by
general caterpillar automata is strictly included in the regular tree languages
remains open. It should be noted that [7, 8, 9] consider finite tree-walking
automata and show that the nondeterministic tree-walking automata are
strictly more powerful than the deterministic ones and the tree languages
accepted by the nondeterministic variant are strictly included in the regular
tree languages. However, an essential difference to caterpillar automata is
that when making an upward move the tree-walking automata of [7, 8, 9]
cannot determine from which descendant of the target node the move origi-
nated. Because of this the tree-walking automata can be shown to be unable
to traverse all nodes of a balanced tree of sufficient height. On the other
hand, caterpillar automata can systematically traverse all nodes of an ar-
bitrary tree [3]. The alternating tree-walking automata accept exactly the
regular tree languages [9]. On the other hand, parallel two-way tree automata
also do not recognize more than the regular tree languages [4].

2



The organization of the paper is as follows. In the next section we recall
some basic definitions concerning trees, define the caterpillar tree automata,
as well as present several examples. For ease of presentation we slightly
modify the original definition of caterpillars from [3]. In the third section we
discuss the one-visit caterpillar automata and the last section describes some
open problems.

2 Caterpillar tree automata

We assume the reader to be familiar with finite tree automata and only briefly
recall the definitions needed here. For all unexplained notions the reader may
consult [5, 6].

The cardinality of a finite set S is #S. For m ∈ N we denote [m] =
{1, . . . , m}.

A ranked alphabet is a pair (Σ, r) where Σ is a finite set and r : Σ −→
N ∪ {0} is a function that associates with each element σ ∈ Σ its rank r(σ).
The set of elements of rank m is Σm, m ≥ 0. Instead of (Σ, r), we will usually
speak of the ranked alphabet Σ and assume that r is known. The set of trees
(or terms) over Σ, FΣ is the smallest set S satisfying the condition: if m ≥ 0,
σ ∈ Σm and t1, . . . , tm ∈ S then σ(t1, . . . , tm) ∈ S.

We assume that notions such as the root, a leaf, a subtree and the height
of a tree are known. We use the convention that the height of a single node
tree is zero. Let t be a tree and u some node of t. The subtree of t at node
u is denoted tu. The tree obtained from t by replacing the subtree at node u
with a tree s is denoted t[u ← s].

A nondeterministic bottom-up tree automaton is a construct A =
(Σ, Q, QF , g) where Σ is a ranked alphabet, Q is a finite set of states, QF ⊆ Q
is a set of accepting states and g associates to each σ ∈ Σm a mapping
σg : Qm −→ 2Q, m ≥ 0. For each t = σ(t1, . . . , tm) ∈ FΣ we define induc-
tively the set tg ⊆ Q by setting q ∈ tg if and only if there exist qi ∈ (ti)g,
i = 1, . . . ,m, such that q ∈ σg(q1, . . . , qm). (Intuitively, tg consists of the
states of Q that A may reach at the root of t.) The tree language accepted
by A is L(A) = {t ∈ fΣ | tg ∩QF 6= ∅}. The nondeterministic (bottom-up or
top-down) tree automata accept the family of regular tree languages [5, 6].

Next we define the caterpillar tree automata. A caterpillar consists of a
single (read-only) finite state control that can make atomic moves either to
the parent (up-move) or to one of the children (down-move) of the current

3



node. The original definition of caterpillars in [3] was motivated by context
specification and evaluation in markup languages and for this reason the
definition there uses a regular language to control the movements of (i.e.,
define a context mapping for) a caterpillar. We are mainly interested in
proving properties of tree languages accepted by caterpillar automata and
for our purposes it is more convenient to directly specify a transition relation
that gives the next move(s) of the automaton in its current state.

A difference to [3] is that we consider only trees where the nodes have a
bounded number of children. This makes the notations simpler since we can
use a ranked alphabet to label nodes of the trees. In terms of our main result
(which is a negative result stating that there exist regular tree languages
that cannot be accepted by certain type caterpillars) this restriction clearly
does not cause any loss of generality. Also when the nodes of the trees have
bounded arity, it is natural to allow the caterpillars to make down-moves
to any of the descendants. Then we do not need moves to the siblings of
the current nodes and also can eliminate test instructions that determine
whether the current node is the leftmost or the rightmost descendant of its
parent. In our definition an up-move implicitly determines this information.
Note that in the original definition given in [3], a down-move can be made
only to the leftmost or the rightmost child and then the automaton can move
from one sibling to the next (or previous) sibling, as well as, test whether it
is located in the leftmost or the rightmost sibling.

Another minor difference is that the original definition allows the cater-
pillar to test when it is at the root of the tree. In order to avoid additional
notations we do not include this capability, and instead assume that the in-
put tree is augmented with a special unary stump, as illustrated in Figure 1.
Adding the stump to a tree is basically the same as adding begin and end
markers to words, and has the advantage of being a more uniform tool than
an explicit root predicate.

Definition 2.1 Let Σ be a ranked alphabet. Then the augmented alphabet
Σ′ is defined as Σ′ = Σ∪{stump}, where stump (stump /∈ Σ) is a symbol of
rank one, and consequently,

Σ′
m =

{
Σm ∪ {stump}, if m = 1
Σm otherwise

(2.1)

Now, given an arbitrary tree t ∈ FΣ, denote the tree t augmented with a
stump as t′ = stump(t) (see Figure 1).

4



stump

tt

(a) (b)

Figure 1: (a) An arbitrary tree t; (b) t augmented with stump, denoted as t′.

Definition 2.2 Let Σ be a ranked alphabet and M = max{m | Σ′
m 6= ∅}.

A caterpillar (tree) automaton is a tuple

A = (Σ, Q, q0, QF , f) (2.2)

where Q is the finite set of states, q0 ∈ Q is the initial state, QF ⊆ Q is the
set of accepting states, and

f : Σ′ ×Q → 2{down}×{1,...,M}×Q ∪ {up}×QM

(2.3)

is the state transition function, in which (i) elements of the form (down, i, q)
instruct the automaton to go to the i-th descendant of the current node and
switch to state q, while (ii) an element of the form (up, q1, . . . , qM) means
that the automaton should go to the predecessor of the current node (which
has the current node as the i-th descendant) and switch to the state qi. Note
that the new state after an up-move depends on the direction from where the
automaton came from. For obvious reasons, it is required that 1 6 i 6 r(σ)
whenever f(σ, q) 3 (down, i, q′) and that f(stump, q) 63 (up, q1, . . . qm) for
any q, q1, . . . , qm ∈ Q.

The caterpillar A is said to be deterministic if for any pair (σ, q) ∈ Σ′×Q
it holds that #f(σ, q) = 1; otherwise A is nondeterministic.

For deterministic caterpillars it is convenient to redefine f as

f : Σ′ ×Q → {down}×{1, . . . , M}×Q ∪ {up}×QM (2.4)

Now we can define the computations of and the tree language accepted
by a caterpillar automaton.

5



Definition 2.3 Let Σ be a ranked alphabet. Let A be a caterpillar automa-
ton. Define a ranked alphabet Ω = Σ′ ∪ (Σ′ ×Q), and let where

Ωm = Σ′
m ∪ {(σ, q) | σ ∈ Σ′

m, q ∈ Q}.
An Ω-tree t is an A-configuration if t contains exactly one node labeled by an
element of Σ′ × Q. The set of A-configurations is denoted Config(A). The
relation defining single-step computations of A, `A⊆ Config(A)×Config(A),
is defined as follows. Let C,C ′ ∈ Config(A). Then C `A C ′ if and only if
one of the following possibilities holds:

(i) C contains a subtree

t = (σ, q)(t1, . . . , ti−1, τ(r1, . . . , rn), ti+1, . . . , tm),

σ ∈ Σ′
m, τ ∈ Σ′

n, q ∈ Q, 1 ≤ i ≤ m

and C ′ is obtained from C by replacing t with

σ(t1, . . . , ti−1, (τ, q
′)(r1, . . . , rn), ti+1, . . . , tm),

where (down, i, q′) ∈ f(σ, q). This represents a down-move of A to the
ith child of the node where the reading head is in C.

(ii) C contains a subtree

t = τ(t1, . . . , ti−1, (σ, q)(r1, . . . , rm), ti+1, . . . , tn),

σ ∈ Σ′
m, τ ∈ Σ′

n, q ∈ Q, 1 ≤ i ≤ n

and C ′ is obtained from C by replacing t with

(τ, qi)(t1, . . . , ti−1, σ(r1, . . . , rm), ti+1, . . . , tn),

where (up, q1, . . . , qM) ∈ f(σ, q). This represents an up-move of A to
the parent of the node u where the reading head is in C. In this case
we know that u is the ith child of its parent.

Let t ∈ FΣ. The initial configuration corresponding to t is

init(t) = (stump, q0)(t).

Intuitively, this means that the caterpillar begins the computation at the stump
of the augmented tree t′.

6



A configuration C ∈ Config(A) is accepting if the root of C (correspond-
ing to the stump of t′) is labeled by a symbol (stump, q) where q ∈ QF . The
tree language accepted by the caterpillar automaton A is

L(A) = {t ∈ FΣ | init(t) `∗A C for some accepting configuration C}.

The class of deterministic (respectively, nondeterministic) caterpillar au-
tomata is denoted CAT (respectively, NCAT ). The family of tree languages
accepted by a (sub)class X of caterpillar automata is denoted L(X).

If A is a deterministic caterpillar, for any configuration C there exists at
most one configuration C ′ such that C `A C ′.

It is clear that the automata defined in Definitions 2.2 and 2.3 accept the
same family of tree languages as the caterpillars of [3] when restricted to trees
of bounded arity. In the original definition, the movement of the caterpillar
is controlled by a sequence of instructions, and the set of such sequences is a
regular language. Thus possible control sequences can be simulated by our
model with a finite control together with a set of allowed transitions, and vice
versa. We leave the details of the constructions needed for the simulations
to the interested reader.

Furthermore, the automata given in Definition 2.2 could in a natural way
be extended to operate on trees of unbounded arity if we allow moves from
one sibling to the next or the previous sibling as in [3].

Proposition 2.4 [3] L(NCAT ) is included in the family of regular tree lan-
guages.

It was conjectured in [3] that the above inclusion is strict. We believe that
the conjecture is true, however it turns out that deterministic caterpillars can
already perform fairly surprising computations. This indicates that it may
be difficult to find a proof for the conjecture.

Let us consider several examples of quite nontrivial tree languages that
can be recognized already by deterministic caterpillar automata in a single
left-to-right traversal of a tree.

Example 1 A caterpillar automaton for evaluation of Boolean expressions
with conjunction, disjunction and negation.

7



Let Σ = Σ0 ∪ Σ1 ∪ Σ2, where Σ0 = {0, 1}, Σ1 = {¬} and Σ2 = {∨,∧}.
For every tree t ∈ FΣ, define its value (0 or 1):

v(0) = 0 (2.5a)

v(1) = 1 (2.5b)

v(¬(t)) =

{
1, if v(t) = 0
0, if v(t) = 1

(2.5c)

v(∧(t′, t′′)) =

{
1, if v(t′) = 1 and v(t′′) = 1
0 otherwise

(2.5d)

v(∨(t′, t′′)) =

{
1, if v(t′) = 1 or v(t′′) = 1
0 otherwise

(2.5e)

The task we shall now consider is to compute the value of a given tree,
or, to formulate it as a decision problem, whether a given tree has value 1.
Define the tree language L = {t | v(t) = 1}.

At the first glance, the problem can seem to be incomputable by deter-
ministic caterpillar automata, because, once an automaton returns from the
second subtree of a certain conjunction or disjunction node, it will have to
recall the value of the first subtree, and finite memory is not enough to store
the values of all such first subtrees. However, as we shall now demonstrate,
this intuition is wrong, because the very position of the caterpillar in the tree
can be used to store all the necessary information.

Let us construct a deterministic left-to-right caterpillar automaton to
recognize the trees from L. The set of states is defined as {u}∪{l, r}×{0, 1},
where u means “just came from above”, while every pair (l, b) or (r, b) (b ∈
{0, 1}) indicates that the automaton just came from left (right) descendant
of the current node (in case of a unary node, let us call its descendant left)
and computed the value b.

• Whenever the automaton enters a conjunction node from above in the
state u, it goes directly into its first descendant. When it returns from
the first subtree – i.e., whenever the automaton enters a conjunction
node from below/left in the state (l, 0) or (l, 1) – it has computed the
value of this subtree.

If it is zero – i.e., the state is (l, 0), – then the value of the conjunction
is also clearly zero, and the automaton goes directly upward, returning
0 (see Figure 2(a)) and thus enters the state (l, 0) or (r, 0).

8



0 1 0 1 1

(a) (b) (c)
u u u

l0 l1

u u u
l1

u u

l/r 1l/r 0 l/r 0

r0 r1

Figure 2: Evaluation of Boolean expressions: Treatment of conjunction.

If it is one, then the automaton goes to the right subtree. When it
returns from there – i.e., whenever the automaton enters a conjunction
node from below/right in the state (r, 0) or (r, 1), – it has computed
the value of the right subtree. Since it could come into this subtree
only in the case the left subtree has value one, the value of the right
subtree is the value of the whole conjunction, and the automaton goes
upward, returning this value (see Figure 2(b) and (c)) and entering the
state (l, 0) or (r, 0) if it is now in the state (r, 0), and the state (l, 1) or
(r, 1) if it is now in (r, 1).

• The same is done for a disjunction node: the left subtree is traversed
first, and if it evaluates to 1, then the value 1 can be returned imme-
diately (see Figure 3(a)); otherwise, the right subtree is traversed, and
if it evaluates to 1, then 1 is returned (as in Figure 3(b)), and if it
evaluates to 0, then 0 is returned (as in Figure 3(c)).

1 0 1 0 0

(a) (b) (c)
u u u

l1 l0
u u u

l0
u u

l/r 0l/r 1 l/r 1

r1 r0

Figure 3: Evaluation of Boolean expressions: Treatment of disjunction.

• Whenever the automaton enters a negation node, it goes down, com-

9



putes the value of the subtree, and then negates that value and returns
it upward: if the subtree evaluates to 0, then 1 is returned (see Figure
4(a)), and if the subtree evaluates to 1, then 0 is returned (see Figure
4(b)).

0 1
0 1

(a) (b) (c) (d)

u u

l0

l/r 0

l1
u u

uu
l/r 1

l/r 0 l/r 1

Figure 4: Evaluation of Boolean expressions: Treatment of negation and
constants.

• Whenever the automaton enters a leaf labeled with 0 (1), it returns
zero (one), as illustrated in Figure 4(c) and (d).

Now it suffices to define the initial state as u and set of accepting states
as {(l, 1)}.

Example 2 A caterpillar automaton for computing sum and difference mod-
ulo k.

Fix an integer k > 2, and let Σ = Σ0 ∪ Σ2, where the leaves Σ0 =
{0, . . . , k − 1} are constant symbols, while the binary nodes Σ2 = {⊕,ª}
represent sum and difference modulo k respectively.

As in the previous example, we define the value of a tree from FΣ as

v(i) = i (for all i : 0 6 i < k) (2.6a)

v(⊕(t′, t′′)) = v(t′) + v(t′′) (mod k) (2.6b)

v(ª(t′, t′′)) = v(t′)− v(t′′) (mod k) (2.6c)

Again, we formulate the task of computing the value of a tree as a decision
problem of determining whether a given tree has some fixed value (let it be,
for instance, 1), and look for a caterpillar automaton to recognize the tree
language L = {t | v(t) = 1}.

10



Even in the simplest case of k = 2, where both ⊕ and ª degrade to
exclusive or, the problem cannot be solved using the methods of Example
1, because, once the automaton returns from the left descendant of a binary
node, it should visit the right subtree regardless of the value of the left,
while finite memory will definitely not be enough to store the values of all
the traversed left subtrees. However, in this case a different very simple
technique is applicable: since sum modulo 2 is associative, one can simply
traverse all the leaves from left to right, storing the sum of the visited leaves
in finite state control.

The case of sum and difference modulo k for k > 3 is not so trivial, since
one of the operators is neither associative nor commutative. But still the
above method can be extended for this case, if we notice that the value of
a tree can be written as the sum of all its leaves in the left-to-right order,
each with a plus or minus sign. For instance, the sample tree in Figure 5(a)
denotes the expression

(4⊕ 1)ª ((1⊕ (2ª 2))ª (3ª 1)) (2.7)

which can be rewritten as

4⊕ 1ª 1ª 2⊕ 2⊕ 3ª 1 (2.8)

A leaf is included with a positive sign if and only if the number of subtrac-
tions above is even – i.e., if the path from the root node to this leaf contains
an even number of right arcs going out of ª nodes. Thus it suffices to store
this number modulo 2 in course of the computation and use it in every leaf
to determine whether the leaf’s value should be added to or subtracted from
the accumulated sum.

Define the set of states as Q = {u, l, r} × {0, . . . , k − 1} × {+,−}, where
the first component of every triple determines the direction, from which the
automaton just came, the second component holds the current value of the
sum (modulo k), and the third component records (modulo 2) the number of
right ª arcs on the path from the root to the current node, and consequently
determines whether the values in the leaves are added to or subtracted from
the sum.

The initial state of the automaton is (u, 0, +). The accepting states are
(r, 1, +) and (r, 1,−). The computation of this automaton for the case k = 5
on the sample tree is illustrated in Figure 5(b).

11



4 1

1

2 2

3 1

1

0

21

0

4

u0+

l4+

u4+

r0+

l0+

u0-

u0-

u4-

u0-

r4+

r4-

l4-

u4+

u4+
l2+

u2-

r1-

r1+

r1-u0+

u0+

l4-

u4-

l2-

u2+

(a) (b)
stump

r1+
u0+

Figure 5: Computing sum and difference modulo k = 5: (a) A sample tree;
(b) The computation on this tree.

3 One-visit automata

The computations of the caterpillars considered in the examples of the pre-
vious section are deterministic and, furthermore, traverse the input trees in
a specified order that visits any subtree at most once. The same is true for
the examples considered in [3]. At first sight it might seem possible that any
caterpillar computation could be performed using a strategy that visits each
subtree at most once. These observations motivate the following definitions
of restricted types of caterpillar automata.

Definition 3.1 Let A be a deterministic caterpillar automaton. Consider
a computation of A on an input tree t and let s be a subtree of t. Each
down-move to the root of s is said to be a visit to the subtree s.

(i) We say that A is a left-to-right automaton if A traverses each input tree
in depth-first left-to-right order. The automaton is allowed to omit
visiting some subtrees. The family of left-to-right automata is denoted
LRCAT.

(ii) We say that A is a k-visit automaton, k ≥ 1, if on any input tree t, A

12



visits any subtree of t at most k times. The family of k-visit automata
is denoted k-CAT.

Remark 1 Our definition allows caterpillars to make a down-move to any
of the children, whereas the original definition of [3] allows down-moves only
to the leftmost and the rightmost child and then moves from one sibling to
another. Thus a one-visit (or a k-visit) automaton as defined here could not
be directly simulated by a caterpillar as originally defined that is allowed to
visit any subtree only once (or k times). Of course when the nodes have
bounded arity, also the original definition of caterpillars can in a natural way
be modified to include down-moves to any of the children.

A left-to-right caterpillar is a special case of a one-visit caterpillar. It
is immediate that the transition relation of the caterpillar can be made to
directly enforce a left-to-right strategy: the states of the automaton can
simply contain an additional component that is used to guarantee that any
input tree can be traversed only in left-to-right order. On the other hand,
given an arbitrary caterpillar automaton A it is not necessarily immediately
clear whether A satisfies the one-visit property (or more generally, the k-visit
property). The following result guarantees that the k-visit property can be
effectively determined.

Theorem 3.2 Given k ≥ 1 and an arbitrary deterministic caterpillar au-
tomaton A = (Σ, Q, q0, QF , f) we can decide whether or not A is a k-visit
automaton.

Proof sketch. We only give an outline of the proof which uses standard tree
automata arguments. Assume that A is not a k-visit automaton and let t be
a tree such that the computation of A on t violates the k-visit property. Let

init(t) = C0 `A C1 `A . . . `A Cm,

be the prefix (denoted by αt) of the computation of A on t such that in
the step Cm−1 `A Cm the caterpillar for the first time violates the k-visit
property by making a down-move to a node n0 for the (k + 1)-st time. For
each node u of t, let αt[u] be the sequence

(q1, p1, q2, p2, . . .)

13



where qi is the state of A just after A made the ith down-move into u in αt,
and pi is the state of A just before A made the ith up-move from the node u
in αt. (Note that the sequence may end either with a qj or a pj state.) For
any node u 6= n0, the length of the sequence αt[u] is at most 2k.

Consider any nodes u and u′ of t such that the following holds

(i) αt[u] = αt[u
′],

(ii) u′ is a (not necessarily direct) descendant of u,

(iii) the node n0 is not contained in tu or it is contained in tu′ .

Then the automaton A has a computation also on t[u ← tu′ ] that violates
the k-visit property. (Conditions (i) and (ii) guarantee that the substitution
u ← tu′ does not change anything in the part “outside of subtree tu” or
“inside of subtree tu′”. On the other hand, (ii), (iii) guarantee that the node
n0 does not “become deleted” in the substitution u ← tu′ .)

Thus as long as t has height greater than some constant depending only
on the automaton A, we can always find distinct nodes u and u′ of t that
satisfy the above three conditions. In this case we can construct a strictly
smaller tree t′ = t[u ← tu′ ] such that the automaton A violates the k-visit
property also on t′.

The above means that in order to check whether A satisfies the k-visit
property it is sufficient to consider the computations of A on a finite set of
trees S, where S can be effectively determined.

The above proof gives only a very inefficient brute-force method for testing
the k-visit property. It would be interesting to know whether at least the
one-visit property could be tested in polynomial time.

Note that even a deterministic caterpillar automaton may enter an infinite
loop and this happens exactly then when it visits some subtree m times where
m is greater than the number of states. As a consequence of Theorem 3.2 we
have:

Corollary 3.3 Given a deterministic caterpillar automaton A we can effec-
tively decide whether or not A admits an infinite loop.

The definition of the k-visit property could be extended in the natural
way for nondeterministic caterpillars by requiring that any accepted tree is
accepted by a computation that visits any subtree at most k times. However,

14



we do not know whether the decidability result of Theorem 3.2 would hold
for nondeterministic automata.

We want to show that there exist regular tree languages that cannot be
accepted by a deterministic one-visit automaton. First we construct a regular
tree language that cannot be accepted by a left-to-right automaton. The
below lemma is a direct consequence of Theorem 3.5 below and we present
it only because the later result uses an extension of this simple proof.

Lemma 3.4 There exist regular tree languages that do not belong to
L(LRCAT ).

Proof. Choose Σ = Σ0 ∪ Σ3 where Σ0 = {0, 1} and Σ3 = {f}. For any
w = i1i2 · · · im, ij ∈ {0, 1}, j = 1, . . . m, define the Σ-tree

tw = f(i1, f(i2, . . . , f(im−1, f(im, im, im), im−1) . . . , i2), i1)

(see Figure 6(a)), and let

L = {tw | w ∈ {0, 1}+}.

Clearly L is regular. For the sake of contradiction assume that L is accepted
by a left-to-right caterpillar A = (Σ, Q, q0, QF , f).

Consider an arbitrary tw ∈ L. A left leaf (respectively, a right leaf) of tw
is a leaf that is a left child (respectively, a right child) of some node labeled
by f . The tree tw has a unique middle leaf that is middle child of a node
labeled by f . On any tw ∈ L, A reaches the middle leaf after visiting all the
left leaves and before visiting any of the right leaves.

Choose m so that 2m > #Q. Thus there exist w, w′ ∈ {0, 1}m, w 6= w′,
such that A reaches the middle leaf of both tw and tw′ in the same state q.
Let t be the tree obtained from tw by replacing all the right leaves by the
corresponding right leaves of tw′ . Since A enters the middle leaf of t in state
q, A has to accept t. On the other hand, since w 6= w′ we have t 6∈ L.

It is clear that a one-visit caterpillar can accept the tree language L
from the above proof by deterministically comparing the leftmost and the
rightmost leaf at each level and then continuing to check the middle subtree.
However, we can fool also an arbitrary one-visit automaton if the pairs of
leaves have to be compared with respect to any possible path. This idea is
formalized as follows.

15



Let Σ = Σ0 ∪ Σ3, Σ3 = {f}, be a ranked alphabet that contains one
ternary symbol and some nullary symbols. We define the tree language L(Σ)
to consist of all Σ-trees that can be constructed using the below rules a finite
number of times.

(i) For each x ∈ Σ0, the tree f(x, x, x) is in L(Σ).

(ii) If t ∈ L(Σ) and x ∈ Σ0, then the trees

f(t, x, x), f(x, t, x), f(x, x, t)

are also in L(Σ).

Each tree t ∈ L(Σ) contains a unique path from the root to a node of height
one such that all nodes of this path are labeled by the symbol f . This is
called the main path of t, mp(t). The two (or three, in the case of the last
node) leaves connected to each node of mp(t) have to be identical, see Figure
6(b).

The tree language L(Σ) can be viewed as a generalization of the tree
language constructed in the proof of Lemma 3.4 where the main path of a
tree t can continue at any of the three childs of a given node. The idea
is to prevent, on suitably chosen inputs, a deterministic automaton from
“finding” the main path without looking at some of the leaves, and thus
prevent a deterministic one-visit automaton from using a strategy analogous
to the one mentioned after Lemma 3.4.

Theorem 3.5 There exist regular tree languages that are not in L(1-CAT).

Proof. Choose Σ = Σ0 ∪ Σ3, Σ0 = {1, 2, 3, 4, 5, 6, 7}, Σ3 = {f}, and let
L(Σ) be as above. Clearly L(Σ) is regular so in order to prove the claim it
is sufficient to show that L(Σ) 6∈ L(1-CAT).

For the sake of contradiction assume that L(Σ) is accepted by a determin-
istic one-visit automaton A = (Σ, Q, q0, QF , f). Without loss of generality
we can assume that

if A accepts a tree t, then A visits all leaves of t. (3.9)

If the above were not true, A would clearly accept also trees not in L(Σ).
(The automaton A may reject inputs without visiting all the leaves.)

16



x1 x1

x2 x2

x3 x3

xn-1 xn-1

xn xn xn

i1 i1

i2 i2

i3 i3

im-1 im-1

im imim

(a) (b)f

f

f

f

f

f

f

f

f

f

f

f

(c)

Figure 6: (a) A tree ti1i2...im from Lemma 3.4; (b) A tree from Theorem 3.5
and its main path; (c) A skeletal tree corresponding to a possible descent.

To each tree t ∈ L(Σ) we associate the leaf-word of t, lw(t) ∈ Σm
0 , where

m is the height of t. If t = f(x, x, x), x ∈ Σ0, we define lw(t) = x. If t is of
the form f(t′, x, x), f(x, t′, x) or f(x, x, t′), t′ ∈ L(Σ), x ∈ Σ0, we define

lw(t) = x · lw(t′).

Note that lw(t) is defined only for trees t ∈ L(Σ).
Let z ∈ Σm

0 , m ≥ 1, be an arbitrary fixed word. We claim that there
exists a unique tree t(z) ∈ L(Σ) such that both of the following conditions
hold:

(i) t(z) has height m and lw(t(z)) = z.

(ii) The computation of A on t(z) reaches the last node of mp(t(z)) labeled
with f after visiting exactly one of the leaves associated with each of
the earlier nodes of mp(t(z)).

17



We construct t(z) as follows. The root of t(z) is labeled by f . Let {i1, i2, i3} =
{1, 2, 3} and assume that when A is started in state q0 at a node labeled by f
it first makes a down-move to the i1-th child. Then we choose that the i1-th
child is labeled by the first symbol of z. After this A necessarily makes an
up-move followed by a down-move either to the i2-th or i3-th child, w.l.o.g.
assume that this is the i2-th child. We construct t(z) so that the main path
mp(t) continues at the i2-th child of the root, and thus this node is labeled
again by f . Note that A arrives at the i2-th child in a state q that depends
only on (the first symbol of) z.

Now the state q determines uniquely the child of the current node to
which A makes a down-move. Property (3.9) implies that if m > 1, A has
to make a down-move. We label this node with the second symbol of z.
After this A has to make an up move, and then a down-move to a child that
depends now only on the first two symbols of z.

Thus we see that t(z) can always be constructed so that (ii) holds and,
since A is deterministic, for given z the construction is unique.

This kind of descent of A through a tree t(z) is depicted in Figure 6(c),
in which the black nodes and arcs are those visited in course of the descent
and the unvisited parts of the tree are shown in gray. The choice of nodes in
such a descent can be encoded as a string

w(z) ∈ {(i, j) | i, j ∈ {1, 2, 3} and i 6= j}m, (3.10)

and consequently there are no more than 6m ways to go down through the
trees from the set {t(z) | z ∈ Σm

0 } constructed as above.
Choose k so that

7k > 6k · (#Q).

There exist 7k words z ∈ Σk
0. There exist at most 6k different ways to descend

through the trees {t(z) | z ∈ Σk
0}. The choice of k implies that there exist

distinct words z1, z2 ∈ Σk
0 such that the sequences w(z1) and w(z2) of the form

(3.10) are identical and A reaches the last node of the main paths of t(z1) and
t(z2) in the same state.

The trees t(zi) were constructed so that A visits exactly one of the leaves
associated with each node of the main path before reaching the last node of
the main path. Thus on the way up, at each node of the main path A visits
exactly the leaves that were left unvisited on its way down. Since the main
paths of t(z1) and t(z2) are identical and on its way down A visited the same
sequence of leaves in t(z1) and t(z2), it follows that A has to accept also the

18



tree t obtained from t(z1) by replacing the unvisited leaf at each level by the
corresponding leaf symbol of t(z2). However, t 6∈ L(Σ) because z1 6= z2.

It is easy to see that the tree language L(Σ) from the proof of Theorem 3.5
can be accepted by a nondeterministic one-visit caterpillar that on an input
tree t nondeterministically checks that for each node u on mp(t) the two
leaves associated with u are identical and only after this makes a down-move
to the next node on mp(t). A similar strategy can be used by a deterministic
2-visit automaton that on a node u of mp(t) visits all children of u, determines
that the two leaves are identical, and after that continues to the node u′ of
mp(t) that is a child of u. (Thus the automaton enters u′ two times.)

Corollary 3.6 The family L(1-CAT) is strictly included in L(2-CAT).

4 Conclusion

The main open problem remaining is whether there exist regular tree lan-
guages that do not belong to L(NCAT ). As we have argued above, we
believe the conjecture from [3] to be true but finding a proof for it may be
hard. Also we do not know whether the inclusion L(CAT ) ⊆ L(NCAT ) is
strict.

We have seen that two-visit caterpillars are strictly more powerful than
one-visit caterpillars. It is not known whether any of the other inclusions in
the k-visit hierarchy are strict. The proof of the strict inclusion L(1-CAT) ⊂
L(2-CAT) relied on a fooling technique where we were able to modify a part
of the tree that the automaton has not yet visited, so similar arguments could
not, at least not directly, be used to separate higher levels of the hierarchy.

Concerning closure properties of the caterpillar tree languages, it is not
known whether L(NCAT ) is closed under complementation [3]. In fact,
even the closure of L(CAT ) under complementation remains open. We have
seen that given an arbitrary deterministic caterpillar A we can determine
whether or not A admits an infinite loop. In the negative case, clearly also
the complement of L(A) is in L(CAT ). However, we do not know how to
construct a caterpillar accepting the complement of L(A) in case A may
reject some inputs by entering an infinite loop. Note that L(k-CAT), k ≥ 1,
is closed under complementation.

A further open problem is whether given A ∈ CAT we can determine in
polynomial time whether or not A is a one-visit automaton.

19



References

[1] J. Berstel and L. Boasson, XML grammars. Mathematical Foundations
of Computer Science 2000, Bratislava, Lect. Notes Comput. Sci. 1893,
pp. 182–191.

[2] J. Berstel and L. Boasson, Formal properties of XML grammars and
languages. Acta Informatica 38 (2002) 649–671.

[3] A. Brüggemann-Klein and D. Wood, Caterpillars: A context-
specification technique. Mark-up Languages: Theory & Practice 2
(2000) 81–106.

[4] A. Brüggemann-Klein and D. Wood, The regularity of two-way nonde-
terministic tree automata languages. International Journal of Founda-
tions of Computer Science 13 (2002) 67–81.

[5] F. Gécseg and M. Steinby, Tree Automata. Akadémiai Kiadó, Budapest,
1984.

[6] F. Gécseg and M. Steinby, Tree Languages. In: Handbook of Formal
Languages, Vol. 3, G. Rozenberg and A. Salomaa (Eds.), Springer-
Verlag, 1997, pp. 1–68.

[7] T. Kamimura: Tree automata and attribute grammars. Information
and Control 57 (1983) 1–20.

[8] T. Kamimura and G. Slutzki, Parallel and two-way automata on di-
rected ordered acyclic graphs. Information and Control 49 (1981) 10–
51.

[9] G. Slutzki: Alternating tree automata. Theoretical Computer Science
41 (1985) 305–318.

[10] D. Wood, Standard generalized markup language: Mathematical and
philosophical issues. In: Computer Science Today, J. van Leeuwen
(Ed.), Lect. Notes Comput. Sci. 1000, Springer-Verlag 1995, pp. 344–
365.

20


