

We gratefully acknowledge the financial support from IBM, CITO, and NSERC.

Characterizing Computer Systems’ Workloads

Said Elnaffar and Pat Martin
{elnaffar, martin}@cs.queensu.ca

Technical Report 2002-461

School of Computing, Queen’s University
Kingston, Ontario, Canada K7L 3N6

December 2002

Abstract

The performance of any system cannot be determined without knowing the
workload, that is, the set of requests presented to the system. Workload
characterization is the process by which we produce models that are capable of
describing and reproducing the behavior of a workload. Such models are imperative
to any performance related studies such as capacity planning, workload balancing,
performance prediction and system tuning. In this paper, we survey workload
characterization techniques used for several types of computer systems. We identify
significant issues and concerns encountered during the characterization process and
propose an augmented methodology for workload characterization as a framework.
We believe that the surveyed case studies, the described characterization techniques,
and the proposed framework give a good introduction to the topic, assist in
exploring the different options of characterization tools that can be adopted, and
provide general guidelines for deriving a good workload model suitable as an input to
performance studies.

1 INTRODUCTION

The performance evaluation of computer systems requires understanding of a system’s workload. As

shown in Figure 1, the workload is a set of requests, or components, that place different demands

on various system resources. Workload characterization provides a model of a system’s workload by

means of quantitive parameters and functions. The model should be representative, compact, and

2 Said Elnaffar and Pat Martin

accurate [Calzarossa and Serazzi 1993], and should be able to describe and reproduce the dynamic

behavior of the workload and its most essential static features.

Workload characterization dates back to the 1970’s, when computers were mainframes and their

workloads consisted of transactions and batch jobs. The continuous evolution of computer

architectures has pushed the discipline to evolve accordingly. The advent of networks and time

sharing systems, along with the increased processing power of computers and the growth of

graphical user interfaces, have changed the way users deal with the system and introduced new

processing requirements. Furthermore, the Internet and its numerous applications have multimedia

workloads. These workloads are very complex because they consist of a mix of different types of

applications such as audio/video conferencing, text/voice chat, file transfer, and telephony, which

are characterized by different performance demands on the system resources.

Workload characterization is a requirement for many performance studies such as scheduling,

capacity planning [Menascé et al. 1994], workload balancing, ensuring system scalability [Jain 1991],

system tuning and configuration [Ferrari et al. 1983], performance prediction, and the construction

of benchmarking suites. A benchmark suite, in particular, is the intuitive result of characterizing the

CONTENTS

1 INTRODUCTION
2 CHARACTERIZATION TECHNIQUES

2.1 Static Techniques
2.2 Dynamic Techniques

3 CASE STUDIES
3.1 Batch and Interactive Systems
3.2 Client/Server Systems
3.3 Database Management Systems
3.4 Parallel Systems
3.5 World Wide Web Systems

4 CHARACTERIZATION FRAMEWORK
4.1 Requirements Analysis Phase
4.2 Model Construction Phase
4.3 Model Validation Phase

5 CONCLUSIONS
6 FUTURE DIRECTIONS
7 REFERENCES

Characterizing Computer Systems’ Workloads 3

system’s workload. It can be viewed as a synthesized, controlled workload, which can be ported to

different environments in order to evaluate the system’s performance in that environment.

The design and evaluation of resource management policies, such as caching policies in the

World Wide Web (WWW) or disk storage layout for database servers require the knowledge of the

characteristics and the behavior of the requests to be processed. In general, knowing what kind of

workload a proposed system has to process should assist in its design. For example, the design of a

system whose workload consists of batch jobs is different from the design of a system whose

workload consists of concurrent interactive requests. Workload characterization helps determine

how much computing power is needed and assists in identifying the relationship between the

workload and the Quality of Service (QoS). Workload balancing is another terrain where knowledge

of the intrinsic characteristics of the workload is essential for distributing the requests to different

servers in order to optimize the overall performance of the system [Nikolaou et al. 1998].

Characterizing the workloads of today’s web-based systems helps with improving system designs,

recommending similar web pages, reducing latency, and understanding user reaction and motivation

[Zaïane et al. 1998].

Over the years, workload characterization has addressed all kinds of new application domains. As

a result, the characterization techniques have evolved to cope with the more complex workloads. In

Figure 1. The workload consists of components submitted to the system. The workload characterization process derives
a workload model which can be used in further performance related studies.

Workload Model

Jobs
System

Performance Study

Transactions

Commands

Sessions

Scripts

Workload

Characterization

SQL Statements

4 Said Elnaffar and Pat Martin

the human computer interaction field, for example, contemporary graphical user interfaces are smart

enough to dynamically customize themselves to suit a user’s needs. Such smart interfaces are the

results of characterizing the user’s workload by analyzing the run-time behavior and the access

pattern of each individual user [Hudson and Smith 1997].

Calzarossa and Serazzi examined a number of workload characterization case studies [Calzarossa

and Serazzi 1993]. In this paper, we revisit some of those case studies to emphasize the techniques

used in them and then present more recent case studies, including ones from application domains

such as the WWW and client/server systems. Ultimately, our study aims to achieve three main

objectives. First, we survey case studies across different types of computer systems and enumerate

the most common techniques used to characterize workload, such as graph-based techniques,

stochastic processes, clustering, and numerical fitting. We give a brief description of these

techniques and classify them according to their ability to extract different aspects of the workload,

that is, the static properties or the dynamic behavior. Second, we organize these techniques within a

common framework. To this end, we propose a general methodology for workload characterization.

Our third aim is to point out the potential problems and concerns that may be encountered during

the characterization process.

The rest of the paper is organized as follows. Section 2 gives a brief description of the common

techniques used in workload characterization. Section 3 examines workload characterization case

studies in different types of computer systems, namely batch and interactive systems, client/server

systems, databases systems, parallel systems, and WWW systems. Section 4 explains our workload

characterization framework and highlights the most significant concerns and potential problems that

researchers encounter during the characterization process. Section 5 presents our conclusions, and

Section 6 outlines future directions for research and envisions future systems in the context of

workload characterization.

Characterizing Computer Systems’ Workloads 5

2 CHARACTERIZATION TECHNIQUES

In this section, we briefly describe the techniques most commonly used to analyze system

workloads. The selection of a particular technique depends mainly on the purpose of the

performance study, and on the level of detail required. It might be necessary, in some cases, to

evaluate more than one technique in order to select the best one.

Functionally, we can classify the characterization techniques into two main categories: static and

dynamic. Static techniques explore the intrinsic characteristics of the workload, such as transaction

classes, the correlation between workload parameters and component dispersion, which do not

change over time. Examples of these techniques are clustering, principal component analysis,

averaging, and correlations. Dynamic techniques, such as Markov models, user behavior graphs, and

regression methods, focus on describing the behavior of the workload and the way it fluctuates over

time. These techniques usually analyze the historical data of the workload and, as a result, aid in

forecasting its behavior in the future.

Throughout the workload characterization process, adopting one technique is usually not

sufficient to obtain a complete analysis; several techniques may be used in combination in order to

come up with an approach that satisfies the research needs. For example, clustering techniques

might be used to classify the transactions submitted to the system. Afterwards, each class may

become a node in User Behavior Graphs [Calzarossa and Serazzi 1994], or a transitional state in a

Markov model. This example raises another issue, namely the importance of obtaining both static

and dynamic properties of the workload in order to obtain a complete picture.

Visualization tools, such as graphs, histograms, and fitting curves, are a key means of highlighting

significant features in the workload under investigation while simple techniques, like averages, may

6 Said Elnaffar and Pat Martin

smooth out some details such as burstiness. Sections 2.1 and 2.2 describe static and dynamic

characterization techniques respectively. Table 1 summarizes the techniques examined in these

sections.

Characterizing Computer Systems’ Workloads 7

Technique
Type

Technique Advantages Disadvantages

Descriptive Statistics
(average,
variance/standard
deviation, correlations,
distributions)

o Provides preliminary description
o Easy to calculate

o May not be sufficient; further
analysis is needed

Single-parameter
Histogram

o Expressive visual means
o Shows frequencies of each bin
o Frequency distribution can be used in

simulation models

o Incapable of expressing the
correlation among different
parameters

Multi-parameter
Histogram

o Illustrates the correlation between
different parameters

o Expressive visual means

o Difficult to plot the correlation
between more than two
parameters

Factor Analysis (e.g.,
Principal Component
Analysis)

o Simplifies performance data and
reduces their dimensionality

o Complex to calculate

St
at

ic

Clustering o Identifies homogeneous classes of
workload components based on
certain criteria

o Difficult to choose the
appropriate number of clusters

Markov Models (Markov
chains, Markov
processes)

o Predicts the order in which the
requests are executed

o Complex to calculate

Prediction Using Neural
Networks

o Performs short-term and long-term
forecasting of workload parameter
values

o Difficult to design and to
configure

Moving Average o Useful for short-term, single value
prediction

o Easy to calculate

o Cannot perform long-term
forecasting

o Cannot predicate more than one
single value

o No special consideration for the
most recent observations

o Difficult to determine the best
number of observations

Exponential Smoothing o Useful for short-term, single-value
forecasting

o Places more weight on the most
recent observations

o Easy to calculate

o Cannot perform long-term
forecasting

o Cannot predict more than one
single value

o Difficult to determine the best
smoothing weight

Regression Methods
(linear and non-linear
fitting)

o Predicts the value of a parameter as a
function of others

o Identifies trends

o Can be complex to calculate

User Behavior Graphs o Used mostly in interactive systems
o Describes the user’s probable

transition to a particular
command/transaction type

o Requires clustering to compose
the nodes

D
yn

am
ic

Probabilistic Attributed
Context Free Grammar

o Used in hierarchical systems (e.g.,
client/server)

o Translates views of higher layers to
lower layers

o Cannot be used to map lower
layers to higher ones

Table 1. Static and dynamic workload characterization techniques.

8 Said Elnaffar and Pat Martin

2.1 STATIC TECHNIQUES

Static techniques, such as descriptive statistics, single-parameter histogram, multi-parameter

histograms, principal component analysis, and clustering, help explore the static characteristics of

the workload. In this section we give a brief description of each type.

Descriptive Statistics. Parametric descriptive statistical techniques are used to identify the static

properties of the workload. Using these techniques helps describe what the workload parameters

look like: where their center (average) is, how broadly they are spread (dispersion or variance), and

how they are related to each other (correlation).

Averaging, or arithmetic mean, is the simplest method to characterize a workload parameter such as

user think time, number of active users, number of I/O operations required to execute a query, or

inter-arrival time of transactions. Averaging presents a single number that summarizes the parameter

values observed. However, it is not always appropriate to count on arithmetic mean; the median,

mode, geometric mean, or harmonic mean should be used in some cases.

The average alone is not adequate if the performance data has high variability. Variability is

usually specified by the variance. However, the standard deviation, which is the square root of the

variance, is more useful in expressing the variability because it has the same unit as the mean. The

ratio of the standard deviation to the mean is called the coefficient of variance (C.O.V). A zero C.O.V.

indicates that the measured parameter is constant. In this case, the mean gives the same information

as the complete set. A high C.O.V. indicates high variance, in which case it may be useful to look at

the complete histogram (discussed below). There are also other alternatives for specifying variability

like range (minimum and maximum), 10th- and 90th- percentile, semi-interquartile range, and the mean

absolute deviation.

Characterizing Computer Systems’ Workloads 9

Correlation is another useful statistical technique that helps discover the relationship between

different workload parameters. It is a decimal fraction, called correlation coefficient, which indicates the

degree to which the parameters are related. There are numerous ways (e.g., Biserial, Point Biserial,

Tetrachoric, Spearman rank-order, etc.) to calculate the coefficient of correlation. Pearsonian product

moment, commonly called Pearsonian r, is the most popular one [Schiff 1995].

Single-parameter Histograms. A histogram is a visual representation of a parameter where the

range of values is divided into intervals called bins. As shown in Figure 2, the histogram displays the

frequency of the observations of each bin. This frequency distribution is used in simulation models

to generate a test workload. However, one of the drawbacks with a histogram is that it is incapable

of expressing the correlation among different parameters. Therefore, multi-parameter histograms

can be used instead.

Multi-parameter Histograms. Multi-parameter histograms illustrate the correlation between

different workload parameters. The distribution of n workload parameters can be described by an n-

dimensional matrix or histogram. Figure 3 shows an example of a two-parameter histogram that

represents the number of read and written pages in a database system. Each dot in the figure

Disk I/O Histogram

0
50

100
150
200
250
300
350
400
450

0-5
0

50
-10

0

10
0-1

50

15
0-2

00

20
0-2

50

25
0-3

00

Disk I/O

Fr
eq

ue
nc

y

Frequency

Figure 2. A simple histogram which shows the
frequency distribution of disk accesses of jobs.

10 Said Elnaffar and Pat Martin

represents a system node. The number of dots in a cell of the grid represents the number of nodes

that read and wrote pages in the range corresponding to the cell. As can be seen, the nodes reading a

large number of pages are also the ones that write a large number of pages. Therefore, a significant

correlation may exist between the two parameters. On the other hand, we should note that it is

difficult to plot multi-parameter histograms that correlate more than two parameters.

Principal Component Analysis. The term factor analysis usually refers to statistical techniques that

describe multidimensional sets of data by means of geometric representation. Their goal is to help

choose a subspace of the variable space such that the projection of the data set on that subspace

preserves as much information of the original set as possible. Consequently, factor analysis is

beneficial for simplifying data and reducing their dimensionality.

Principal Component Analysis (PCA) [Harman 1976; Kline 1994] is a factor analysis technique that

maps a set of parameters, or variables, into another set, called principal components, characterized

by orthogonality among the components and by linear dependence on the parameters in the original

set. PCA is an iterative process in which the first component is chosen such that it maximizes the

0

1500

3000

4500

6000

7500

9000

0 1500 3000 4500 6000 7500 9000

#of Pages Read

#o
f P

ag
es

 W
rit

te
n

Figure 3. A two-parameter histogram showing the
correlation between two parameters. The number of dots in
a square represents the number of nodes that read and
wrote pages in the range corresponding to the cell.

Characterizing Computer Systems’ Workloads 11

variance of the linear function expressing the dependence of the transformed parameters on the

original ones. The second component is chosen such that it maximizes the remaining variance while

this component must be orthogonal to the first, and so on.

Clustering. Clustering is one of the most widely adopted techniques in workload characterization

(e.g., [Calzarossa and Serazzi 1994; Pentakalos and Menascé 1996; Nikolaou et al. 1998; Elms 1980]).

Clustering identifies homogeneous groups, or classes, of workload components, based on the

similarity of resource demands. In general, clustering methods can be classified as hierarchical or

non-hierarchical. Hierarchical techniques, like the Minimal Spanning Tree (MST) [Rohlf 1973] method,

start by assuming that each component of a workload is a cluster. Then, the two clusters with the

minimum distance are merged to form a single cluster. The process iteratively continues until either

all the workload components are grouped into a single cluster or the desired number of clusters is

reached. On the other hand, the non-hierarchical techniques, like the k-means algorithm [Hartigan

and Wong 1979], start from an initial partition that consists of the exact desired number of clusters.

Workload components are reassigned among clusters so that a particular cluster criterion, known as

distance function, is optimized.

Deciding about the number of clusters is a common problem in any cluster analysis study.

Generally, it depends on the goal of the study and it is desirable to keep this number small for

practicality. Various clustering algorithms are available in the literature [Jain et al. 1999].

2.2 DYNAMIC TECHNIQUES

Next, we examine techniques commonly used to describe and predict the behavior of the dynamic

aspects of the workload.

12 Said Elnaffar and Pat Martin

Markov Models. Knowing the number of requests of each type, or class, is not sufficient. It is also

important to know the order in which requests are executed in the system. If it is assumed that the

next request depends only on the current one, then the requests follow a Markov model [Howard

1960]. This model can be represented by a transition matrix, which gives the probability of moving to

the next state given the current one. A corresponding state transition diagram can be easily constructed

from the transition matrix. Figure 4 shows an example of a transition diagram in which the

probability of a job using the disk after visiting the CPU is 0.4, the probability of it returning to the

CPU from the disk is 0.8, and so on.

Markov models are used to describe the transitions between any system states, not just between

system resources. For example, in a software development environment that provides several types

of software tools, we can use a transition matrix to describe the probability of transitions between

the different types of development tools like editors, compilers, linkers, and debuggers.

Prediction Using Neural Networks. Although getting a perfect prediction is a very hard problem,

neural networks can be used to obtain reasonably good predictions in some cases [Mehrotra et al.

1997]. Feedforward as well as recurrent networks are commonly used for this purpose. The prediction

problem can be viewed as a function approximation problem, in which the function values are

represented as time series, that is, a sequence of values measured over time. Based on the knowledge

Figure 4. A state transition diagram representing a Markov model.

Client

CPUDisk

0.5

0.8

0.4

1
0.2

0.1

Characterizing Computer Systems’ Workloads 13

of the most recent d values of a time series, the neural network can be trained to predict the d+1

future value. The accuracy of predicting the values of a parameter may increase if a multivariate time

series and the correlations among all workload parameters are taken into account [Menascé et al.

1994].

Typically, two types of predictions are considered: short-term, or one-lag, and long-term, or multi-

lag, predictions. In one-lag predictions, the forecasting of the future value is based just on the past

actual values. Multi-lag prediction also exploits some of the predicted values in order to predict

future values. An example of multi-lag prediction is forecasting the value of a time series a year from

today while the values for the next eleven months are unknown.

Moving Average. This is a simple prediction technique in which the next forecasted value is the

average of the previous ones. This method shows very good results if the data is almost stationary,

that is, with little variation [Letmanyi 1985]. However, it is not suitable for long-term prediction as it

is not capable of predicting more than a single value at a time. The forecasted value can be

calculated as follows:

n
xxxf nttt

t
11

1
+−−

+
+++

=
K

where 1+tf is the forecast value for period t+1, tx is the actual value at time t, and n is the number of

previous observations. It is not always easy to determine the number of periods, n, that should be

used. Thus, different values of n may be examined in order to find the one that achieves the least

mean squared error (MSE), which is calculated as follows:

n
fx

MSE
n

t tt∑ =
−

= 1
2)(

14 Said Elnaffar and Pat Martin

Exponential Smoothing. Exponential smoothing is similar to the moving average described earlier

in terms of using the average to predict the next value. It is particularly useful for short-term

forecasting and when the data is stationary. However, it differs from the moving average in the way

it calculates the forecast value; it puts more weight on the most recent historical observations. The

idea stems from the hypothesis that the latest observations give a better indication of the future.

Here, the forecast value 1+tf is calculated as follows:

)(1 tttt fxff −+=+ α

where α is the smoothing weight (0<α<1). Again, some values of α are better than others in terms of

getting the least MSE, and additional tests help to choose a suitable one.

Regression Methods. The value of a variable, called the dependent variable, can be predicated as a

function of other variables, called independent variables, using regression models. Many mathematical

forms exist, which describe the relationship between these variables. A linear relationship is a

common assumption used to estimate the values of the dependent variable [Menascé et al. 1994].

User Behavior Graphs. User Behavior Graphs (UBG) are considered as the basis for several

workload models [Calzarossa et al. 1990; Calzarossa and Ferrari 1986]. They are similar to the state

transition diagrams used in Markov models and are commonly used to describe the workload of

interactive systems, such that each user has her own UBG [Ferrari 1984]. A UBG is a probabilistic

graph whose nodes represent the different command types issued by the user, and whose arcs

represent the transition from one command type to another throughout a user session.

Probabilistic Attributed Context Free Grammar. A Probabilistic Attributed Context Free

Grammar (PACFG) [Fu 1974] is a central means of constructing generative workload models,

especially in systems that have a hierarchical nature, like client/server and WWW environments

[Kotsis et al. 1997; Raghavan et al. 1994]. A PACFG can translate views between the different layers

Characterizing Computer Systems’ Workloads 15

of the system hierarchy. For example, a PACFG can map the client-oriented view of the workload,

such as commands submitted during user sessions, to a low-level system view like TCP/IP protocol

requests.

 A PACFG is a 3-tuple GA = {G, A, Q} where G is the regular grammar defined as G = {VN, VT,

P, S}. VN and VT are a set of non-terminal and terminal symbols, respectively, P represents a set of

production rules, S is the start symbol, A is a set of attributes and Q is a set of probabilities

associated with P. At each layer in the hierarchy, the system supports a set of operations that are

represented by non-terminals. The mapping of a particular layer’s operations to the operations of the

next layer is achieved by expanding each of the non-terminals to a sequence of non-terminals or

terminals at the next lower level. Such an expansion is controlled by the production rules (P) and the

associated set of probabilities (Q). Each non-terminal has two attributes s and e, which respectively

denote the start and end times of an operation, such as a user session, occurring at a particular layer.

The duration of an operation is the difference between s and e.

3 CASE STUDIES

In this section, we survey case studies of different types of computer systems, namely batch and

interactive systems, client/server systems, database management systems, parallel systems, and

WWW systems. Throughout these case studies, we focus on the workload characterization aspects

of each system type, and identify the most commonly used techniques. We examine different case

studies for each type of system and summarize our findings in a table. A row in these tables

represents a major characterization technique (e.g., clustering) used to analyze the workload of that

type of computer system. Respectively, the columns of the table represent the technique used, the

workload properties explored (i.e., static or dynamic), the methods used (e.g., k-means), the

approach followed (i.e., functional or resource-oriented), the basic workload component considered

16 Said Elnaffar and Pat Martin

(e.g., transaction, URL, session, etc.), the input parameters analyzed (e.g., # of files), the workload

type (i.e., interactive, batch, or scientific), the purpose of the study, some of the useful results

obtained, other techniques used in combination with this technique, and some references to case

studies that used this technique.

3.1 BATCH AND INTERACTIVE SYSTEMS

A number of characterization techniques appeared in early studies of interactive and batch

computer systems. Interestingly, these techniques are still the basis of approaches adopted in recent

studies of various computer systems. In general, the different clustering and factor analysis

techniques are commonly used to describe the static aspects of the workload while stochastic

processes, numerical fitting techniques and graph based approaches are used to capture the dynamic

behavior of the workload as it changes over time.

Agrawala et al. [1976] rely on clustering to extract the significant clusters in a dual processor

scientific environment. The analysis depends on parameters like the CPU time, number of files,

number of job steps, and number of I/Os per device type. A functional and resource-oriented

clustering procedure is proposed by Serazzi [1981]. He uses clustering methods to distinguish

program classes according to the consumption of six resources. In this study, the k-means method is

used as a non-hierarchical clustering technique, and the Minimum Spanning Tree (MST) technique

as a hierarchical one. As a result of this resource-oriented analysis, nine clusters are identified. These

clusters are further investigated and refined by considering the functionality, such as editing,

compilation or execution, of the programs and their programming languages like COBOL or

FORTRAN. Thus, more descriptive clusters, like compilation of COBOL programs with an I/O

intensive execution, are extracted.

Characterizing Computer Systems’ Workloads 17

Factor analysis methods can be useful in reducing the dimensionality of the analyzed data, and in

extracting distinct characteristics of the programs types. For example, Serazzi [1981] uses the

Principal Component Analysis (PCA) to identify six factors that explain the correlations and the

variance among the six resource-oriented parameters under consideration. Three of the six factors

account for more than 75% of the total variance of the data set. Such information, together with the

clustering results, help to simplify the workload model by reducing the number of parameters to be

considered.

Furthermore, PCA helps distinguish the characteristics of program types such as compilation and

execution. Figure 5 displays the projections of the demands of different programs’ compilation on

the subspace represented by factor 1 and factor 3. The programs are clustered according to the

different memory demands (factor 3) placed by various compilers. The internal variations within

each cluster are due to the different I/O and CPU times (factor 1).

As we mentioned earlier, other techniques, such as stochastic processes, numerical fitting and

graph-based techniques, can be used to obtain a compact representation of the dynamic

Figure 5. Distinguished clusters of compilers
projected within the factor 1-factor 3 subspace
[Serazzi 1981].

18 Said Elnaffar and Pat Martin

characteristics of workloads. Haring [1983], for example, looks at an interactive workload as a

hierarchy that starts at the user session and is composed of a sequence of jobs. Each job consists of

a set of tasks, and each task is comprised of a sequence of statements or commands. Eventually, the

lowest level of the hierarchy consists of the physical resources consumed by each statement.

At first, clustering techniques are used to group the jobs according to the software type (e.g.,

compiler, linker, or loader). Seven groups are identified. At the task level, a Markov chain, whose

states correspond to the software types used by the job, is employed to describe the users’ behavior.

The transitions between the states denote the probable sequence within the jobs belonging to the

different clusters. Figure 6 illustrates the nine states in this model: seven states correspond to the

identified software types, and the two extra states, BEGIN and END, are artificially introduced to

denote the beginning and the termination of a job. Further experiments show that, in most of the

clusters, a third order Markov chain can adequately describe the properties of the sequences.

Some analytical models can be produced by using numerical fitting techniques in order to

construct a parametric model for the interactive workloads. These analytical models are capable of

expressing the fluctuation in the arrival patterns of the workload components. For example,

Calzarossa and Serazzi [1985] collect the arrival times of the jobs for a month. Figure 7 depicts the

Figure 6. Using Markov chain in modeling an
interactive workload [Haring 1983].

Characterizing Computer Systems’ Workloads 19

arrival rate of jobs in a typical day, from 8:00am to 6:00pm. As we can see, peaks take place in the

morning, around 11:00am, followed by a decrease until 1:00pm. The afternoon seems constant but

still lower than the morning rates. The dotted curves in the diagram refers to the estimated rate

function while the solid one refers to the corresponding polynomial function produced by the fitting

technique. Adopting and applying this technique for several days shows that an eight-degree

polynomial function is a suitable representation of all the analyzed arrival jobs. As a result of this

analysis, various polynomial functions are reached. By clustering the coefficients of the various

polynomial functions, three of them are recognized as good representatives of the whole arrival

pattern.

Another dynamic technique commonly used to characterize the workload in interactive systems is

User Behavior Graphs (UBG). Calzarossa and Ferrari [1986] adopt UBGs as a means of

constructing a synthetic representation of a workload in terms of the command types, their resource

demands and their sequence. The study considers data measured for 60 users of an interactive

system running UNIX operating system. Initially, a functional approach is adopted in which the

commands are grouped into clusters according to their types. A user behavior graph is then

constructed in which each node denotes one of the formed clusters. Table 2 summarizes the

commonly used characterization techniques in batch and interactive systems.

Figure 7. The estimated rate (dotted curve) and the polynomial arrival rate (solid curve) for a one-day activity
[Calzarossa and Serazzi 1985].

We gratefully acknowledge the financial support from IBM, CITO, and NSERC.

Technique Static/
Dynamic

Method Approach Component Parameters Workload
Type

Purpose Results Other Techn.
Combined

Case Study Examples

Clustering Static k-means,
Minimal
Spanning
Tree

Resource-
oriented
(Mostly),
Functional

Job, program CPU time,
#of files, #of
Job steps,
#of I/Os per
device type

Batch,
Interactive

Distinguish
program/command
/task classes
according to their
functionality or
resource
consumption

(7-9)
homogeneous
groups

Markov Models,
User Behavior
Graphs

[Agrawala et al. 1976;
Serazzi 1981; Haring
1983; Serazzi 1981;
Calzarossa and Serazzi
1985; Calzarossa and
Ferrari 1986]

Factor
Analysis

Static Principal
Component
Analysis

Resource-
oriented

Program CPU time,
disk I/Os,
language,
memory

Batch Reduce
dimensionality of
Data; Identify
characteristics of
each program types

(2-3) factors
accounting for
the majority of
the variance in
the data set

Clustering [Serazzi 1981]

Prediction
Models

Dynamic Markov
Chain

Functional Job Task type,
user state,
timestamp

Interactive Describe
user/system
behavior as it
transits from one
state to another

Transition
matrix or state
diagram
describing the
probable
sequence of
jobs or tasks

Clustering [Haring 1983]

Numerical
Fitting

Dynamic Linear and
non-linear
Regression

Resource-
oriented

Job Arrival rate,
timestamp

Interactive Model workload
arrival pattern

Parametric
model of high-
degree
polynomial
functions

Clustering [Calzarossa and Serazzi
1985]

Graphs Dynamic User
Behavior
Graph

Functional
, resource-
oriented

Command Command
type and
sequence,
resource
consumption

Interactive Describe
user/system
behavior as it
transits from one
state to another

A probabilistic
graph model

Clustering [Calzarossa and Ferrari
1986]

Table 2. Characterization techniques used in batch and interactive systems.

We gratefully acknowledge the financial support from IBM, CITO, and NSERC.

3.2 CLIENT/SERVER SYSTEMS

A client/server system consists of clients connected to servers through a network. Distributed file

systems, distributed database systems, distributed multimedia systems, and WWW1 applications, are

examples of client/server systems. They can be seen as a hierarchical structure composed of three

layers: client, network, and server. The clients generate requests that get transmitted through the

network and are received by a server. The server fulfills the requests and sends back the replies to

the client. Hence, depending on which layer is under consideration, workload consists of requests, as

viewed at the client and the server layers, or packets, as viewed at the network layer.

In general, in the network layer, packet generation rate, packet size, and the routing of packets are

used as parameters. We also may consider some protocol-dependent parameters like the number of

packets generated per message together with their distribution. After deciding what parameters are

to be monitored, the measurement tools are determined. Either special purpose devices are used or

ad hoc test and monitoring tools are instrumented.

At the client and server layers, if the available counters and monitoring tools are not sufficient for

collecting data then extra tools must be devised by instrumenting the client or the server. For

example, web browsers can be instrumented to capture the arrival time of the requests, the size of

the received file, the URL, and the user session [Crovella and Bestavros 1996]. At the server layer,

Dilley et al. [1998] instrument the HTTP daemon to capture CPU and disk usage for each request.

Likewise, Baker et al. [1991] instrument the kernel in a distributed file system to obtain information

about file lengths and access times from each remote file system.

At the network layer, different software and hardware monitors are used to collect performance

data. The software monitor, tcpdump [Northcutt et al. 2000], for example, can capture the flowing

1 Covered in more detail in Section 3.5.

22 Said Elnaffar and Pat Martin

packets on the network, and provide user level control of the collected data. This control includes

filtering on per host, protocol, or port basis. Parameters such as packet arrival times, packet lengths,

port number, and source and destination hosts are recorded. Sniffers [Northcutt et al. 2000] are an

example of a hardware-monitoring tool that has similar data gathering capabilities.

By analyzing the measures collected from the client, network, and server layers, a model of the

overall workload of a client/server system can be obtained. Most of the existing studies characterize

the workload of each layer separately. In the rest of this section, we survey some case studies and

describe how they measure and analyze the parameters at each layer.

Characterization at the Client and Server Layers. At the client layer, parameters like file size and

arrival times are usually considered. It has been noted that these parameters have heavy-tailed

distributions, especially in the Web environment [Cunha et al. 1995; Crovella and Bestavros 1996].

The heavy-tailed distribution of the file sizes may be caused by multimedia files. Nevertheless, even

pure text files have the same characteristics, but using multimedia files, like audio, video, and images

increases the tailing of the distribution. Analyzing the distributions of the file sizes and the number

of accesses to these files may reveal some characteristics in the user behavior. For example, an

inverse correlation has been observed between file accesses and file sizes; in other words, most of

the users tend to request small files.

Bodnarchuk and Bunt [1991] apply a synthetic workload model to a distributed system file server

in a UNIX/NFS environment. This model is the result of analyzing the actual workload for a period

of six weeks, which was obtained by capturing the requests to, and responses from, the file server.

Four key parameters, namely, the frequency distribution of the requests, their inter-arrival time

distribution, the file referencing behavior and the distribution sizes of read and write requests, are

analyzed. The analysis simplifies the description of the model by understanding the behavior of the

Characterizing Computer Systems’ Workloads 23

requests. For example, some request types are considered significant because they are dominant

while others can simply be ignored. An exponential process is not an appropriate representation for

the request arrival times because the average inter-arrival time and its variance are equal to 0.50 and

121.23 seconds, respectively. The model was then constructed based on a set of parameter values

observed during the workload characterization stage. In Section 3.5, we provide more examples of

workload characterization that take place at the server layer.

Characterization at the Network Layer. At the network layer, the early studies collected

measurements from Ethernet networks [Shoch and Hupp 1980; Gusella 1990]. The workload

consists of a sequence of network packets. To characterize such a workload, several parameters are

considered: packet length, packet interarrival time, and error rate. For these parameters, basic

statistics along with their distributions are computed. Results show that the packet lengths have a

bimodal distribution (as it has two peaks), whereas the inter-arrival times of the packets have a

heavy-tailed distribution.

Shoch and Hupp [1980] characterize the traffic of a 2.94 Mbps Ethernet local area network. The

network consists of 120 machines used for different kinds of applications like file transfers, file

sharing and shared databases. The workload of this network is analyzed for a 24 hour period in

terms of the traffic and the inter-arrival time of the packets. It is noticed that the behavior of the

load is related to the time, that is, it is very heavy during the daytime, with a dip at lunch time, and

light at night. The sources and destinations are encoded in a traffic matrix, which reveals the

frequent patterns and the potential bottlenecks in the network. The packet size varies according to

the traffic type (i.e., acknowledgements, file transfers, etc.).

Network traffic workload can also be characterized from a functional view point. For example,

Gusella [1990] analyzes the network load per protocol in a large 10-Mbps Ethernet local area

24 Said Elnaffar and Pat Martin

network consisting of diskless workstations. The measurements are collected by instrumenting the

kernel of a dedicated UNIX machine. The study reveals that protocols like TPC, NFS and ND

(Network Disk) account for most of the network traffic. The data collected consists of the protocol

headers together with the timestamps of all the packets flowing in the network. By observing the

distributions of the interarrival times of the packets, it has been discovered that TCP is slow

compared to NFS and ND.

The self-similarity notion is considered a fundamental characteristic of network traffic in a number

of studies [Leland et al. 1994; Paxson and Floyd 1995]. Packet arrivals are characterized by a bursty

nature. The network traffic can be viewed as the aggregation of bursty traffic generated by

independent sources. Increasing the number of these sources increases the burstiness of the traffic.

The self-similarity notion is manifested by the burstiness of the packet arrivals. By plotting the

packet arrival counts, that is, the number of packet arrivals per time unit, and changing the time unit,

the arrival pattern maintains the same bursty structure on different time scale. It has been discovered

that this bursty arrival process characterizes the overall and the per protocol traffic, like telnet and ftp

protocols, and applies to local and wide area networks. This network behavior may be an exact

reflection of the user’s behavior, which is characterized by a certain number of pauses. Statistical

methods, namely time-domain analysis based on R/S statistic, the variance-time analysis, and the

spectral-domain method using periodograms, are typically used to estimate the Hurst parameter which

is used to measure the degree of self-similarity.

Modeling the Whole System. It should be noted that an overall model of a client/server system

should take into account the analysis of client, network, and server layers together. An early study by

Calzarossa et al. [1988] reflects this notion by introducing a general approach for characterizing the

workload in network-based systems. Their methodology is based on a layered structure that logically

Characterizing Computer Systems’ Workloads 25

subdivides the hardware components into three classes: user terminals, processing nodes, and

communication subsystems. At each of these three layers, different basic workload components,

which demand different physical resources, are identified. Probabilistic graphs are used to model the

workload at each layer. Table 3 summarizes the parameters and the techniques used to characterize

the workload at each layer in this study. This type of characterization is performed at each layer

separately, without defining relationships or mapping mechanisms between one layer and another

one.

Based on this hierarchical view, the term networkload was introduced [Raghavan et al. 1994]. The

networkload is a collection of inputs generated by the user or the client. Figure 8 shows the session,

command, and request layers identified in the networkload notion. Raghavan et al. use a

Probabilistic Attributed Context Free Grammar [Fu 1974] to build a generative model that considers

the hierarchical nature of the client/server environments and is capable of generating these

sequences. In order to obtain such a model, data are collected at different layers and reduced using

clustering techniques. They are also analyzed independently to estimate the characterizing

parameters. The derived model can be used as input to a simulation model of a single

server/multiple clients environment. Table 4 summarizes the commonly used characterization

techniques in client/server systems.

Layer Parameters Technique

User Terminals Arrival Time
Command Type

User Behavior Graph

Processing Node Arrival Time
Request Type
Hw/sw resource consumptions

System Graph

Communication Subsystem Arrival Time
Message Type
Message Length
Source/Destination Addresses

Network Graph
Traffic Flow Matrix

Table 3. The characterization technique and the measured parameters used in the layered structure scheme
[Calzarossa et al. 1988].

26 Said Elnaffar and Pat Martin

Figure 8. The hierarchical structure of the networkload. A
user session consists of a set of commands. Each command is
translated to a set of low-level system requests.

S1 S2 S3 S4 S5

C1 C2 C3

R1

Sessions

Commands

Requests

R4R2 R3

We gratefully acknowledge the financial support from IBM, CITO, and NSERC.

Technique Static/
Dynamic

Method Approach Component Parameters Workload
Type

Purpose Results Other Techn.
Combined

Case Study
Examples

Statistics Static,
dynamic

Exponential/
Poisson
processes,
Bimodal
distributions,
variance,
averages,
time-domain
analysis
based on
R/S statistic

Functional –
characterizing
load per protocol
or file type

File, packet #of requests, inter-
arrival time, file
references, #of
I/Os, packet
lengths, error rate

Interactive Model the
reference
behavior at file
servers

Distributions of
requests and
their arrival;
discovering self-
similarity and
burstiness;
understand user
behavior

- [Cunha et al.
1995; Crovella
and Bestavros
1996;
Bodnarchuk
and Bunt
1991; Shoch
and Hupp
1980; Gusella
1990; Leland
et al. 1994;
Paxson and
Floyd 1995]

Graphs Dynamic User
Behavior
Graph
(UBG)

Functional,
resource-
oriented

Command Arrival time,
command type,
message length,
source/destination
addresses

Interactive Model the
workload at user,
system, network
levels (separately)

A model
representing user
and system
behavior

Clustering [Calzarossa et
al. 1988]

Grammar Dynamic Probabilistic
Attributed
Context Free
Grammar
(PACFG)

Functional Session,
command,
network
request

Arrival time,
command type,
network request
type

Interactive Build a
generative model
that considers
the hierarchical
nature of
client/server

A model used as
input to a
simulation model

Clustering [Raghavan et
al. 1994]

Clustering Static k-means Functional,
resource oriented

User sessions,
commands,
network
requests

Command type,
network request
type

Interactive Reduce the
analyzed data

Distinctive
groups of
commands and
network requests

PACFG, UBG [Raghavan et
al. 1994]

Table 4. Characterization techniques used in client/server systems.

We gratefully acknowledge the financial support from IBM, CITO, and NSERC.

3.3 DATABASE MANAGEMENT SYSTEMS

As database management systems (DBMS) become increasingly popular and are often part of larger

systems, they require considerable tuning to get them working at an optimal performance level [Lo

et al. 1998]. As in any computing system, identifying the characteristics of the workload should aid in

tuning and configuring these systems more effectively.

The significance of characterizing the DBMS transactional workload has been recognized by the

DBMS community and by the Transaction Processing Performance Council (TPC), which is a non-

profit organization that produces benchmarks that measure the performance of a system [TPC].

These benchmarks also provide researchers with synthesized test workloads for conducting

experiments.

The most important classes of workloads in the database market are online transaction

processing (OLTP) and online analytical processing (OLAP). OLTP workloads support day-to-day

business activities, like banking, airlines reservations, and point of sale. They are characterized by a

large number of clients who access and update a small fraction of the database through running

transactions. The TPC-C benchmark simulates this type of workload [TPCC 2001]. On the other

hand, OLAP workloads support business analysis and consist of long read-only queries operating on

information already stored by an OLTP system. As opposed to OLTP, OLAP queries span large

portions of the database. The TPC-H and TPC-R benchmarks are examples of OLAP workloads

[TPCH 1999; TPCR 1999]. Recently, due to the popularity of the Internet and the e-commerce

applications, a new benchmark, TPC-W, has been introduced, which has the flavor of both OLTP

and OLAP workloads [TPCW 2001].

Characterizing the workload in database systems is usually based on analyzing traces and

reference sequences. Traces are a collection of measures, such as pages read/written, number of

locks and number of SQL statements, produced by all transactions being processed by the DBMS

Characterizing Computer Systems’ Workloads 29

within a time interval. Various techniques have been applied to characterize these traces, such as

clustering, prediction models, numerical fitting and descriptive statistics.

Clustering is one of the common techniques used in characterizing the workload in DBMS

environments. Transactions can be grouped according to their consumption of system resources [Yu

and Dan 1992], or according to their database reference patterns [Yu and Dan 1994], which is called

affinity clustering.

Artis [1978] characterizes the workload of an IBM MVS system with the aim of determining its

capacity. Several parameters are used for developing cluster descriptions of the transaction

workload, such as total database calls and total number of locks. By analyzing a sample of 2000

transactions, eight clusters are obtained. Four clusters among those eight account for more than

90% of the sample.

The idea of workload clustering provides valuable input to dynamic transaction routing (or load

balancing) algorithms that are responsible for assigning each incoming unit of work to a processing

node in the system. For example, Nikolaou et al. [1998] introduce new clustering approaches by

which the workload can be partitioned into classes consisting of units of work exhibiting similar

characteristics. The paper presents the CLUE and HALC clustering environments. CLUE has a set

of clustering algorithms that classify OLTP transactions into classes according to their database

reference patterns. HALC is a batch-mode heuristic clustering algorithm, designed to cope with the

large volume of input data that is typical for real-life applications. A third on-the-fly clustering

algorithm based on neural networks is also introduced. This algorithm can be used in an online

fashion in systems whose workload characteristics change over time, such as a banking transaction

processing system where people may perform different transactions depending on different days of

the month. The traditional batch-mode clustering algorithms are not adequate in this case. However,

such an algorithm should be fast, so that it does not degrade the performance of the system. For this

30 Said Elnaffar and Pat Martin

reason, an artificial neural network, called Optimal Adaptive K-Means [Chinrungrueng and Séquin

1995] is implemented. Experiments show that the heuristic clustering algorithm (HALC) and the

Optimal Adaptive K-Means perform very well in terms of the quality of clustering, for both

synthetic and real-life workload traces. On the other hand, the classic K-Means algorithm produces

disappointing results.

Some studies focus on characterizing the database access patterns in order to predict the buffer

hit ratio [Dan et al. 1993; Dan et al. 1995] and the user access behavior [Sapia 2000a]. A new

approach, Predicting User Behavior in Multidimensional Information System Environment

(PROMISE) [Sapia 2000a], identifies the user’s access patterns in order to improve caching

algorithms of OLAP systems. This approach models the OLAP query patterns using Markov chains

and accordingly provides a prediction model for such patterns.

The idea of PROMISE is to provide the OLAP cache manger with information about the high-

level (i.e., not resource-oriented) access patterns of the queries in order to make predictive

prefetching. At some point during an OLAP session, the algorithm efficiently computes the

possibilities for a set of queries to be executed in the near future. However, in order to perform

predictive prefetching, the workload must be navigational and the think time between two accesses

must be long enough to prefetch the results. In OLAP systems, the navigational nature of the

workload is guaranteed as long as the users interactively formulate their next request using the

results of the previous results [Sapia 2000b]. This navigational sequence of queries is called a session.

In order to verify that the length of the think time is adequate, a workload of a real system, which

has the interaction behavior of 18 users, is monitored over a two-month period including 260

sessions containing 3,150 queries. The final analysis shows that typical OLAP sessions have

considerable think time length and are thus suited for prediction approaches.

Characterizing Computer Systems’ Workloads 31

Various statistical approaches are broadly adopted to analyze a large amount of data collected in

DBMS environments [Lewis and Shedler 1976; Gaver et al. 1976; Lo et al. 1998; Barroso et al. 1998].

For example, Lewis and Shedler collect the arrival times of the transactions recorded over six days.

They analyze and represent these times by means of a non-homogenous Poisson process. Using

fitting techniques, an exponential polynomial function of degree 8 was obtained that shows a good

approximation of the oscillatory nature of the Poisson process.

Many recent studies tend to characterize DBMS workloads on different computer architectures in

order to diagnose performance degradation problems [Keeton et al. 1998; Ailamaki et al. 1999; Lo et

al. 1998]. For example, Lo et al. [1998] examine the database performance on simultaneous

multithreading (SMT) processors. SMT [Eggers et al. 1997] is a computer architecture in which the

processor issues instructions from multiple threads in a single cycle. This study characterizes the

memory-system behavior of database systems running Online Transaction Processing (OLTP- using

TPC-B benchmark [TPCB 1994]), and Decision Support System (DSS- using TPC-D [TPCD 1996])

workloads by collecting traces from the Oracle database management system.

To better understand memory behavior, the different memory access patterns of both OLTP and

DSS workloads are compared in the different memory segments of programs. For each segment, L1

cache miss rate, memory footprint, average number references per 64-byte block, and average

number of accesses to a block until a cache conflict, are measured. By visualizing the graphs that

depict the references patterns made to blocks, it has been noticed that, within each segment, cache

reuse is not uniformly distributed across blocks, and for some segments is highly skewed, a fact

hidden by the averaged data mentioned above. The characterization shows that while DBMS

workloads have large footprints, particularly for OLTP, in the main memory, there is still substantial

reusability of data in a small, critical working set, which can be cached.

32 Said Elnaffar and Pat Martin

A similar study [Barroso et al. 1998] presents a detailed characterization of the memory system

behavior of three important classes of commercial workloads: OLTP, OLAP, and Web index search.

Barroso et al. use the Oracle commercial database engine for the OLTP and OLAP workloads, and

the AltaVista search engine for the Web index search. A wide variety of monitoring and profiling

tools available on the Alpha platform (e.g., IPROBE [Cventanovic and Bhandarkar 1994] and

ATOM [Srivastava and Eustace 1994]) were used. For example, the study provides a few general

statistics gathered with the DCPI (Digital Continuous Profiling Infrastructure) [Anderson et al.

1997] profiling tool, which is an extremely light overhead sampling-based profiling system based on

the processor event counters.

Analyzing reference strings in the database has been the focus of many studies. The identification

of locality of reference (i.e., accessing subsets of blocks of the database), of the sequentiality (i.e., the

accessing contiguous blocks) and of the transaction types provides preliminary information on both

the performance and the behavior of the database. Such studies are useful in identifying the possible

techniques to be adopted to enhance buffer replacement and concurrency control policies [Kearns

and DeFazio 1989; Klaassen 1992]. For example, a hierarchical-functional approach is proposed by

Klaassen to characterize workloads with different page reference behavior. Several parameters like

number of transactions completed, number of pages read/written, the mean transaction length (i.e.,

the number of different pages accessed per transaction) and transaction type were used. The

approach is independent of the database and of the application, and it is based on the following

three abstraction levels:

• The application level represents the user’s view point of the database, where data of the

application and its functions are defined and their interrelationships are identified.

• The transaction level associates transaction types with the functions identified in the

application level.

Characterizing Computer Systems’ Workloads 33

• The physical resource level defines low level resource usage, such as read/write page accesses,

CPU demands, and deadlocks, for each transaction type.

Klaassen’s approach shows that workload characterization can be done at different levels of

abstraction. For example, Yu et al. [1992] focus on characterizing the workload at the transactional

level. They study the structure and the complexity of SQL statements, the composition of the

relations and the views, and the run-time behavior of the transactions and the queries, in a large

industrial production system that runs DB2.

The analysis in this study depends largely on basic statistical summaries such as averages and

variations, correlations, and distributions. An SQL trace of a two-hour interval and an image of the

database catalog are obtained. To explore the static characteristics, embedded information, such as

the various descriptions of tables, views, columns, indices, keys, static SQL statements, table spaces,

etc., in the DB2 catalog are analyzed. Useful statistics are also collected about the different parts of

the SQL statement such as the FROM, WHERE, GROUP BY, HAVING, and ORDER BY

clauses.

The other part of the study focuses on the description of the run time behavior of the workload.

Useful summaries, such as the number of static vs. dynamic SQL statements executed, the average

response time for each transaction type, the number of rows processed or scanned, number of

relations involved in the SQL statements executed, etc., are obtained. These results may provide

important information needed to build a benchmark workload to evaluate alterative design trade-

offs of database systems.

Extensive use of descriptive statistics is exercised in another empirical study performed by Hsu et

al. [2001]. They systematically analyze the characteristics of the workload of the standard

benchmarks TPC-C and TPC-D, especially in relation to those of real production database

workloads. The characteristics of the production database workload of ten of the world’s larges

34 Said Elnaffar and Pat Martin

corporations are examined and compared to TPC-C and TPC-D. The characterization was made

more useful for subsequent mathematical analyses and modeling by others, by fitted the data to

various functional forms through nonlinear regressions solved by Levenberg-Marquardt method

[Press et al. 1986]. In order to reduce the system disturbance, the trace records were collected in a

shared-memory before batch writing them asynchronously to disk. This study showed that the

production workloads exhibit a wide range of behavior, and in general, the two TPC benchmarks

complement each other in reflecting the characteristics of the production workloads. Some aspects

of real workloads, however, are still not represented by either of the benchmarks.

Table 5 summarizes the commonly used characterization techniques in database systems.

We gratefully acknowledge the financial support from IBM, CITO, and NSERC.

Technique Static/
Dynamic

Method Approach Component Parameters Workload
Type

Purpose Results Other Techn.
Combined

Case Study
Examples

Clustering Static Heuristic,
Neural network,
k-means

Resource-
oriented

DB
transaction

#of database
calls, #of locks,
#of references

Batch,
interactive

Capacity
Planning, load
balancing

(4-8) clusters Statistics [Yu and Dan 1992;
Yu and Dan 1994;
Artis 1978;
Nikolaou et al.
1998;
Chinrungrueng and
Séquin 1995]

Prediction
Models

Dynamic Markov chain Functional DB Query Think time,
sequence of
executing queries
in a session

Interactive Predict buffer
hit ratio; make
predictive
prefetching;
enhance
caching

A predictive
model for the
near future
executed queries

Statistics [Dan et al. 1993;
Dan et al. 1995;
Sapia 2000a]

Numerical
Fitting

Dynamic Non-linear
regression (e.g.,
Levenberg-
Marquardt
method)

Functional DB
transaction

Arrival time Interactive Model the
arrival pattern
of transactions

Degree 8 of
exponential
polynomial

Statistics [Lewis and Shedler
1976; Gaver et al.
1976; Lo et al.
1998; Hsu et al.
2001]

Statistics Static,
dynamic

Basic statistics
summaries (avg.,
distributions),
non-
homogeneous
Poisson process,
histograms

Functional DB
transaction,
application,
SQL
statement

Arrival time,
cache miss rate,
memory
footprint, # of
references to a
memory block,
read/write page
accesses, CPU
demands,
deadlocks,
number of
transactions
completed, #of
different pages
accessed per
transaction

Interactive Understand
memory
behavior in
different
architectures;
enhance
buffer
replacement
and
concurrency
control

Degree 8 of
exponential
polynomial,
cache reuse
distribution,
identifying
locality/sequenti
ality of reference.

Numerical
fitting

[Lewis and Shedler
1976; Gaver et al.
1976; Lo et al.
1998; Barroso et al.
1998; Keeton et al.
1998; Ailamaki et
al. 1999; Lo et al.
1998; Barroso et al.
1998; Yu et al.
1992; Hsu et al.
2001]

Table 5. Characterization techniques used in database systems.

We gratefully acknowledge the financial support from IBM, CITO, and NSERC.

3.4 PARALLEL SYSTEMS

Parallel applications are developed to solve problems in a shorter time and/or to solve larger

problems in the same time. To meet these objectives, we need to tune, debug and diagnose the

performance, which requires characterizing the parallel applications [Calzarossa et al. 2000].

Essentially, the characterization requires collecting measurements by adding instrumentation to the

source code of the application, to the operating system scheduler, or to the communication libraries

[Hofmann et al. 1994].

Parallel applications consist of a set of interrelated tasks. Each task is a functional unit that can be

executed on a processor. Data and functional dependencies exist among tasks and these

dependences are represented by communication and synchronization activities. A parallel application

can be represented by a task graph [Beretsekas and Tsitsiklis 1989] whose nodes represent the

application tasks and the arcs represent communication and synchronization controls. Figure 9

shows an example of a task graph.

Figure 9. An example of a task graph. The graph
nodes represent parallel tasks, and arcs represent
communication and synchronization controls among these
tasks.

Characterizing Computer Systems’ Workloads 37

In general, we can identify two types of metrics to describe parallel applications: static and dynamic.

Static metrics relate to the static properties of the parallel algorithms and describe the inherent

characteristics of parallelism of the applications. On the other hand, dynamic metrics describe the

behavior of an algorithm over time when it is executed on a given system and indicate how

effectively the parallelism is exploited.

The static and dynamic metrics can give preliminary information about the behavior of the whole

application by timing parameters such as execution, computation, communication, and I/O times,

and volume parameters, such as number of communications, I/O operations, and floating-point

operations. By analyzing these parameters, the behavior of the parallel application becomes more

understandable as we discover the correlations and tradeoffs among various performance

dimensions such as computation, communication and synchronization activities, and I/O demands.

We can derive static metrics, such as those shown in Table 6, by analyzing the task graph

[Majumdar et al. 1991; Sevcik 1989]. N reflects the task granularity, while the problem size deals with

the size of the data set under consideration. The depth is the longest path in the task graph, in terms

of the number of nodes starting at the initial node and ending at the final node. It is directly related

to the execution time of the algorithm. The in-degree and out-degree relate to the synchronization

complexity. If a node has a large number of predecessors, it most likely has to wait for

Static Metric Description

N Total number of nodes
Problem size The size of the data set
Depth Longest path between input

and output nodes
In-degree Average number of direct

predecessors of all the nodes
Out-degree Average number of direct

successors of all the nodes
Maximum cut Max number of arcs taken

over all the possible cuts
Table 6. Static metrics derived from a task
graph of a parallel application [Calzarossa
and Serazzi 1993].

38 Said Elnaffar and Pat Martin

synchronization. The maximum cut, which is the maximum number of arcs taken over all possible

cuts from the initial node to the final node, represents the maximum theoretical parallelism that can

be accomplished during the execution.

Other static metrics can describe how parallelism is exploited by the application on a given

architecture. Such metrics can be single values or signatures. Single value metrics, such as average

computation time, number of I/O operations, and average message lengths, can be determined by

executing a particular algorithm with a given number of processors p. Table 7 contains some

examples of single-value metrics.

A signature is the result of plotting one of the single value metrics as a function of the number of

available processors. For example, the speedup signature S(p) describes the gain in time achieved by the

parallel algorithm on p processors with respect to the serial execution. Speedup measures how much

the execution time decreases with an increase in the number of allocated processors. Figure 10

shows a speedup curve of an application executed with a number of processor ranging from 1 to 64.

Note the degradation of the performance when the number of processors is increased from 32 to

64, which shows that increasing the number of allocated processors does not always lead to a

performance enhancement. Apparently, the benefit of allocating additional processors does not

Figure 10. An example of a speedup signature. The performance degrades
as the number of processors increases from 32 to 64 due to the
communication and synchronization overhead [Calzarossa et al. 2000].

Characterizing Computer Systems’ Workloads 39

compensate for the costs due to the increase in communication and synchronization overhead. In

addition to speedup, other performance metrics such as efficiency, can be used to assess the effective

exploitation of allocated processors. Table 7 describes some examples of signature metrics.

Although the static metrics give insights into the parallelism that can be achieved by an

application, they fail to express how parallelism is exploited by the application as the execution

progresses. Thus, dynamic metrics, such as profiles and shapes, are used. Profiles express, as a function

of execution time, the number of processors that are involved in a particular activity. Table 7

describes some profile metrics and Figure 11(a) depicts an example. Shapes [Sevcik 1989] are better

tools for characterizing the behavior of a parallel algorithm as they derive more information from

profiles. A shape, as shown in Figure 11(b), is a cumulative plot of the fraction of execution time

when a certain number of processors are busy. The application shape is the fraction of execution

time in which a given number of tasks is active.

Metric Type Metric Description

Si
n

gl
e-

V
al

u
e

(s
ta

ti
c)

tcomp
tcomm
nmesseages
lmessages
nI/O

Avg. computation time
Avg. communication time
Avg. number of messages sent/received
Avg. length of the messages
Number of I/O operations

Si
gn

at
u

re
s

(s
ta

ti
c)

Tcomp (p)

Tcomm (p)

T (p)

S(p)

E(p)

Global computation time vs number of processors
Global communication time vs number of processors
Global execution time vs number of processors
Speedup vs number of processors (S(p)=T(1)/T(p))
Effeciency vs number of processors (E(p)=S(p)/T(p))

P
ro

fi
le

s

(d
yn

am
ic

) nbusy_proc

ncomm_proc

ncomp_proc

Number of busy processors vs execution time
Number of communicating processors vs execution time
Number of computing processors vs execution time

Table 7. Other metrics used to characterize parallel applications [Calzarossa and Serazzi 1993].

40 Said Elnaffar and Pat Martin

Another approach to characterizing parallel applications is to use multiple views [Le Blanc 1990].

For example, the processor and data parallelism views can be obtained. These views describe the

behavior of the processor against the data it has to process, and the interrelationships between the

processor and the other processors with respect to the communication and synchronization tasks.

These views are also useful in identifying any unbalanced load among the processors.

Several characteristics can be recognized by identifying application phases. The execution of an

application is seen as a sequence of computation, communication, and I/O phases. Carlson et al.

[1992] analyze the execution profile to identify the phases of which it consists. The profile is seen as

a sequence of alternating periods of roughly uniform processor utilization separated by periods of

(a) (b)

 (a) (b)

Figure 11. An example of an application profile (a) and its shape (b) [Sevcik 1989].

 (a) (b)

Figure 12. Example of execution profile (a). Phases are easily identified after smoothing (b) [Carlson et al. 1992].

Characterizing Computer Systems’ Workloads 41

sudden transition of processor utilization. Figure 12(a) shows an example of an execution profile.

Phases, which this execution profile consists of, are more easily identified in Figure 12(b) after using

smoothing techniques.

Recent studies [Rosti et al. 1998; Smirni and Reed 1998] focus on the characterization of

scientific parallel applications, which are typically described as computationally intensive and

becoming more I/O intensive due to the vast volume of data to be processed. The characterization

in these studies focuses on the behavior of I/O requests, such as reads, writes, and seeks. For each

of these I/O requests its count and duration are measured. The analysis of the temporal patterns of

I/O requests help identify different phases. These phases show the burstiness of the accesses and

their non- sequential behavior. They also show the presence of interleaved and strided patterns.

Table 8 summarizes the commonly used characterization techniques in parallel systems.

We gratefully acknowledge the financial support from IBM, CITO, and NSERC.

Technique Static/
Dynamic

Method Approach Component Parameters Workload
Type

Purpose Results Other
Techn.
Combined

Case Study
Examples

Graph Dynamic Profiles, shapes,
phases

Resource-
oriented

Application # of processors
being busy
computing or
communicating at
certain time

Scientific Identify
application
phases

Graphs of
communication,
computation,
and I/O phases

Statistics [Sevcik 1989;
Carlson et al.
1992; Calzarossa
et al. 2000;
Calzarossa and
Serazzi 1993;
Rosti et al. 1998;
Smimi and Reed
1998]

Statistics Static Signatures, avg.
computation/
communication
time, avg. # of
sent/received
messages, avg.
message length,
of I/O
operations

Resource-
oriented

Application Timing
parameters:
execution,
computation,
communication
times, I/O times,
Volume
parameters: # of
communications,
I/O operations,
floating-point
operations

Scientific Obtain
inherent
characteristics
of a parallel
application
run on a
specific
number of
processors.

Single-value
metrics, and
signatures

- [Calzarossa et al.
2000; Calzarossa
and Serazzi 1993;
Majumdar et al.
1991; Sevcik
1989]

Table 8. Characterization techniques used in parallel systems.

We gratefully acknowledge the financial support from IBM, CITO, and NSERC.

3.5 WORLD WIDE WEB SYSTEMS

Internet-based systems can be classified as client/server systems as described in Section 3.2, but we

prefer to devote this section to them because the literature is rich with research papers pertaining to

workload analysis issues. This should not be a surprise as we observe, day after day, the explosive

increase of Internet popularity.

E-Commerce applications are complex distributed systems. They combine the functionality of

several components, such as web servers, DBMSs and secured payment subsystems. As a result,

various methods, within different combinations, have been proposed and used to capture the

characteristics of e-commerce workloads.

Krishnamurthy and Rolia [1998] present a case study on Quality of Service (QoS) measures for

an electronic commerce server. They study the behavior of an electronic commerce server under

several controlled loads and study response time measures for several workload classes: individual

Universal Resource Locators (URLs), groups of functionally related URLs, and URL sequences.

They use an analytical model combined with empirical knowledge of server behavior to show that

mean response time can be a good predictor for the 90th-percentile of response times.

Initially, they chose to use Layered Queuing Models (LQM) and the Method of Layers (MOL)

[Rolia and Sevcik 1995] to model the system. LQMs are Queuing Network Models (QNMs)

[Lazowska et al. 1984] extended to include contention for software resources such as pools of server

processes as well as contention for hardware resources such as CPUs and Disks. Unfortunately, the

results obtained using Mean Value Analysis (MVA) show that these queuing models are not

sufficient to predict the 90th-percentile of response times. Accordingly, this approach is augmented

by using additional statistical manipulations guided by empirical data collected from existing systems.

Pitkow and Pirolli [1999] introduced improved models to predict the navigation behavior of

WWW surfers. This prediction ability may be exploited in different applications such as searching

44 Said Elnaffar and Pat Martin

through WWW content, recommending related WWW pages, predictive prefetching, and analyzing

web site designs.

Modeling and predicting user surfing paths typically involve tradeoffs between model complexity

and predictive accuracy. Pitkow and Pirolli’s goal is to explore predictive modeling techniques that

reduce model complexity without sacrificing predictive accuracy. Their proposed techniques predict

the future of surfing paths by merging a web-mining method that extracts significant surfing

patterns by the identification of longest repeating subsequences (LRS) [Crow and Smith 1992] and pattern

matching methods. The LRS technique reduces the complexity of the model by focusing on the

significant surfing patterns. Compared to various Markov models, the experiments in this research

show that longest repeating subsequence models, called Hybrid LRS-Markov models, are able to

significantly reduce the model size while retaining the ability to make accurate predictions.

Arlitt and Williamson [1996] present a WWW workload characterization study that focuses on

finding workload invariants, that is, characteristics that apply across all the data sets studied. Six

different data sets are used in this study: three from academic environments, two from scientific

research organizations, and one from a commercial Internet provider. These data sets represent

three different orders of magnitude in server activity, and two different orders of magnitude in time

duration, ranging from one week of activity to one year of activity. By using several basic statistical

techniques ten invariants are identified. These invariants are deemed important because they

potentially represent universal truths for all Internet Web servers. They are exploited to identify two

possible strategies for the design of a caching system to improve Web server performance, and to

determine bounds on the performance improvements possible with each strategy. The study

identifies the distinct tradeoff between caching designs that reduce network traffic, and caching

designs that reduce the number of requests presented to Internet Web servers.

Characterizing Computer Systems’ Workloads 45

Several relatively recent Web forces may someday undermine or change these ten Web server

invariants. These forces include Web crawlers, improved protocols for Web interaction, small scale

and Web caching architectures, and a growing trend toward the use of video, audio, and interactivity

on the Web (e.g., CGI, Java). It will be interesting to see how long these invariants remain true.

Formal grammars have also been used to model WWW applications’ workloads. Kotsis et al.

[1997] present an approach for generating a profile of requests submitted to a WWW server, such as

GET and POST commands, which explicitly takes into account user behaviors when surfing the net.

The Probabilistic Attributed Context Free Grammar (PACFG) [Fu 1974] is used to derive a model for

mapping user-oriented views of the workload, namely the conversations made within browser

windows, to the methods submitted to the Web servers.

This approach identifies six hierarchical layers from the user level, characterized in terms of

sessions, to the level of TCP/IP requests, that is, the actual load imposed on the network. This

approach differs from others in that it considers both the actual physical characteristics of the

system as well as the user-oriented view. Thus, the analyst is able to investigate both changes in user

behavior as well as the effects of changes in the system characteristics.

PACFG is general enough to cover any form of web activity (e.g., different browsers, different

protocols, JAVA applets, etc.). It can also be parameterized in order to define worst-case scenarios,

such as capturing the system behavior under heavy load. However, it would be interesting to assess

the expressiveness and representativeness of this grammatical approach in contrast to simpler

models of WWW traffic characterization.

Data warehousing and data mining technologies can be used to discover interesting

characteristics in Web logs. A knowledge discovery tool, WebLogMiner, for mining web server log

files has been developed [Zaïane et al. 1998]. The approach is mainly motivated by the fact that

46 Said Elnaffar and Pat Martin

condensing colossal files of raw web log data in order to retrieve significant and useful information

is a nontrivial task.

Once the multi-dimensional data cube is constructed, various OLAP techniques, such as drill-

down, roll-up, and slice-and-dice, are applied to provide further insights to the target data set from

different perspectives and at different conceptual levels. Some typical summarization includes the

following: domain summary, event summary, session summary, bandwidth summary, referring

organization summary, and browser summary. Figure 13 illustrates a simple yet, typical example of

summarization using this OLAP technique. It shows how many new messages were created on each

day of the week over a whole semester for a particular site.

In the next stage, data mining techniques are put to use with the data cube to predict, classify,

and discover interesting correlations and patterns. This project makes good use of several data

mining tasks [Han et al. 1997; Han and Fu 1995; Kamber et al. 1997] including summarization,

comparison, association, classification, prediction and time-series analysis. The latter is the most

important data mining task in the Web log analysis because all Web log records register time stamps,

and most of the analyses focus on time-related Web access behaviors. The time-series analysis

Figure 13. OLAP Analysis of Web log database. It
shows how many new messages were created on each day
of the week over a whole semester for a particular site
[Zaïane et al. 1998].

Characterizing Computer Systems’ Workloads 47

includes network traffic analysis, event sequence and user behavior pattern analysis, transition

analysis, and trend analysis.

Figure 14 shows the network traffic generated by a particular site over a four-month period. The

chart shows that the traffic had a general increasing trend over the four months, with monthly cycles

reflecting the peaks during the weekdays and valleys during the weekend. Also transition metrics are

obtained from the transition analysis for a given group of users over a certain period of time, which

indicates the probabilities one event follows another.

Graphs are commonly used to model the e-commerce workloads [Menascé et al. 1999;

Krishnamurthy and Rolia 1998]. Menascé et al. argue that the traditional workload characterization

for e-commerce sites in terms of hits/sec, pages viewed/sec, or visits/sec, are not appropriate.

According to their perspective, e-commerce workloads are composed of sessions. A session is defined

as a sequence of requests of different types made by a single customer during a single visit to a site.

Examples of requests for an online shopper are: browse, select, add to the shopping cart, search,

pay, and user registration. The allowed sequences of requests can be described by a state transition

graph called a Customer Behavior Model Graph (CBMG). Figure 15 shows an example CBMG. This

graph has one node for each possible state and transitions between these states. A probability is

assigned to each transition. Thus, different types of users may be characterized by different CBMGs

Figure 14. The analysis of the network traffic of a
site over a four-month period [Zaïane et al. 1998].

48 Said Elnaffar and Pat Martin

in terms of the transition probabilities. By analyzing the CBMG, useful metrics can be derived like

average session length, average number of items bought per customer visit, and buy to visit ratio.

Different classes of visitors to a site exhibit different navigational patterns. Each customer class

can be represented by its own CBMG, and workload characterization for e-commerce entails

determining the set of CBMGs that best characterize customer behavior. The study proposes a

resource-oriented workload characterization methodology for the e-commerce sites. As shown in

Figure 16, this methodology is based on two algorithms. The first one takes as input conventional

HTTP logs and generates a session log. The second algorithm takes as input the session logs and

performs a clustering analysis which results in a set of CBMGs that can be used as a compact

representation of the e-commerce workload. This approach is verified by generating artificial e-

commerce logs based on different CBMG patterns drawn from data collected form the operation of

real online bookstores. Afterwards, clustering algorithms are applied to the logs. The outcome is

groups of customers that exhibited similar navigational behavior. The algorithms are also applied to

logs of an actual e-commerce site. Table 9 summarizes the commonly used characterization

techniques in the World Wide Web systems.

Figure 15. Customer Behavior Model Graph for an
occasional buyer [Menascé et al. 1999]. Figure 16. Workload Characterization Methodology

proposed by [Menascé et al. 1999].

We gratefully acknowledge the financial support from IBM, CITO, and NSERC.

Technique Static/
Dynamic

Method Approach Component Parameters Workload
Type

Purpose Results Other Techn.
Combined

Case Study
Examples

Analytical
Modeling

Static,
Dynamic

Queuing Network
Model, Layered
Queuing Model,
Method of Layers

Functional,
resource-
oriented

URL CPU time,
disk I/Os,
Response
time, URL
sequences,
URL type

Interactive Study QoS
measures for E-
Commerce
Server

The mean response
time is a good
indicator for the
90th percentile of
response times

Statistics [Krishnamurth
y and Rolia
1998]

Prediction
Models

Dynamic Hybrid LRS-Markov
models

Functional URL URL
sequences

Interactive Predict the
navigation
behavior of
WWW surfers

Producing simple
and accurate model
better than
Markov’s

Markov Model [Pitkow and
Pirolli 1999]

Statistics Static Averages,
distributions,
histograms,
correlations, COV,
Hurst parameter,

Functional URL, File URL
timestamps,
Transfer size,
file size, file
type, request
success rate,
client locality

Interactive Discover Web
invariants

Discovering ten
web invariants

- [Arlitt and
Williamson
1996]

Grammar Dynamic Probabilistic
Attributed Context
Free Grammar

Hierarchical-
Functional,
resource-
oriented

User session,
HTTP
request,
TCP/IP
request

URL time
stamps, URL
type, think
time

Interactive Profile requests
submitted to
WWW servers

Map the high user-
oriented view to
low TCP/IP
requests

- [Kotsis et al.
1997]

Data mining
and data
warehousing

Static,
Dynamic

OLAP techniques:
Drill-down, roll-up,
slice-and-dice
Data Mining tools:
association,
clustering,
classification,
transition/trend
analysis

Functional,
Resource-
oriented

URL Timestamps,
IP addresses,
transfer size,
URL type, file
size

Interactive Discover
interesting
characteristics in
Web log

Discovering web
access patterns and
trends

Prediction
techniques
and time-
series analysis,
Clustering,
Statistics

[Zaïane et al.
1998; Han et
al. 1997; Han
and Fu 1995;
Kamber et al.
1997]

Graph Dynamic Customer Behavior
Model Graph
(CBMG)

Functional,
Resource-
oriented

Session Timestamps,
#of hits, # of
pages viewed,
#of visits

Interactive Model E-
commerce
workloads

Deriving useful
metrics from
CBMG like avg. #
of visits per user
state, avg. session
length, buy to visit
ratio.

Clustering [Menascé et al.
1999;
Krishnamurth
y and Rolia
1998]

Table 9. Characterization techniques used in World Wide Web systems.

We gratefully acknowledge the financial support from IBM, CITO, and NSERC.

4 CHARACTERIZATION FRAMEWORK

Based on the case studies surveyed in this paper, we propose a general framework for the workload

characterization process. The framework makes the process more systematic, emphasizes some

essential steps needed to derive a representatively good workload model, and prevents some

common problems.

The main difficulties that may be encountered throughout the workload characterization process

are:

• Difficulty of System Instrumentation. Systems need to be instrumented in order to obtain

performance measurements. This may require the insertion of some probes, like counters, into

the system itself or into the operating system. This task is challenging due to the complexity of

the systems and the typical absence of the source code.

• System Disturbance. Instrumenting the system is an intrusion that adds extra overhead. Hence,

the degree of intrusion should be minimized to reduce the perturbation of the system’s behavior

under the investigated workload.

• Complexity of Analyzing Large Volume of Performance Data. A large amount of system

measurements are needed to construct a workload model [Calzarossa et al. 2000], which

increases the complexity of managing and analyzing the data.

• Validating Model Representativeness. Assessing the workload model representativeness, that

is, how accurately the model represents the real workload, is a key issue [Menascé et al. 1994].

Normally, modeling tends to hide some details that might be desirable to study. Hence, a careful

decision should be made about the model’s abstraction level in the requirements analysis phase

(explained next). This should help identify how much information loss can be tolerated and what

important features must be included in the model.

Characterizing Computer Systems’ Workloads 51

• Model Compactness. The characterization process should result in a compact model. It is

impractical for the workload model to incorporate all the basic components of the real

workload. Ideally, a compact workload model should place a much smaller demand on the

system than the actual workload [Menascé et al. 1994].

Ferrari et al. [1983] describe a methodology for constructing a workload model. We augment their

methodology to produce a framework that introduces the following additional concepts:

1. Creating a Performance Database. Building a database for the workload parameter values provides a

robust way of storing and managing large volume of performance data. It also provides a solid

foundation for the application of any analytical technique that might be adopted in the

subsequent phases.

2. Distinguishing between the static and dynamic techniques. This distinction is sometimes important in the

analytical phase in order to choose the appropriate tool, and to create an adequately descriptive

executable workload model.

3. Using data warehousing and data mining technologies. In addition to the traditional analytical and

statistical techniques commonly used in workload characterization, we suggest in this framework

exploiting the capabilities of the data warehouse technology [Chaudhuri and Dayal 1997] and

data mining tools.

The multi-dimensional data cube in a data warehouse provides operations such as drill-down, roll-up, and

slicing and dicing. These operations offer online analytical processing (OLAP) capabilities, including an

engine for deriving various statistics, and a highly interactive and powerful data retrieval and analysis

environment. The data warehouse approach also overcomes the complexity problem stemming

from processing large data sets.

Besides the OLAP tools, the analytical capacity can be extended further by adopting data mining

techniques, which can discover implicit knowledge in the performance data that can be expressed in

52 Said Elnaffar and Pat Martin

terms of rules, charts, tables, graphs, and other visual forms for characterizing, classifying,

comparing, associating, or predicting the workload. Data mining techniques have been used to

discover interesting patterns and features in customers’ data that may lead to better marketing

strategies. Similarly, in the workload characterization framework, we mine for interesting patterns

and key characteristics in the system’s workload. The integrated use of data warehousing and data

mining has proven useful in analyzing web logs [Zaïane et al. 1998] and we believe that using both

technologies as part of the workload characterization methodology would be beneficial too. Figure

17 shows the framework of the workload characterization process. Deriving a workload model

consists of three phases: requirements analysis phase, construction phase, and validation phase.

Next, we describe these phases and explain the tasks involved in each of them.

Characterizing Computer Systems’ Workloads 53

Figure 17. Workload Characterization Methodology.

•Identify the objective of characterization
•Determine the level of abstraction
•Define the basic workload components
•Determine what parameters to monitor
•Decide about representativeness criterion

Execute Model

Apply Rep. Criterion

Representative? Calibrate Model Model is OK
Yes No

Data Mining
Tools

Workload Model

Preprocess/Filter

Collect Data

System

VV
AA

LL II
DD

AA
TT I

I OO
NN

Monitoring

CC O
O

NN
SS TT

RR U
U

CC T
T II

OO
NN

RR E

E Q
Q

UU
II RR

EE
MM

EE
NN

TT S
S

 AA
NN

AA
LL YY

SS II
SS

Instrumentation

Performance
 Database

DW and OLAP
Tools

Analytical/Statistical
Techniques

54 Said Elnaffar and Pat Martin

4.1 REQUIREMENTS ANALYSIS PHASE

The reasons for characterizing a system’s workload should be clear from the beginning because they

help derive the appropriate workload model. Therefore, based on a clear identification of the goals

of the performance study, analysts must determine the following:

Abstraction Level. Depending on the intended use of the model, the level of abstraction at which

the characterization will take place should be determined. The system can be viewed as a hierarchy;

the highest level in this hierarchy is functional and the lowest one is physical. At the functional level, for

example, the analyst may focus on identifying the types of applications executed in the system,

identifying the kinds of web objects that are requested frequently, or grouping database transactions

according to their functionality. At the physical level, they may categorize workload components,

such as transactions, TPC/IP requests, or user interactive commands, according to their resource

consumptions (e.g., CPU time, I/Os, and memory space). The higher the level, the lower the

amount of detail with which the workload can be described. The selection of the level of detail helps

in making other decisions like the choice of the basic workload component.

Basic Workload Component. The smallest unit of work must be determined. As shown in Figure

1, a workload component can be an application, a script, a command, a SQL statement, a user

session, a transaction, a CPU instruction, a request, or a job. For example, applications and CPU

instructions can be considered as basic workload components at the functional and physical levels,

respectively.

Workload Parameters. Depending on the abstraction level and the basic workload component,

parameters are chosen to give a quantitive description of the workload components. Examples of

workload parameters are packet size, arrival time, number of I/O instructions, memory space

demand, and number of file handles required. It is preferable to choose parameters that are

dependent on the workload rather than on the system. For example, response time and CPU time

Characterizing Computer Systems’ Workloads 55

are not appropriate as workload parameters since they are highly dependent on the system currently

executing the workload. In particular, those characteristics that have an impact on the system

performance should be included in the workload parameters. Parameters selection may also be

restricted by the capability of the monitoring tools currently available in the system.

Criteria of Evaluating Model Representativeness. The criteria of evaluating the accuracy and

representativeness of the derived model should be determined. They are used to validate the model

as explained in Section 4.3.

4.2 MODEL CONSTRUCTION PHASE

This phase consists of three main tasks:

Collecting and Preprocessing Performance Data. During the measurement interval, the

workload parameter values are collected from the system. The raw data may not be ready for direct

analysis, so, further processing may be needed to put the data in a clean state and an appropriate

format. For example, the raw data set usually contains noise and outliers that may distort the results

of the subsequence analysis. Furthermore, some type of transformations might be needed in this

step. For example, if one of the parameter’s density functions is highly positively skewed, a

logarithmic transformation is needed.

Creating A Performance Database. After preprocessing and filtering the raw data, a relational

database is created to store the performance data. The database facilitates information extraction and

data summarization based on individual attributes.

Analysis Stage. Analyzing the workload parameter values aims to extract the workload’s static and

dynamic features. In Section 2, we described some of the tools commonly used to perform the static

and dynamic analyses. The static analysis tools explore the intrinsic features of the workload and

partition the workload components into homogeneous classes or groups. However, in order to make

56 Said Elnaffar and Pat Martin

the derived workload model executable we need to capture the characteristics of the workload over

time in order to reproduce the correct workload mixes. Hence, the dynamic properties of some time

series are considered. Stochastic processes, numerical fitting techniques, and the various predictive

models are useful in describing the behavior of the workload over time. As depicted in Figure 17,

the traditional analytical/statistical techniques and the proposed data mining and OLAP tools can be

used, separately or together, to analyze the performance data in order to characterize the workload.

Analyzing the static characteristics helps to choose representative components (mixes) that can

reflect the key properties of the real workload. Analyzing the dynamic behavior of the workload

completes the picture by describing the distribution and the sequence of execution of these

workload components. Determining the static and dynamic characteristics of the workload can be

the ultimate goal of the workload characterization because such knowledge can be adequate to

facilitate tuning and enhancing the system’s performance. Hence, the characterization process may

stop at this point. However, the model can be further processed to generate an executable, runnable

model that can be practically ported to different systems to assess their performance. A benchmark

is an example of an executable workload model. The executable format of the workload model is

also a means of its validation, as explained next.

4.3 MODEL VALIDATION PHASE

Validating the workload model is sometimes not straightforward. One way of examining the

accuracy of the derived workload model is to assess its effect on the system compared with the

effect of real workload [Ferrari et al. 1983]. As can be seen in Figure 18, if the performance

measurements resulting from the application of the workload model and the real workload are the

same or proportional, then we have a good model. For example, Keeton and Patterson [2000]

proposed and evaluated simplified microbenchmarks for studying the architectural behavior of database

Characterizing Computer Systems’ Workloads 57

workloads. These microbenchmarks poses simple queries of the database to generate the same

dominant I/O patterns exhibited in more complex, fully-scaled workloads like TPC-C and TPC-D.

One of the potential benefits from this microbenchmark approach is smaller hardware requirements.

The representativeness of the new models was evaluated by comparing the processor and memory

system characteristics of the microbenchmarks with that of fully scaled workloads running on similar

hardware. These metrics were selected because most fully scaled database servers are configured

with enough disks to be CPU bound; hence processor and memory behavior are important factors

in determining database performance [Barroso et al. 1998].

Other techniques of validation may take into account criteria like arrival time of components and

the resource usage profile [Jain 1991]. If the derived workload model does not provide sufficient

accuracy then some calibration of its parameters (static characteristics) or for its component mixes

(dynamic characteristics) is required. The calibration process is repeated until a satisfactory level of

representation is reached.

5 CONCLUSIONS

Characterizing the system’s workload is an essential early step in any performance study. Although

workload characterization, like performance evaluation, is still considered more of an art than a

science, the methodology discussed in this paper can be deemed a general framework for deriving a

workload model. A substantial amount of details in this framework are highly dependent on the

objectives of the performance study as well as the type of system. We propose using data

Figure 18. Validating the representativeness of a workload model.

Workload
Model

System

Real
Workload

Compare
Performance

System

58 Said Elnaffar and Pat Martin

warehousing and data mining technologies as a promising analytical approach. It may provide a

potential solution for some of the well-known problems in workload characterization like the

difficulty of managing large volumes of performance data sets and the complexity of analyzing them.

This should lead to a better scalability, more interactivity, and a variety of different analyses possible

to perform.

The case studies surveyed in this paper show that a wide range of analytical techniques can be

used to extract the static and dynamic characteristics of the workload. More than one technique may

be combined in order to obtain the desired model. In general, we have noticed that identifying

distinct classes in the workload using the various clustering techniques is the main goal of many

studies.

The notion of multi-layer workload characterization has been adopted by many workload

characterization studies. It is based on viewing the system as a hierarchical structure, which allows

the characterization process to take place at any level in this hierarchy. For example, in network-

based systems, characterization can be accomplished at many levels: user level, application level,

protocol level, and network level.

A multi-layer characterization allows insight into how changes at the upper levels can affect the

lower levels, and enables the prediction of the impact of new applications or systems. By analyzing

the measures collected from each layer, a model of overall workload of the system can be obtained.

Nonetheless, we have found that most of the studies characterize the workload of each layer

separately. Probabilistic graphs techniques, such as User Behavior Graphs, have been commonly

used for modeling the workload at each layer.

Workload characterization typically relies on analyzing performance data collected from the

system. The choice of what to measure depends on the objective of the study, the workload features

to be evaluated, the level of abstraction (or details) required, and the availability of monitoring tools

Characterizing Computer Systems’ Workloads 59

to collect the proper measures. The selection of what to measure is critical. Indeed, there is a

tradeoff between the amount of detail to be measured and the perturbations caused by monitoring.

Measurements collected from the system are not only important to the analysis phase; they are also

useful for parameterizing the derived models with empirical data drawn from the real system. In

some cases, such parameterization is essential to obtaining a successful model.

 However, and as already pointed out, obtaining the proper measurements from the system is

sometimes challenging. For example, web logs have been used as the primary source of system data

to model the workload of WWW applications. While this may reflect the actual use of the resources

on a site, it does not record reader behaviors like frequent backtracking or frequent reloading of the

same resource if the resource is cached by the browser or a proxy. Other means of data gathering

like client-site log files collected by the browser, or a Java Applet have been suggested. However,

while these techniques solve such problems, they demand the user’s collaboration, which is not

always available. In some systems, for example networks, special equipment such as network cards,

bridges, routers, and gateways, constituting the network-based systems make the characterization

process much harder. As a result, new measuring tools have been devised in order to collect

parameter values from the system.

We believe that workload characterization will remain the focus of researchers and will constantly

keep progressing in order to exploit newly introduced techniques and to cope with the requirements

of new computer architectures. We also believe that no matter what new performance-oriented

architectures have to offer toward enhancing performance, the notion of characterizing the

workload and identifying its features should always lead to better improvements.

60 Said Elnaffar and Pat Martin

6 FUTURE DIRECTIONS

Some of the trends and challenges we expect to witness in the workload characterization field are

the following:

• New technologies and architectures will keep changing the way users approach computer

systems and interact with them, which will accordingly keep varying the workload characteristics

and constantly adding extra levels of complexity to the characterization process. For example,

ubiquitous computing, such as PDAs and appliances attached to the Internet, will add at least an

order of magnitude to the number of traffic sources, and will add different characteristics to the

workload [Crovella and Lindemann 2000]. New local communication technologies such as

Digital Subscriber Lines (DSL), cable modem, and Universal Mobile Telecommunications

System (UMTS), will affect the traffic patterns and intensities of workload components.

Understanding the impact of these changes, in terms of workload characteristics and system

performance, is challenging. Working on deriving a model that represents the consolidated

traffic from millions of such sources is another problem that must be solved.

• We need more experiments to assess the benefits of creating a relational performance database

and to evaluate the effectiveness of using data warehousing and data mining technologies in the

workload characterization framework.

• Although many case studies have adopted the notion of multi-layer workload characterization,

the relationships between these layers are currently not well understood. Mechanisms that

transform and map the different views of the layers are lacking. The existence of such

mechanisms will help us understand the impact of changes in the workload of one layer on the

rest of the layers. A potential solution may be to use consistent formalisms across layers. Usually,

Characterizing Computer Systems’ Workloads 61

going from higher layers to the lower layers is easier due to the causality relationship, but going

from lower layers to higher ones is useful too and is still deemed an important challenge.

• Workload characterization at the user level should take into account the mutual influence of the

user behavior and the performance of the system on each other. In other words, many of the

studies derived models that describe how the system would perform when the users behavior

changes. Unfortunately, these studies overlooked the potential impact of the system

performance on the user’s behavior and access patterns. For example, a long response time may

discourage a user from requesting consecutive URLs or queries, which leads to less interactivity.

Such mutual impact should be taken into consideration.

• We look forward to seeing systems that have integrated environments and tools that are able to

address the performance issues encountered in the various application domains. Such tools

should be able to provide automated monitoring capabilities, collect performance measurements,

and to analyze them. Having such features makes systems self-manageable and dynamically self-

adaptable to their workload. Furthermore, by understanding the dynamic behavior of the

workload, these systems will be able to forecast the upcoming load and adjust their resource

allocations to efficiently handle the future workload. In other words, these systems will be

workload-aware systems, which can analyze their workload characteristics in these

environments and therefore configure themselves properly to attain the desired quality of

service.

7 REFERENCES

AILAMAKI, A., DEWITT, D., HILL, M., AND WOOD, D. 1999. DBMSs On A Modern Processor: Where Does Time Go?.
In Proc. of Int. Conf. On Very Large Data Bases (VLDB ‘99), (Sept 1999), 266-277.

AGRAWALA, A., MOHR, J., AND BRYANT, R. 1976. An approach to the Workload Characterization Problem. In Computer,
(1976), 18-32.

62 Said Elnaffar and Pat Martin

ANDERSON, J., BERC, L., DEAN, J., GHEMAWAT, S., HENZINGER, M., LEUNG, S., SITES, R., VANDERVOORDE, M.,
WALDSPURGER, C. AND WEIHL, W. 1997. Continuous Profiling: Where Have All the Cycles Gone?. In Proc. of the 16th
International Symposium on Operating Systems Principles, (Oct. 1997), 1-14.

ARLITT, M. AND WILLIAMSON, C. 1996. Web Server Workload Characterization: The Search for Invariants. In Proc. of
SIGMETRICS '96, (May 1996), 126--137.

ARTIS, H. 1978. Capacity Planning for MVS Computer Systems. In Performance Evaluation of Computer Installations, North
Holland, 25-35.

BAKER, M., HARTMAN, J., KUPFER, M., SHIRRIFF, K., AND OUSTERHOUT, J. 1991. Measurements of a Distributed File
System. In Proc. of ACM Symposium on Operating Systems Principles, 198-212.

BARROSO, L., GHARACHORLOO, K., AND BUGNION, E. 1998. Memory System Characterization of Commercial
Workloads. In Proc. Of the 25th International Symposium on Computer Architecture, (June 1998), 3-14.

BERETSEKAS, D. AND TSITSIKLIS, J. 1989. Parallel and Distributed Computation – Numerical Methods, Prentice Hall.

BODNARCHUK, R. AND BUNT, R. 1991. A Synthetic Workload Model for a Distributed System File Server. In Proc. of
ACM SIGMETRICS, 50-59.

CALZAROSSA, M. AND SERAZZI, G. 1985. A Characterization of the Variation in Time of Workload Arrival Patterns. In
IEEE Trans. On Computers 34, 2, 156-162.

CALZAROSSA, M. AND FERRARI, D. 1986. A Sensitivity Study of the Clustering Approach to Workload Modeling. In
Performance Evaluation 6, 1, 25-33.

CALZAROSSA, M., HARING, G., AND SERAZZI, G. 1988. Workload Modeling for Computer Networks. In Architekture und
Betrieb von Rechensystemen, Kastens, U. and Ramming, F., Eds., Springer-Verlag, 324-339.

CALZAROSSA, M., MARIE, R. AND TRIVEDI, K. 1990. System Performance with User Behavior Graphs. In Performance
Evaluation 11, 155-164.

CALZAROSSA, M. AND SERAZZI, G. 1993. Workload Characterization: a Survey. In Proceedings of the IEEE 81, 8 (August
1993), 1136-1150.

CALZAROSSA, M. AND SERAZZI, G. 1994. Construction and Use of Multiclass Workload Models. In Performance Evaluation
9, 4, 341-352.

CALZAROSSA, M., MASSARI, L. AND TESSERA, D. 2000. Workload Characterization – Issues and Methodologies. In
Performance Evaluation - Origins and Directions, volume 1769 of Lecture Notes in Computer Science, Haring, G., Lindemann,
C. and Reiser, M., Eds., Springer-Verlag, 459-484.

CARLSON, B., WAGNER , T., DOWDY, L., AND WORLEY, P. 1992. Speedup Properties of Phases in the Execution Profile
of Distributed Parallel Programs. In Modelling Techniques and Tools for Computer Performance Evaluation, Pooley, R. and
Hilston, J., Eds., Antony Rowe, 83—95.

CHAUDHURI, S., AND DAYAL, U. 1997. An Overview of Data Warehousing and OLAP Technology. In SIGMOD Record
26, 1 (March 1997).

CHINGRUNGRUENG, C., SÉQUIN, C. 1995. Optimal Adaptive K-Means Algorithm with Dynamic Adjustment of
Learning Rate. In IEEE Transactions on Neural Networks 6, 1 (January 1995), 157-169.

CROVELLA, M. AND BESTAVROS, A. 1996. Self-Similarity in World Wide Web Traffic: Evidence and Possible Causes. In
Proc. ACM SIGMETRICS Conf., 160-169.

CROVELLA, M. AND LINDEMANN, C. 2000. Internet Performance Modeling: The State of the Art at the Turn of the
Century. In Performance Evaluation 42, 91-108.

CROW, D. AND SMITH, B. 1992. DB Habits: Comparing Minimal Knowledge and Knowledge-Based Approaches to
Pattern Recognition in the Domain of User-Commuter Interaction. In Neural Networks and Pattern Recognition in
Human-Computer Interaction, R. Beale and J. Finlay, Eds., Ellis Horwood, New York, 39-63.

CUNHA, C., BESTAVROS, A., AND CROVELLA, M. 1995. Characteristics of WWW Client-based Traces. Technical Report BU-
CS-95-010, Computer Science Dept., Boston University.

Characterizing Computer Systems’ Workloads 63

CVENTANOVIC, Z. AND BHANDARKAR, D. 1994. Performance Characterization of the Alpha 21164 Microprocessor
using TP and SPEC workloads. In Proceedings of the 21st Annual International Symposium on Computer Architecture, (April
1994), 60-70.

DAN, A., YU, P., CHUNG, J. 1993. Database Access Characterization for Buffer Hit Prediction. In Proc. 9th Intl. Conf. on
Data Engineering, Vienna, Austria, (April 1993), 134-143.

DAN, A., YU, P. AND CHUNG, J. 1995. Characterization of Database Access Pattern for Analytic Prediction of Buffer Hit
Probability. In Very Large Data Bases (VLDB) Journal 4, 1, 127-154.

DILLEY, J., FRIEDRICH, R., JIN, T., AND ROLIA, J. 1998. Web Server Performance Measurement and Modeling
Techniques. In Peformance Evaluation 33, 1, 5-26.

ELMS, C. 1980. Clustering - One method for Workload Characterization. In Proceedings of the International Conference on
Computer Capacity Management, San Francisco, Calif., 1980.

EGGERS, S., LEVY, H., LO, J., EMER, J., STAMM, R. AND TULLSEN, D. 1997. Simultaneous Multithreading: A Platform for
Next-generation Processors. In IEEE Micro, (October 1997), 12-19.

FERRARI, D., SERAZZI, G., AND ZEIGNER, A. 1983. Measurement and Tuning of Computer Systems, Prentice Hall, Englewood
Cliffs, N.J., (1983).

FERRARI, D. 1984. On the Foundations of Artificial Workload Design. In Proc. of ACM SIGMETRICS Conf. On
Measurement and Modeling of Computer systems, Cambridge, MA, 8-14.

FU, K. 1974. Syntactic Methods in Pattern Recognition, Academic Press.

GAVER, D., LAVENBERG, S., AND PRICE JR., T. 1976. Exploratory Analysis of Access Path Length Data for a Database
Management System. In IBM Journal on Research and Development 20, 449-464.

GUSELLA, R. 1990. A Measurement Study of Diskless Workstation Traffic on an Ethernet. In IEEE Transactions on
Communications 38, 9, 1557-1568.

HAN, J., CHIANG, J., CHEE, S., CHEN, J., CHEN, Q., CHENG, S., GONG, W., KAMBER, M., LIU, G., KOPERSKI, K., LU Y.,
STEFANOVIC, N., WINSTONE, L., XIA, B., ZAIANE, O., ZHANG, S. AND ZHU, H. 1997. DBMiner: A System for Data
Mining in Relational Databases and Data Warehouses. In Proc. CASCON ’97: Meeting of Minds, Toronto, Canada,
(November 1997), 249-260.

HAN, J. AND FU, Y. 1995. Discovery of Multiple-level Association Rules from Large Databases. In Proc. 1995 Int. Conf.
Very Large Data Bases, Zurich, Switzerland, (September 1995), 420-431.

HARING, G., 1983. On Stochastic Models of Interactive Workloads. In PERFORMANCE ’83, Agrawala, A. and
Tripathi, S., Eds., North-Holland , 133-152.

HARMAN, H. 1976. Modern Factor Analysis, University of Chicago Press, Chicago, IL.

HARTIGAN, J. AND WONG, M. 1979. A K-means Clustering Algorithms. In Applied Statistics 28, 100-108.

HOFMANN, R., KLAR, R., MOHR, B., QUICK, A., AND SIEGLE, M. 1994. Distributed Performance Monitoring: Methods,
Tools, and Applications. In IEEE Trans. On Parallel and Distributed Systems 5, 6, 585-598.

HOWARD, R. 1960. Dynamic Programming and Markov Processes, John Wiley.

HSU, W., SMITH, A. AND YOUNG, H. 2001. Characteristics of Production Database Workloads and the TPC Benchmarks.
In IBM Systems Journal 40, 3, 2001.

HUDSON, S. AND SMITH, I. 1997. Supporting Dynamic Downloadable Appearances in an Extensible User Interface
Toolkit. In ACM Proc. of UIST ’97, New York, (October 1997), 159-168.

JAIN, R. 1991. The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation, and
Modeling, Wiley- Interscience, New York, NY, (April 1991).

JAIN, A., MURTY, M., AND FLYNN, P. 1999. Data Clustering: A Review. In ACM Computing Surveys 31, 3, (Sept. 1999),
264-323.

64 Said Elnaffar and Pat Martin

KAMBER, M., HAN, J. AND CHIANG, Y. 1997. Meta Rule-Guided Mining of Multi-Dimensional Association Rules Using
Data Cubes. In Proc. 3rd Int. Conf. Knowledge Discovery and Data Mining (KDD’97), Newport Beach, California, (August
1997), 207-210.

KEARNS, J. AND DEFAZIO, S. 1989. Diversity in Database Reference Behavior. In Proc. of ACM SIGMETRICS and
PERFORMANCE ‘89, 11-19.

KEETON, K., AND PATTERSON, D. 2000. Towards A Simplified Database Workload for Computer Architecture
Evaluations. In Workload Characterization for Computer System Design, John, L. and Maynard, A., Eds., Kluwer Academic
Publishers, (2000).

KEETON, K., PATTERSON, D., HE, Y., RAPHAEL R., AND BAKER, W. 1998. Performance Characterization of Quad
Pentium Pro SMP Using OLTP Workloads. In Proceedings of the 25th International Symposium on Computer Architecture,
Barcelona, Spain, (June 1998), 15-26.

KLAASSEN, O. 1992. Modeling Database Reference Behavior. In Computer Performance Evaluation: Modeling Techniques and
Tools, Balbo, G. and Serazzi, G., Eds., North Holland, 47-60.

KLINE, P. 1994. An Easy Guide to Factor Analysis, Routledge, London, ISBN 0-415-09490-9.

KRISHNAMURTHY, D. AND ROLIA, J. 1998. Site Walker – A Tool Supporting Performance Characterization and Capacity
Planning for Electronic Commerce Systems. In Proc. of The IFIP International Working Conference on Electronic Commerce
‘98 (Industrial Track), Hamburg, Germany, (June 1998).

KOTSIS, G., KRITHIVASAN, K., AND RAGHAVAN, S. 1997. A Workload Characterization Methodology for WWW
Applications. In Proc. of International Conference on The Performance and Management of Complex Communication Networks
(PMCCN'97), 145-159.

LEWIS, P. AND SHEDLER, G. 1976. Statistical Analysis of Non-Stationary Series of Events in a Database System. In IBM
Journal on Research and Development 20, 465-482.

LE BLANC, T., MELLOR-CRUMMEY, J., AND FOWLER, R. 1990. Analyzing Parallel Program Executions Using Multiple
Views. In Journal of Parallel and Distributed Computing 9, 2, 203--217.

LELAND, W., TAQQU, M., WILLINGER, W., AND WILSON, D. 1994. On Self-similar Nature of Ethernet Traffic (Extended
Version). In IEEE/ACM Trans. On Networking 2, 1, 1--15.

LETMANYI, H. 1985. Guide on Workload Forecasting. In Special Publication 500-123, Computer Science and Technology,
National Bureau of Standards, Washington, D.C., (March 1985).

LAZOWSKA, E., ZAHORJAN, J., GRAHAM, G. AND SEVCIK, K. 1984. Quantitaive System Performance: Computer System Analysis
Using Queuing Networks Models, Prentice Hall.

LO, J., BARROSO, L., EGGERS, S., GHARACHORLOO, K., LEVY, H., AND PAREKH, S. 1998. An Analysis of Database
Workload Performance on Simultaneous Multithreaded Processors. In Proc. of the 25thAnnual International Symposium on
Computer Architecture, (June 1998), 39--50.

MEHROTRA, K., MOHAN, C., AND RANKA, S. 1997. Elements of Artificial Neural Networks, Cambridge, Massachussetts, MIT
Press, (1997).

MAJUMDAR, S., EAGER, D., AND BUNT, R. 1991. Characterization of programs for scheduling in Multiprogrammed
Parallel Systems. In Performance Evaluation 13, 2, 109-130.

MENASCÉ, D., ALMEIDA , V., AND DOWLY, L. 1994. Capacity Planning and Performance Modeling: From Mainframes to Client-
server Systems, Prentice Hall, USA, ISBN 0-13-035494-5.

MENASCÉ, D., ALMEIDA , V., FONSECA, R. AND MENDES, M. 1999. A Methodology for Workload Characterization of E-
commerce Sites. In Proc. ACM Conference on Electronic Commerce, Denver, CO, (November 1999).

NIKOLAOU, C., LABRINIDIS, A., BOHN, V., FERGUSON, D., ARTAVANIS, M., KLOUKINAS, C. AND MARAZAKIS., M. 1998.
The Impact of Workload Clustering on Transaction Routing, Technical Report FORTH-ICS TR-238, (December 1998).

NORTHCUTT, S., MCLACHLAN, D. AND NOVAK, J. 2000. Network Intrusion Detection: An Analyst’s Handbook, New Riders,
ISBN 0735710082, (September 2000).

Characterizing Computer Systems’ Workloads 65

PAXSON, V. AND FLOYD, S. 1995. Wide-Area Traffic: The Failure of Poisson Modeling. In IEEE/ACM Trans. On
Networking 3, 3, 226--244.

PENTAKALOS, O. AND MENASCÉ, D. 1996. Automated Clustering Based Workload Characterization for Mass Storage
Systems. In Fifth NASA Goddard Space Flight Center Conference on Mass Storage Systems and Technologies, College Park, MD,
(September 1996).

PITKOW, J. AND PIROLLI, P. 1999. Mining Longest Repeating Subsequences to Predict the World Wide Web Surfing. In
Proc. of USITS' 99: The 2nd USENIX Symposium on Internet Technologies & Systems, Boulder, Colorado, USA, (October
1999).

PRESS, W., FLANNERY, B., TEUKOLSKY, S., AND VETTERLING, W. 1986. Numerical Recipes, Cambridge University Press,
(1986), 521-528.

RAGHAVAN, S., VASUKIAMMAIYAR, D. AND HARING, G. 1994. Generative Networkload Models for a Single Server
Environment. In Proc. ACM SIGMETRICS Conf., 118—127.

ROHLF, F. 1998. Algorithm 76: Hierarchical Clustering Using the Minimal Spanning Tree. In The Computer Journal 16,
(1973), 93-95.

ROLIA, J. AND SEVCIK, K. 1995. The Method of Layers. In IEEE Transactions on Software Engineering 21, 8 (August 1995),
689-700.

ROSTI, E., SERAZZI, G., SMIRNI, E., AND SQUILLANTE, M. 1998. The Impact of I/O on Program Behavior and Parallel
Scheduling. In Proc. ACM SIGMETRICS Conf., 56—65.

SAPIA, C. 2000a. PROMISE: Predicting Query Behavior to Enable Predictive Caching Strategies for OLAP Systems. In
Proc. of the Second International Conference on Data Warehousing and Knowledge Discovery (DAWAK 2000), 224-233.

SAPIA, C. 2000b. PROMISE – Modeling and Predicting User Query Behavior in Online Analytical Processing
Environments. FORWISS Technical Report FR-2000-001, (June 2000).

SCHIFF, D. AND D’AGOSTINO, R. 1995. Practical Engineering Statistics, Wiley-Interscience, ISBN 0471547689.

SERAZZI, G. 1981. A Functional and Resource-Oriented Procedure for Workload Modeling. In PERFORMANCE ’81,
Kylstra, F., Ed., North-Holland, 345-361.

SEVCIK, K. 1989. Characterizations of Parallelism in Applications and Their Use in Scheduling. In Proc. of ACM
SIGMETRICS and PERFORMANCE ‘89, 171-180.

SHOCH, J. AND HUPP, J. 1980. Measured Performance of an Ethernet Local Network. In Communication of the ACM 23,
12, 711-721.

SRIVASTAVA, A. AND EUSTACE, A. 1994. ATOM: A System for Building Customized Program Analysis Tools. In Proc. of
SIGPLAN ’94 Conference on Programming Language Design and Implementation, (June 1994), 196-205.

SMIRNI, E. AND REED, D. 1998. Lessons from Characterizing the Input/Output Behavior of Parallel Scientific
Applications. In Performance Evaluation 33, 1, 27-44.

TPC: TRANSACTION PROCESSING PERFORMANCE COUNCIL. http://www.tpc.org.

TPCB 1994. TRANSACTION PROCESSING PERFORMANCE COUNCIL. TPC Benchmark B Standard Specification Revision 2.0,
(June 1994).

TPCC 2001. TRANSACTION PROCESSING PERFORMANCE COUNCIL. TPC Benchmark C Standard Specification Revision 5.0,
(February 2001).

TPCD 1996. TRANSACTION PROCESSING PERFORMANCE COUNCIL. TPC Benchmark D Standard Specification Revision 1.2,
(November 1996).

TPCH 1999. TRANSACTION PROCESSING PERFORMANCE COUNCIL. TPC Benchmark H Standard Specification Revision 1.3.0.

TPCR 1999. TRANSACTION PROCESSING PERFORMANCE COUNCIL. TPC Benchmark R Standard Specification Revision 1.2.0.

TPCW 2001. TRANSACTION PROCESSING PERFORMANCE COUNCIL. TPC Benchmark W Standard Specification Revision 1.6
(August 2001).

66 Said Elnaffar and Pat Martin

YU, P., CHEN, M., HEISS, H., AND LEE, S. 1992. On Workload Characterization of Relational Database Environments. In
IEEE Transactions on Software Engineering 18, 4, (April 1992), 347-355,

YU, P., DAN, A. 1992. Impact of Workload Partitionability on the Performance Coupling Architectures for Transaction
Processing. In Proc. Of the 4th IEEE Int. Symposium On Parallel and Distributed Processing,, Arlington, Texas, IEEE
Computer Society Press, (December 1992), 40-49.

YU, P. AND DAN, A. 1994. Performance Analysis of Affinity Clustering on Transaction Processing Coupling
Architecture. In IEEE Transactions on Knowledge and Data Engineering 6, 5, (October 1994), 764-786.

ZAÏANE, O., XIN, M. AND HAN, J. 1998. Discovering Web Access Patterns and Trends by Applying OLAP and Data
Mining Technology on Web Logs. In Proc. Advances in Digital Libraries Conf. (ADL'98), Santa Barbara, CA, (April
1998), 19-29.

