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Abstract 

The performance of any system cannot be determined without knowing the 
workload, that is, the set of requests presented to the system. Workload 
characterization is the process by which we produce models that are capable of 
describing and reproducing the behavior of a workload. Such models are imperative 
to any performance related studies such as capacity planning, workload balancing, 
performance prediction and system tuning.  In this paper, we survey workload 
characterization techniques used for several types of computer systems. We identify 
significant issues and concerns encountered during the characterization process and 
propose an augmented methodology for workload characterization as a framework. 
We believe that the surveyed case studies, the described characterization techniques, 
and the proposed framework give a good introduction to the topic, assist in 
exploring the different options of characterization tools that can be adopted, and 
provide general guidelines for deriving a good workload model suitable as an input to 
performance studies. 

 

1 INTRODUCTION 

The performance evaluation of computer systems requires understanding of a system’s workload. As 

shown in Figure 1, the workload is a set of requests, or components, that place different demands 

on various system resources. Workload characterization provides a model of a system’s workload by 

means of quantitive parameters and functions. The model should be representative, compact, and 
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accurate [Calzarossa and Serazzi 1993], and should be able to describe and reproduce the dynamic 

behavior of the workload and its most essential static features. 

Workload characterization dates back to the 1970’s, when computers were mainframes and their 

workloads consisted of transactions and batch jobs. The continuous evolution of computer 

architectures has pushed the discipline to evolve accordingly. The advent of networks and time 

sharing systems, along with the increased processing power of computers and the growth of 

graphical user interfaces, have changed the way users deal with the system and introduced new 

processing requirements. Furthermore, the Internet and its numerous applications have multimedia 

workloads. These workloads are very complex because they consist of a mix of different types of 

applications such as audio/video conferencing, text/voice chat, file transfer, and telephony, which 

are characterized by different performance demands on the system resources. 

Workload characterization is a requirement for many performance studies such as scheduling, 

capacity planning [Menascé et al. 1994], workload balancing, ensuring system scalability [Jain 1991], 

system tuning and configuration [Ferrari et al. 1983], performance prediction, and the construction 

of benchmarking suites. A benchmark suite, in particular, is the intuitive result of characterizing the 
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system’s workload. It can be viewed as a synthesized, controlled workload, which can be ported to 

different environments in order to evaluate the system’s performance in that environment.  

The design and evaluation of resource management policies, such as caching policies in the 

World Wide Web (WWW) or disk storage layout for database servers require the knowledge of the 

characteristics and the behavior of the requests to be processed. In general, knowing what kind of 

workload a proposed system has to process should assist in its design. For example, the design of a 

system whose workload consists of batch jobs is different from the design of a system whose 

workload consists of concurrent interactive requests. Workload characterization helps determine 

how much computing power is needed and assists in identifying the relationship between the 

workload and the Quality of Service (QoS). Workload balancing is another terrain where knowledge 

of the intrinsic characteristics of the workload is essential for distributing the requests to different 

servers in order to optimize the overall performance of the system [Nikolaou et al. 1998]. 

Characterizing the workloads of today’s web-based systems helps with improving system designs, 

recommending similar web pages, reducing latency, and understanding user reaction and motivation 

[Zaïane et al. 1998]. 

Over the years, workload characterization has addressed all kinds of new application domains. As 

a result, the characterization techniques have evolved to cope with the more complex workloads. In 

 

 

 

 

 

 

 

Figure 1. The workload consists of components submitted to the system. The workload characterization process derives 
a workload model which can be used in further performance related studies. 
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the human computer interaction field, for example, contemporary graphical user interfaces are smart 

enough to dynamically customize themselves to suit a user’s needs. Such smart interfaces are the 

results of characterizing the user’s workload by analyzing the run-time behavior and the access 

pattern of each individual user [Hudson and Smith 1997]. 

Calzarossa and Serazzi examined a number of workload characterization case studies [Calzarossa 

and Serazzi 1993]. In this paper, we revisit some of those case studies to emphasize the techniques 

used in them and then present more recent case studies, including ones from application domains 

such as the WWW and client/server systems. Ultimately, our study aims to achieve three main 

objectives. First, we survey case studies across different types of computer systems and enumerate 

the most common techniques used to characterize workload, such as graph-based techniques, 

stochastic processes, clustering, and numerical fitting. We give a brief description of these 

techniques and classify them according to their ability to extract different aspects of the workload, 

that is, the static properties or the dynamic behavior. Second, we organize these techniques within a 

common framework. To this end, we propose a general methodology for workload characterization. 

Our third aim is to point out the potential problems and concerns that may be encountered during 

the characterization process.  

The rest of the paper is organized as follows. Section 2 gives a brief description of the common 

techniques used in workload characterization. Section 3 examines workload characterization case 

studies in different types of computer systems, namely batch and interactive systems, client/server 

systems, databases systems, parallel systems, and WWW systems. Section 4 explains our workload 

characterization framework and highlights the most significant concerns and potential problems that 

researchers encounter during the characterization process. Section 5 presents our conclusions, and 

Section 6 outlines future directions for research and envisions future systems in the context of 

workload characterization. 
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2 CHARACTERIZATION TECHNIQUES 

In this section, we briefly describe the techniques most commonly used to analyze system 

workloads. The selection of a particular technique depends mainly on the purpose of the 

performance study, and on the level of detail required. It might be necessary, in some cases, to 

evaluate more than one technique in order to select the best one. 

Functionally, we can classify the characterization techniques into two main categories: static and 

dynamic. Static techniques explore the intrinsic characteristics of the workload, such as transaction 

classes, the correlation between workload parameters and component dispersion, which do not 

change over time. Examples of these techniques are clustering, principal component analysis, 

averaging, and correlations. Dynamic techniques, such as Markov models, user behavior graphs, and 

regression methods, focus on describing the behavior of the workload and the way it fluctuates over 

time. These techniques usually analyze the historical data of the workload and, as a result, aid in 

forecasting its behavior in the future. 

Throughout the workload characterization process, adopting one technique is usually not 

sufficient to obtain a complete analysis; several techniques may be used in combination in order to 

come up with an approach that satisfies the research needs. For example, clustering techniques 

might be used to classify the transactions submitted to the system. Afterwards, each class may 

become a node in User Behavior Graphs [Calzarossa and Serazzi 1994], or a transitional state in a 

Markov model. This example raises another issue, namely the importance of obtaining both static 

and dynamic properties of the workload in order to obtain a complete picture.  

Visualization tools, such as graphs, histograms, and fitting curves, are a key means of highlighting 

significant features in the workload under investigation while simple techniques, like averages, may 
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smooth out some details such as burstiness. Sections  2.1 and  2.2 describe static and dynamic 

characterization techniques respectively. Table 1 summarizes the techniques examined in these 

sections. 
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Technique 
Type 

Technique Advantages Disadvantages 

Descriptive Statistics 
(average, 
variance/standard 
deviation, correlations, 
distributions)  

o Provides preliminary description  
o Easy to calculate 

o May not be sufficient; further 
analysis is needed 

 

Single-parameter 
Histogram 

o Expressive visual means 
o Shows frequencies of each bin 
o Frequency distribution can be used in 

simulation models 

o Incapable of expressing the 
correlation among different 
parameters 

 

Multi-parameter 
Histogram 

o Illustrates the correlation between 
different parameters 

o Expressive visual means 

o Difficult to plot the correlation 
between more than two 
parameters 

Factor Analysis (e.g., 
Principal Component 
Analysis) 

o Simplifies performance data and 
reduces their dimensionality 

o Complex to calculate 
 

St
at

ic 

Clustering o Identifies homogeneous classes of 
workload components based on 
certain criteria 

o Difficult to choose the 
appropriate number of clusters 

Markov Models (Markov 
chains, Markov 
processes) 

o Predicts the order in which the 
requests are executed 

o Complex to calculate 
 

Prediction Using Neural 
Networks 

o Performs short-term and long-term 
forecasting of workload parameter 
values 

 

o Difficult to design and to 
configure 

Moving Average o Useful for short-term, single value 
prediction 

o Easy to calculate 
 

o Cannot perform long-term 
forecasting 

o Cannot predicate more than one 
single value 

o No special consideration for the 
most recent observations 

o Difficult to determine the best 
number of observations 

Exponential Smoothing o Useful for short-term, single-value 
forecasting  

o Places more weight on the most 
recent observations 

o Easy to calculate 

o Cannot perform long-term 
forecasting 

o Cannot predict more than one 
single value 

o Difficult to determine the best 
smoothing weight 

Regression Methods 
(linear and non-linear 
fitting) 

o Predicts the value of a parameter as a 
function of others 

o Identifies trends 

o Can be complex to calculate 
 

User Behavior Graphs o Used mostly in interactive systems  
o Describes the user’s probable 

transition to a particular 
command/transaction type 

o Requires clustering to compose 
the nodes 

D
yn

am
ic 

Probabilistic Attributed 
Context Free Grammar  

o Used in hierarchical systems (e.g., 
client/server) 

o Translates views of higher layers to 
lower layers 

o Cannot be used to map lower 
layers to higher ones 

Table 1. Static and dynamic workload characterization techniques. 
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2.1  STATIC TECHNIQUES 

Static techniques, such as descriptive statistics, single-parameter histogram, multi-parameter 

histograms, principal component analysis, and clustering, help explore the static characteristics of 

the workload. In this section we give a brief description of each type. 

Descriptive Statistics. Parametric descriptive statistical techniques are used to identify the static 

properties of the workload. Using these techniques helps describe what the workload parameters 

look like: where their center (average) is, how broadly they are spread (dispersion or variance), and 

how they are related to each other (correlation). 

Averaging, or arithmetic mean, is the simplest method to characterize a workload parameter such as 

user think time, number of active users, number of I/O operations required to execute a query, or 

inter-arrival time of transactions. Averaging presents a single number that summarizes the parameter 

values observed. However, it is not always appropriate to count on arithmetic mean; the median, 

mode, geometric mean, or harmonic mean should be used in some cases. 

The average alone is not adequate if the performance data has high variability. Variability is 

usually specified by the variance. However, the standard deviation, which is the square root of the 

variance, is more useful in expressing the variability because it has the same unit as the mean. The 

ratio of the standard deviation to the mean is called the coefficient of variance (C.O.V). A zero C.O.V. 

indicates that the measured parameter is constant. In this case, the mean gives the same information 

as the complete set. A high C.O.V. indicates high variance, in which case it may be useful to look at 

the complete histogram (discussed below). There are also other alternatives for specifying variability 

like range (minimum and maximum), 10th- and 90th- percentile, semi-interquartile range, and the mean 

absolute deviation. 
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Correlation is another useful statistical technique that helps discover the relationship between 

different workload parameters. It is a decimal fraction, called correlation coefficient, which indicates the 

degree to which the parameters are related. There are numerous ways (e.g., Biserial, Point Biserial, 

Tetrachoric, Spearman rank-order, etc.) to calculate the coefficient of correlation. Pearsonian product 

moment, commonly called Pearsonian r, is the most popular one [Schiff 1995].  

Single-parameter Histograms. A histogram is a visual representation of a parameter where the 

range of values is divided into intervals called bins. As shown in Figure 2, the histogram displays the 

frequency of the observations of each bin. This frequency distribution is used in simulation models 

to generate a test workload. However, one of the drawbacks with a histogram is that it is incapable 

of expressing the correlation among different parameters. Therefore, multi-parameter histograms 

can be used instead. 

Multi-parameter Histograms. Multi-parameter histograms illustrate the correlation between 

different workload parameters. The distribution of n workload parameters can be described by an n-

dimensional matrix or histogram. Figure 3 shows an example of a two-parameter histogram that 

represents the number of read and written pages in a database system. Each dot in the figure 
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Figure 2. A simple histogram which shows the 
frequency distribution of disk accesses of jobs. 
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represents a system node. The number of dots in a cell of the grid represents the number of nodes 

that read and wrote pages in the range corresponding to the cell. As can be seen, the nodes reading a 

large number of pages are also the ones that write a large number of pages. Therefore, a significant 

correlation may exist between the two parameters. On the other hand, we should note that it is 

difficult to plot multi-parameter histograms that correlate more than two parameters.  

Principal Component Analysis. The term factor analysis usually refers to statistical techniques that 

describe multidimensional sets of data by means of geometric representation. Their goal is to help 

choose a subspace of the variable space such that the projection of the data set on that subspace 

preserves as much information of the original set as possible. Consequently, factor analysis is 

beneficial for simplifying data and reducing their dimensionality. 

Principal Component Analysis (PCA) [Harman 1976; Kline 1994] is a factor analysis technique that 

maps a set of parameters, or variables, into another set, called principal components, characterized 

by orthogonality among the components and by linear dependence on the parameters in the original 

set. PCA is an iterative process in which the first component is chosen such that it maximizes the 
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Figure 3. A two-parameter histogram showing the 
correlation between two parameters. The number of dots in 
a square represents the number of nodes that read and 
wrote pages in the range corresponding to the cell. 
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variance of the linear function expressing the dependence of the transformed parameters on the 

original ones. The second component is chosen such that it maximizes the remaining variance while 

this component must be orthogonal to the first, and so on. 

Clustering. Clustering is one of the most widely adopted techniques in workload characterization 

(e.g., [Calzarossa and Serazzi 1994; Pentakalos and Menascé 1996; Nikolaou et al. 1998; Elms 1980]). 

Clustering identifies homogeneous groups, or classes, of workload components, based on the 

similarity of resource demands. In general, clustering methods can be classified as hierarchical or 

non-hierarchical. Hierarchical techniques, like the Minimal Spanning Tree (MST) [Rohlf 1973] method, 

start by assuming that each component of a workload is a cluster. Then, the two clusters with the 

minimum distance are merged to form a single cluster. The process iteratively continues until either 

all the workload components are grouped into a single cluster or the desired number of clusters is 

reached. On the other hand, the non-hierarchical techniques, like the k-means algorithm [Hartigan 

and Wong 1979], start from an initial partition that consists of the exact desired number of clusters. 

Workload components are reassigned among clusters so that a particular cluster criterion, known as 

distance function, is optimized.  

Deciding about the number of clusters is a common problem in any cluster analysis study. 

Generally, it depends on the goal of the study and it is desirable to keep this number small for 

practicality. Various clustering algorithms are available in the literature [Jain et al. 1999]. 

 

2.2 DYNAMIC TECHNIQUES  

Next, we examine techniques commonly used to describe and predict the behavior of the dynamic 

aspects of the workload. 
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Markov Models. Knowing the number of requests of each type, or class, is not sufficient. It is also 

important to know the order in which requests are executed in the system. If it is assumed that the 

next request depends only on the current one, then the requests follow a Markov model [Howard 

1960]. This model can be represented by a transition matrix, which gives the probability of moving to 

the next state given the current one. A corresponding state transition diagram can be easily constructed 

from the transition matrix. Figure 4 shows an example of a transition diagram in which the 

probability of a job using the disk after visiting the CPU is 0.4, the probability of it returning to the 

CPU from the disk is 0.8, and so on. 

Markov models are used to describe the transitions between any system states, not just between 

system resources. For example, in a software development environment that provides several types 

of software tools, we can use a transition matrix to describe the probability of transitions between 

the different types of development tools like editors, compilers, linkers, and debuggers. 

Prediction Using Neural Networks. Although getting a perfect prediction is a very hard problem, 

neural networks can be used to obtain reasonably good predictions in some cases [Mehrotra et al. 

1997]. Feedforward as well as recurrent networks are commonly used for this purpose. The prediction 

problem can be viewed as a function approximation problem, in which the function values are 

represented as time series, that is, a sequence of values measured over time. Based on the knowledge 

 

 

 

 

 

 

 

Figure 4. A state transition diagram representing a Markov model. 
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of the most recent d values of a time series, the neural network can be trained to predict the d+1 

future value. The accuracy of predicting the values of a parameter may increase if a multivariate time 

series and the correlations among all workload parameters are taken into account [Menascé et al. 

1994]. 

Typically, two types of predictions are considered: short-term, or one-lag, and long-term, or multi-

lag, predictions. In one-lag predictions, the forecasting of the future value is based just on the past 

actual values. Multi-lag prediction also exploits some of the predicted values in order to predict 

future values. An example of multi-lag prediction is forecasting the value of a time series a year from 

today while the values for the next eleven months are unknown. 

Moving Average. This is a simple prediction technique in which the next forecasted value is the 

average of the previous ones. This method shows very good results if the data is almost stationary, 

that is, with little variation [Letmanyi 1985]. However, it is not suitable for long-term prediction as it 

is not capable of predicting more than a single value at a time. The forecasted value can be 

calculated as follows: 

n
xxxf nttt

t
11

1
+−−

+
+++

=
K

 

where 1+tf is the forecast value for period t+1, tx  is the actual value at time t, and n is the number of 

previous observations. It is not always easy to determine the number of periods, n, that should be 

used. Thus, different values of n may be examined in order to find the one that achieves the least 

mean squared error (MSE), which is calculated as follows: 

n
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n

t tt∑ =
−

= 1
2)(

 

 



14                              Said Elnaffar and Pat Martin 

Exponential Smoothing. Exponential smoothing is similar to the moving average described earlier 

in terms of using the average to predict the next value. It is particularly useful for short-term 

forecasting and when the data is stationary. However, it differs from the moving average in the way 

it calculates the forecast value; it puts more weight on the most recent historical observations. The 

idea stems from the hypothesis that the latest observations give a better indication of the future. 

Here, the forecast value 1+tf is calculated as follows: 

)(1 tttt fxff −+=+ α  

where α is the smoothing weight (0<α<1). Again, some values of α are better than others in terms of 

getting the least MSE, and additional tests help to choose a suitable one. 

Regression Methods. The value of a variable, called the dependent variable, can be predicated as a 

function of other variables, called independent variables, using regression models. Many mathematical 

forms exist, which describe the relationship between these variables. A linear relationship is a 

common assumption used to estimate the values of the dependent variable [Menascé et al. 1994]. 

User Behavior Graphs. User Behavior Graphs (UBG) are considered as the basis for several 

workload models [Calzarossa et al. 1990; Calzarossa and Ferrari 1986]. They are similar to the state 

transition diagrams used in Markov models and are commonly used to describe the workload of 

interactive systems, such that each user has her own UBG [Ferrari 1984]. A UBG is a probabilistic 

graph whose nodes represent the different command types issued by the user, and whose arcs 

represent the transition from one command type to another throughout a user session.  

Probabilistic Attributed Context Free Grammar. A Probabilistic Attributed Context Free 

Grammar (PACFG) [Fu 1974] is a central means of constructing generative workload models, 

especially in systems that have a hierarchical nature, like client/server and WWW environments 

[Kotsis et al. 1997; Raghavan et al. 1994]. A PACFG can translate views between the different layers 
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of the system hierarchy. For example, a PACFG can map the client-oriented view of the workload, 

such as commands submitted during user sessions, to a low-level system view like TCP/IP protocol 

requests.  

 A PACFG is a 3-tuple GA = {G, A, Q} where G is the regular grammar defined as G = {VN, VT, 

P, S}. VN and VT are a set of non-terminal and terminal symbols, respectively, P represents a set of 

production rules, S is the start symbol, A is a set of attributes and Q is a set of probabilities 

associated with P.  At each layer in the hierarchy, the system supports a set of operations that are 

represented by non-terminals. The mapping of a particular layer’s operations to the operations of the 

next layer is achieved by expanding each of the non-terminals to a sequence of non-terminals or 

terminals at the next lower level. Such an expansion is controlled by the production rules (P) and the 

associated set of probabilities (Q). Each non-terminal has two attributes s and e, which respectively 

denote the start and end times of an operation, such as a user session, occurring at a particular layer. 

The duration of an operation is the difference between s and e. 

 

3 CASE STUDIES 

In this section, we survey case studies of different types of computer systems, namely batch and 

interactive systems, client/server systems, database management systems, parallel systems, and 

WWW systems. Throughout these case studies, we focus on the workload characterization aspects 

of each system type, and identify the most commonly used techniques. We examine different case 

studies for each type of system and summarize our findings in a table. A row in these tables 

represents a major characterization technique (e.g., clustering) used to analyze the workload of that 

type of computer system. Respectively, the columns of the table represent the technique used, the 

workload properties explored (i.e., static or dynamic), the methods used (e.g., k-means), the 

approach followed (i.e., functional or resource-oriented), the basic workload component considered 



16                              Said Elnaffar and Pat Martin 

(e.g., transaction, URL, session, etc.), the input parameters analyzed (e.g., # of files), the workload 

type (i.e., interactive, batch, or scientific), the purpose of the study, some of the useful results 

obtained, other techniques used in combination with this technique, and some references to case 

studies that used this technique. 

 

3.1 BATCH AND INTERACTIVE SYSTEMS 

A number of characterization techniques appeared in early studies of interactive and batch 

computer systems. Interestingly, these techniques are still the basis of approaches adopted in recent 

studies of various computer systems. In general, the different clustering and factor analysis 

techniques are commonly used to describe the static aspects of the workload while stochastic 

processes, numerical fitting techniques and graph based approaches are used to capture the dynamic 

behavior of the workload as it changes over time. 

Agrawala et al. [1976] rely on clustering to extract the significant clusters in a dual processor 

scientific environment. The analysis depends on parameters like the CPU time, number of files, 

number of job steps, and number of I/Os per device type. A functional and resource-oriented 

clustering procedure is proposed by Serazzi [1981]. He uses clustering methods to distinguish 

program classes according to the consumption of six resources. In this study, the k-means method is 

used as a non-hierarchical clustering technique, and the Minimum Spanning Tree (MST) technique 

as a hierarchical one. As a result of this resource-oriented analysis, nine clusters are identified. These 

clusters are further investigated and refined by considering the functionality, such as editing, 

compilation or execution, of the programs and their programming languages like COBOL or 

FORTRAN. Thus, more descriptive clusters, like compilation of COBOL programs with an I/O 

intensive execution, are extracted.  
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Factor analysis methods can be useful in reducing the dimensionality of the analyzed data, and in 

extracting distinct characteristics of the programs types. For example, Serazzi [1981] uses the 

Principal Component Analysis (PCA) to identify six factors that explain the correlations and the 

variance among the six resource-oriented parameters under consideration. Three of the six factors 

account for more than 75% of the total variance of the data set. Such information, together with the 

clustering results, help to simplify the workload model by reducing the number of parameters to be 

considered. 

Furthermore, PCA helps distinguish the characteristics of program types such as compilation and 

execution. Figure 5 displays the projections of the demands of different programs’ compilation on 

the subspace represented by factor 1 and factor 3. The programs are clustered according to the 

different memory demands (factor 3) placed by various compilers. The internal variations within 

each cluster are due to the different I/O and CPU times (factor 1).  

As we mentioned earlier, other techniques, such as stochastic processes, numerical fitting and 

graph-based techniques, can be used to obtain a compact representation of the dynamic 

 
Figure 5. Distinguished clusters of compilers 
projected within the factor 1-factor 3 subspace 
[Serazzi 1981].  
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characteristics of workloads. Haring [1983], for example, looks at an interactive workload as a 

hierarchy that starts at the user session and is composed of a sequence of jobs. Each job consists of 

a set of tasks, and each task is comprised of a sequence of statements or commands. Eventually, the 

lowest level of the hierarchy consists of the physical resources consumed by each statement.  

At first, clustering techniques are used to group the jobs according to the software type (e.g., 

compiler, linker, or loader). Seven groups are identified. At the task level, a Markov chain, whose 

states correspond to the software types used by the job, is employed to describe the users’ behavior. 

The transitions between the states denote the probable sequence within the jobs belonging to the 

different clusters. Figure 6 illustrates the nine states in this model: seven states correspond to the 

identified software types, and the two extra states, BEGIN and END, are artificially introduced to 

denote the beginning and the termination of a job. Further experiments show that, in most of the 

clusters, a third order Markov chain can adequately describe the properties of the sequences. 

Some analytical models can be produced by using numerical fitting techniques in order to 

construct a parametric model for the interactive workloads. These analytical models are capable of 

expressing the fluctuation in the arrival patterns of the workload components. For example, 

Calzarossa and Serazzi [1985] collect the arrival times of the jobs for a month. Figure 7 depicts the 

 
Figure 6. Using Markov chain in modeling an 
interactive workload [Haring 1983]. 



Characterizing Computer Systems’ Workloads   19 

arrival rate of jobs in a typical day, from 8:00am to 6:00pm. As we can see, peaks take place in the 

morning, around 11:00am, followed by a decrease until 1:00pm. The afternoon seems constant but 

still lower than the morning rates. The dotted curves in the diagram refers to the estimated rate 

function while the solid one refers to the corresponding polynomial function produced by the fitting 

technique. Adopting and applying this technique for several days shows that an eight-degree 

polynomial function is a suitable representation of all the analyzed arrival jobs. As a result of this 

analysis, various polynomial functions are reached. By clustering the coefficients of the various 

polynomial functions, three of them are recognized as good representatives of the whole arrival 

pattern. 

Another dynamic technique commonly used to characterize the workload in interactive systems is 

User Behavior Graphs (UBG). Calzarossa and Ferrari [1986] adopt UBGs as a means of 

constructing a synthetic representation of a workload in terms of the command types, their resource 

demands and their sequence. The study considers data measured for 60 users of an interactive 

system running UNIX operating system. Initially, a functional approach is adopted in which the 

commands are grouped into clusters according to their types. A user behavior graph is then 

constructed in which each node denotes one of the formed clusters. Table 2 summarizes the 

commonly used characterization techniques in batch and interactive systems. 

 
Figure 7. The estimated rate (dotted curve) and the polynomial arrival rate (solid curve) for a one-day activity 
[Calzarossa and Serazzi 1985]. 
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Technique Static/ 
Dynamic 

Method Approach Component Parameters Workload 
Type 

Purpose Results Other Techn. 
Combined 

Case Study Examples 

Clustering Static k-means, 
Minimal 
Spanning 
Tree 

Resource-
oriented 
(Mostly), 
Functional 

Job, program CPU time, 
#of files, #of 
Job steps, 
#of I/Os per 
device type 

Batch, 
Interactive 

Distinguish 
program/command
/task classes 
according to their 
functionality or 
resource 
consumption 

(7-9) 
homogeneous 
groups  

Markov Models, 
User Behavior 
Graphs 

[Agrawala et al. 1976; 
Serazzi 1981; Haring 
1983; Serazzi 1981;  
Calzarossa and Serazzi 
1985;  Calzarossa and 
Ferrari 1986] 

Factor 
Analysis 

Static Principal 
Component 
Analysis 

Resource-
oriented 

Program CPU time, 
disk I/Os, 
language, 
memory 

Batch Reduce 
dimensionality of 
Data; Identify 
characteristics of 
each program types 

(2-3) factors 
accounting for 
the majority of 
the variance in 
the data set 

Clustering [Serazzi 1981] 

Prediction 
Models 

Dynamic Markov 
Chain 

Functional Job Task type, 
user state, 
timestamp 

Interactive Describe 
user/system 
behavior as it 
transits from one 
state to another 

Transition 
matrix or state 
diagram 
describing the 
probable 
sequence of 
jobs or tasks 

Clustering [Haring 1983] 

Numerical 
Fitting 

Dynamic Linear and 
non-linear 
Regression 

Resource-
oriented  

Job Arrival rate, 
timestamp 

Interactive Model workload 
arrival pattern 

Parametric 
model of high-
degree 
polynomial 
functions 

Clustering [Calzarossa and Serazzi 
1985] 

Graphs Dynamic User 
Behavior 
Graph 

Functional
, resource-
oriented 

Command Command 
type and 
sequence, 
resource 
consumption 

Interactive Describe 
user/system 
behavior as it 
transits from one 
state to another 

A probabilistic 
graph model 

Clustering [Calzarossa and Ferrari 
1986] 

Table 2. Characterization techniques used in batch and interactive systems. 
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3.2 CLIENT/SERVER SYSTEMS 

A client/server system consists of clients connected to servers through a network. Distributed file 

systems, distributed database systems, distributed multimedia systems, and WWW1 applications, are 

examples of client/server systems. They can be seen as a hierarchical structure composed of three 

layers: client, network, and server. The clients generate requests that get transmitted through the 

network and are received by a server. The server fulfills the requests and sends back the replies to 

the client. Hence, depending on which layer is under consideration, workload consists of requests, as 

viewed at the client and the server layers, or packets, as viewed at the network layer. 

In general, in the network layer, packet generation rate, packet size, and the routing of packets are 

used as parameters. We also may consider some protocol-dependent parameters like the number of 

packets generated per message together with their distribution. After deciding what parameters are 

to be monitored, the measurement tools are determined. Either special purpose devices are used or 

ad hoc test and monitoring tools are instrumented.  

At the client and server layers, if the available counters and monitoring tools are not sufficient for 

collecting data then extra tools must be devised by instrumenting the client or the server. For 

example, web browsers can be instrumented to capture the arrival time of the requests, the size of 

the received file, the URL, and the user session [Crovella and Bestavros 1996]. At the server layer, 

Dilley et al. [1998] instrument the HTTP daemon to capture CPU and disk usage for each request. 

Likewise, Baker et al. [1991] instrument the kernel in a distributed file system to obtain information 

about file lengths and access times from each remote file system. 

At the network layer, different software and hardware monitors are used to collect performance 

data. The software monitor, tcpdump [Northcutt et al. 2000], for example, can capture the flowing 
                                                 

1 Covered in more detail in Section  3.5. 
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packets on the network, and provide user level control of the collected data. This control includes 

filtering on per host, protocol, or port basis. Parameters such as packet arrival times, packet lengths, 

port number, and source and destination hosts are recorded. Sniffers [Northcutt et al. 2000] are an 

example of a hardware-monitoring tool that has similar data gathering capabilities. 

By analyzing the measures collected from the client, network, and server layers, a model of the 

overall workload of a client/server system can be obtained. Most of the existing studies characterize 

the workload of each layer separately. In the rest of this section, we survey some case studies and 

describe how they measure and analyze the parameters at each layer. 

 

Characterization at the Client and Server Layers. At the client layer, parameters like file size and 

arrival times are usually considered. It has been noted that these parameters have heavy-tailed 

distributions, especially in the Web environment [Cunha et al. 1995; Crovella and Bestavros 1996]. 

The heavy-tailed distribution of the file sizes may be caused by multimedia files. Nevertheless, even 

pure text files have the same characteristics, but using multimedia files, like audio, video, and images 

increases the tailing of the distribution. Analyzing the distributions of the file sizes and the number 

of accesses to these files may reveal some characteristics in the user behavior. For example, an 

inverse correlation has been observed between file accesses and file sizes; in other words, most of 

the users tend to request small files. 

Bodnarchuk and Bunt [1991] apply a synthetic workload model to a distributed system file server 

in a UNIX/NFS environment. This model is the result of analyzing the actual workload for a period 

of six weeks, which was obtained by capturing the requests to, and responses from, the file server. 

Four key parameters, namely, the frequency distribution of the requests, their inter-arrival time 

distribution, the file referencing behavior and the distribution sizes of read and write requests, are 

analyzed. The analysis simplifies the description of the model by understanding the behavior of the 
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requests. For example, some request types are considered significant because they are dominant 

while others can simply be ignored. An exponential process is not an appropriate representation for 

the request arrival times because the average inter-arrival time and its variance are equal to 0.50 and 

121.23 seconds, respectively. The model was then constructed based on a set of parameter values 

observed during the workload characterization stage. In Section  3.5, we provide more examples of 

workload characterization that take place at the server layer.  

 

Characterization at the Network Layer. At the network layer, the early studies collected 

measurements from Ethernet networks [Shoch and Hupp 1980; Gusella 1990]. The workload 

consists of a sequence of network packets. To characterize such a workload, several parameters are 

considered: packet length, packet interarrival time, and error rate. For these parameters, basic 

statistics along with their distributions are computed. Results show that the packet lengths have a 

bimodal distribution (as it has two peaks), whereas the inter-arrival times of the packets have a 

heavy-tailed distribution.  

Shoch and Hupp [1980] characterize the traffic of a 2.94 Mbps Ethernet local area network. The 

network consists of 120 machines used for different kinds of applications like file transfers, file 

sharing and shared databases. The workload of this network is analyzed for a 24 hour period in 

terms of the traffic and the inter-arrival time of the packets. It is noticed that the behavior of the 

load is related to the time, that is, it is very heavy during the daytime, with a dip at lunch time, and 

light at night. The sources and destinations are encoded in a traffic matrix, which reveals the 

frequent patterns and the potential bottlenecks in the network. The packet size varies according to 

the traffic type (i.e., acknowledgements, file transfers, etc.). 

Network traffic workload can also be characterized from a functional view point. For example, 

Gusella [1990] analyzes the network load per protocol in a large 10-Mbps Ethernet local area 
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network consisting of diskless workstations. The measurements are collected by instrumenting the 

kernel of a dedicated UNIX machine. The study reveals that protocols like TPC, NFS and ND 

(Network Disk) account for most of the network traffic. The data collected consists of the protocol 

headers together with the timestamps of all the packets flowing in the network. By observing the 

distributions of the interarrival times of the packets, it has been discovered that TCP is slow 

compared to NFS and ND.  

The self-similarity notion is considered a fundamental characteristic of network traffic in a number 

of studies [Leland et al. 1994; Paxson and Floyd 1995]. Packet arrivals are characterized by a bursty 

nature. The network traffic can be viewed as the aggregation of bursty traffic generated by 

independent sources. Increasing the number of these sources increases the burstiness of the traffic. 

The self-similarity notion is manifested by the burstiness of the packet arrivals. By plotting the 

packet arrival counts, that is, the number of packet arrivals per time unit, and changing the time unit, 

the arrival pattern maintains the same bursty structure on different time scale. It has been discovered 

that this bursty arrival process characterizes the overall and the per protocol traffic, like telnet and ftp 

protocols, and applies to local and wide area networks. This network behavior may be an exact 

reflection of the user’s behavior, which is characterized by a certain number of pauses. Statistical 

methods, namely time-domain analysis based on R/S statistic, the variance-time analysis, and the 

spectral-domain method using periodograms, are typically used to estimate the Hurst parameter which 

is used to measure the degree of self-similarity. 

 

Modeling the Whole System. It should be noted that an overall model of a client/server system 

should take into account the analysis of client, network, and server layers together. An early study by 

Calzarossa et al. [1988] reflects this notion by introducing a general approach for characterizing the 

workload in network-based systems. Their methodology is based on a layered structure that logically 
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subdivides the hardware components into three classes: user terminals, processing nodes, and 

communication subsystems. At each of these three layers, different basic workload components, 

which demand different physical resources, are identified. Probabilistic graphs are used to model the 

workload at each layer. Table 3 summarizes the parameters and the techniques used to characterize 

the workload at each layer in this study. This type of characterization is performed at each layer 

separately, without defining relationships or mapping mechanisms between one layer and another 

one. 

Based on this hierarchical view, the term networkload was introduced [Raghavan et al. 1994]. The 

networkload is a collection of inputs generated by the user or the client. Figure 8 shows the session, 

command, and request layers identified in the networkload notion. Raghavan et al. use a  

Probabilistic Attributed Context Free Grammar [Fu 1974] to build a generative model that considers 

the hierarchical nature of the client/server environments and is capable of generating these 

sequences. In order to obtain such a model, data are collected at different layers and reduced using 

clustering techniques. They are also analyzed independently to estimate the characterizing 

parameters. The derived model can be used as input to a simulation model of a single 

server/multiple clients environment. Table 4 summarizes the commonly used characterization 

techniques in client/server systems. 

Layer Parameters Technique 

User Terminals Arrival Time 
Command Type 

User Behavior Graph 

Processing Node Arrival Time 
Request Type 
Hw/sw resource consumptions 

System Graph 

Communication Subsystem Arrival Time 
Message Type 
Message Length 
Source/Destination Addresses 

Network Graph 
Traffic Flow Matrix 

Table 3. The characterization technique and the measured parameters used in the layered structure scheme 
[Calzarossa et al. 1988].  
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Figure 8. The hierarchical structure of the networkload. A 
user session consists of a set of commands. Each command is 
translated to a set of low-level system requests. 
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Technique Static/ 
Dynamic 

Method Approach Component Parameters Workload 
Type 

Purpose Results Other Techn.
Combined 

Case Study 
Examples 

Statistics Static, 
dynamic 

Exponential/ 
Poisson 
processes, 
Bimodal 
distributions, 
variance, 
averages, 
time-domain 
analysis 
based on 
R/S statistic 

Functional – 
characterizing 
load per protocol 
or file type 

File, packet #of requests, inter-
arrival time, file 
references, #of 
I/Os, packet 
lengths, error rate  

Interactive Model the 
reference 
behavior at file 
servers 

Distributions of 
requests and 
their arrival; 
discovering self-
similarity and 
burstiness; 
understand user 
behavior 

- [Cunha et al. 
1995; Crovella 
and Bestavros 
1996;  
Bodnarchuk 
and Bunt 
1991;  Shoch 
and Hupp 
1980; Gusella 
1990;  Leland 
et al. 1994; 
Paxson and 
Floyd 1995] 

Graphs Dynamic User 
Behavior 
Graph 
(UBG) 

Functional, 
resource-
oriented 

Command Arrival time, 
command type, 
message length, 
source/destination 
addresses 

Interactive Model the 
workload at user, 
system, network 
levels (separately)

A model 
representing user 
and system 
behavior 

Clustering [Calzarossa et 
al. 1988] 

Grammar Dynamic Probabilistic 
Attributed 
Context Free 
Grammar 
(PACFG) 

Functional Session, 
command, 
network 
request 

Arrival time, 
command type, 
network request 
type 

Interactive Build a 
generative model 
that considers 
the hierarchical 
nature of 
client/server 

A model used as 
input to a 
simulation model 

Clustering [Raghavan et 
al. 1994] 

Clustering Static k-means Functional, 
resource oriented

User sessions, 
commands, 
network 
requests 

Command type, 
network request 
type 

Interactive Reduce the 
analyzed data 

Distinctive 
groups of 
commands and 
network requests 

PACFG, UBG [Raghavan et 
al. 1994] 

Table 4. Characterization techniques used in client/server systems. 
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3.3 DATABASE MANAGEMENT SYSTEMS 

As database management systems (DBMS) become increasingly popular and are often part of larger 

systems, they require considerable tuning to get them working at an optimal performance level [Lo 

et al. 1998]. As in any computing system, identifying the characteristics of the workload should aid in 

tuning and configuring these systems more effectively. 

The significance of characterizing the DBMS transactional workload has been recognized by the 

DBMS community and by the Transaction Processing Performance Council (TPC), which is a non-

profit organization that produces benchmarks that measure the performance of a system [TPC]. 

These benchmarks also provide researchers with synthesized test workloads for conducting 

experiments. 

The most important classes of workloads in the database market are online transaction 

processing (OLTP) and online analytical processing (OLAP). OLTP workloads support day-to-day 

business activities, like banking, airlines reservations, and point of sale. They are characterized by a 

large number of clients who access and update a small fraction of the database through running 

transactions. The TPC-C benchmark simulates this type of workload [TPCC 2001]. On the other 

hand, OLAP workloads support business analysis and consist of long read-only queries operating on 

information already stored by an OLTP system. As opposed to OLTP, OLAP queries span large 

portions of the database. The TPC-H and TPC-R benchmarks are examples of OLAP workloads 

[TPCH 1999; TPCR 1999]. Recently, due to the popularity of the Internet and the e-commerce 

applications, a new benchmark, TPC-W, has been introduced, which has the flavor of both OLTP 

and OLAP workloads [TPCW 2001]. 

Characterizing the workload in database systems is usually based on analyzing traces and 

reference sequences. Traces are a collection of measures, such as pages read/written, number of 

locks and number of SQL statements, produced by all transactions being processed by the DBMS 
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within a time interval. Various techniques have been applied to characterize these traces, such as 

clustering, prediction models, numerical fitting and descriptive statistics. 

Clustering is one of the common techniques used in characterizing the workload in DBMS 

environments. Transactions can be grouped according to their consumption of system resources [Yu 

and Dan 1992], or according to their database reference patterns [Yu and Dan 1994], which is called 

affinity clustering. 

Artis [1978] characterizes the workload of an IBM MVS system with the aim of determining its 

capacity. Several parameters are used for developing cluster descriptions of the transaction 

workload, such as total database calls and total number of locks. By analyzing a sample of 2000 

transactions, eight clusters are obtained. Four clusters among those eight account for more than 

90% of the sample. 

The idea of workload clustering provides valuable input to dynamic transaction routing (or load 

balancing) algorithms that are responsible for assigning each incoming unit of work to a processing 

node in the system. For example, Nikolaou et al. [1998] introduce new clustering approaches by 

which the workload can be partitioned into classes consisting of units of work exhibiting similar 

characteristics. The paper presents the CLUE and HALC clustering environments. CLUE has a set 

of clustering algorithms that classify OLTP transactions into classes according to their database 

reference patterns. HALC is a batch-mode heuristic clustering algorithm, designed to cope with the 

large volume of input data that is typical for real-life applications. A third on-the-fly clustering 

algorithm based on neural networks is also introduced. This algorithm can be used in an online 

fashion in systems whose workload characteristics change over time, such as a banking transaction 

processing system where people may perform different transactions depending on different days of 

the month. The traditional batch-mode clustering algorithms are not adequate in this case. However, 

such an algorithm should be fast, so that it does not degrade the performance of the system. For this 
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reason, an artificial neural network, called Optimal Adaptive K-Means [Chinrungrueng and Séquin 

1995] is implemented. Experiments show that the heuristic clustering algorithm (HALC) and the 

Optimal Adaptive K-Means perform very well in terms of the quality of clustering, for both 

synthetic and real-life workload traces. On the other hand, the classic K-Means algorithm produces 

disappointing results. 

Some studies focus on characterizing the database access patterns in order to predict the buffer 

hit ratio [Dan et al. 1993; Dan et al. 1995] and the user access behavior [Sapia 2000a]. A new 

approach, Predicting User Behavior in Multidimensional Information System Environment 

(PROMISE) [Sapia 2000a], identifies the user’s access patterns in order to improve caching 

algorithms of OLAP systems. This approach models the OLAP query patterns using Markov chains 

and accordingly provides a prediction model for such patterns. 

The idea of PROMISE is to provide the OLAP cache manger with information about the high-

level (i.e., not resource-oriented) access patterns of the queries in order to make predictive 

prefetching. At some point during an OLAP session, the algorithm efficiently computes the 

possibilities for a set of queries to be executed in the near future. However, in order to perform 

predictive prefetching, the workload must be navigational and the think time between two accesses 

must be long enough to prefetch the results. In OLAP systems, the navigational nature of the 

workload is guaranteed as long as the users interactively formulate their next request using the 

results of the previous results [Sapia 2000b]. This navigational sequence of queries is called a session. 

In order to verify that the length of the think time is adequate, a workload of a real system, which 

has the interaction behavior of 18 users, is monitored over a two-month period including 260 

sessions containing 3,150 queries. The final analysis shows that typical OLAP sessions have 

considerable think time length and are thus suited for prediction approaches. 
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Various statistical approaches are broadly adopted to analyze a large amount of data collected in 

DBMS environments [Lewis and Shedler 1976; Gaver et al. 1976; Lo et al. 1998; Barroso et al. 1998]. 

For example, Lewis and Shedler collect the arrival times of the transactions recorded over six days. 

They analyze and represent these times by means of a non-homogenous Poisson process. Using 

fitting techniques, an exponential polynomial function of degree 8 was obtained that shows a good 

approximation of the oscillatory nature of the Poisson process. 

Many recent studies tend to characterize DBMS workloads on different computer architectures in 

order to diagnose performance degradation problems [Keeton et al. 1998; Ailamaki et al. 1999; Lo et 

al. 1998]. For example, Lo et al. [1998] examine the database performance on simultaneous 

multithreading (SMT) processors. SMT [Eggers et al. 1997] is a computer architecture in which the 

processor issues instructions from multiple threads in a single cycle. This study characterizes the 

memory-system behavior of database systems running Online Transaction Processing (OLTP- using 

TPC-B benchmark [TPCB 1994]), and Decision Support System (DSS- using TPC-D [TPCD 1996]) 

workloads by collecting traces from the Oracle database management system.  

To better understand memory behavior, the different memory access patterns of both OLTP and 

DSS workloads are compared in the different memory segments of programs. For each segment, L1 

cache miss rate, memory footprint, average number references per 64-byte block, and average 

number of accesses to a block until a cache conflict, are measured. By visualizing the graphs that 

depict the references patterns made to blocks, it has been noticed that, within each segment, cache 

reuse is not uniformly distributed across blocks, and for some segments is highly skewed, a fact 

hidden by the averaged data mentioned above. The characterization shows that while DBMS 

workloads have large footprints, particularly for OLTP, in the main memory, there is still substantial 

reusability of data in a small, critical working set, which can be cached. 
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A similar study [Barroso et al. 1998] presents a detailed characterization of the memory system 

behavior of three important classes of commercial workloads: OLTP, OLAP, and Web index search. 

Barroso et al. use the Oracle commercial database engine for the OLTP and OLAP workloads, and 

the AltaVista search engine for the Web index search. A wide variety of monitoring and profiling 

tools available on the Alpha platform (e.g., IPROBE [Cventanovic and Bhandarkar 1994] and 

ATOM [Srivastava and Eustace 1994]) were used. For example, the study provides a few general 

statistics gathered with the DCPI (Digital Continuous Profiling Infrastructure) [Anderson et al. 

1997] profiling tool, which is an extremely light overhead sampling-based profiling system based on 

the processor event counters.  

Analyzing reference strings in the database has been the focus of many studies. The identification 

of locality of reference (i.e., accessing subsets of blocks of the database), of the sequentiality (i.e., the 

accessing contiguous blocks) and of the transaction types provides preliminary information on both 

the performance and the behavior of the database. Such studies are useful in identifying the possible 

techniques to be adopted to enhance buffer replacement and concurrency control policies [Kearns 

and DeFazio 1989; Klaassen 1992]. For example, a hierarchical-functional approach is proposed by 

Klaassen to characterize workloads with different page reference behavior. Several parameters like 

number of transactions completed, number of pages read/written, the mean transaction length (i.e., 

the number of different pages accessed per transaction) and transaction type were used. The 

approach is independent of the database and of the application, and it is based on the following 

three abstraction levels: 

• The application level represents the user’s view point of the database, where data of the 

application and its functions are defined and their interrelationships are identified. 

• The transaction level associates transaction types with the functions identified in the 

application level. 
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• The physical resource level defines low level resource usage, such as read/write page accesses, 

CPU demands, and deadlocks, for each transaction type. 

Klaassen’s approach shows that workload characterization can be done at different levels of 

abstraction. For example, Yu et al. [1992] focus on characterizing the workload at the transactional 

level. They study the structure and the complexity of SQL statements, the composition of the 

relations and the views, and the run-time behavior of the transactions and the queries, in a large 

industrial production system that runs DB2. 

The analysis in this study depends largely on basic statistical summaries such as averages and 

variations, correlations, and distributions. An SQL trace of a two-hour interval and an image of the 

database catalog are obtained. To explore the static characteristics, embedded information, such as 

the various descriptions of tables, views, columns, indices, keys, static SQL statements, table spaces, 

etc., in the DB2 catalog are analyzed. Useful statistics are also collected about the different parts of 

the SQL statement such as the FROM, WHERE, GROUP BY, HAVING, and ORDER BY 

clauses.  

The other part of the study focuses on the description of the run time behavior of the workload. 

Useful summaries, such as the number of static vs. dynamic SQL statements executed, the average 

response time for each transaction type, the number of rows processed or scanned, number of 

relations involved in the SQL statements executed, etc., are obtained. These results may provide 

important information needed to build a benchmark workload to evaluate alterative design trade-

offs of database systems.  

Extensive use of descriptive statistics is exercised in another empirical study performed by Hsu et 

al. [2001]. They systematically analyze the characteristics of the workload of the standard 

benchmarks TPC-C and TPC-D, especially in relation to those of real production database 

workloads. The characteristics of the production database workload of ten of the world’s larges 
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corporations are examined and compared to TPC-C and TPC-D. The characterization was made 

more useful for subsequent mathematical analyses and modeling by others, by fitted the data to 

various functional forms through nonlinear regressions solved by Levenberg-Marquardt method 

[Press et al. 1986]. In order to reduce the system disturbance, the trace records were collected in a 

shared-memory before batch writing them asynchronously to disk. This study showed that the 

production workloads exhibit a wide range of behavior, and in general, the two TPC benchmarks 

complement each other in reflecting the characteristics of the production workloads. Some aspects 

of real workloads, however, are still not represented by either of the benchmarks.  

Table 5 summarizes the commonly used characterization techniques in database systems. 
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Technique Static/ 
Dynamic 

Method Approach Component Parameters Workload 
Type 

Purpose Results Other Techn.
Combined 

Case Study 
Examples 

Clustering Static Heuristic, 
Neural network, 
k-means 

Resource-
oriented 

DB 
transaction 

#of database 
calls, #of locks, 
#of references 

Batch, 
interactive 

Capacity 
Planning, load 
balancing 

(4-8) clusters  Statistics [Yu and Dan 1992;  
Yu and Dan 1994; 
Artis 1978; 
Nikolaou et al. 
1998; 
Chinrungrueng and 
Séquin 1995] 

Prediction 
Models 

Dynamic Markov chain Functional DB Query Think time, 
sequence of 
executing queries 
in a session 

Interactive Predict buffer 
hit ratio; make 
predictive 
prefetching; 
enhance 
caching 

A predictive 
model for the 
near future 
executed queries 

Statistics [Dan et al. 1993; 
Dan et al. 1995;  
Sapia 2000a] 

Numerical 
Fitting 

Dynamic Non-linear 
regression (e.g., 
Levenberg-
Marquardt 
method) 

Functional DB 
transaction 

Arrival time Interactive Model the 
arrival pattern 
of transactions

Degree 8 of 
exponential 
polynomial 

Statistics [Lewis and Shedler 
1976; Gaver et al. 
1976; Lo et al. 
1998; Hsu et al. 
2001] 

Statistics Static, 
dynamic 

Basic statistics 
summaries (avg., 
distributions), 
non-
homogeneous 
Poisson process, 
histograms 

Functional DB 
transaction, 
application, 
SQL 
statement 

Arrival time, 
cache miss rate, 
memory 
footprint, # of 
references to a 
memory block, 
read/write page 
accesses, CPU 
demands, 
deadlocks, 
number of 
transactions 
completed,  #of 
different pages 
accessed per 
transaction 

Interactive Understand 
memory 
behavior in 
different 
architectures; 
enhance 
buffer 
replacement 
and 
concurrency 
control 

Degree 8 of 
exponential 
polynomial, 
cache reuse 
distribution, 
identifying 
locality/sequenti
ality of reference.

Numerical 
fitting 

[Lewis and Shedler 
1976; Gaver et al. 
1976; Lo et al. 
1998; Barroso et al. 
1998;  Keeton et al. 
1998; Ailamaki et 
al. 1999; Lo et al. 
1998; Barroso et al. 
1998;  Yu et al. 
1992;  Hsu et al. 
2001] 

Table 5. Characterization techniques used in database systems. 
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3.4 PARALLEL SYSTEMS 

Parallel applications are developed to solve problems in a shorter time and/or to solve larger 

problems in the same time. To meet these objectives, we need to tune, debug and diagnose the 

performance, which requires characterizing the parallel applications [Calzarossa et al. 2000]. 

Essentially, the characterization requires collecting measurements by adding instrumentation to the 

source code of the application, to the operating system scheduler, or to the communication libraries 

[Hofmann et al. 1994].  

Parallel applications consist of a set of interrelated tasks. Each task is a functional unit that can be 

executed on a processor. Data and functional dependencies exist among tasks and these 

dependences are represented by communication and synchronization activities. A parallel application 

can be represented by a task graph [Beretsekas and Tsitsiklis 1989] whose nodes represent the 

application tasks and the arcs represent communication and synchronization controls. Figure 9 

shows an example of a task graph. 

 
Figure 9.  An example of a task graph. The graph 
nodes represent parallel tasks, and arcs represent 
communication and synchronization controls among these 
tasks. 
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In general, we can identify two types of metrics to describe parallel applications: static and dynamic.  

Static metrics relate to the static properties of the parallel algorithms and describe the inherent 

characteristics of parallelism of the applications. On the other hand, dynamic metrics describe the 

behavior of an algorithm over time when it is executed on a given system and indicate how 

effectively the parallelism is exploited. 

The static and dynamic metrics can give preliminary information about the behavior of the whole 

application by timing parameters such as execution, computation, communication, and I/O times, 

and volume parameters, such as number of communications, I/O operations, and floating-point 

operations. By analyzing these parameters, the behavior of the parallel application becomes more 

understandable as we discover the correlations and tradeoffs among various performance 

dimensions such as computation, communication and synchronization activities, and I/O demands. 

We can derive static metrics, such as those shown in Table 6, by analyzing the task graph 

[Majumdar et al. 1991; Sevcik 1989]. N reflects the task granularity, while the problem size deals with 

the size of the data set under consideration. The depth is the longest path in the task graph, in terms 

of the number of nodes starting at the initial node and ending at the final node. It is directly related 

to the execution time of the algorithm. The in-degree and out-degree relate to the synchronization 

complexity. If a node has a large number of predecessors, it most likely has to wait for 

Static Metric Description 

N Total number of nodes 
Problem size The size of the data set 
Depth Longest path between input 

and output nodes 
In-degree Average number of direct 

predecessors of all the nodes
Out-degree Average number of direct 

successors of all the nodes 
Maximum cut Max number of arcs taken 

over all the possible cuts 
Table 6. Static metrics derived from a task 
graph of a parallel application [Calzarossa 
and Serazzi 1993]. 
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synchronization. The maximum cut, which is the maximum number of arcs taken over all possible 

cuts from the initial node to the final node, represents the maximum theoretical parallelism that can 

be accomplished during the execution.  

Other static metrics can describe how parallelism is exploited by the application on a given 

architecture. Such metrics can be single values or signatures. Single value metrics, such as average 

computation time, number of I/O operations, and average message lengths, can be determined by 

executing a particular algorithm with a given number of processors p. Table 7 contains some 

examples of single-value metrics. 

A signature is the result of plotting one of the single value metrics as a function of the number of 

available processors. For example, the speedup signature S(p) describes the gain in time achieved by the 

parallel algorithm on p processors with respect to the serial execution. Speedup measures how much 

the execution time decreases with an increase in the number of allocated processors. Figure 10 

shows a speedup curve of an application executed with a number of processor ranging from 1 to 64. 

Note the degradation of the performance when the number of processors is increased from 32 to 

64, which shows that increasing the number of allocated processors does not always lead to a 

performance enhancement. Apparently, the benefit of allocating additional processors does not 

 

Figure 10. An example of a speedup signature. The performance degrades 
as the number of processors increases from 32 to 64 due to the 
communication and synchronization overhead [Calzarossa et al. 2000]. 
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compensate for the costs due to the increase in communication and synchronization overhead. In 

addition to speedup, other performance metrics such as efficiency, can be used to assess the effective 

exploitation of allocated processors. Table 7 describes some examples of signature metrics. 

Although the static metrics give insights into the parallelism that can be achieved by an 

application, they fail to express how parallelism is exploited by the application as the execution 

progresses. Thus, dynamic metrics, such as profiles and shapes, are used. Profiles express, as a function 

of execution time, the number of processors that are involved in a particular activity. Table 7 

describes some profile metrics and Figure 11(a) depicts an example. Shapes   [Sevcik 1989] are better 

tools for characterizing the behavior of a parallel algorithm as they derive more information from 

profiles. A shape, as shown in Figure 11(b), is a cumulative plot of the fraction of execution time 

when a certain number of processors are busy.  The application shape is the fraction of execution 

time in which a given number of tasks is active.  

Metric Type Metric Description 
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ncomm_proc 
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Number of busy processors vs execution time 
Number of communicating processors vs execution time 
Number of computing processors vs execution time 

Table 7. Other metrics used to characterize parallel applications [Calzarossa and Serazzi 1993]. 
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Another approach to characterizing parallel applications is to use multiple views [Le Blanc 1990]. 

For example, the processor and data parallelism views can be obtained. These views describe the 

behavior of the processor against the data it has to process, and the interrelationships between the 

processor and the other processors with respect to the communication and synchronization tasks. 

These views are also useful in identifying any unbalanced load among the processors. 

Several characteristics can be recognized by identifying application phases. The execution of an 

application is seen as a sequence of computation, communication, and I/O phases. Carlson et al. 

[1992] analyze the execution profile to identify the phases of which it consists. The profile is seen as 

a sequence of alternating periods of roughly uniform processor utilization separated by periods of 

 
 
 
 
 

(a)       (b) 

        (a)                  (b) 

Figure 11.   An example of an application profile (a) and its shape (b) [Sevcik 1989]. 

 

   (a)               (b) 

Figure 12. Example of execution profile (a). Phases are easily identified after smoothing (b) [Carlson et al. 1992]. 
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sudden transition of processor utilization. Figure 12(a) shows an example of an execution profile. 

Phases, which this execution profile consists of, are more easily identified in Figure 12(b) after using 

smoothing techniques. 

Recent studies [Rosti et al. 1998; Smirni and Reed 1998] focus on the characterization of 

scientific parallel applications, which are typically described as computationally intensive and 

becoming more I/O intensive due to the vast volume of data to be processed. The characterization 

in these studies focuses on the behavior of I/O requests, such as reads, writes, and seeks. For each 

of these I/O requests its count and duration are measured. The analysis of the temporal patterns of 

I/O requests help identify different phases. These phases show the burstiness of the accesses and 

their non- sequential behavior. They also show the presence of interleaved and strided patterns. 

Table 8 summarizes the commonly used characterization techniques in parallel systems. 
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Technique Static/ 
Dynamic 

Method Approach Component Parameters Workload 
Type 

Purpose Results Other 
Techn. 
Combined 

Case Study 
Examples 

Graph Dynamic Profiles, shapes, 
phases 

Resource-
oriented 

Application # of processors 
being busy 
computing or 
communicating at 
certain time 

Scientific Identify 
application 
phases 
 

Graphs of 
communication, 
computation, 
and I/O phases 

Statistics [ Sevcik 1989; 
Carlson et al. 
1992; Calzarossa 
et al. 2000; 
Calzarossa and 
Serazzi 1993; 
Rosti et al. 1998; 
Smimi and Reed 
1998] 

Statistics Static Signatures, avg. 
computation/ 
communication 
time, avg. # of 
sent/received 
messages, avg. 
message length, 
# of I/O 
operations 

Resource-
oriented 

Application Timing 
parameters: 
execution, 
computation, 
communication 
times, I/O times,  
Volume 
parameters: # of 
communications, 
I/O operations, 
floating-point 
operations 

Scientific Obtain 
inherent 
characteristics 
of a parallel 
application 
run on a 
specific 
number of 
processors. 

Single-value 
metrics, and 
signatures 

- [Calzarossa et al. 
2000; Calzarossa 
and Serazzi 1993; 
Majumdar et al. 
1991; Sevcik 
1989] 

Table 8. Characterization techniques used in parallel systems. 
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3.5 WORLD WIDE WEB SYSTEMS 

Internet-based systems can be classified as client/server systems as described in Section  3.2, but we 

prefer to devote this section to them because the literature is rich with research papers pertaining to 

workload analysis issues. This should not be a surprise as we observe, day after day, the explosive 

increase of Internet popularity.   

E-Commerce applications are complex distributed systems. They combine the functionality of 

several components, such as web servers, DBMSs and secured payment subsystems. As a result, 

various methods, within different combinations, have been proposed and used to capture the 

characteristics of e-commerce workloads.  

Krishnamurthy and Rolia [1998] present a case study on Quality of Service (QoS) measures for 

an electronic commerce server. They study the behavior of an electronic commerce server under 

several controlled loads and study response time measures for several workload classes: individual 

Universal Resource Locators (URLs), groups of functionally related URLs, and URL sequences. 

They use an analytical model combined with empirical knowledge of server behavior to show that 

mean response time can be a good predictor for the 90th-percentile of response times.  

Initially, they chose to use Layered Queuing Models (LQM) and the Method of Layers (MOL) 

[Rolia and Sevcik 1995] to model the system. LQMs are Queuing Network Models (QNMs) 

[Lazowska et al. 1984] extended to include contention for software resources such as pools of server 

processes as well as contention for hardware resources such as CPUs and Disks. Unfortunately, the 

results obtained using Mean Value Analysis (MVA) show that these queuing models are not 

sufficient to predict the 90th-percentile of response times. Accordingly, this approach is augmented 

by using additional statistical manipulations guided by empirical data collected from existing systems.  

Pitkow and Pirolli [1999] introduced improved models to predict the navigation behavior of 

WWW surfers. This prediction ability may be exploited in different applications such as searching 
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through WWW content, recommending related WWW pages, predictive prefetching, and analyzing 

web site designs. 

Modeling and predicting user surfing paths typically involve tradeoffs between model complexity 

and predictive  accuracy. Pitkow and Pirolli’s goal is to explore predictive modeling techniques that 

reduce model complexity without sacrificing predictive accuracy. Their proposed techniques predict 

the future of surfing paths by merging a web-mining method that extracts significant surfing 

patterns by the identification of longest repeating subsequences (LRS) [Crow and Smith 1992] and pattern 

matching methods. The LRS technique reduces the complexity of the model by focusing on the 

significant surfing patterns. Compared to various Markov models, the experiments in this research 

show that longest repeating subsequence models, called Hybrid LRS-Markov models, are able to 

significantly reduce the model size while retaining the ability to make accurate predictions. 

Arlitt and Williamson [1996] present a WWW workload characterization study that focuses on 

finding workload invariants, that is, characteristics that apply across all the data sets studied. Six 

different data sets are used in this study: three from academic environments, two from scientific 

research organizations, and one from a commercial Internet provider. These data sets represent 

three different orders of magnitude in server activity, and two different orders of magnitude in time 

duration, ranging from one week of activity to one year of activity. By using several basic statistical 

techniques ten invariants are identified. These invariants are deemed important because they 

potentially represent universal truths for all Internet Web servers. They are exploited to identify two 

possible strategies for the design of a caching system to improve Web server performance, and to 

determine bounds on the performance improvements possible with each strategy. The study 

identifies the distinct tradeoff between caching designs that reduce network traffic, and caching 

designs that reduce the number of requests presented to Internet Web servers.  
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Several relatively recent Web forces may someday undermine or change these ten Web server 

invariants. These forces include Web crawlers, improved protocols for Web interaction, small scale 

and Web caching architectures, and a growing trend toward the use of video, audio, and interactivity 

on the Web (e.g., CGI, Java). It will be interesting to see how long these invariants remain true. 

Formal grammars have also been used to model WWW applications’ workloads. Kotsis et al. 

[1997] present an approach for generating a profile of requests submitted to a WWW server, such as 

GET and POST commands, which explicitly takes into account user behaviors when surfing the net. 

The Probabilistic Attributed Context Free Grammar (PACFG) [Fu 1974] is used to derive a model for 

mapping user-oriented views of the workload, namely the conversations made within browser 

windows, to the methods submitted to the Web servers. 

This approach identifies six hierarchical layers from the user level, characterized in terms of 

sessions, to the level of TCP/IP requests, that is, the actual load imposed on the network. This 

approach differs from others in that it considers both the actual physical characteristics of the 

system as well as the user-oriented view. Thus, the analyst is able to investigate both changes in user 

behavior as well as the effects of changes in the system characteristics.  

PACFG is general enough to cover any form of web activity (e.g., different browsers, different 

protocols, JAVA applets, etc.). It can also be parameterized in order to define worst-case scenarios, 

such as capturing the system behavior under heavy load. However, it would be interesting to assess 

the expressiveness and representativeness of this grammatical approach in contrast to simpler 

models of WWW traffic characterization. 

Data warehousing and data mining technologies can be used to discover interesting 

characteristics in Web logs. A knowledge discovery tool, WebLogMiner, for mining web server log 

files has been developed [Zaïane et al. 1998]. The approach is mainly motivated by the fact that 
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condensing colossal files of raw web log data in order to retrieve significant and useful information 

is a nontrivial task.  

Once the multi-dimensional data cube is constructed, various OLAP techniques, such as drill-

down, roll-up, and slice-and-dice, are applied to provide further insights to the target data set from 

different perspectives and at different conceptual levels. Some typical summarization includes the 

following: domain summary, event summary, session summary, bandwidth summary, referring 

organization summary, and browser summary. Figure 13 illustrates a simple yet, typical example of 

summarization using this OLAP technique. It shows how many new messages were created on each 

day of the week over a whole semester for a particular site. 

In the next stage, data mining techniques are put to use with the data cube to predict, classify, 

and discover interesting correlations and patterns. This project makes good use of several data 

mining tasks [Han et al. 1997; Han and Fu 1995; Kamber et al. 1997] including  summarization, 

comparison, association, classification, prediction and time-series analysis. The latter is the most 

important data mining task in the Web log analysis because all Web log records register time stamps, 

and most of the analyses focus on time-related Web access behaviors. The time-series analysis 

 

Figure 13. OLAP Analysis of Web log database. It 
shows how many new messages were created on each day 
of the week over a whole semester for a particular site 
[Zaïane et al. 1998]. 
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includes network traffic analysis, event sequence and user behavior pattern analysis, transition 

analysis, and trend analysis.  

Figure 14 shows the network traffic generated by a particular site over a four-month period. The 

chart shows that the traffic had a general increasing trend over the four months, with monthly cycles 

reflecting the peaks during the weekdays and valleys during the weekend. Also transition metrics are 

obtained from the transition analysis for a given group of users over a certain period of time, which 

indicates the probabilities one event follows another.  

Graphs are commonly used to model the e-commerce workloads [Menascé et al. 1999; 

Krishnamurthy and Rolia 1998]. Menascé et al. argue that the traditional workload characterization 

for e-commerce sites in terms of hits/sec, pages viewed/sec, or visits/sec, are not appropriate. 

According to their perspective, e-commerce workloads are composed of sessions. A session is defined 

as a sequence of requests of different types made by a single customer during a single visit to a site. 

Examples of requests for an online shopper are: browse, select, add to the shopping cart, search, 

pay, and user registration.  The allowed sequences of requests can be described by a state transition 

graph called a Customer Behavior Model Graph (CBMG). Figure 15 shows an example CBMG. This 

graph has one node for each possible state and transitions between these states. A probability is 

assigned to each transition. Thus, different types of users may be characterized by different CBMGs 

 

Figure 14. The analysis of the network traffic of a 
site over a four-month period [Zaïane et al. 1998]. 
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in terms of the transition probabilities. By analyzing the CBMG, useful metrics can be derived like 

average session length, average number of items bought per customer visit, and buy to visit ratio. 

Different classes of visitors to a site exhibit different navigational patterns. Each customer class 

can be represented by its own CBMG, and workload characterization for e-commerce entails 

determining the set of CBMGs that best characterize customer behavior. The study proposes a 

resource-oriented workload characterization methodology for the e-commerce sites. As shown in 

Figure 16, this methodology is based on two algorithms. The first one takes as input conventional 

HTTP logs and generates a session log. The second algorithm takes as input the session logs and 

performs a clustering analysis which results in a set of CBMGs that can be used as a compact 

representation of the e-commerce workload. This approach is verified by generating artificial e-

commerce logs based on different CBMG patterns drawn from data collected form the operation of 

real online bookstores. Afterwards, clustering algorithms are applied to the logs. The outcome is 

groups of customers that exhibited similar navigational behavior. The algorithms are also applied to 

logs of an actual e-commerce site. Table 9 summarizes the commonly used characterization 

techniques in the World Wide Web systems. 

Figure 15. Customer Behavior Model Graph for an 
occasional buyer [Menascé et al. 1999]. Figure 16. Workload Characterization Methodology 

proposed by [Menascé et al. 1999]. 



 
We gratefully acknowledge the financial support from IBM, CITO, and NSERC. 

Technique Static/ 
Dynamic 

Method Approach Component Parameters Workload 
Type 

Purpose Results Other Techn.
Combined 

Case Study 
Examples 

Analytical 
Modeling 

Static, 
Dynamic 

Queuing Network 
Model, Layered 
Queuing Model, 
Method of Layers 

Functional, 
resource-
oriented 

URL CPU time, 
disk I/Os, 
Response 
time, URL 
sequences, 
URL type 

Interactive Study QoS 
measures for E-
Commerce 
Server 

The mean response 
time is a good 
indicator for the 
90th percentile of 
response times 

Statistics [Krishnamurth
y and Rolia 
1998] 

Prediction 
Models 

Dynamic Hybrid LRS-Markov 
models 

Functional URL URL 
sequences 

Interactive Predict the 
navigation 
behavior of 
WWW surfers 

Producing simple 
and accurate model 
better than 
Markov’s 

Markov Model [Pitkow and 
Pirolli 1999] 

Statistics Static Averages, 
distributions, 
histograms, 
correlations, COV, 
Hurst parameter, 

Functional URL, File URL 
timestamps, 
Transfer size, 
file size, file 
type, request 
success rate, 
client locality 

Interactive Discover Web 
invariants 

Discovering ten 
web invariants 

- [Arlitt and 
Williamson 
1996] 

Grammar Dynamic Probabilistic 
Attributed Context 
Free Grammar 

Hierarchical-
Functional, 
resource-
oriented 

User session, 
HTTP 
request, 
TCP/IP 
request 

URL time 
stamps, URL 
type, think 
time 

Interactive Profile requests 
submitted to 
WWW servers 

Map the high user-
oriented view to 
low TCP/IP 
requests 

- [Kotsis et al. 
1997] 

Data mining 
and data 
warehousing 

Static, 
Dynamic 

OLAP techniques: 
Drill-down, roll-up, 
slice-and-dice 
Data Mining tools: 
association, 
clustering, 
classification, 
transition/trend 
analysis 

Functional, 
Resource-
oriented 

URL Timestamps, 
IP addresses, 
transfer size, 
URL type, file 
size 

Interactive Discover 
interesting 
characteristics in 
Web log 

Discovering web 
access patterns and 
trends 

Prediction 
techniques 
and time-
series analysis, 
Clustering, 
Statistics 

[Zaïane et al. 
1998; Han et 
al. 1997; Han 
and Fu 1995; 
Kamber et al. 
1997] 

Graph Dynamic Customer Behavior 
Model Graph 
(CBMG) 

Functional, 
Resource-
oriented 

Session Timestamps, 
#of  hits, # of 
pages viewed, 
#of visits 

Interactive Model E-
commerce 
workloads 

Deriving useful 
metrics from 
CBMG like avg. # 
of visits per user 
state, avg. session 
length, buy to visit 
ratio. 

Clustering [Menascé et al. 
1999; 
Krishnamurth
y and Rolia 
1998] 

Table 9. Characterization techniques used in World Wide Web systems. 
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4 CHARACTERIZATION FRAMEWORK 

Based on the case studies surveyed in this paper, we propose a general framework for the workload 

characterization process. The framework makes the process more systematic, emphasizes some 

essential steps needed to derive a representatively good workload model, and prevents some 

common problems. 

The main difficulties that may be encountered throughout the workload characterization process 

are: 

• Difficulty of System Instrumentation. Systems need to be instrumented in order to obtain 

performance measurements. This may require the insertion of some probes, like counters, into 

the system itself or into the operating system. This task is challenging due to the complexity of 

the systems and the typical absence of the source code. 

• System Disturbance. Instrumenting the system is an intrusion that adds extra overhead. Hence, 

the degree of intrusion should be minimized to reduce the perturbation of the system’s behavior 

under the investigated workload. 

• Complexity of Analyzing Large Volume of Performance Data. A large amount of system 

measurements are needed to construct a workload model [Calzarossa et al. 2000], which 

increases the complexity of managing and analyzing the data.  

• Validating Model Representativeness. Assessing the workload model representativeness, that 

is, how accurately the model represents the real workload, is a key issue [Menascé et al. 1994]. 

Normally, modeling tends to hide some details that might be desirable to study. Hence, a careful 

decision should be made about the model’s abstraction level in the requirements analysis phase 

(explained next). This should help identify how much information loss can be tolerated and what 

important features must be included in the model. 
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• Model Compactness. The characterization process should result in a compact model. It is 

impractical for the workload model to incorporate all the basic components of the real 

workload. Ideally, a compact workload model should place a much smaller demand on the 

system than the actual workload [Menascé et al. 1994]. 

Ferrari et al. [1983] describe a methodology for constructing a workload model. We augment their 

methodology to produce a framework that introduces the following additional concepts: 

1. Creating a Performance Database. Building a database for the workload parameter values provides a 

robust way of storing and managing large volume of performance data. It also provides a solid 

foundation for the application of any analytical technique that might be adopted in the 

subsequent phases. 

2. Distinguishing between the static and dynamic techniques. This distinction is sometimes important in the 

analytical phase in order to choose the appropriate tool, and to create an adequately descriptive 

executable workload model. 

3. Using data warehousing and data mining technologies. In addition to the traditional analytical and 

statistical techniques commonly used in workload characterization, we suggest in this framework 

exploiting the capabilities of the data warehouse technology [Chaudhuri and Dayal 1997] and 

data mining tools.  

The multi-dimensional data cube in a data warehouse provides operations such as drill-down, roll-up, and 

slicing and dicing. These operations offer online analytical processing (OLAP) capabilities, including an 

engine for deriving various statistics, and a highly interactive and powerful data retrieval and analysis 

environment. The data warehouse approach also overcomes the complexity problem stemming 

from processing large data sets. 

Besides the OLAP tools, the analytical capacity can be extended further by adopting data mining 

techniques, which can discover implicit knowledge in the performance data that can be expressed in 
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terms of rules, charts, tables, graphs, and other visual forms for characterizing, classifying, 

comparing, associating, or predicting the workload.  Data mining techniques have been used to 

discover interesting patterns and features in customers’ data that may lead to better marketing 

strategies. Similarly, in the workload characterization framework, we mine for interesting patterns 

and key characteristics in the system’s workload. The integrated use of data warehousing and data 

mining has proven useful in analyzing web logs [Zaïane et al. 1998] and we believe that using both 

technologies as part of the workload characterization methodology would be beneficial too. Figure 

17 shows the framework of the workload characterization process. Deriving a workload model 

consists of three phases: requirements analysis phase, construction phase, and validation phase. 

Next, we describe these phases and explain the tasks involved in each of them.  
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Figure 17. Workload Characterization Methodology. 
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4.1 REQUIREMENTS ANALYSIS PHASE 

The reasons for characterizing a system’s workload should be clear from the beginning because they 

help derive the appropriate workload model. Therefore, based on a clear identification of the goals 

of the performance study, analysts must determine the following: 

Abstraction Level. Depending on the intended use of the model, the level of abstraction at which 

the characterization will take place should be determined. The system can be viewed as a hierarchy; 

the highest level in this hierarchy is functional and the lowest one is physical. At the functional level, for 

example, the analyst may focus on identifying the types of applications executed in the system, 

identifying the kinds of web objects that are requested frequently, or grouping database transactions 

according to their functionality. At the physical level, they may categorize workload components, 

such as transactions, TPC/IP requests, or user interactive commands, according to their resource 

consumptions (e.g., CPU time, I/Os, and memory space). The higher the level, the lower the 

amount of detail with which the workload can be described. The selection of the level of detail helps 

in making other decisions like the choice of the basic workload component. 

Basic Workload Component. The smallest unit of work must be determined. As shown in Figure 

1, a workload component can be an application, a script, a command, a SQL statement, a user 

session, a transaction, a CPU instruction, a request, or a job. For example, applications and CPU 

instructions can be considered as basic workload components at the functional and physical levels, 

respectively. 

Workload Parameters. Depending on the abstraction level and the basic workload component, 

parameters are chosen to give a quantitive description of the workload components. Examples of 

workload parameters are packet size, arrival time, number of I/O instructions, memory space 

demand, and number of file handles required. It is preferable to choose parameters that are 

dependent on the workload rather than on the system. For example, response time and CPU time 
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are not appropriate as workload parameters since they are highly dependent on the system currently 

executing the workload. In particular, those characteristics that have an impact on the system 

performance should be included in the workload parameters. Parameters selection may also be 

restricted by the capability of the monitoring tools currently available in the system. 

Criteria of Evaluating Model Representativeness. The criteria of evaluating the accuracy and 

representativeness of the derived model should be determined. They are used to validate the model 

as explained in Section  4.3. 

 

4.2 MODEL CONSTRUCTION PHASE 

This phase consists of three main tasks: 

Collecting and Preprocessing Performance Data. During the measurement interval, the 

workload parameter values are collected from the system. The raw data may not be ready for direct 

analysis, so, further processing may be needed to put the data in a clean state and an appropriate 

format. For example, the raw data set usually contains noise and outliers that may distort the results 

of the subsequence analysis. Furthermore, some type of transformations might be needed in this 

step. For example, if one of the parameter’s density functions is highly positively skewed, a 

logarithmic transformation is needed. 

Creating A Performance Database. After preprocessing and filtering the raw data, a relational 

database is created to store the performance data. The database facilitates information extraction and 

data summarization based on individual attributes. 

Analysis Stage. Analyzing the workload parameter values aims to extract the workload’s static and 

dynamic features. In Section  2, we described some of the tools commonly used to perform the static 

and dynamic analyses. The static analysis tools explore the intrinsic features of the workload and 

partition the workload components into homogeneous classes or groups. However, in order to make 
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the derived workload model executable we need to capture the characteristics of the workload over 

time in order to reproduce the correct workload mixes. Hence, the dynamic properties of some time 

series are considered. Stochastic processes, numerical fitting techniques, and the various predictive 

models are useful in describing the behavior of the workload over time. As depicted in Figure 17, 

the traditional analytical/statistical techniques and the proposed data mining and OLAP tools can be 

used, separately or together, to analyze the performance data in order to characterize the workload. 

Analyzing the static characteristics helps to choose representative components (mixes) that can 

reflect the key properties of the real workload. Analyzing the dynamic behavior of the workload 

completes the picture by describing the distribution and the sequence of execution of these 

workload components. Determining the static and dynamic characteristics of the workload can be 

the ultimate goal of the workload characterization because such knowledge can be adequate to 

facilitate tuning and enhancing the system’s performance. Hence, the characterization process may 

stop at this point. However, the model can be further processed to generate an executable, runnable 

model that can be practically ported to different systems to assess their performance. A benchmark 

is an example of an executable workload model. The executable format of the workload model is 

also a means of its validation, as explained next. 

 

4.3 MODEL VALIDATION PHASE 

Validating the workload model is sometimes not straightforward. One way of examining the 

accuracy of the derived workload model is to assess its effect on the system compared with the 

effect of real workload [Ferrari et al. 1983]. As can be seen in Figure 18, if the performance 

measurements resulting from the application of the workload model and the real workload are the 

same or proportional, then we have a good model. For example, Keeton and Patterson [2000] 

proposed and evaluated simplified microbenchmarks for studying the architectural behavior of database 
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workloads. These microbenchmarks poses simple queries of the database to generate the same 

dominant I/O patterns exhibited in more complex, fully-scaled workloads like TPC-C and TPC-D. 

One of the potential benefits from this microbenchmark approach is smaller hardware requirements. 

The representativeness of the new models was evaluated by comparing the processor and memory 

system characteristics of the microbenchmarks with that of fully scaled workloads running on similar 

hardware. These metrics were selected because most fully scaled database servers are configured 

with enough disks to be CPU bound; hence processor and memory behavior are important factors 

in determining database performance [Barroso et al. 1998]. 

Other techniques of validation may take into account criteria like arrival time of components and 

the resource usage profile [Jain 1991]. If the derived workload model does not provide sufficient 

accuracy then some calibration of its parameters (static characteristics) or for its component mixes 

(dynamic characteristics) is required. The calibration process is repeated until a satisfactory level of 

representation is reached. 

 

5 CONCLUSIONS 

Characterizing the system’s workload is an essential early step in any performance study. Although 

workload characterization, like performance evaluation, is still considered more of an art than a 

science, the methodology discussed in this paper can be deemed a general framework for deriving a 

workload model. A substantial amount of details in this framework are highly dependent on the 

objectives of the performance study as well as the type of system. We propose using data 

 
 
 
 
 
 
 

Figure 18. Validating the representativeness of a workload model. 
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warehousing and data mining technologies as a promising analytical approach. It may provide a 

potential solution for some of the well-known problems in workload characterization like the 

difficulty of managing large volumes of performance data sets and the complexity of analyzing them. 

This should lead to a better scalability, more interactivity, and a variety of different analyses possible 

to perform. 

The case studies surveyed in this paper show that a wide range of analytical techniques can be 

used to extract the static and dynamic characteristics of the workload. More than one technique may 

be combined in order to obtain the desired model. In general, we have noticed that identifying 

distinct classes in the workload using the various clustering techniques is the main goal of many 

studies.  

The notion of multi-layer workload characterization has been adopted by many workload 

characterization studies. It is based on viewing the system as a hierarchical structure, which allows 

the characterization process to take place at any level in this hierarchy. For example, in network-

based systems, characterization can be accomplished at many levels: user level, application level, 

protocol level, and network level.  

A multi-layer characterization allows insight into how changes at the upper levels can affect the 

lower levels, and enables the prediction of the impact of new applications or systems. By analyzing 

the measures collected from each layer, a model of overall workload of the system can be obtained. 

Nonetheless, we have found that most of the studies characterize the workload of each layer 

separately. Probabilistic graphs techniques, such as User Behavior Graphs, have been commonly 

used for modeling the workload at each layer. 

Workload characterization typically relies on analyzing performance data collected from the 

system. The choice of what to measure depends on the objective of the study, the workload features 

to be evaluated, the level of abstraction (or details) required, and the availability of monitoring tools 
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to collect the proper measures. The selection of what to measure is critical. Indeed, there is a 

tradeoff between the amount of detail to be measured and the perturbations caused by monitoring. 

Measurements collected from the system are not only important to the analysis phase; they are also 

useful for parameterizing the derived models with empirical data drawn from the real system. In 

some cases, such parameterization is essential to obtaining a successful model. 

 However, and as already pointed out, obtaining the proper measurements from the system is 

sometimes challenging. For example, web logs have been used as the primary source of system data 

to model the workload of WWW applications. While this may reflect the actual use of the resources 

on a site, it does not record reader behaviors like frequent backtracking or frequent reloading of the 

same resource if the resource is cached by the browser or a proxy. Other means of data gathering 

like client-site log files collected by the browser, or a Java Applet have been suggested. However, 

while these techniques solve such problems, they demand the user’s collaboration, which is not 

always available. In some systems, for example networks, special equipment such as network cards, 

bridges, routers, and gateways, constituting the network-based systems make the characterization 

process much harder. As a result, new measuring tools have been devised in order to collect 

parameter values from the system. 

We believe that workload characterization will remain the focus of researchers and will constantly 

keep progressing in order to exploit newly introduced techniques and to cope with the requirements 

of new computer architectures. We also believe that no matter what new performance-oriented 

architectures have to offer toward enhancing performance, the notion of characterizing the 

workload and identifying its features should always lead to better improvements. 
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6 FUTURE DIRECTIONS 

Some of the trends and challenges we expect to witness in the workload characterization field are 

the following: 

• New technologies and architectures will keep changing the way users approach computer 

systems and interact with them, which will accordingly keep varying the workload characteristics 

and constantly adding extra levels of complexity to the characterization process. For example, 

ubiquitous computing, such as PDAs and appliances attached to the Internet, will add at least an 

order of magnitude to the number of traffic sources, and will add different characteristics to the 

workload [Crovella and Lindemann 2000]. New local communication technologies such as 

Digital Subscriber Lines (DSL), cable modem, and Universal Mobile Telecommunications 

System (UMTS), will affect the traffic patterns and intensities of workload components. 

Understanding the impact of these changes, in terms of workload characteristics and system 

performance, is challenging. Working on deriving a model that represents the consolidated 

traffic from millions of such sources is another problem that must be solved. 

• We need more experiments to assess the benefits of creating a relational performance database 

and to evaluate the effectiveness of using data warehousing and data mining technologies in the 

workload characterization framework. 

• Although many case studies have adopted the notion of multi-layer workload characterization, 

the relationships between these layers are currently not well understood. Mechanisms that 

transform and map the different views of the layers are lacking. The existence of such 

mechanisms will help us understand the impact of changes in the workload of one layer on the 

rest of the layers. A potential solution may be to use consistent formalisms across layers. Usually, 
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going from higher layers to the lower layers is easier due to the causality relationship, but going 

from lower layers to higher ones is useful too and is still deemed an important challenge. 

• Workload characterization at the user level should take into account the mutual influence of the 

user behavior and the performance of the system on each other. In other words, many of the 

studies derived models that describe how the system would perform when the users behavior 

changes. Unfortunately, these studies overlooked the potential impact of the system 

performance on the user’s behavior and access patterns. For example, a long response time may 

discourage a user from requesting consecutive URLs or queries, which leads to less interactivity.   

Such mutual impact should be taken into consideration. 

• We look forward to seeing systems that have integrated environments and tools that are able to 

address the performance issues encountered in the various application domains. Such tools 

should be able to provide automated monitoring capabilities, collect performance measurements, 

and to analyze them. Having such features makes systems self-manageable and dynamically self-

adaptable to their workload. Furthermore, by understanding the dynamic behavior of the 

workload, these systems will be able to forecast the upcoming load and adjust their resource 

allocations to efficiently handle the future workload. In other words, these systems will be 

workload-aware systems, which can analyze their workload characteristics in these 

environments and therefore configure themselves properly to attain the desired quality of 

service. 
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