
Tools for Collaborative Software Design

James Wu

wuj@cs.queensu.ca

Technical Report 2003-462

Software Technology Lab, School of Computing

Queen’s University

January, 2003

Abstract

Software design and development is a collaborative activity, potentially involving many people

working on inter-dependent activities. This interdependence has motivated the development of tools that

support collaboration in software design. There is a wide range of such tools, and this diversity is

representative of the wide range of collaborative activities in which software designers engage. However,

as no comprehensive design tool exists, designers must integrate heterogeneous tools to suit their need and

accept the limitations of such a toolset. This means frequent migration between tools as the context of

their work evolves. The purpose of this document is a survey the body of tools that comprise this toolset.

This will serve to illuminate areas where further tool support is needed, and to motivate the design of new

tools to address these needs.

 2

Acknowledgements

I would like to gratefully acknowledge the contribution of my doctoral supervisor, Dr. T.C.N.

Graham, without whose guidance and motivation this paper would not exist. I would also like to thank my

wife, Anouchka, without whose love, support and patience this paper would never have been completed.

 3

Table of Content
TOOLS FOR COLLABORATIVE SOFTWARE DESIGN 1

ABSTRACT 1
ACKNOWLEDGEMENTS 2

TABLE OF CONTENT 3
TABLE OF FIGURES 4
1 INTRODUCTION 5

1.1 THE NATURE OF COLLABORATIVE DESIGN 5
1.2 STRUCTURE OF THIS DOCUMENT 6

1.2.1 Workstyle Model for Tool Evaluation 7
1.2.2 Tool Categorization 9

2 CATEGORY 1: TOOLS SUPPORTING SOFTWARE MODELING 11
2.1 COLLABORATION IN SOFTWARE MODELING TOOLS 11

2.1.1 Collaborative Design Issues in Software Modeling Tools 13
2.2 SUMMARY 17

3 CATEGORY 2: TOOLS SUPPORTING PROCESS COORDINATION 18
3.1 COLLABORATION IN TOOLS SUPPORTING PROCESS MODELING AND ENACTMENT 18

3.1.1 Collaborative Design Issues in Tools Supporting Process Modeling and Enactment 20
3.2 SUMMARY 21

4 CATEGORY 3 : TOOLS SUPPORTING ASYNCHRONOUS ARTIFACT SHARING 23
4.1 COLLABORATION IN TOOLS SUPPORTING ASYNCHRONOUS ARTIFACT SHARING 23

4.1.1 Collaborative Design Issues in Tools Supporting Asynchronous Artifact Sharing 27
4.2 SUMMARY 29

5 CATEGORY 4 : TOOLS SUPPORTING SYNCHRONOUS ARTIFACT SHARING 30
5.1 COLLABORATION IN SYNCHRONOUS ARTIFACT SHARING TOOLS 30

5.1.1 Collaborative Design Issues in Synchronous Artifact Sharing Tools 35
5.2 SUMMARY 40

6 CATEGORY 5: TOOLS SUPPORTING INTERACTION THROUGH INFORMAL MEDIA
 41

6.1 COLLABORATION IN TOOLS SUPPORTING INTERACTION THROUGH INFORMAL MEDIA 41
6.1.1 Collaborative Design Issues in Tools Supporting Interaction through Informal Media 44

6.2 SUMMARY 47
7 CATEGORY 6 : COMMUNICATION TOOLS USED TO SUPPORT COLLABORATION 48

7.1 COLLABORATION IN TOOLS SUPPORTING TEAM COMMUNICATION 48
7.1.1 Collaborative Design Issues in Tools Supporting Team Communication 49

7.2 SUMMARY 51
8 CONCLUSIONS 52

8.1 OPEN PROBLEMS 53
8.2 FUTURE DIRECTIONS 56

9 REFERENCES 57

 4

Table of Figures

FIGURE 1: A GRAPHICAL REPRESENTATION OF THE WORKSTYLE MODEL 7
FIGURE 2: DEVELOPING A JAVA CLASS DIAGRAM IN RATIONAL'S ROSE 12
FIGURE 3: WORKSTYLE EVALUATION OF SOFTWARE MODELING TOOLS 13
FIGURE 4: DEVELOPING AN EVPL PROCESS MODEL IN SERENDIPITY 19
FIGURE 5: WORKSTYLE ANALYSIS FOR TOOLS SUPPORTING COLLABORATION THROUGH PROCESS

MODELING AND ENACTMENT 20
FIGURE 6: A SHARED PLACE IN THE ORBIT COLLABORATION TOOL 24
FIGURE 7: ASYNCHRONOUS COLLABORATION IN A LOTUS NOTES WORKSPACE 25
FIGURE 8 : WORKSTYLE ANALYSIS FOR TOOLS SUPPORTING ASYNCHRONOUS COLLABORATION THROUGH

SHARED DOCUMENT REPOSITORIES AND CONFIGURATION/VERSION MANAGEMENT TOOLS 26
FIGURE 9: WORKSTYLE ANALYSIS FOR TOOLS SUPPORTING ASYNCHRONOUS COLLABORATION THROUGH

A SHARED PLACE METAPHOR 27
FIGURE 10 : COLLABORATIVE WEB BROWSING THROUGH NETMEETING 31
FIGURE 11: COLLABORATIVE COMPONENT DESIGN IN JCOMPOSER 32
FIGURE 12 : INSIGHT LAB 33
FIGURE 13: WORKSTYLE EVALUATION OF META-TOOLS 34
FIGURE 14: WORKSTYLE EVALUATION OF COLLABORATION-AWARE TOOLS 34
FIGURE 15 :WORKSTYLE EVALUATION OF CO-LOCATED TOOLS 35
FIGURE 16: PRELIMINARY DESIGNS MIXING FORMAL AND INFORMAL NOTATIONS IN IDEOGRAMICUML 42
FIGURE 17: THE FLATLAND USER INTERFACE 43
FIGURE 18: CLEARBOARD-2 PROTOTYPE IN USE 43
FIGURE 19: WORKSTYLE ANALYSIS OF TOOLS SUPPORTING INTERACTION THROUGH INFORMAL MEDIA 44
FIGURE 20: PIAZZA AS AN EXAMPLE OF A MEDIASPACE 49
FIGURE 21: A WORKSTYLE ANALYSIS OF MEDIA SPACES 49
FIGURE 22: THE UNION OF WORKSTYLES SUPPORTED BY COLLABORATIVE SOFTWARE DESIGN TOOLS

SUPPORTS MOST COMMON STYLES OF COLLABORATIVE WORK. 53

 5

1 Introduction
The design and development of large, complex software systems is a team activity, often requiring

collaboration between a large number of people who share information and work on a variety of inter-
dependent activities. A study by DeMarco and Lister found that developers working on large projects
spend up to 70% of their time collaborating with others [25], while Jones found that team activities
account for 85% of costs in large scale development projects [59]. This degree of interactivity between
team members has necessitated the development of tools that can support collaboration within the
software design process.

There are a wide variety of tools that are used to support collaboration in software design. They
include routine communication tools such as a telephone or e-mail, electronic collaboration tools [14,84]
that support synchronous communication and artifact sharing, as well as dedicated software design tools
that provide traditional CASE (Computer Aided Software Engineering) functionality along with some
degree of integrated support for collaboration [41,47]. Other such tools support informal media [66,97] to
facilitate initial design and synchronous collaboration, while others focus on asynchronous artifact sharing
[34,50] as a mechanism to support collaboration.

This diversity of available tools reflects the wide range of activities in which software designers
engage. Software design involves more than simply the creation of formal design artifacts [17,91]. The
content of design artifacts is developed through brainstorming and extensive discussion and analysis
between designers before it is ever expressed in a formal design. Thus, a variety of tools exist to support
these ‘soft aspects’ of software design [57]. This is motivated by the relative failure of most dedicated
software design tools to integrate all aspects of design activities, in particular communication and informal
interaction between team members. Although some tools exist that aim to facilitate and promote
collaboration within the context of software design [23,30,66], most provide only the most basic facilities
to support teamwork.

No comprehensive collaborative software design tool exists. Instead, designers cobble together a
collection of heterogeneous tools to suit their needs, accepting the limitations inherent to such a toolset.
This can mean frequent migrations between tools to suit current needs, which can impose additional
overhead associated with switching tools, as well as recreating any design work that may not be
importable into the new tool. For example, preliminary design work done on a whiteboard is not
importable into typical analysis tools, and requires recreation before it can be used within such a tool.
Challenges in building a more comprehensive collaborative design tool include integration of informal
media with structured design tools, support for movement between different styles of collaboration, as
well as flexible support for communication.

The purpose of this paper is to systematically survey the body of tools that support collaboration in
software design. This will serve as a snapshot of the state of the art in the development of tools of this
nature. Furthermore, it will illuminate areas where further research may be needed, and motivate the
design and development of new tools to address any such issues. It is not the purpose of the document to
describe the full functionality of each of these tools, but rather detail their support for collaboration in the
design process.

1.1 The Nature of Collaborative Design
Collaborative design of software systems requires an environment that supports the interaction

between developers and coordination of each member’s knowledge, skills and expertise [3]. The nature of
this kind of interaction is volatile, and changes frequently over the course of the design process. During
the early stages, the focus rests on developing a shared understanding of what is to be built and how it is to
be developed [111]. This involves the creation of informal, high-level requirements and designs, as well as
frequent and varied communication and interaction between designers [62,63]. In these stages, designers
tend to prefer the use of informal media such as paper or whiteboard because the structure imposed by
most design tools can impose cognitive overhead and inhibit creativity [64,94,95,107].

 6

 However, much of the design activity cannot be readily supported with such informal tools [49]. As
development progresses, designs and requirements become increasingly precise, and interaction amongst
designers becomes more formal. In these stages, more formal, structured tools become useful in managing
the growing complexity of the software. Such tools manage versioning, facilitate distributed access to
artifacts, and promote cohesion between design and code. Additionally, the need for flexible
communication and interaction between designers remains important.

What characterizes all stages of collaborative design is the variety of styles of interaction between
designers as well as the artifacts with which they work [112]. Factors such as design progress, tool
availability and distribution of collaborators change frequently, and designers accommodate these changes
by adapting the ways in which they interact and the tools they use to do so. To understand how such
interactions can change, consider the following scenario:

A group of designers are meeting informally to discuss preliminary design directions.
Each participant makes individual notes on various issues of interest, and group notes are
maintained on a whiteboard. A productive brainstorming session is interrupted because
some visiting designers must leave and return home. They agree to participate in a future
meeting via teleconference. They arrange a time for the next morning, and depart.
At the next meeting, the group gathers around a whiteboard, as before. The visitors, at
their remote office, participate by speakerphone. The group discusses the progress made
since the last meeting. During the meeting, they exchange documents via email, and
navigate the shared documents with verbal directions. After the meeting, Jack and Jill are
emailed a transcription of the whiteboard contents for their own records.

 This scenario demonstrates how simple and common occurrences can influence the way in which
designers work together. That the visiting researchers were forced to leave a design session affected the
way in which the collaboration evolved, as well as the set of tools required by the collaborators to
maintain their interaction.

1.2 Structure of this Document
This document classifies tools into six categories based on the novel Workstyle model for

evaluating interactive systems [112]. This model characterizes a tool in terms of the collaborative work
styles that it supports, as well as the kinds of artifacts that it is able to create. The definition of each
category was motivated by the observation that clusters of tools conform to common evaluations using
this model. Individual tools are categorized based on their common use, intent and the similarity of their
Workstyle evaluation to these category definitions. By organizing the work in this fashion, this survey not
only catalogues the tools available to support collaboration in software design, but also highlights where
further tool development is required to better support the range of working styles in which designers
engage. The Workstyle model is more completely described in section 1.2.1.

The content of this paper was influenced by field research involving the detailed observation of
different of teams of designers at a large software company, each working in a wide variety of design
activities. The categories of tools discussed here were originally revealed through application of the
Workstyle model to the evaluation of their tools and collaborative activities. Furthermore, decisions to
include or exclude individual tools or classes of tools were influenced by these observations. However,
information and insight about individual tools was gained through first hand experience with them where
possible, as well as extensive review of related published works.

The first category addresses Software Modeling Tools. These are tools that support expression and
analysis of software designs in formal, typically graphical, languages. The second category contains tools
that support software development through automation of various aspects a design process, collectively
referred to as Process Coordination Tools. The third category, Asynchronous Artifact Sharing Tools or
simply Asynchronous Sharing Tools, includes tools that provide support for collaborative design solely
through asynchronous artifact sharing. In contrast, the fourth category is composed of Synchronous
Artifact Sharing Tools, or Synchronous Sharing Tools, that support collaborative design through

 7

synchronous sharing of artifacts. The next category addresses Informal Media Tools, and is composed of
tools that support design work with informal media. Lastly, the final category considers additional
Communication Tools used to support collaboration in design. It should be noted that certain tools may
warrant categorization in multiple categories. In these cases, they are assigned to the most suitable
category, with appropriate discussion of their extended functionality. The definitions of these categories
with respect to the Workstyle model are discussion in section 1.2.2.

1.2.1 Workstyle Model for Tool Evaluation
The Workstyle model characterizes tool support for a working style as an eight dimensional space.

Four of the dimensions address the style of collaboration and communication between designers. The
remaining four address properties of the artifacts that are created during the collaboration. Support for a
particular workstyle can then be represented as a point in this space. Similarly, support for a range of
working styles can be represented as a region in the space. So, the functionality of collaborative design
tools can be plotted in this space to specify the set of workstyles that they can support. It then becomes
possible to compare preferred workstyles to those supported by available tools and to identify potential
task/tool mismatches. These mismatches can be used to guide the design of new tools that are more
appropriate to particular design activities. A graphical representation of the Workstyle model is presented
in Figure 1. The axes are defined in the following sections.

Figure 1: A graphical representation of the Workstyle Model

1.2.1.1 Dimensions Describing Collaboration Style
The first four dimensions describe the nature of the collaboration that can be supported by a tool. This

is defined by the location and number of people involved in the collaboration, temporal aspects of their
communication, as well as any coordination that is imposed on their interactions by social or technological
constraints. The dimensions are defined as follows:

 8

• Location: The location axis refers to the distribution of the people involved in the collaboration.
As people become more geographically distributed, supporting certain collaborative workstyles
becomes increasingly difficult [88]. For example, supporting synchronous communication is
easiest in co-located, face-to-face workstyles, but may require complex concurrency controls and
coordination policies when interacting at a distance. Along this dimension, people may be
considered to be in the same place (co-located) or in different places (distributed). For example,
collaborators may be from different locations in the same floor of a building, or from different
geographical locations all together.

• Synchronicity: The synchronicity axis describes the temporal nature of the collaboration. People
may work together at the same time (synchronously) or at different times (asynchronously).
Synchronous collaboration facilitates more natural interactions between designers, as they are able
to see the results of each other’s actions in real time. However, synchronous interaction typically
involves more complex tool support than asynchronous interaction. Face-to-face or telephone
conversations are examples of same-time interaction, while email conversations or information
sharing through a Lotus Notes database are examples of different-time interaction. Synchronicity
is a continuous axis. For example, a rapid exchange of emails can approach a synchronous
interaction.

• Group Size: The group size axis captures the number of people involved in the collaboration.
Support for larger groups typically comes at the expense of intimacy in the interaction between
collaborators. Conversely, limiting support to small groups affects applicability of the tool to
larger projects involving larger teams. Generally, group size influences what styles of interaction
are practical. For example, brainstorming may work in small groups, whereas larger groups may
require support of tools or communication protocols to manage their interaction.

• Coordination: This axis describes any coordination that may influence an interaction, whether
from the choice of tools or the adoption of some coordination model [67]. Free-style coordination
supports informal interaction, though may break down as group size increases. Conversely,
moderated coordination policies imposed by tools may inhibit progress in the early stages of
design. For example, in a brainstorming session, free-form coordination is typical. Social
protocols can determine the order of speaking or modifying shared artifacts. In meeting situations,
more rigid coordination is typical, relying on a chair or even formal rules of order. Additionally,
asynchronous tools typically rely on some form of moderated coordination, such as check-
in/check-out protocols.

1.2.1.2 Dimensions Describing Artifact Style
The remaining four dimensions describe the nature of the artifacts produced. Artifacts are

characterized by any required syntax or implied, as well as by the ease with which they may be stored,
retrieved, and modified. These properties are defined as follows:

• Syntactic Correctness: The artifact being produced may be required to follow a precise syntax.
This requirement may inhibit progress in early stages of design by forcing initially abstract
designs to conform to a predetermined syntax [64,111]. Conversely, a lack of support for
enforcing or checking syntactic structure can increase ambiguity as designs grow in complexity.
As an example of a syntactically correct artifact, consider a programmer who must follow the
rules of the programming language to produce a source code artifact. Similarly, a designer may
choose to follow the precise rules of a notation such as UML in order to create a design that will
facilitate analysis.

• Semantic Correctness: An artifact is considered to be semantically sound if its meaning is
unambiguous and free of contradiction. The production of semantically sound artifacts facilitates
automated analysis and evolution. For example, UML designs can serve as a basis for automated
code generation. However, the requirement to produce semantically sound artifacts may be
impractical and unnecessary, and may inhibit progress in creative design. For example, design

 9

documents often contain contradictions, inconsistencies and missing information. It has been
argued that humans can often work effectively despite the presence of such contradiction [37].
Semantic correctness is a continuous axis.

• Archivability: Archivability represents the difficulty of saving an artifact so that it can be used at a
later time. For example, word processing documents have high archivability, as they can be saved
to disk and retrieved later. However, creation of documents that are easily archived involves a
decision, a priori, about the value of the ensuing design. A whiteboard has poor archivability, as
its content is lost once erased. Supporting archivability places restrictions on the creation of
artifacts because specific tools support is required, and the decision to use such a tool must
potentially be made before the value of the artifact is known. A doodle on a lunch napkin may
evolve into a design, or may remain a meaningless doodle. However, any requirement to use a
particular tool for the purpose of archivability may have prevented the doodle from ever being
drawn. Archiving is considered more difficult if an archived version cannot be retrieved and used
in the same way as the original. For example, a whiteboard drawing can be archived by
photographing it; however, the archived version (the photograph) can no longer be manipulated
on the whiteboard.

• Modifiability: This axis represents the ease with which an artifact can be modified. For example,
small modifications to a whiteboard drawing are simply performed by erasing and redrawing.
However, a modification such as reformatting a complex diagram is more difficult to accomplish
in this manner. As with archivability, support for complex modification of an artifact requires
specific tool support, which may impose sufficient overhead to prevent the artifact from ever
being created. Similarly, though modifications to a diagram produced using a structured drawing
program are more completely supported, they may require complex editing operations that can
impede design progress more than less structured tools in certain stages of design.

1.2.1.3 Applying the Workstyle Model
To apply the model to the evaluation of a particular tool or set of tools, values for each property

are plotted on the two-dimensional representation depicted in Figure 1. A particular workstyle is
represented as a point in an eight dimensional space, while a range of workstyles is represented as a region
in this space. Support for a single value in a particular property is indicated by a line intersecting the
related axis, while a region over the axis represents support for a range of values in that property. So a plot
that consists of a single line, with no expanded areas represents a tool or set of tools that supports a single,
rigid workstyle. For example, see Figure 15. Conversely, a plot that covers areas of the graph represents a
tool or set of tools that supports a range of workstyles. An example of such a plot can be seen in Figure
19. Once plotted, differences in the workstyles supported by various tools become visually apparent.

1.2.2 Tool Categorization
This document categorizes the various tools available to support collaboration in software design into

six categories based on common Workstyle evaluations. Tools supporting similar workstyles are treated
together, and the overall benefits and shortcomings of the entire class of tools are discussed.

Software Modeling Tools are characterized by their support for software modeling. They typically
integrate one or more formal design languages, as well as variety of analyses for determining important
design properties. This support for modeling and analysis also provides a basis for other functionality such
as code generation and round trip engineering. The tools of this class provide support for collaboration
through asynchronous repositories and revision control protocols. A generalized Workstyle evaluation of
this category of tools is shown in Figure 3.

Process Coordination Tools are characterized by their integrated support for process modeling and
enactment. They support the specification of collaborative design processes in order to coordinate team
activities and communication. Furthermore, some of these tools support enactment of these processes.

 10

This means they provide mechanisms for managing a design process as it executes. A Workstyle
evaluation of this category of tools is shown in Figure 5.

Asynchronous Artifact Sharing Tools facilitate time-deferred collaboration by managing multi-user
access to shared artifacts. Within this category, there are three identifiable tool subtypes; those that
provide a ‘shared-place’, those that integrate team communication tools and multi-user repositories, and
those supporting revision control and configuration management. Figures 8 and 9 graphically depict the
Workstyle evaluations of these tools.

Synchronous Artifact Sharing Tools provide support for synchronous sharing of design artifacts and
related applications. This means they facilitate concurrent viewing and manipulation of shared artifacts,
and allow results of other’s actions to be immediately viewable. There are three subtypes within this
category; meta-tools that provide synchronous sharing for existing single user tools, collaboration-aware
tools that integrate support for real-time sharing, and tools that support co-located collaboration.
Workstyle evaluations for these tool subtypes are depicted in Figures 13, 14, and 15.

Informal Media Tools allow unstructured interaction through devices such as whiteboards, data
tablets or paper. Once again, there are three subtypes of these tools; those that support a software design
notation, augmented whiteboard applications and shared drawing tools. A graphical Workstyle analysis of
all three of these subtypes can be found in Figure 19.

Communication Tools of a variety of types are also used to support collaboration in software design.
These tools provide team communication and awareness facilities with no specific functionality for
software design. The depiction of the Workstyle analysis for these tools is shown in Figure 21.

 11

2 Category 1: Tools Supporting Software Modeling
Developing models for large-scale software systems is as essential as having an architectural

blueprint in building construction. Good models are essential for communication among project teams and
to assure important architectural properties in the resulting system. As the complexity of systems
increases, so does the importance of applying rigorous modeling techniques. An example of this is the use
of Unified Modeling Language (UML) [86]. UML is a language for specifying, visualizing, constructing,
and documenting the artifacts of software systems, as well as for business modeling and other non-
software modeling tasks.

The tools in this category are characterized by their support for software modeling in a variety of
graphical design languages, for example open-standard Unified Modeling Language [77]. These languages
are formally defined, and provide a basis for advanced functionality such as static analyses and code
generation. The most common of this category of tools is Rational’s Rose. Other examples include
Software through Pictures [6], TogetherSoft [104], as well research tools such as Rosetta [41], developed
at Queen’s University, and ArgoUML [7], developed as a free, open-source design tool. Although features
vary across the tools in this category, none of these tools differ greatly from the approach taken by
Rational to support collaborative software design.

The main benefits that these tools provide stem from functionality such as formal analyses, code
generation and version management. Formal analyses allow properties of a design to be statically
determined, while code generation reduces workload by generating code templates based on existing
designs. The main drawback with these tools is that they are artifact centered, and focus their support on
the production and management of artifacts rather than the activities and collaboration of designers. This
cannot be considered sufficient support for group collaboration [57,62,63].

2.1 Collaboration in Software Modeling Tools
In this section, Rational Rose will be used as an exemplar of software modeling tools. We will

describe Rose, and briefly describe how other software modeling tools differ from Rose in their support
for collaboration in software design in terms of the Workstyle model. A graphical depiction of the
Workstyle evaluation of this category of tools is shown in Figure 3.

Rose [81] is an object-oriented, visual modeling tool for software development. It supports a
range of modeling notations, such as UML [77], Booch [16] and OMT [87], and provides code generation
and both reverse- and round-trip engineering support for C++, Java and Visual Basic. Its support for
teamwork is limited to the integration of distributed repository with configuration management and
flexible locking granularity. An example of Rose in use is shown below in Figure 2. The entity-
relationship diagram depicted is a UML class diagram. The boxes represent Java classes, and the arrows
are relationships between them. A palette containing buttons to place any UML element within the
diagram can be seen to the left of this diagram. The leftmost frame of the screen shows a hierarchical view
of the entire current project, while the bottom pane contains detailed information about the classes
represented in the design diagram.

 12

Figure 2: Developing a Java Class Diagram in Rational's Rose [81]

 13

Figure 3: Workstyle evaluation of Software Modeling Tools

2.1.1 Collaborative Design Issues in Software Modeling Tools
Software modeling tools support software design through formal specification and analysis, as

well as code generation and reverse engineering facilities. Software modeling provides a formal
specification for a system, as well as a basis for advanced analysis techniques. Such a specification results
in well-defined interfaces between components and facilitates independent parallel development, but
requires precise syntax and defined semantics. This can impose undue overhead, particularly in early
stages of the process [64,107] when designs are not sufficiently developed to be expressed with such rigor.
This can make software modeling tools inappropriate for creative design tasks such as brainstorming.
Code generation and reverse-engineering facilities also impose semantic interpretation on designs, as well
as enforce their particular process on designers.

Integrated support for collaboration in these tools is based on the concept of a centralized multi-
user repository. These repositories provide distributed access to documents, while managing any
concurrency issues that may arise though synchronous, multi-user access. Typically, concurrency control
is done through object-level locking of varying granularity. Version control facilities provided in some
tools [104,102,82,72,34] also allow disparate models to be integrated to maintain consistency. However,
these mechanisms impose a degree of coordination on collaborators interacting through them. Check
in/out mechanisms limit the freedom that collaborators have to act in parallel, and versioning mechanism
require consistency to be maintained. Generally, these tools are best suited to supporting distributed,
asynchronous collaboration. We will now examine the workstyles supported by software modeling tools.

Archivability
 Recall that archivability represents the difficulty of saving and restoring an artifact or document
so that it may be used at a later time. Tools in this category excel in this area. At the most basic level,
these software-modeling tools all allow the creation of digital, rather than physical, documents that are
easily stored for on electronic media for fast and easy retrieval.

 14

 Rose provides direct integration with artifact repositories and revision control systems to facilitate
storage. The tool provides built-in integration with Rational’s own ClearCase and Microsoft’s Visual
SourceSafe, and may also be used with any command-line based versioning system. Like Rose, many
tools in this category provide integrated repositories [80,69,35,32,102,104,6], while others rely on (and
often provide support for) external repositories [81,7,76,52,41]. Some tools provide the flexibility of both.
Repositories enhance archivability because they provide a central store for all documents while protecting
them from unwanted or inappropriate deletion or modification. Many also support versioning of
documents, and facilitate the archival of multiple concurrent versions of an artifact [104,102], or easily
integrate with third party revision tools [81,6,32,7]. Furthermore, repositories often provide interfaces that
allow artifacts contained within to be accessed by a variety of tools. This provides collaborators more
freedom to use preferred tools for accessing and manipulating shared artifacts.

Rose documents may be exported to standard formats, such as XML and HTML, so that they may
be stored in any kind of compliant repository or tool, or they may printed and archived in a physical filing
system. Similarly, the archivability of artifacts created in many of these tools in this category is further
enhanced by the individual tool’s ability to export its artifacts in some standard format. These formats
facilitate archiving and retrieval to and from different tools. Many tools support a variety of different
export formats, including XML [81,7,69,76,102,104,6,41], HTML [81,32,6,41,104,102,35,69,80], and
document and image formats such as RTF, ASCII, CDIF, JPG and BMP [41,7,76,69,52,32,104].
Structured formats such as XML, XMI and HTML derived formats can, and typically do, encode
modeling information so that artifacts can be retrieved and manipulated in other tools in the same or
similar ways as the tool in which they were created. Image formats only encode static syntactic
information about the model, and cannot be manipulated further. Extensive support for data export further
enhances the ability for collaborators to exchange design information without restricting their choice of
tools.

Modifiability
 Modifiability refers to the ease with which artifacts created within a tool may be modified, either
within the tool or externally in other tools. All tools in this category provide fully structured editors for
modifying the diagram types that they support. At the minimum, this means that they provide primitives
for all of the entities and relationships defined by the diagram type supported by the editor, and
relationships between diagram primitives are maintained.

Rose provides full structural editing for graphical designs, as well as language sensitive editors for
code artifacts. Round trip engineering features allow for modifications in either the design or the code to
be propagated so as to maintain consistency. Designs are input in a structured graphical editor that
provides pre-defined primitives for the supported notations, UML, Booch and OMT. However, while
structured editors are effective in producing precise and refined documents, they are not well suited to
early stages of design when details about a design are undeveloped. The discrete and defined nature of the
diagrams produced by such editors may imply structure and semantics where none yet exist in a design.
 While modification of artifacts created in some tools implies independent editing of diagrams and
code [41, 7], many tools provide features such as code generation and forward/reverse- and round-trip
engineering. Code generation facilities generate various code artifacts in given languages based on the
semantics of the design diagram. This facilitates the propagation of modifications made to the design
down to the code and is supported by all of the rest of tools in this category
[52,6,69,81,76,80,32,104,102,35]. However, some of these tools also provide reverse engineering
[6,35,80,81,76], which allows changes made at the level of the code to be integrated into the design level
diagrams. These features do not always produce clear and concise diagrams. Other tools provide an
additional level of functionality and automatically synchronize design and code [104,32] such that
changes made at either end are automatically and synchronously reflected in the corresponding document.

Syntactic correctness

 15

 Syntactic correctness refers to the requirement that an artifact conform to a precise syntax. This is
effectively enforced by the structured nature of the editors provided within these tools to create the various
diagrams – the primitives provided by the editor define the syntax of the diagram. All tools in this
category impose this requirement, and differ only in the extensiveness of their support for the syntax of
various graphical design languages. At a minimum, all of the tools in this category provide support for
UML notation, although not all completely support the open standard specification [41,69,7,102]. Even
the support for specific standards of UML vary between tools from versions 1.1 to 1.4; some tools do not
specify the precise version of the standard that is supported. Other tools support additional diagramming
techniques such as Booch [81,69,52,35,6], OMT [81,69,35,6], Jacobson [35,52], Object Interaction,
Module Architecture Diagramming, and Buhr/Booch [52]. Most of these tools support context-free syntax
checking only, though some [41] support a context-sensitive syntax. The requirement to conform to a
precise syntax can interfere with early, creative design by restricting the expression of abstract design to
the finite set of symbols provided by the editor.
 Tools that support reverse engineering impose syntactic correctness on code artifacts as well. The
syntax imposed is based on the language being reverse engineered, and may include Java
[32,80,76,104,102,81,35,6], C/C++ [35,6,80,32,69,52,76,102,104,81], and others such as CORBA IDL
[104,102,76,69,32,80,6], Visual Basic, Ada, Pascal, and SmallTalk.

Semantic correctness

This axis addresses the extent to which an artifact is required to be unambiguous and free of
contradiction. For tools in the category, the semantics of artifacts are intended to be expressed with
sufficient clarity and precision so as to facilitate analysis and code generation, both automatic and manual.
This does not necessarily imply that artifacts are required to be expressed with such clarity. Rose can be
used for object-oriented analysis, which can be arbitrarily imprecise. However, tools in this category are
generally geared to facilitate the precise definition of meaning in artifacts. Many of the features supported
by these tools reflect this. Synchronous round trip engineering [32,104] automatically synchronizes design
and code artifacts, such that changes made at either end are appropriately reflected at the other. This
feature can be considered to impose semantics on the design, as design level constructs are automatically
interpreted to have a particular meaning at the code level. Other tools are less strict, and provide
forward/reverse engineering features to give the developer some degree of control over the code-level
interpretation of the design by allowing them to apply the semantics only when they feel it is appropriate
[102,80,35,6,81,76]. MetaEdit [69]extends this flexibility by allowing the custom definition of semantics
for any modeling formalism, while Rosetta goes even further and uses a Conformance Checker to
highlight semantic inconsistencies without imposing any restrictions on the designer. Similarly, ArgoUML
[7] implements Design Critics, which can be used to critique a design and suggest improvements. While
this suggests a binding to a particular semantic interpretation, such suggestions are entirely optional and
do not restrict the designer to the use of those semantics. Unfortunately, the production of design artifacts
that are unambiguous and free of contradiction is imposes significant overhead, particularly with early
design stages and brainstorming work styles. In these situations, semantics of a design are not well
defined, and the inability to be ambiguous in certain areas of a design may hamper overall progress [37].

Synchronicity
 Synchronicity addresses the temporal restrictions, if any, that a tool imposes on interactions
between collaborators. No tool in this category supports truly synchronous interactions between
collaborators, however concurrent development is facilitated through various version control mechanisms.
 Collaboration with Rose is entirely asynchronous. The tool allows parallel development of a
model by supporting decomposition of the model in units that can be placed under version control. Such
units are referred to as controlled units, and stored as separate files in the operating system. When a
controlled unit is loaded into a Rose model, it is considered write- protected or enabled depending on the
current status of the corresponding file in the file system. Elements of a Rose model that can be placed
under version control include the entire model, model properties, deployment diagrams, and logical, use-

 16

case and component packages. The decomposition of the model into these units is determined
individually. A separate tool, called Model Integrator, is provided to compare and merge models and their
controlled units.

Most of the tools use object-level locking to permit synchronous access to a model while
maintaining the consistency of the data [102,81,76,69,32,80]. Each object within the model is placed
under separate version control, allowing multiple developers to access each object without restriction or
risk of corruption of the data. The granularity of these objects is tool specific, and is in some cases user
selectable [81]. Rosetta provides more granular locking at the diagram level, while others do not lock any
aspect of the model [52,104]. Such tools support off-line versioning of the entire model, and provide
integration tools to assist in the merging of disparate copies. Software through Pictures offers the option of
either strategy, object-locking and versioning, though by default object-locking is used.

Technically, interaction with these tools can approach synchronous, as multiple designers can
interact with the same model at the same time. However, none of these tools provide any additional
functionality to support direct synchronous interaction between developers beyond merely facilitating
concurrent editing of artifacts. No awareness of the actions of other developers is available to facilitate
synchronous interaction. Furthermore, while modification to the state of the model can happen
synchronously, individual views of the model do not update synchronously with such systems, thus any
modifications made synchronously will appear asynchronous to collaborators.

Location
 The location axis describes the kinds of geographical distributions of collaborators that a tool can
effectively support. With the exception of ArgoUML, which does not integrate any team-support
functionality, all tools in this category provide support for distributed collaboration only. Most of these
tools use central repositories that enable file sharing through object locking, allowing concurrent access to
designs through individual workstations [6,35,104,52,76,69,32,80,102,81]. Rosetta uses a different model
to facilitate distributed collaboration – it is web-based and design artifacts are accessible through any
Java-enabled browser. Technically, these access points may be located anywhere in the world, however
practical considerations such as security may realistically limit the actual distribution. Additionally, these
access points may be located as closely as the same room, even the same desk. However, none of these
tools enable fully co-located collaboration wherein designers may collaborate using the same device.

Coordination
 With the exception of ArgoUML, which provides no support for the coordination of collaborative
activities, software modeling tools rely on moderated coordination through a centralized repository to
prevent introduction of inconsistency into the model. For most of the tools, this coordination amounts to a
check-in/check-out mechanism at the level of model objects [102,81,76,69,32,80] or diagrams [41]. Such
a mechanism limits the degree of freedom developers have act in parallel, and therefore coordinates their
collaboration. For example, conflicting check-ins must be resolved before they can be completed. For
tools that support off-line versioning [52,104,6], interaction is coordinated through the process of merging
the versions – the requirement that consistency be maintained enforces the need to coordinate, whether
automatically or in person, the merging of disparate models. Furthermore, facilities such as round-trip
engineering and code generation impose process coordination through automation. Code generation and
reverse engineering produce artifacts, such as models or code, as a result of a process that is integrated
into the tool and beyond a developer’s control. Beyond these, no further support for coordinating
collaborative activity is provided by these tools.

Group size
 Generally, tools in this category can support a small to medium of collaborators, depending on the
size of the models and the granularity of the concurrency control mechanism. Technically, Rose could
support a large group of collaborators working asynchronously on different aspects of a large set of
models. In this respect, the tool is limited only by the capabilities of the network on which it is installed.

 17

However, synchronous work on an individual model is severely limited by the locking granularity of the
revision control system. For example, at the level of a deployment diagram, Rose only supports a group
size of one synchronous collaborator.

Owing to the object-locking nature of the repository integrated with many of these tools
[102,81,76,69,32,80,41], both the size and granularity of the model at the object level, as well as the
patterns of interaction with the model, directly influence the limits of supportable group size. A small
model, consisting of fewer independent objects, can support proportionally fewer concurrent
modifications before the limit is reached and a designer is prevented from accessing one of the objects.
Furthermore, if the pattern of interaction with the model is such that many designers attempt to access the
same object, then all but one will be prevented from making modifications.
 For tools that support off-line versioning and merging [52,32,6], the limits on group size are
related to the ability to merge multiple disparate versions of a model. Beyond this, the same arguments
apply, as outline above. Proportionally fewer concurrent modifications can be made to a small model,
consisting of fewer independent objects, before the limit is reached and the versions can no longer be
easily or automatically merged. The same is true if the pattern of interaction with the different copies of
the model is such that many designers attempt to access the same object.

2.2 Summary
Software modeling tools support software design through formal languages and methods and

asynchronous document repositories. These tools are most appropriate to a formal collaborative work style
characteristic of later stages of development after the initial, creative design work is complete. Modeling
languages such as UML are useful for formally specifying and analyzing software designs, but are too
cumbersome to support creative design activities where specific details are unknown, semantics are
undefined and designs change frequently. Furthermore, the asynchronous interactions supported by these
tools are better suited to these later stages when more of the relevant information has been precisely
recorded within the shared design documents. This can reduce the need for extensive synchronous
communication, as designs specified in these languages are semantically complete. This is in contrast to
early stages of design, such as brainstorming, where synchronous communication is important to
successfully eliciting the creative ideas required to develop more formal designs.

 18

3 Category 2: Tools Supporting Process Coordination
 Large-scale software development typically requires the participation of many distributed people,
each addressing different aspects of the development. Each team may use its own selection of tools and
internal processes while cooperating with the other teams to develop the product. Process-centered
environments are used to develop process models that specify the coordination of people, computers, and
software tools in support of such software development activities. In these tools, design and development
processes are modeled and enacted. A process model is an actual definition of a project-specific process as
specified by a process definition language [11]. An example of a process definition language is EVPL,
Extended Visual Planning Language, which is designed and implemented by Grundy [44]. An example of
EVPL can be seen in Figure 4. This diagram describes a simple software process model for updating a
software system. Process stages m1.1: design changes and m1.2: implement changes have subprocess
models. The expanded subprocess model for m1.1: design changes is shown in the window on the right. A
process model can be instantiated by binding to real artifacts, users and tools, and become an enactable
process model, or process program. These programs involve both physical and computational entities, and
may be enacted physically and enforced socially, or implemented within an environment.

The tools in this category are characterized by their support for process modeling and enactment.
This means that they assist in the specification of collaborative design and development processes, which
in turn help to organize and coordinate the activities of development teams. They differ from other tools
discussed in this document in that they do not produce artifacts related to the design of specific software
products or support direct communication in a specific context. Rather, they support the design of the
collaborative processes in which those artifacts are produced and direct communication may take place,
and many provide facilities to enact those processes. Process-centered environments are a large field of
study in their own right, so this analysis is not intended to be comprehensive, but serves as an overview of
the their contribution in the area of collaborative software design. Examples of tools in this category
include research systems such as Serendipity [44], Oz [11], Merlin [68], Marvel [9], SPADE [8], and
ProcessWeaver [36], as well as commercial offerings such as eRooms [33], and SpeeDEV [90].

 These tools offer many advantages for collaborative design. Formalized process definition
supports analysis and refinement of development processes, and facilitates repetition. This means that a
formally defined process is more easily and consistently repeated. Furthermore, it can enhance
coordination between collaborators as well as management of available resources. These integrated
environments also provide mechanisms for centralized project management and task traceabilility. The
main disadvantage with these tools is the formality and rigidity of the processes they model and enforce.
In many design contexts they can be heavyweight and obtrusive, and may conflict with the preferred
processes of the designers and developers.

3.1 Collaboration in Tools Supporting Process Modeling and Enactment
As introduction to this category, process-centered environments will be considered in general. For

reference, a screenshot of a specific environment, Serendipity [44], is depicted in Figure 4. Process-
centered environments support collaboration in software design by disambiguating the collaborative
process through formal modeling, and by enforcing the process through enactment. Support for
collaboration within the processes developed in these tools is related to the nature of the process modeling
language used. Each kind of language has strengths and weaknesses, and none is perfect. Generally,
process-modeling languages can be characterized in terms of their support for explicit/implicit control-
flow, local constraints and modular decomposition of a process [11]. Control flow refers to the ability to
specify the set of activities or tasks, as well as any ordering or synchronization that may be applied to
them. Local constraints are typically considered in the form of prerequisites to an activity, or implications
of an activity. Support for modular decomposition provides flexibility in the specification of a process,
allowing sub-processes to be integrated into larger workflows, as well as supporting re-use of process
designs.

 19

Figure 4: Developing an EVPL process model in Serendipity [44].

 Rule-based languages [9,11,68,90,33] are best suited to defining local constraints and implicit

control flow, but rules are inherently lower level and lack sufficient support for modularity and
decomposition. Petri-net based languages [8,36] are good at explicit definition of the process’ flow of
control, but are also somewhat low-level and don’t naturally support process decomposition. Grammar-
based languages [54] support implicit control-flow and decomposition, while task-graph languages [44,94]
support both explicit control flow and modular decomposition.

Individual differences between tools are discussed below in the context of the Workstyle model. A
graphical depiction of this analysis is shown in Figure 5.

 20

Figure 5: Workstyle Analysis for Tools Supporting Collaboration through Process Modeling and Enactment

3.1.1 Collaborative Design Issues in Tools Supporting Process Modeling and
Enactment

 Formalized process definition facilitates analysis and refinement of development processes, as
well as consistent repetition in future projects. It can enhance communication and coordination between
collaborators and resources by specifying the mechanisms and timing of interactions between distributed
teams, team members and shared tools and artifacts. However, the formality of many the languages
integrated with these tools results in rigid processes that may conflict with the preferences of users. Such
processes can be heavyweight and obtrusive, and the result can be inhibited productivity and creativity in
early design stages. Also, formal specification of such processes can be inappropriate for development of
new types of software where the process is poorly understood.
 A process-centered environment cannot enact all aspects of a process because humans are
required to carry out significant portions. As such, different environments approach process enactment in
different ways. This can influence the styles of collaboration that are supported. For example, some
environments attempt to enforce a process, ensuring that constraints and obligations are met
[68,11,44,90,33] before a process stage can be considered complete and the next stage enabled. This can
impose unnecessary overhead in creative design situations by requiring a level of formality that is not
appropriate to the design stage [64,111]. Similarly, some environments automate some aspects of the
process and carry them out on behalf of the user [9,68,11,44,90]. This can restrict flexibility in how those
tasks can be performed, and may discourage or prevent collaboration in these stages of the process. To
address these shortcomings, some tools simply attempt to guide the user through the process, without
forcing any kind of action [36,8], or just monitor the progress of a process [44,90]. Additionally, support
for process evolution [8,44,9,11,90] is important in any such environment deployed in a collaborative

 21

setting. This provides the flexibility to change an executing process to better match a team’s collaborative
needs.

As mentioned previously, tools of this category differ from the rest of the tools discussed in this
document in that they do not produce artifacts related to the design of specific software products or
support direct communication within a specific context. Because of this, the aspects of the Workstyle
model that address the nature of the artifact produced by the tool are not applicable. While it is possible to
analyze the modeling environment and resulting process model in these terms, it is not beneficial to
understanding how these tools support collaboration in the software design process. As such, the
following discussion will consider only the dimensions of the Workstyle model that address the style of
collaborative work supported by a process – Synchronicity, Location, Coordination and Group Size.

Synchronicity
 In general, all process-centered environments can model processes that support synchronous
interaction amongst users as well as resources. The degree of synchronicity between collaborators that is
supported depends on the nature of the process modeling language implemented. All modeling tools
support intra-process synchronization [9,68,90,33], or centralized process modeling, while some support
inter-process synchronization, or decentralized modeling, as well [11,8,44]. Furthermore, the
environments themselves can support asynchronous collaboration [33,44,11,90,68,9,8], or real-time
synchronous work through shared artifact views [33,44,11].

Location
 The development processes produced and enacted by these tools all support both co-located and
distributed collaboration. However, those tools whose modeling languages support inter-process
synchronization [11,8,44] better support distributed work through the ability to synchronize between
executing distributed processes. This means existing processes at remote sites can be integrated with each
other, then treated and analyzed as single unit.

Coordination
 Process models are intended to specify coordination of activities. Thus, when enacted they may
provide and enforce strict coordination between collaborators. The degree of coordination depends on the
nature of the enactment mechanism. Environments that enforce processes [68,11,44,90,33] can place the
tightest restrictions on collaboration by preventing certain actions until conditions are met. Similarly,
those that automate aspects of a collaborative process [9,68,11,44,90] may restrict or prevent collaboration
in those process stages.
 Conversely, environments that merely guide users along a predefined process [36,8], and those
that provide mechanisms for monitoring the current process state [44,90] provide facilities for assisting in
the coordination of collaborative activities without imposing undue restrictions on them. Similarly,
environments that support evolution of enacted processes [8,44,9,11,90] provide the flexibility to adapt an
executing process to better suit the needs of collaborators.

Group size
 The processes developed in these tools can support all ranges of group size, from small to large.
Group size depends on the process, the language in which it is specified, and how it is specified by the
designer. However, process definition languages that support decomposition [44,54,94] and/or inter-
process synchronization may specify processes involving larger groups more easily and robustly.

3.2 Summary
Process coordination tools support collaborative software design by facilitating the definition and

supporting the enactment of collaborative software processes. They support a wide variety of collaborative
work styles, depending on the design of the enacted process. Such a process may be designed to facilitate

 22

synchronous or asynchronous work, distributed or co-located interactions, as well as all sizes of groups.
Furthermore, the processes designed and enacted by these tools are independent of artifact type; i.e. they
do not necessarily impose restrictions on the nature of the artifacts produced during enactment. The
fundamental characteristic of work styles supported by these tools is coordination. A process is designed
to coordinate interaction between people as well as availability of resources, and enactment is intended to
impose the specified coordination. As such, people are restricted from a free-form style of interaction that
may be most suitable to initial, creative design and/or the development of novel software systems.

 23

4 Category 3 : Tools Supporting Asynchronous Artifact
Sharing

Although supporting synchronous collaboration is important for the many reasons discussed in
section 5, developers tend to spend the majority of their time in asynchronous modes of collaboration [40].
Asynchronous collaboration increases the potential concurrency amongst team members during the
development process by allowing them to independently proceed with individual tasks. Asynchronous
collaboration is most commonly supported in tools by providing remote access to shared artifacts.
Concurrency controls are provided to prevent inconsistencies from arising, as are communication
mechanisms such as email, chat and centralized scheduling.
 The tools in this category are characterized by their support for asynchronous artifact sharing.
This means they facilitate different-time collaboration by providing and managing concurrent, distributed
access to shared design artifacts. The most common of these tools is Lotus Notes [50], a document
database for gathering and distributing team artifacts, as well as team communication and scheduling.
Other asynchronous artifact sharing tools include commercial offerings such as Lotus QuickPlace [51] and
eRooms [33], as well as research tools such as Orbit [60,61], PoliTeam [78], Bayou [26] and FLECSE
[30]. Additionally, stand-alone version control and configuration management tools such as Unix RCS
[103], Rational ClearCase [82] and Microsoft Visual SourceSafe [72] are included in this category as they
help manage the evolution of shared design artifacts.
 There are three main kinds of tools that support software design through asynchronous artifact
sharing:

• Shared Places: Some tools support collaboration through a ‘shared place’ metaphor
[33,51,61,78]. They facilitate sharing and interaction by providing a common location for
people to interact with shared artifacts.

• Document Repositories: Other tools support asynchronous collaboration by integrating
team communication and management facilities with multi-user document repositories
[50,30].

• Revision/Configuration Management: Version control and configuration management
tools [72,82,103] provide support for the asynchronous evolution of artifacts by managing
the creation, organization and use of concurrent, possibly divergent, versions of artifacts.

It should also be noted that many of the software modeling tools discussed in section 2 support
collaboration through similar asynchronous mechanisms such as version control, configuration
management, multi-user repositories, or integration with an appropriate external tool.

Asynchronous sharing tools offer many benefits in a collaborative work setting. Supporting
asynchronous work maximizes parallelism by providing the ability for collaborators to work as
independently as possible on shared tasks and artifacts. Document repositories provide an essential storage
facility for project documents while facilitating distributed access. Additionally, version and configuration
control facilities help to manage the divergent artifacts that are an inevitable result of such asynchronous
collaboration, while maintaining both consistency and project history. Finally, those tools that implement
‘shared-place’ environments [33,51,61,78] foster cooperation and awareness by providing a centralized
location for shared artifacts and communication [58]. The main disadvantages to asynchronous sharing
tools is that they can be overly focused on supporting collaboration through artifact sharing, while failing
to provide sufficient support for informal interaction and awareness between collaborators. Also,
inflexible concurrency control mechanisms can impose unnecessarily restrictive coordination policies.

4.1 Collaboration in Tools Supporting Asynchronous Artifact Sharing
 To introduce this category we will describe archetypes of each of the three subclasses of
asynchronous sharing tools introduced above. More detailed discussion of the differences between these

 24

tools can be found in the following section. Graphical depictions of the Workstyle analyses of these tools
are shown in Figures 8, and 9.

• Shared Places: Orbit [60,61] is an example of a tool implementing a ‘shared place’. A
screen shot of this tool is depicted in Figure 6. The window on the left provides
information about the shared locales that are available, as well as awareness information
about current collaborators. The window on the right shows a collection of shared
artifacts persisting within a locale. Orbit is a research prototype intended to provide a
generic collaboration framework that supports the construction and design of domain-
specific collaboration systems. It is based on lightweight desktop conferencing, access to
shared repositories, ubiquitous awareness between collaborators, and flexible views of
shared data. It evolved from the Worlds project [15,39], and was developed around the
Locales [38] theory of collaborative activity. Locales theory builds on a spatial metaphor
to provide context for actions and interactions in a collaborative work environment. A
locale provides the setting in which cooperating team members can undertake their
collective action or in which distributed teams or team members can meet together for
some purpose. Examples of tools that provide similar ‘place-based’ collaboration
mechanisms include eRooms [33], QuickPlace [51] and PoliTeams [78].

Figure 6: A Shared Place in the Orbit collaboration tool [60]

• Document Repositories: Notes [50] is an example of a repository-based tool for

asynchronous collaboration. A screen shot from Notes is depicted in Figure 7, and shows
an example Notes workspace. This workspace provides access to shared databases as well
as a variety of asynchronous communication tools. Notes is a distributed client/server
database application that facilitates coordination, communication, workflow management
and information sharing. Its database foundations allow complex, unstructured

 25

information of any type to be organized and made available to groups of networked users
through a standardized graphical interface. Internal development languages facilitate
extension and customization of the tool to better integrate with existing systems and
processes. Notes also supports communication through email, chat, centralized scheduling
and addressing as well as web publishing and browsing. FLECSE [30] and Bayou [26] are
others example of a similar tools that supports asynchronous collaboration through multi-
user repositories.

Figure 7: Asynchronous collaboration in a Lotus Notes workspace [50].

• Revision/Configuration Management Tools: Rational ClearCase [82] is a leading
commercial tool for software version control and configuration management. It combines
version control, workspace and build management, as well as defect and change tracking
in an environment that accommodates a variety of development processes. ClearCase
enables continuous parallel development by providing controlled web-based access to
shared information, and integrates with third party development environments (IDEs) and
other development and design tools. It is intended to simplify and manage the change
process for complex development artifacts. Other similar tools include Microsoft
SourceSafe, Unix RCS tools and the Voodoo [34] document management system.

 26

Figure 8 : Workstyle analysis for tools supporting asynchronous collaboration through shared document

repositories and configuration/version management tools

 27

Figure 9: Workstyle Analysis for Tools Supporting Asynchronous Collaboration through a Shared Place

Metaphor

4.1.1 Collaborative Design Issues in Tools Supporting Asynchronous
Artifact Sharing

 Working in an asynchronous manner allows team members to work concurrently and
independently on shared tasks and documents, without compromising the consistency of the design
artifacts. In practice, this is implemented in a variety of ways. For example, web-based access [51,61,33]
enables a team member to access shared data from anywhere in the world with commonly available tools.
Similarly, enabling remote access to document repositories [50,30,51,61,33,26] provides constant and
concurrent access to design documents from distributed locations. Check-in/out and locking protocols
[51,50,61,30,72,82,103] maintain data consistency by locking artifact elements at varying granularities to
ensure that no aspect of a design artifact is modified by more than one person. However, such protocols
can impose inflexible coordination between collaborators that may be unacceptable in certain stages of
design and development. Similarly, tools with version and/or configuration management facilities
[51,61,30,72,82,103] support creation and tracking of multiple versions of an artifact, and provide
mechanisms to merge divergent copies into a single, consistent state. However, automatic merging is not
always possible, and often requires human intervention. This can impose further restrictions on
coordination. Finally, some tools [78,61,30,33] provide awareness facilities to alert others to actions and
changes that are being made, allowing social protocol to prevent inconsistencies.
 However, supporting asynchronous work solely through artifact management neglects the human
aspects of collaboration [57,62,63]. Although tools that implement ‘shared-place’ environments
[33,51,61,78] can foster cooperation and awareness through a centralized location for shared artifacts and
communication, they are overly artifact-centered and do not support lighter weight and real-time
interactions. Such interactions are very important to early, creative stages of collaborative development.

 28

Similarly, asynchronous communication mechanisms such as email and chat are often not rich enough to
convey the wealth of information exchanged by collaborators. These tools lack support for annotations,
shared drawing surfaces such as whiteboards and other mechanisms for lightweight, informal
communication. We now consider the workstyles supported by asynchronous artifact sharing tools.

Archivability

All of the tools in this category provide complete support for document storage and retrieval. The
ability to archive design artifacts is central to supporting asynchronous collaboration via shared access to
resources such as repositories [50,30,51,61,33,26] or shared places [33,51,61,78]. Repositories are
document databases that allow remote retrieval and storage of a variety of document types. For example,
Orbit integrates three different kinds of repository: BSCW for storing standard office document, Envy for
Smalltalk code, and CVS for other code bases. Conversely, Notes databases are considered document-
oriented object stores for semi-structured and unstructured data, and can store heterogeneous document
types. Tools that use a ‘shared-place’ metaphor support archivability through object persistence. Like
physical places, objects left in a place remain there until they are taken away. Thus, any artifact brought
into such a tool is automatically archived until it is expressly removed.

Modifiability
 Though artifact creation and modification is not central to the functionality of asynchronous
sharing tools, modifiability of artifacts is enhanced by version and configuration management control
facilities. Versioning allows multiple copies to be modified, with any changes easily tracked and undone if
necessary. This facilitates making changes to documents because parallel versions can be created and
maintained without the risk of destroying the original.

Synchronicity
 As indicated by the category name, asynchronous sharing tools support asynchronous interaction
between collaborators. The degree of synchronicity is dependent on concurrency control mechanism. In
those tools that rely on repository-based check-in/out or locking protocols [51,50,61,30,72,82,103],
synchronicity is limited by the granularity of the entities that may be checked in/out. Courser grained
protocols may limit one person per document, while finer-grained ones may control smaller elements
within a single artifact. This can facilitate more synchronous work. Similarly, tools with version and/or
configuration management facilities [51,61,30,72,82,103] support a greater degree of synchronicity by
supporting the creation and tracking of multiple versions of an artifact that can result from concurrent and
independent work on a shared document. They also provide mechanisms to merge divergent copies back
into a single, consistent state, which can facilitate transitions from asynchronous to synchronous work
styles. Finally, some tools support fully synchronous interactions [33,78,30] and communication
mechanisms [33,30], supporting shared views of artifacts and real-time communication tools.

Location
 These tools support distributed collaboration only, though co-located collaboration is technically
possible in highly asynchronous situations where team members share the same machine to access shared
artifacts. Web based tools [51,61,33] can support widest distribution, as no special tools or installation
procedures are required to access shared resources or interact with team members. Conversely, some tools
[72] use proprietary communication protocols that limit their operation to smaller, local area networks.

Coordination
 Tools in this category rely on moderated coordination through access controls [51,50,33] and
repository-based check-in/out or locking mechanisms [51,50,61,30,72,82,103]. These mechanisms can
limit the freedom that team members have to act independently, thereby coordinating their actions.
Furthermore, tools that support versioning [51,61,30,72,82,103] can require and impose coordinated
interaction during the merge process, as consistency requirements enforce the need to coordinate the

 29

merging of divergent models. Finally, some tools provide limited support for process design and
enactment [33,50,51], which can enforce a strict coordination between collaborators by preventing or
requiring certain actions under particular conditions.

Group size
 Generally, tools in this category support a reasonably large number of collaborators working
asynchronously. However, concurrency control mechanisms such as check-in/out protocols and object-
locking [51,50,61,30,72,82,104] limit group size based on the granularity of the protocol. For example, for
large enough groups, or small document sets, it is possible that all artifacts become checked out and/or
locked, preventing any additional team members from working. Additionally, versioning and
configuration management facilities [51,61,30,72,82,104] place limits on group size based on their ability
to merge multiple, disparate versions of an artifact. As the number of parallel versions increases, it
becomes increasingly difficult to easily and/or automatically merge divergent versions.

4.2 Summary
Many of the tools in this category support asynchronous collaboration by integrating document

repositories, team communication facilities and/or configuration/version management. These tools support
fairly restrictive workstyles. They are flexible in the nature of the artifacts that they support, as there are a
variety of such tools to accommodate any artifact type. However, interaction with those artifacts is highly
moderated and restricted to small or medium distributed groups working asynchronously.

The remaining tools support asynchronous collaboration through the notion of a ‘shared place’.
These tools support a similar set of working styles as those described in the previous paragraph. They are
independent of artifact type, and interaction with those artifacts is moderated by concurrency control
mechanisms to maintain consistency. However, ‘shared place’ tools may also support synchronous work
styles, though only with smaller group sizes.

 30

5 Category 4 : Tools Supporting Synchronous Artifact
Sharing

 The tools in this category are characterized by their support for synchronous artifact sharing. This
means that they allow multiple designers to concurrently view and manipulate the same artifact, and see
the results of other’s actions in real time. This is in contrast to other artifact sharing mechanisms, where
copies (or portions) of artifacts are checked out, modified and merged with an original or a parallel
version. The most ubiquitous of these tools is Microsoft’s NetMeeting [70], a screen-sharing application.
Others include TeamRooms [84] developed at University of Calgary, and JComposer [47] developed by
the universities of Waikato and Aukland.

Synchronous artifact sharing tools vary greatly in their overall functionality and intent. There are
three kinds of tools in this category:

• Meta-tools: These are tools that provide synchronous sharing for collaboration-
transparent design applications. For example, NetMeeting supports the sharing of generic
Windows applications, as well as other activities such as collaborative drawing, file
sharing and chat. This meta-tool could be used to support synchronous, collaborative
software design in a collaboration-unaware system such as Rational Rose.

• Collaboration-aware Tools: These are tools that integrate support for synchronous artifact
sharing. For example, JComposer [47] is a fully functional CASE tool that supports
synchronous sharing of its own design artifacts.

• Co-Located Tools: These are tools that support synchronous sharing for co-located
collaborators. For example, Insight Lab [65] facilitates co-located teamwork through the
interaction of computer technologies with environmental objects such as papers and
physical whiteboards.

Regardless of their differences, the main benefits that these tools offer is the ability for
collaborators to work together on the same artifact(s), while providing awareness of each other’s actions.
Their main drawback is that they support only a small group of collaborators, and may impose restrictive
coordination models in exchange for artifact consistency.

5.1 Collaboration in Synchronous Artifact Sharing Tools
As an introduction to this category, we describe Netmeeting, JComposer and InsightLab. These

tools serve as exemplars of the three subtypes of tool described above. The differences between these tools
will be discussed in context of the Workstyle model. Graphical depictions of this analysis are show in
Figures 13, 14 and 15.

• Meta-tools: NetMeeting [70] is a general collaboration tool that supports generic
application and file sharing, shared whiteboards, textual chat, as well as voice and video
conferencing (see Figure 13 for Workstyle analysis). An example of NetMeeting in use is
depicted in Figure 10. Two collaborators are synchronously searching the web. Two
telepointers can be seen. The ‘arrow’ indicates the user who has control over the
application, while users without control over the shared application are indicated by a
circular pointer. It allows software designers to share existing design tools that are
collaboration-unaware, i.e originally designed for single users. Netmeeting also supports
communicating through voice, video, text and/or the whiteboard application. However, its
support for teamwork is limited by a turn-taking coordination policy that limits concurrent
interaction with shared artifact, as well as only supporting point-to-point collaboration for
voice and video streams. Other application-sharing tools may not share these restrictions.
Examples of similar tools include CECED [20], Disciple [108], JAMM [10] and Xtv [113].

 31

Figure 10 : Collaborative web browsing through Netmeeting. Each user has their own telepointer.

• Collaboration-aware Tools: JComposer [47] is an object oriented CASE tool for creating

and manipulating graphical and textual views of object-oriented and component-based
software systems (see Figure 14 for Workstyle analysis). An example screenshot from
JComposer is shown in Figure 11. The large window contains a view of the shared artifact,
while the surrounding windows provide awareness information about collaborators.
Jcomposer supports specification, design, implementation, documentation and reverse
engineering. The tool integrates a proprietary design language, Jcomposer Architecture
Description Language [45], and a structured editor that allows manipulation of change
propagation and response graphs based on this language. JComposer also supports both
synchronous and asynchronous collaboration, as well as smooth transitions between these
two styles of work. Other tools that support synchronous sharing of internal artifacts
include TelePictive [74] and TeamRooms [84].

 32

Figure 11: Collaborative component design in JComposer [47]

 Insight Lab [65] is tool intended to support the development of design requirement documents by

teams (see Figure 15 for Workstyle analysis). Elements of InsightLab are shown in Figure 12, and
described in the caption. The development of requirements documents requires analysis of large quantities
of qualitative data collected from various sources that reflects the work and the environment in which a
system is to be used. This may involve in-depth review of audio and video recordings, photos, or
interview notes. This tool facilitates co-located data analysis by teams through the interaction of computer
technologies with environmental objects such as papers, whiteboards. Similar tools include i-Land [5,93].

 33

Figure 12 : A) Three screen display within InsightLab. B) Insight Lab walls as information displays. C) An

electronic whiteboard surrounded by linked artifacts

 34

Figure 13: Workstyle Evaluation of Meta-tools

Figure 14: Workstyle Evaluation of Collaboration-aware Tools

 35

Figure 15 :Workstyle Evaluation of Co-located Tools

5.1.1 Collaborative Design Issues in Synchronous Artifact Sharing Tools
Collaborators often interact with each other through shared artifacts. Artifact sharing provides a

common focal point for collaborative activities, as well as a mechanism to record results of collaborative
work. For example, two team members responsible for creating a document draft might work together in
front of a shared sheet of paper. Such sharing allows each person to interact with the document, as well as
witness and modify each other’s changes to the document in real-time. They would be able to discuss
changes they make, or plan to make, as they are seated next to each other in a common location. Software
tools that support synchronous artifact sharing attempt to support this style of interaction with electronic
tools, in potentially distributed collaborative situations.

There are three basic approaches taken to support synchronous artifact sharing in collaborative
software design. Meta-tools [70,20,10,108,113] facilitate synchronous sharing of software tools that were
originally intended for interaction with single users. They rely on the underlying collaboration-unaware
tool to manage artifact properties such as archivability, modifiability, syntax and semantics. Furthermore,
they manage concurrency issues through coordination mechanisms, such as turn-taking [70,108,20] or
locking [47] that prevent concurrent access to the artifact. The mechanisms present a considerable barrier
to fluid interaction, as only one collaborator can control the artifact at a given time. Other mechanisms
serialize input [10] to convert multiple inputs the single stream expected by the underlying application.
This maintains consistency in the shared document. However, issues may still arise if the single-user
semantics of the underlying tool conflict with the concurrency control mechanism in place. For example,
if a serializing mechanism is used to share a bit-mapped drawing program the results may be
unpredictable. The serialized stream of input that reaches the application would consist of interleaved data

 36

from each user, resulting in a continuous scribble across the shared drawing space rather that a set of
discrete lines.

Collaboration-aware tools that integrate support for synchronous sharing avoid the conflict that
may arise between the single-user semantics of a collaboration-unaware tool and any meta-tool that may
be used to synchronously share it amongst collaborators. These tools [47,74,84] support sharing of
proprietary artifact types, as opposed to sharing generic, third party artifacts. They integrate the
appropriate concurrency semantics and control mechanisms, such as full replication with event
broadcasting [43,47,84] to prevent inconsistencies during collaborative editing. Furthermore, these
collaboration-aware tools provide higher-level support for synchronous work, such as flexible coupling
[47], which permits varing degrees of synchronicity between collaborators, as well as supporting fully de-
coupled, asynchronous work [47, 84].

The final approach involves augmented electronic support for co-located interactions such as
those described in the motivating example. These tools [65,5] facilitate co-located collaboration through
interaction with both computer and environmental objects such as paper or whiteboards. These tools excel
in supporting informal communication, as they bring collaborators together an enable rich face-to-face
communication, and permit social protocol to mediate interaction rather than imposing control to maintain
consistency. Their main drawback is the fact that they cannot support distributed work, as a physical room
maintains all shared tools and artifacts. We will now consider the workstyles supported by synchronous
artifact sharing tools.

Archivability

Each sub class of tool in this category addresses artifact storage differently. As with all meta-
tools, NetMeeting relies on the underlying application to manage saving and restoring documents, as well
as any compatibility with third party tools. Because of this, shared artifacts are only archived on the
machine on which they were originally created, i.e. the machine of the person running the NetMeeting
server. Other tools that support a smaller set of applications also rely on this model for archiving artifacts
[20]. This is a barrier to effective collaboration, and has been addressed by tools [108] that provide full
local replication of each shared artifact.

Similarly, support for archivability in collaboration-aware tools is dependent on the application.
For example, TeamRooms supports collaboration-aware GroupKit [83] applications and relies on them to
support archivability for their own artifacts. All objects within a teamroom are fully persistent, meaning
that the current state of a collaboration session can also be archived. TeamRooms’ persistence database
stores arbitrary number of versions of artifacts in rooms, allowing users to browse the history of a
document.

Insight Lab is an environment intended to support the storage and management of both electronic
and physical artifacts. It maintains relationships between multimedia data, electronic whiteboard drawings
and the various analysis elements. Barcodes are used to maintain these links between physical objects
such as paper or whiteboards. This kind of functionality is unique in this category, and is useful in early
collaborative design situations, where various requirement details may have been collected and stored on
heterogeneous media.

Modifiability
 Recall that modifiability refers to the ease with which artifacts created using a tool may be
modified, either within the same tool or externally in other tools. As before, the modifiability of artifacts
created or manipulated through synchronous artifact sharing tools is highly dependant on the artifact itself.
Artifacts created by tools that provide a high degree of modifiability maintain the property when shared
through meta-tools.

However, coordination mechanisms that are intended to manage concurrent updates can reduce
the modifiability of an artifact by certain collaborators during a shared session. For example, a turn-taking
coordination policy prohibits modifications to an artifact by anyone other than the holder of the floor [70].
This can reduce the modifiability of artifacts by groups because requests for control must be made before

 37

each user can make a modification. To avoid this issue, some tools use more sophisticated protocols, such
as Flexible JAMM [108], COMET [20], or partial locking [47] for managing concurrent input. Others
place no restrictions at all, relying on social protocol to resolve conflict [65,47]. These approaches allow
each user to modify the shared artifact with reduced concurrency-based interaction barriers.

Some tools also implement trace history and recording mechanisms to provide full change
histories for artifacts created or manipulated collaboratively through the tool [20,84,65]. This functionality
allows collaborative changes to an artifact to be logged such that modifications may be undone, applied to
other artifacts in similar fashion, or recorded for documentation purposes.

Syntactic correctness
 Syntactic correctness refers to the requirement that an artifact conform to a precise syntax. For
most synchronous artifact sharing tools, any syntactic restrictions that may be imposed are done so by the
underlying application. Using application-sharing tools [70,20,108] to share a Rational Rose diagram
amongst designers imposes no additional syntactic requirements beyond Rose itself. Similarly in
TeamRooms, syntactic restrictions are imposed only by the underlying collaborative applications within a
room. A room itself has no notion of syntax; objects and applications of mixed type may be brought into,
and freely arranged within a room. This freedom from syntactic requirements can allow designers to
express their ideas in the manner, and with the tools, of their choosing.
 Insight Lab analyses can contain data from a wide variety of sources. Data sources may include
video, audio, photographs or other data. However, each analysis is composed of 4 distinct elements –
Evidence, Patterns, Hypotheses and Themes. There is no particular syntax applied to entries within these
elements, though their content is based on the particular data source and tagged with a set of keywords to
facilitate categorization and analysis. As Insight Lab is intended to facilitate analysis of large quantities of
data, this mild syntax helps to structure the data in such a way as to emphasize patterns without hindering
the designers in any significant way.
 JComposer is entirely different from the rest of the tools in terms of syntactic requirements. Like
other tools that support software modeling (see section 2), JComposer enforces syntax by nature of its
structured editor – the primitives provided by the editor restrict the possible syntax of the artifact. In this
case, the editor provides primitives for the JComposer Architecture Description Language [47], which is
based on Change Propagation and Response Graphs [45]. CPRGs propagate change description objects
between component objects via relationship objects. These elements constitute the syntax supported by
this tool. This requirement to use a structured syntax may impede informal or creative design work [111],
making JComposer less appropriate to early stages of design.

Semantic correctness
 Semantic correctness refers to the clarity and precision with which the meaning of the artifact
must be expressed. Again, for most of the tools, any semantics that may be interpreted or assumed are
done so by the underlying application.
 Again, JComposer is different from other tools in this category because its artifacts are intended to
be expressed with such clarity and precision so as to facilitate code generation. Based on the CPRG [45]
model, change description events are generated whenever components or relationships are modified.
These event representations are propagated to associated relationships or components for an associated
reaction. The reactions are used to implement semantic constraints on the environment. Some component
types have predefined actions that are performed on receipt of specific types of event. In general, however,
application specific actions must be defined to specify the semantics design.

Synchronicity

Synchronicity refers to any the temporal restrictions that a tool may impose on interactions
between collaborators. As the category itself suggests, all of the tools support fully synchronous
interaction with artifacts. However, the tools vary greatly in how they manage synchronous interaction, as
well as in the support they provide for synchronous collaboration beyond artifact sharing.

 38

Even among tools that provide synchronous artifact sharing through a screen sharing mechanism
[70,20] there are a variety of approaches to synchronization. Netmeeting uses a coarse-grained floor
control policy that requires users to request and be granted control of the shared application before they
may manipulate the artifact, while CECED applies a more sophisticated distributed floor control policy.
This algorithm grants the floor to the local site only if no activity is detected from the remote conference
site that is holding the floor, without the need for a formal request mechanism. However, both of these
mechanisms actually prevent multiple users from interacting concurrently with an artifact, and may
become cumbersome during group interactions.

Other tools use approaches such as JAMM [10] that serialize multiple input streams to present a
single flow of control to the collaboration-transparent application [108]. Similarly, collaboration aware
tools [84,47] can use even more sophisticated concurrency mechanisms that are based on views of
replicated objects. Each participant maintains their own copy of a shared artifact, and changes made to any
of these copies are propagated to all of the others. Individual views of the shared artifact are updated as
changes are applied. These approaches avoid the disruptions that can result from concurrency policies that
prevent concurrent interaction, and allow all users equal access to the artifact.
 In JComposer, inconsistency management may be left to the individual designers. Depending on
the level of collaboration, which will be discussed shortly, changes may be presented to the user before
being applied, and changes that cannot be applied can be detected and marked invalid. Additionally, fine-
grained locking policies may be applied to prevent inconsistencies from arising. This allows flexibility of
choice as to when or if changes made by others are applied to individual views, and provides tolerance to
inconsistencies between views.

Some tools support also support asynchronous collaboration, and provide mechanisms for easy
transitions between synchronous and asynchronous interactions [84,47]. TeamRooms supports
asynchronous work through the notion of persistence. Objects placed in a room persist even when they are
not being shared by anyone. This allows users to interact with objects, and each other, either
synchronously or asynchronously with no difference in the way they use the tool. Transitions between
synchronous and asynchronous work amount to users leaving and re-entering a room. JComposer provides
five levels of collaboration as motivated by Suite [27,28] – asynchronous, notify, present, action and
synchronous. They differ in the way in which individual views respond to changes, from no response
(asynchronous), through various mechanisms for presenting changes to the user for selective application,
to use of a locking protocol to prevent inconsistent changes from being applied (synchronous). Users may
move freely between levels, and are not all required to be at the same level, even when sharing the same
artifact. This increases work style flexibility by allowing individual users to decouple from the group,
allowing people to collaborate in different ways at different times. For example, a designer may want to
interact synchronously with others when connected via a high-speed, high-reliability network, and
asynchronously when connected through a low-speed, low-reliability network, e.g. when traveling and
connecting through a dial-up internet service provider.

Beyond the ability to synchronously share artifacts, many of these tools provide additional support
for collaboration, for example communication facilities or awareness mechanisms. Voice and video
connections [70,20] and textual chat tools [70,84] provide natural communication mechanisms between
participants. Tools such as shared whiteboards [70,84,65] facilitate lightweight interaction and
brainstorming. Similarly, telepointers [70,84,20] provide awareness cues about others who are interacting
with an artifact. TeamRooms goes futher still and provides awareness information about participants
currently collaborating in a room in the form of still images, as well as radar overview of the room, which
tracks both users attention and room objects.

Location
 The location axis describes the kinds of geographical distribution of collaborators that a tool can
effectively support. Generally, synchronous artifact sharing tools only support distributed collaboration
[70,20,108,84,47]. They are intended to replace face-to-face interaction when such meetings are not
feasible. The user interfaces for these tools are designed for a single user interacting with others using the

 39

same application in remote locations, rather than a group of co-located users interacting with a single
computer or application. The exception is Insight Lab, which can support co-located collaboration only. It
is an physical environment that integrates multiple devices and objects into a single system that supports
simultaneous interaction from co-located users. Team members interact while working on the same
artifacts, in the same room, using the same devices.

Coordination
 Though some applications [85] may add higher-level coordination policies, the coordination of
collaborative activities within these tools is typically determined by the tool’s concurrency control
mechanism. For example, tools that employ turn-taking coordination mechanisms and require formal
requests to be made and granted impose a significant degree of coordination on collaborators. More
sophisticated policies can mitigate this coordination to varying degrees. The distributed floor control
policy employed by CECED relieves users of submitting requests for control; however, it still limits
interaction to one participant at a time. Serialization mechanisms such as JAMM allow truly concurrent
interaction with an artifact while still maintaining consistency and respecting the single-user semantics of
the underlying application. Collaboration-aware application such as TeamRooms and JComposer
minimize coordination restrictions further still, but require the use of a limited number of predetermined
applications [84] or proprietary design languages [47]. However, JComposer tolerates inconsistencies
between individual views, which serves to further reduce the degree of coordination between designers.
Co-located tools such as Insight Lab coordinate collaboration by requiring collaborators to be co-located,
which may be both inconvenient and impractical.
 However, as these tools [70,20,108] allow sharing of collaboration-transparent applications, the
semantics of these single user applications may become an issue within a multi-user context. For example,
DISCIPLE is based on a replicated architecture, wherein all participants have their own copy of any
application used in collaboration. Consider a situation where DISCIPLE is used to share a software
modeling application, such as Rose, amongst multiple designers. Designers would have their own copy of
both the modeling application and the artifact being shared. At such a point as the shared artifact is to be
checked into the team repository, multiple copies of the same document may be stored because the
underlying application not aware of the semantics of collaboration. A user awareness of this kind of
semantic mismatch would be required to avoid such issues when using synchronous meta-tools in this
manner.

Group size
 Generally, synchronous artifact sharing tools will only support small groups of synchronous
collaborators. Voice and video communication are often point-to-point [70], rather than multicast, which
can limit group size, though CECED does support multicast voice conferences. Additionally, concurrency
control based on a floor control mechanism [70,20] will limit the number of collaborators in practice, as
competition for control of the floor increases with group size. Similarly, concurrency mechanisms based
on serialization [108] may begin to impact application responsiveness, particularly as groups grow larger.
Co-located tools such as Insight Lab are limited by the physical size of the room in which they are
installed.

JComposer is theoretically limited only by the granularity of the locking mechanism for
synchronous interaction, though certain considerations will limit this in practice. Artifacts containing
fewer elements will be able to support fewer concurrent collaborators. In more asynchronous collaboration
modes, it may support larger groups. However, the various concurrency mechanisms for asynchronous
collaboration may prove insufficient for large-scale collaboration. Presentation of all remote updates may
overwhelm an individual user as group size grows, and manual merging of divergent versions will become
increasingly difficult.

 40

5.2 Summary
Meta-tools support collaborative software design by enabling synchronous sharing of collaboration

design applications. As with tools specific to asynchronous artifact sharing, these tools support a fairly
limited set of workstyles. While they are independent of the type of artifact being shared, they are limited
to supporting small groups of distributed collaborators interacting synchronously. Additionally, these
restrictions as well as any concurrency control mechanisms may impose significant restrictions on how
designers may interact with each other and the shared artifacts.

Collaboration-aware tools integrate synchronous sharing facilities with software design
applications. These tools have the similar restrictions in the nature of the workstyles they support as the
software modeling tools described in category 1. They impose the same restrictions on artifact properties,
as well as supporting only a small or medium group of distributed collaborators. However, unlike the tools
of category 1, they may allow both synchronous and asynchronous interaction.

The remainder of tools in this category support synchronous sharing of artifacts amongst co-located
collaborators through integration of computers with environmental objects. These tools support a fairly
specific workstyle. Small groups of collaborators must be co-located, and interact synchronously. This
imposes a certain degree of coordination, though beyond this interaction between collaborators and with
artifacts is mediated socially.

 41

6 Category 5: Tools Supporting Interaction through Informal
Media

 People often carry out design work using informal media such as paper or whiteboards [64].
Particularly in the early stages of design, informal media are appropriate as they allow design diagrams to
be quickly and fluidly sketched [107]. Computational analogues of such informal media include electronic
whiteboards, data tablets and stylus input for computers. Tools supporting interaction with informal media
attempt to extend the free form, fluid interaction afforded by physical informal media to these
computational counterparts.

The tools in this category are defined by their support for user interaction with informal media.
This means that they support unstructured interaction through devices such as whiteboards, tablets or
paper. This contrasts with more formal styles of work that emphasize structured interaction mechanisms
such as structure editors, for example PowerPoint [71] or text editors such as Word [73]. Three sub
categories of tools will be considered:

• Informal CASE Tools: These are software design tools that support interaction through
informal media. For example, IdeogramicUML [53] is a commercial tool that supports
UML modeling based on interpretation of hand gestures rather than a structured UML
editor. IdeogramicUML evolved from the research tool Knight [24].

• Enhanced Electronic Whiteboards: These are electronic whiteboard applications that
attempt to replicate and extend the functionality of physical whiteboards using electronic
whiteboards such as a Smartboard [89] or Mimio [106]. Tools such as Tivoli provide
computational augmentation to standard whiteboard functionality, and allow informal
stroke data to be manipulated in the same fashion as objects in typical structured graphical
editors. Other similar tools [75] allow for the application of predefined behaviors to such
data. For example, textual lists can be treated appropriately, and support list-appropriate
manipulations insertion, deletion, reordering, etc.

• Shared Drawing Tools: These tools support collaborative sketching or drawing tasks such
as often found in early design work [110,100,97,55] without providing support for any
specific notation. Shared drawing tools provide functionality to support collaborators
synchronously sharing a drawing surface.

 The main advantage to informal media tools is that they support a natural working style without
imposing significant cognitive overhead on the user by means of heavyweight interaction mechanisms.
They allow users to use the tool transparently, without having think about the tool itself. The drawback in
many of these tools is the limited, or non-existent, support for movement towards more formal, structured
work, and may limit development as a design progresses begins to require more formal treatment. Also,
many of these tools have general-purpose intents, and are not specifically designed to support early
software design tasks.

6.1 Collaboration in Tools Supporting Interaction Through Informal
Media

 As an introduction to this category of tools, we will describe IdeogramicUML, Flatland and
Clearboard as archetypes for each of the three subclasses described above. The differences amongst tools
will be discussed using the Workstyle model. A graphical depiction of this analysis is show in Figure 19.

• Informal CASE Tools: Ideogramic UML [53] is a commercial tool that evolved from the
Knight research project [24]. An example of this tool in use is depicted in Figure 16,
which shows how both formal and informal design notations can be used to express a
UML design. IdeogramicUML is intended to support the “agile” use of UML [2],
meaning effective and lightweight use of UML. It supports a wide variety of interaction

 42

devices, including PCs, tablets, Tablet PCs and electronic whiteboards. This tool supports
gesture based modeling in UML, as well as free hand diagramming with no gestural
interpretation. IdeogramicUML supports a subset of the UML standard limited to Class,
Use case, Sequence and State Chart diagrams. Furthermore, IdeogramicUML only
supports co-located collaboration using electronic whiteboards, and requires additional
tool support to be used by distributed teams. Other similar tools include UML Recognizer
[66] and Tahuti [48].

Figure 16: Preliminary designs mixing formal and informal notations in IdeogramicUML

• Enhanced Electronic Whiteboards: Flatland [75] is an augmented whiteboard application

designed to support informal office work. Flatland provides various stylus-appropriate
techniques for interaction and space management on an electronic whiteboard.
Furthermore, it provides the ability to apply different behaviors to define application
semantics. This is shown in Figure 17, where each segment on the board responds to
differently to stylus input based on the applied semantics. Flatland can also manage the
change history of the board space. However, it does not specifically support design tasks,
but is intended to support for informal work in an office environment and as such can be
appropriate in early software design tasks. Furthermore, Flatland does not support
distributed collaboration, it only facilitates teamwork in a co-located setting. Other similar
tools include Tivoli [79], Dolphin [92], MagicBoard [21], and IdeaBoard [1].

 43

Figure 17: The Flatland user interface [75]

• Shared Drawing Tools: ClearBoard [55] is a shared drawing program that allows two

remote users to simultaneously draw in a shared space while providing awareness
information such as hand gestures and gaze. It is based on the metaphor of ‘talking
through, and drawing on, a big transparent glass board’ [55], and implements a shared
drawing technique drawn from VideoDraw [97]. Figure 18 demonstrates this technique
more clearly. Clearboard also provides additional functionality such as simple stroke
manipulations, recording of working results, as well as the ability to integrate generic files
into the drawing space. Unfortunately, ClearBoard is implemented using experimental
hardware that is not widely available, and is limited to support for only two users. Other
similar tools include Commune [14], GroupSketch [42], Mediaboard [105], WeMet [110],
as well as VideoWhiteboard [100] and Videodraw [97].

Figure 18: Clearboard-2 prototype in use [55]

 44

Figure 19: Workstyle Analysis of Tools Supporting Interaction through Informal Media

6.1.1 Collaborative Design Issues in Tools Supporting Interaction through
Informal Media

 Informal media such as whiteboard and paper have been shown to be effective tools for
cooperative design [95,96,99,12,23,24]. They support simple, direct interaction without unnecessary
overhead, and allow several designers to work simultaneously, facilitating co-located collaboration.
Furthermore, they do not impose any special notation on the user, thus supporting the production of both
formal and informal diagrams, as well as the use of flexible and extensible notations. Software tools that
support interaction through such media attempt to combine these benefits with those of traditional
software tools. How this is accomplished varies between tools, however it may involve augmented editing
and stroke manipulation techniques [75,79,92,21,1], support for distributed collaboration
[55,110,100,97,92,14,105,42] or some integration of application-specific semantics [53,24,66,48,75]. The
nature of these application semantics varies, ranging from software design specific (e.g. UML notation) to
more generic tasks (e.g. To Do lists).
 However, these tools have limitations related to both the artifacts they can produce as well as the
way in which they support interaction between collaborators. The lack of syntactic restriction and limited
application semantics can limit expressiveness and increase ambiguity in complex, formal designs.
Furthermore, lack of defined syntax and semantics often implies the use of image-based file formats (e.g.
bmp, gif, etc) instead of structured formats based on accepted standards (e.g. XMI). This serves to limit
archivability and interoperability with other design tools. Additionally, unstructured editing mechanisms
such as found many of these tools lack much of the functionality of their structured counterparts. Complex
editing functions that are common to structured editors are much less common in these tools, leading to
poorer modifiability of artifacts produced.

 45

 Interaction between collaborators is also influenced by the use of these tools. While all of these
tools support synchronous, co-located interaction, few provide support for distributed, synchronous
collaboration, and those that do are very narrowly focused on that task. For example, the tools that provide
application semantics specific to software design [24,66,48] provide no support for distributed work.
Those that do support distributed collaboration [55,110,100,97,92,14,105,42] integrate no notion of
application semantics, and do not provide much of the functionality typical of augmented whiteboard
applications. Another issue that impacts collaborator interaction is the small group size that these tools can
support. The lack of coordination models, as well as the nature of informal media itself, limits the
effective size of the group that may collaborate through informal tools. Some [55,97,110] only support
synchronous collaboration between two people.
 A final issue concerns the hardware available for supporting interaction with electronic informal
media. While it is the intention of these tools to support natural and fluid interaction in a manner similar to
that supported by physical informal media, the ability of the hardware involved falls short for achieving
this goal. Issues arise concerning latency, resolution and synchronous input. For example, unlike a
physical whiteboard, user’s of a SMARTBoard [89] find a delay between drawing a stroke and having it
appear on the drawing surface. Similarly, a SMARTBoard can only accept input from a single user at a
time, while a physical whiteboard can be used by as many people as can reach at a given time. Finally, any
tool such as electronic whiteboards, styli and data tablets will be limited in resolution by the nature of the
input and display mechanisms.

Archivability

Like most modeling tools, Knight/IdeogramicUML provides complete support for saving and
restoring native artifacts, however it does not integrate a multiuser artifact repository or revision control
system. Furthermore, it supports data exchange with XMI-compliant tools including Rational Rose [81]
and ArgoUML [7], however free-hand information is not exchanged because it is not defined in the UML
XMI specification [77]. Knight/IdeogramicUML also supports output of HTML and SVG documentation,
as well as JPEG, PNG and SVG image types for diagrams. The other modeling tools in this category
[66,48] are less extensive in their support for archiving artifacts, as they are research prototypes rather
than commercial tools. However, both do support saving and restoring of native diagrams, as well as data
exchange through XMI with Rational Rose. Data exchange from informal CASE tools to more typical
CASE tools is important in order to support movement from an informal workstyle to a more formal style
as designs develops.

Augmented whiteboard applications typically support archivability of their whiteboard space
through the notion of persistence. This means that data placed on a board persists until erased. To facilitate
data storage and board space management, Flatland integrates a document respository, and each segment
of the board is automatically saved without explicit user action, and identified by its surrounding context
on the board. Others implement more explicit mechanisms requiring user initiation and input [79,92,21,1].

Like whiteboard applications, shared drawing programs also support the notion of persistence, and
some [55,105,110] provide file-based storage in variety of formats. Most of these formats are image-
based, though some provide native file formats to facilitate reuse in future work [105]. Additionally, tools
may support session history recording to allow the previous state of a session to be recalled [105,110].
However only those tools supporting native file formats can allow a previous state to be recalled and
reused in the same manner in which it was originally created. Furthermore, shared drawing programs do
not structure data in such as way as to facilitate exchange with typical CASE tools. This limits
collaborators’ ability to move into more formal workstyles as such workstyles become appropriate.
Finally, some tools intended to support shared drawing provide no file based storage [97,100], though
video images may be recorded and used for archival purposes.

Modifiability
 There are three levels of modifiability amongst tools in this category. Tools that support input
with physical rather than electronic ink [55,97,100] all support basic modifications through traditional

 46

means. Physical ink may be erased wholly or in part, by any convenient means (finger, palm, cloth, etc.),
and does not require a special input device such as a stylus. This style of interaction is well suited to
informal or creative design, as interaction with the tool becomes transparent. However, physical ink does
not support augmented manipulations such as move, copy or resize. Tools that support input with
electronic ink may sacrifice some interaction transparency to provide such augmented manipulations
[24,75,92,79]. Some support both physical and electronic ink [21] and provide the advantages of both
styles of input. Conversely, some tools strike a balance between functionality and interface simplicity and
support only basic manipulations of the electronic ink strokes, such as delete [110,14,42].

Syntactic correctness
 Informal media tools do not typically restrict the stroke alphabet that may be used to create
artifacts. This means that they do not enforce a particular syntax; all support completely informal
interaction, and impose no restrictions. However, those tools that support some application semantics
[53,24,66,48,75] do require appropriate syntax for this functionality. For example, tools that use gesture
recognition, such as Knight, Tahuti and UML Recognizer, are based on particular properties of the input
strokes. Failure to make strokes that have such properties can result in mis-recognition of the gesture.
Similarly, Flatland requires certain properties to be present in the input stoke set in order to successfully
apply particular behaviors. A lack of strict syntax is one of the fundamental properties of the tools in this
category that facilitate lightweight group collaboration, particularly in the context of early design.

Semantic correctness
 None of the tools in this category ascribe semantics to the artifacts produced. Even those
providing functionality based on application-specific semantics [53,24,66,48,75] do not impose a semantic
model on input, though a particular semantics are applied at the option of the user. For example, gestures
in Knight may be interpreted as UML input, or simply stored as uninterpreted stroke data depending on
the user’s choice. Similarly, segments in Flatland may have particular behaviors applied. For example,
segments containing list data can be automatically formatted and manipulated as structured list. However,
any such behavior is applied at the user’s discretion, and no behavior is automatically applied to any
stroke. The flexibility afforded by informal media tools with respect to semantic correctness allows the
expression of design where the semantics are unclear. This is common in early design stages, as many
details are not yet defined.

Synchronicity
 In general, informal media such as whiteboards and paper support concurrent interaction between
multiple people, and software tools that support interaction through such media are no different. All of
these tools support synchronous interaction, either at a distance [97,110,14,42], or co-located
[24,48,66,21,1,79,75], or in combination [55,100,92]. The nature of these tools is also such that they
support asynchronous interaction through the notion of persistence. Information left in the shared drawing
space can persist over time, allowing collaborators to interact with the same artifact at different times.
 However, there is variation in the degree of support for distributed, synchronous interaction
amongst those tools that permit it. Dedicated shared drawing tools [97,110,14,42,55,100] all provide
support for distributed collaboration with such mechanisms as telepointers [42], hand gestures
[97,100,110], gaze awareness and eye contact [55].

Location
 Because of the nature of informal media such as whiteboards and paper, all of these tools can
support co-located collaboration in an asynchronous manner. In addition, these tools support may either
distributed interaction [97,110,14,42], co-located interation [24,48,66,21,1,79,75], or both [55,100,92].

Coordination

 47

 The coordination of collaborative activities within these tools is controlled solely by social
protocol. None of the tools place any restrictions on how or when participants may interact with each
other or the artifact that they are creating, beyond any imposed by specific hardware devices. For example,
whiteboard based applications [79,75,92,21,1,100,55] may use different kinds of electronic whiteboard
hardware that may allow multiple, concurrent streams of input [79,92], or restrict input to a single stylus at
a time [75,66,24]. This lack of enforced coordination is another fundamental property of informal media
tools that facilitates lightweight group collaboration, particularly in the context of early design.

Group size
 Generally, informal media tools only support a small number of collaborators. Whiteboard based
tools [79,75,92,21,1,100,55] can support synchronous interaction amongst co-located users, but are
limited to supporting a small group due to their physical size. The tools that add support for distributed
collaboration [110,14,42, 92] rely on social protocol to mediate interaction, which begins to break down
with larger groups. Similarly, communication mechanisms designed to support distributed interaction,
such as telepointers, gestures, eye contact etc., do not scale well to larger groups. Finally, specific
hardware designed for some shared drawing tools [97,100,55] may only support two synchronous
collaborators. However, asynchronously, all these tools could potentially support larger groups. For
example, team information is often recorded on whiteboards for long-term storage and easy access.

6.2 Summary
Tools supporting interaction through informal media support collaboration in software design by

facilitating unstructured interaction in a way appropriate to the early, creative design stages. They support
an informal workstyle that allows users to interact naturally and to use the tool transparently without
imposing unnecessary overhead. Informal media tools support a small group of designers, and rely on
social protocol to mediate group interaction. They typically produce informal artifacts of unbound
semantics and free-form syntax. Furthermore, informal media tools are independent of synchronicity or
location, i.e. they support synchronous and asynchronous, as well as distributed and co-located
interactions.

 48

7 Category 6 : Communication Tools used to Support
Collaboration

 Collaboration in distributed groups, particularly those separated in both location and time, is more
difficult than in physically co-located groups [4]. All forms of distance communication require tool
support, such as telephone or email. Additionally, physical proximity has been shown to foster and
maintain working relationships [62] by facilitating lightweight, informal interaction. Providing a sense of
awareness and proximity is equally important in distributed situations, and requires further tool support.
 This category addresses communication tools that are used to support collaboration in software
design. These tools support team communication and awareness, but have no functionality specific to
software design. They support collaboration by enabling communication, both synchronous and
asynchronous, and/or providing awareness information that can be used to support informal, or impromptu
interactions. Additionally, they provide a sense of cohesion and proximity to distributed teams. Examples
of these tools include media spaces [13] such as Montage [98,101], Piazza [56], Portholes [31], Telefreek
[18] and CoMedi [19], as well as more common communication tools such as telephone, videophone (e.g.
Netmeeting), email, real-time chat, discussion groups and instant messages.
 Communication tools facilitate collaborative design by providing the basic mechanisms required
to allow distributed teams to communicate, whether through sound, video or text. Additionally, some try
to supply some of the contextual social cues from co-located collaboration that are lost in distributed
settings, thereby providing a more natural environment in which to collaborate.

7.1 Collaboration in Tools Supporting Team Communication
 This category addresses two different kinds of tool, media spaces and common communication
tools. A graphical depiction of the Workstyle analysis of media spaces is shown in Figure 21. As an
introduction to the class of tools, we will look at Montage as an archetype of media spaces. See Figure 20
for a depiction of an example mediaspace. As communication tools are sufficiently common so as not to
require such an introduction, they will be addressed individually in the context of the Workstyle model
analysis that follows this section.

• Mediaspaces: Montage [98,101] is a prototype mediaspace that uses video to help
collaborators find opportune moments for interaction. Montage is intended to provide a
sense of teleproximity. Montage tries to emulate the opportunities afforded to physically
co-located team members who are able to walk down hallways and peek into offices to
determine whether someone is available. The system uses a desktop videoconference tool
to support ‘momentary, reciprocal glances among networked workstations’ [101] that
allow users to peek into another’s office and, if appropriate, start a videoconference. If the
moment is not appropriate, Montage provides access to scheduling information, and
alternate communication tools such as email or an instant message. Other similar tools
include Piazza [56], Portholes [31], Telefreek [18] and CoMedi [19].

 49

Figure 20: Piazza as an example of a mediaspace. On the left, a user opens a document to find two others also

viewing it. On the right, a user moves to a mail message to find another already viewing it [56].

Figure 21: A Workstyle analysis of media spaces

7.1.1 Collaborative Design Issues in Tools Supporting Team Communication
 Communication is very important in collaborative software design. Discussion among software
engineers is correlated with progress in design [17], as well as cited as the most important of eighteen
ways in which teams coordinate themselves [63]. Furthermore, opportunistic and spontaneous

 50

conversations constitute over half of workplace interactions [62], while [109] found that 92% of observed
interactions were not pre-arranged. This means that most interactions were unanticipated by one or more
of the parties involved, as well as opportunistically instigated. When groups are co-located, people often
‘run into each other’, which facilitates such interactions. At a distance, it becomes more complicated.
Thus, not only is it important to enable distance communication through tools such as telephones,
videophones and textual tools such as email, chat, or discussion groups, but also to support some of the
social awareness cues that are familiar to co-located settings. For example, some media space tools may
support team awareness by providing a low resolution video view port into a remote office [98,101], or set
of offices [19, 31]. This allows remote collaborators to ‘peek in’ at particular team members, and if they
deem them to be available try to negotiate an interaction. Other tools take a different approach and provide
more dynamic awareness based on virtual proximity, i.e. awareness of people considered ‘nearby’ based
on some criteria. For example, mutual awareness could be supported through video links between team
members using the same files or programs [56], or simple textual lists based on current users within a
specific virtual community [18]. Such functionality facilitates the opportunistic and spontaneous
interactions that are so common and important to the collaborative design process.
 Because these tools address only communication aspects of the Workstyle model, artifact related
dimensions are not applicable and will not be discussed in the following analysis. Only the dimensions of
the model that address collaboration style will be considered – Synchronicity, Location, Coordination and
Group Size.

Synchronicity
 These communication tools support a range of interactions, from synchronous to asynchronous.
Media spaces that provide video view ports into remote offices [19,98,31] support both synchronous and
asynchronous interaction by facilitating opportunistic synchronous interactions, as well as providing
alternate communication mechanism such as instant messages or email. The same is true for tools
supporting proximity awareness [56,18]. Additionally, contextual awareness about collaborators working
on common tasks further supports asynchronous work by proving information about the activities of a
remote party within the context of the shared task. Common communication tools tend to support either
synchronous (e.g. telephone, videophone, real-time chat) or asynchronous (e.g. email, instant message,
discussion groups) interactions. However, use of some asynchronous tools can approach synchronous
interaction. For example, rapid email exchange or discussion group postings are very similar to real-time
chats.

Location
 Communication tools such as these are intended to support distance communication, and are
generally unnecessary in co-located situations. More common communication mechanism (telephone,
email, discussion groups, real-time chat) support greater and more flexible distribution because of the
ubiquity of the devices required to use them. Tools that rely on video [98,19,31] require devices that may
not be available everywhere, prior installation, as well as sufficient network bandwidth to supply smooth
video streams. All of these requirements limit the distribution of collaborators that can be practically
supported by these tools.

Coordination
 Common synchronous communication tools such as telephone or videophone generally rely on
social protocol to mediate conversation, while more asynchronous tools such as email, instant message or
even real-time chat tools inherently impose time-based coordination on interactions. Media spaces that
support awareness or use video to support synchronous interaction tend to rely on an electronically
assisted social protocol. This means that interactions are based on social protocol and facilitated by the
awareness cues that are available. For example, many tools [56,98,19] provide mechanisms to protect
privacy, and prevent or dissuade interaction. Furthermore, video view ports allow remote users to know
whether or not somebody is even available for interaction before attempting to make contact.

 51

Group size
 Generally, communication tools support all size groups of collaborators. Some tools, such as
telephone or videophone, are simply point-to-point and support only two people. They can scale to slightly
larger groups through conferencing mechanisms, though these may introduce coordination issues. Media
spaces that rely in video [98,19,31] are limited in the number of separate video view ports that can be
shown simultaneously by technical issues such as bandwidth, processor speed and display size, as well as
the social impracticality of scaling these view port-based communication tools to larger groups. Tools that
support awareness based on virtual proximity [56,18] support larger groups, as only those collaborators
considered to be ‘nearby’, generally a subset of the total group size, are provided awareness of each other.
Finally, common asynchronous communication tools (e.g. email, instant message, discussion groups) can
support reasonably large groups.

7.2 Summary
The tools of this category provide team communication and awareness in support of collaborative

software design. These tools are appropriate to many kinds of working styles. They do not support the
production of artifacts. Instead, they enable synchronous and asynchronous communication, and/or
provide contextual awareness cues in support of informal or impromptu interactions.

 52

8 Conclusions
Software design and development is a collaborative activity often involving large numbers of

people sharing information and resources to complete a variety of inter-related activities. As such, there
are a wide variety of tools that are used to support collaboration in software design. They include
dedicated communication tools, electronic collaboration environments for synchronous and asynchronous
interaction, tools supporting informal interaction, as well as dedicated software design tools. This diversity
is motivated by the wide range of activities and workstyles in which software designers engage; different
tool types provide functionality to support the different collaborative styles in which designers work. Such
diversity is also reflective of the relative failure of most dedicated software design tools to sufficiently
address all aspects of design activities, particularly communication and informal interaction. Though some
such tools integrate higher-level support for collaboration in software design, most provide only minimal
facilities to allow teamwork.

Software modeling tools are most appropriate to a formal collaborative working style characteristic
of later stages of development after the initial, creative design work is complete. Modeling languages such
as UML can be too cumbersome to support creative design activities where specific details are unknown,
semantics are undefined and designs change frequently. Additionally, the asynchronous interactions
supported by these tools are better suited to these later stages when more of the relevant information has
been precisely recorded within the shared design documents, reducing the need for extensive synchronous
communication.

Process centered tools can be used to define and enact collaborative software processes that support
a reasonably wide variety of collaborative work styles. Such a process may be designed to facilitate
synchronous or asynchronous work, distributed or co-located interactions, as well as all sizes of groups.
However, a process is designed to coordinate people’s interactions as well as access to resources, and its
enactment is intended to impose the specified coordination. Therefore, these tools can restrict people from
a free-form style of interaction that may be most suitable to initial, creative design and/or the development
of novel software systems.

Asynchronous tools support collaboration in software design in three ways; integration of document
repositories and team communication facilities, configuration and/or version management facilities, or
through implementation of a ‘shared-place’ metaphor. These tools support fairly restrictive workstyles.
They are flexible in the nature of the artifacts that they support, however, interaction with those artifacts is
highly moderated and restricted to small or medium distributed groups. Some ‘shared-place’ tools do
support synchronous interactions, as well as transitions between synchronous and asynchronous work.
However, this is at the cost of the size of the group that may be supported.

There are three kinds of tools supporting collaborative software design by enabling synchronous
artifact sharing; meta-tools for sharing pre-existing, single-user applications, collaboration-aware CASE
tools, and tools supporting co-located design. These tools support a fairly limited set of workstyles, as they
are limited to supporting small groups of collaborators interacting synchronously. Concurrency control
mechanisms may impose additional restrictions on how designers may interact with each other and the
shared artifacts. This is especially true for meta-tools that must use restrictive concurrency controls to
maintain the single-user semantics of the underlying application. Collaboration-aware tools minimize
these restrictions, but are less flexible in the nature of the artifacts that may be shared. Tools that support
co-located interactions further reduce these restrictions and rely on primarily social protocol to mediate
concurrent interaction.

Tools that support interaction through informal media support collaborative software design by
facilitating unstructured interaction. This informal workstyle allows users to interact naturally and to use
the tools transparently with no unnecessary overhead, and is appropriate to the early, creative stages of the
software design process. These tools support a small group of designers, mediated through social protocol
producing an informal artifact of unbound semantics and free-form syntax. They also support synchronous

 53

and asynchronous interactions through the notion of persistence, as well as distributed and co-located
teams.

Communication and awareness tools support a variety of collaborative workstyles in software
design. Their variety and ubiquity can make combinations of these tools appropriate to any and all stages
of the software design process. Communication and awareness tool enable synchronous and asynchronous
communication, as well as provide contextual awareness cues in support of informal or impromptu
interactions.

8.1 Open Problems
Each category of tool discussed in this paper addresses a single or limited set of collaborative

workstyles. This allows the functionality of individual tools to be appropriately tailored to a particular
design context or range of contexts. In combination, these tools can support most common workstyles.
This can be seen in the union of the Workstyle analysis plots as shown in Figure 22. This analysis depicts
the combined functionality of all tools available to support collaboration in software design. It
demonstrates how collaboration might be supported throughout the software design process by an
appropriate set of compatible tools. It also reveals some open problems in area of tool support for
collaborative software design.

Figure 22: The union of Workstyles supported by collaborative software design tools supports most

common styles of collaborative work.

• Unsupported Workstyles: Certain workstyles are not supported by any individual class of

tools. For example, large groups of synchronous collaborators, whether distributed or co-
located, are not well supported by any available tool. This may be a result of hardware
restrictions, as well as limited applicability of such a workstyle in practice. Additionally,
no environment allows free-form interaction while supporting the creation of syntactically

 54

and semantically refined artifacts. Even informal CASE tools such as IdeogramicUML
employ a gesture-based syntax that places restrictions on free-form interaction.

• Lack of Support for Workstyle Evolution: Despite the fact that designers frequently
change the ways in which they collaborate [112], individual tools only support a single or
limited set of workstyles. Furthermore, they provide little or no support for movement
between work styles. Traditional software modeling tools typically provide rigid support
for a single workstyle as outlined in Figure 3. Shared place tools such as TeamRooms
[84] support limited transitions between synchronous and asynchronous collaboration
styles, and collaboration aware tools such as JComposer [47] support varying degrees of
coordination between collaborators. However, transitions between certain workstyles are
not supported at all. For example, transitions along the syntactic and semanic correctness
axes are not well supported by any individual tool, or class of tools. Consider a scenario
where designers have brainstormed and developed an initial idea on a physical
whiteboard. Such an artifact would be considered syntactically free-form and semantically
unbound. No tool exists to support migration of this design artifact to a more formal
environment where the syntax and semantics of the artifact may be refined. This forces
the designers to do extra work in order to continue their design work. The artifact must
either be recreated in a more appropriate tool, or abandoned all together.

UMLRecognizer [66] attempts to address the syntactic aspect in the context of a
limited subset of UML. User-initiated recognition allows more freedom during interaction
than real-time interpretation [53, 24] because users remain unbound to any syntax until
they are ready. However, UMLRecognizer operates in the limited context of a small
subset of non-standard UML, and the recognition algorithm requires more accuracy and
flexibility to better support transitions from free-form drawing to syntactically correct
UML. Furthermore, the decision to use the UMLRecognizer (or any informal CASE tool),
as well as the decision to work in a particular language such as UML, must be made
beforehand. However, in informal design situations such decisions often cannot be made
until after the informal artifact is created [64,111]. Finally, transitions between workstyles
often involve changes in interaction devices. For example, moving from an informal to a
more formal workstyle may involve switching from an electronic whiteboard to a PC.
Available tools do not sufficiently support migration between devices.

• Lack of Support for Multiple Collaborative Contexts: In addition to frequently changing

their collaborative workstyle, individual designers also switch amongst a number of
concurrent collaborative contexts. For example, a given designer may be participating in a
number of concurrent projects or tasks. Within each, the style in which the designer is
collaborating may evolve over time. Additionally, designers may switch their focus from
one project to another. This will move them from one context, involving a particular set of
collaborators in some workstyle, to another involving a completely unrelated set of
collaborators in a different workstyle. Furthermore, designers may participate
concurrently in multiple collaborative contexts. For example, someone may begin to write
an email message to a collaborator in one project, while waiting on the telephone for a
collaborator in another project. Transitions between concurrent workstyles can be
supported to a limited degree by shared place tools in which users may navigate between
different active collaborative contexts. For example, different rooms within TeamRooms
[84] can represent different collaborative contexts. However, users are still unable to
fluidly participate in both rooms simultaneously, as moving from one to another involves
a complete loss of context.

 55

• Lack of Support for Integration of Existing Applications: Current meta-tools that support
sharing of existing applications, such as Netmeeting, impose significant restrictions on
collaboration that can be inappropriate for many workstyles. Additionally, they rigidly
support only a synchronous, distributed, and highly coordinated workstyle between small
numbers of collaborators. Collaboration-aware applications address some of these issues
by supporting more flexible collaboration mechanisms, but force designers to give up
their preferred tools. For example, JComposer allows designers to collaboratively edit
design diagrams in a variety of workstyles. However, in order to reap these benefits
designers must choose to use this tool, rather than their preferred diagram editor. In doing
so, they must accept any other limitations or drawbacks related to that choice.
Furthermore, collaboration-aware applications often address only a very limited task
domain; for example, JComposer only supports design in a proprietary language rather
than a standardized language such as UML. Mechanisms for integrating existing tools into
a variety of collaborative workstyles would allow designers to collaborate on wide variety
of tasks without giving up their preferred tools for accomplishing those tasks.

There are other open issues in this field that are not explicitly revealed by the workstyle analyses

of the tools currently available to support collaboration in software design. For example:

• Lack of Suitable Hardware: Typical computer systems supporting interaction through
keyboard and mouse are designed for single users. New hardware must be integrated to
support collaboration amongst groups of people. Devices such as web cameras,
microphones and speakers are becoming sufficiently inexpensive and ubiquitous that they
can be reliably used to support communication and awareness in practical applications.
However, supporting more advanced collaboration is more difficult. For example, tools
such as InsightLab [65] or Clearboard [55] require such specialized hardware that only
prototypes of these tools have ever been created. Similarly, tools that support interaction
through informal media may require commercially available, but often prohibitively
expensive, hardware such as electronic whiteboards. Even with such expensive hardware,
interaction with these devices is typically cumbersome. Issues such as latency and screen
resolution make natural interaction with an electronic whiteboard difficult. Similarly,
some electronic whiteboards [89] do not support truly concurrent interaction. The solution
to these hardware issues will come in time, when the technology evolves and demand
increases.

• UI Transparency vs. Functionality: There is a trade-off in many of these tools between

interface simplicity and functionality. In the early stages of development, interface
complexity imposes overhead that can be counter-productive to creative design [107].
Informal tools that support lightweight interactions appropriate to these early stages of
design often lack higher-level functionality that may make the tool more usable. Different
tools have attempted to address this issue by striking a balance between interface
transparency and functionality. For example, shared drawing tools make little or no
attempt to provide enhanced editing features common to typical structured drawing tools.
Conversely, informal CASE tools and enhanced electronic whiteboard tools may require a
complex gesture-based interaction in order to apply higher-level meaning to the artifact.
This dissonance between advanced features and ease of use may only be solved by the
introduction of a new interaction paradigm for tools that support informal media.

 56

8.2 Future Directions
The preceding discussion of open problems in this field motivates a variety of future research

directions. Tools intended to support collaboration in software design could be constructed to support the
entire range of working styles as defined by the Workstyle model. However, this will lead to a ‘Swiss
Army’ design tool that supports all workstyles poorly, excelling in none. More appropriately, tools should
be designed not only to adequately support a particular workstyle, but also to support common transitions
into and out of that workstyle. This support should include migration between devices as well as
concurrent collaboration contexts. This will allow designers to chose particular tools that support their
preferences and current style of work, and facilitate movement between preferred tools as that style of
work changes. This would reduce the overhead currently involved in such changes in workstyle, as well as
promote the use of preferred workstyles, allowing software designers to work and collaborate more
effectively.

 57

9 References
[1] 3M – Ideaboard, http://www.3m.com/meetings/product_catalog/wd_ideaboard.jhtml

[2] AgileAlliance, http://www.agilealliance.org

[3] Alavi, M. (1993). "Making CASE an Organizational Reality: Strategies and New Capabilities

Needed." Information Systems Management: 15-20.

[4] Allen, T.J., (1977). Managing the Flow of Technology. Cambridge, MA: MIT Press.

[5] Ambiente – I-Land, http://www.ipsi.fhg.de/ambiente//home.html

[6] Aonix – Software through Pictures, http://www.aonix.com

[7] ArgoUML – http://argouml.tigris.org

[8] Bandinelli, S., Di Nitto, E., Fuggeta, A. (1996). "Supporting Cooperation in the SPADE-1

Environment." IEEE Transactions on Software Engineering 22(12): 841-865.

[9] Barghouti, N. S. (1992). “Supporting Cooperation in the Marvel Process-Centered SDE”.

Symposium on Software Development Environments, ACM Press.

[10] Begole, J., Struble, C.A., Shaffer, C.A. (1997). “Leveraging Java Applets: Toward Collaboration

Transparency in Java” IEEE Internet Computing, (1)2, pp. 57-64.

[11] Ben-Shaul, I. Z. and G. E. Kaiser (1994). “A Paradigm for Decentralized Proccess Modeling and its

Realization in the Oz Environment”. 16th International Conference on Software Engineering, IEEE
CS Press.

[12] Bly, S., A. (1988). “A Use of Drawing Surfaces in Different Collaborative Settings”. Conference on

Computer-Supported Cooperative Work, Portland, OR.

[13] Bly, S. A., Harrison, S. R., Irwin, S. (1993). "Media Spaces : Bringing People Together in a Video,

Audio and Computing Environment." Communications of the ACM 36(1): 28-47.

[14] Bly, S.,A. and S. Minneman (1990). "Commune : A Shared Drawing Surface." SIGOIS Bulletin:

184-192.

[15] Bogia, D. P. and S. M. Kaplan (1995). “Flexibility and Control for Dynamic Workflows on the

wOrlds Environment”. Conference on Organizational Computing Systems, Milpitas, CA, ACM
Press.

[16] Booch, G. (1994). Object-Oriented Analysis And Design - With Applications Second Edition,

Redwood City, CA.: The Benjamin/Cummings Publishing Company,Inc.

[17] Chmura, L. and A. Norcio (1986). “Design Activity in Developing Modules for Complex

Software”. 1St Workshop on Empirical Studies of Programmers. Norwood, NJ., Ablex Publishing
Corp.,

 58

[18] Cockburn, A. and S. Greenberg (1993). “Making contact: Getting the group communicating with

groupware”. Conference on Organizational Computing Systems, Milpitas, CA, ACM.

[19] Coutaz, J., Berard, F., Carraux, E., Crowley, J. (1998). "Early Experience with the Mediaspace

CoMedi." IFIP Working Conference on Engineering for Human-Computer Interaction. Heraklion,
Crete, Greece September 14 - 18, 1998

[20] Craighill, E., Lang, R., Fong, M., and Skinner, K. "CECED: A System for Informal Multimedia

Collaboration." Proceedings of ACM Multimedia. Anaheim, CA. August.

[21] Crowley, J., Coutaz, J., Berard, F. (2000). "Things that See." Communications of the ACM 43(3):

54-64.

[22] CVS – Concurrent Versions System, http://www.cvshome.org

[23] Damm, C.H., Hansen, K.M., Thomsen, M., Tyrsted, M. (2000). “Creative Object-Oriented

Modelling: Support for Creativity, Flexibility, and Collaboration in CASE Tools”. Proceedings of
ECOOP'2000. Sophia Antipolis and Cannes, France, June 12-16. Pages 27-43.

[24] Damm, C. H., Hansen, K. M., Thomsen, M. (2000). “Tool Support for Object-Oriented Cooperative

Design: Gesture-Based Modelling on an Electronic Whiteboard”. Proceedings of Conference on
Human Factors and Computing Systems. The Hague, Netherlands.

[25] DeMarco, T. and T. Lister (1987). Peopleware. New York, Dorset House.

[26] Demers, A., K. Petersen, M. Spreitzer, D. Terry, M. Theimer and B. Welch (1994). "The Bayou

Architecture : Support for Data Sharing among Mobile Users." Proceedings IEEE Workshop on
Mobile Computing Systems & Applications.

[27] Dewan, P., Choudary, R. (1995) “Coupling the User Interfaces of a Multi-User Program”, ACM

Transactions on Computer-Human Interaction.

[28] Dewan, P. Choudary, R. (1991). “Flexible user interface coupling in collaborative systems”. CHI '

91, New Orleans, LA, ACM.

[29] Dewan, P. (1993). “Tools for Implementing Multiuser User Interfaces”. User Interface Software. L.

Bass and P. Dewan, John Wiley & Sons Ltd.

[30] Dewan, P. and J. Riedl (1993). "Toward Computer Supported Concurrent Software Engineering."

IEEE Computer. V26, pp 17-28.

[31] Dourish, P. and S. Bly, A. (1992). “Portholes: Supporting Awareness in a Distributed Work

Group”. CHI '92, Monterey, CA.

[32] Embarcadero – Describe UML, http://www.embarcadero.com

[33] ERoom Technology, Inc.– Erooms, http://www.eroom.com

[34] Ergonis Software – Voodoo Personal, http://www.macility.com

 59

[35] Excel Software – MacA&D, http://www.excelsoftware.com

[36] Fernstrom, C. (1993) “PROCESS WEAVER: Adding process support to UNIX”. 2nd International

Conference on the Software Process: Continuous Software Process Improvement, Berlin, Germany,
February 1993. IEEE Computer Society Press.

[37] Finkelstein, A., Gabbay, D., Hunter, A., Kramer, J., & Nuseibeh, B., “Inconsistency Handling In

Multi-Perspective Specifications”, IEEE Transactions on Software Engineering, 20(8), pp. 569-578.
1994.

[38] Fitzpatrick, G. (1998). "The Locales Framework: Understanding and Designing for Cooperative

Work." Ph.D. Thesis. The University of Queensland

[39] Fitzpatrick, G., W. J. Tolone, Kaplan, S.M. (1995). “Work, Locals, and Distributed Social Worlds”.

Fourth Euopean Conference on CSCW, Stockholm, Sweden, Kluwer Academic Publishers.

[40] Galegher, J. and R. Kraut, (1990) “Computer-Mediated Communication for Intellectual Teamwork:

A Field Experiment in Group Writing”. Proceedings of CSCW90. Los Angeles, CA

[41] Graham, T. C. N., Stewart, H. D. Ryman, A.G, Kopaee, A.R., and Rasouli, R. (1999). “A World-

Wide-Web Architecture for Collaborative Software Design”. Software Technology and Engineering
Practice, IEEE Press.

[42] Greenberg, S. and R. Bohnet (1991). “GroupSketch: A Multi-user Sketchpad for Geographically

Distributed Small Groups”. Proceedings of Graphics Interface, pp 207-215.

[43] Grundy, J. C. and J. G. Hosking (1998). “Inconsistency Management for Multiple-View Software

Development Environments”. IEEE Transactions on Software Engineering, 24(11):960-981

[44] Grundy, J. C. and J. G. Hosking (1998). "Serendipity: Integrated environment support for process

modelling, enactment and work coordination." Automated Software Engineering 5(1): 27-60.

[45] Grundy, J.C., Hosking, J.G., and Mugridge, W.B. (1996) “Supporting Flexible Consistency

Management via Discrete Change Description Propagation”. Software, Practice & Experience, v.26
n.9, p.1053-1083, Sept. 1996

[46] Grundy, J. C., Hosking, J. G., Mugridge, W.B., Amor, R.W. (1996). “Support for Constructing

Environments with Multiple Views”. SIGSOFT '96, San Francisco, CA.

[47] Grundy, J. C., Mugridge, W.B, Hosking, J.G., Apperley, M. (1998). “Tool Integration,

Collaboration and User Interaction Issues in Component-based Software Architectures”. TOOLS
'98, Melbourne, Australia, IEEE.

[48] Hammond, T. and R. C. Davis (2002). “Tahuiti: A Geometrical Sketch Recognition System for

UML Class Diagrams”. Sketch Symposium, Stanford University, Palo Alto, CA.

[49] Harrison, S., Minneman, S., Stultz, R. (1988). “The Media Space - experience with video support of

design activity”. Proceedings of International Workshop on Engineering Design and Manufacturing
Management, Melbourne, Australia. pp. 114-126

[50] IBM Lotus Software - Notes, http://www.lotus.com

 60

[51] IBM Lotus Software – QuickPlace, http://www.lotus.com

[52] Iconix Software – PowerTools, http://www.iconixsw.com

[53] Ideogramic – IdeogramicUML, http://www.ideogramic.com

[54] Iida, H., Takeshi, O., Inoue, K., and Torii, K. (1991) “Generating a menu-oriented navigation

system from formal description of software development activity sequence.” 1st International
Conference on the Software Process: Manufacturing Complex Systems. Renondo Beach, CA.
October

[55] Ishii, H. and M. Kobayashi (1992). “ClearBoard: A seamless medium for shared drawing and

conversation with eye contact”. Conference on Human Factors in Computing Systems, Monterey,
CA, ACM.

[56] Issacs, E. A., Tang, J.C., Morris, T. (1996). “Piazza: A Desktop Environment Supporting

Impromptu and Planned Interactions”. CSCW '96, Cambridge, MA, ACM Press.

[57] Jarzabek, S. and R. Huang (1998). "The Case for User-Centered CASE Tools." Communications of

the ACM 41(8): 93-99.

[58] Johansen, R., Sibbet, D., Benson, S., Martin, A., Mittman, R. and Saffo, P. (1991) Leading Business

Teams. Addison-Wesley.

[59] Jones, T. C. (1986). Programming Productivity. New York, McGraw-Hill.

[60] Kaplan, S., Mansfield, T., Fitzpatrick, G., Phelps, T., Fitzpatrick, M. and Taylor, R. (1997)

“Evolving Orbit: a progress report on building locales”. Proceedings GROUP'97, Phoenix, AZ,
ACM Press, pp. 241-250.

[61] Kaplan, S. M., Fitzpatrick, G., Mansfield, T., Tolone, W.J. (1996). “Shooting into Orbit”. Oz-

CSCW '96, Brisbane, Australia, University of Queensland.

[62] Kraut, R. E., Fish, R. S. , Root, R.W., Chalfonte, B. L. (1990). “Informal Communication in

Organizations : Form, Function and Technology”. People's Reaction to Technology. S. Oskamp and
S. Spacapan. Newbury Park, Sage Publications: 145-149.

[63] Kraut, R. E. and L. Streeter (1995). "Coordination in Software Development." Communications of

the ACM 38(3): 69-81.

[64] Landay, J. A. and B. A. Myers (1995). “Interactive Sketching for Early Stages of Design”. CHI '95,

Denver, CO, ACM Press.

[65] Lange, B. M., Jones, M.A., Meyers, J.L. (1998). “Insight Lab : An Immersive Team Environment

Linking Paper, Displays and Data”. CHI '98, Los Angeles, CA, ACM.

[66] Lank, E., Thorley, J.S., Chen, S.J. (2000). “An Interactive System for Recognizing Hand Drawn

UML Diagrams”. CASCON2000, Toronto, ON.

[67] Malone, T. W. and K. Crowston (1990). “What is coordination theory and how can it help design

 61

cooperative work systems?”. Proceedings of Conference on Computer-Supported Cooperative
Work. ACM Press. pp. 357-370

[68] Marlin, C., B. Peuschel, McCarthy, M., Harvey, J. (1993). “MultiView-Merlin: An Experiment in

Tool Integration”. Proceedings of 6th Conference on Software Engineering Environments, IEEE CS
Press.

[69] MetaCase Consulting – MetaEdit+, http://www.metacase.com

[70] Microsoft Corp. – Netmeeting, http://www.microsoft.com

[71] Microsoft Corp. – PowerPoint, http://www.microsoft.com

[72] Microsoft Corp. – Visual SourceSafe, http://www.microsoft.com

[73] Microsoft Corp. – Word, http://www.microsoft.com

[74] Miller, D. S., Smith, J.G., Muller, M.J (1992). “TelePICTIVE: Computer-Supported Collaorative

GUI Design for Designers with Diverse Expertise”. UIST '92, Monterey, CA, ACM.

[75] Mynatt, E. D., Igarashi, T., Edwards, W.K. LaMarca, A. (1999). “Flatland : New Dimensions in

Office Whiteboards”. CHI '99, Pittsburg, PA, ACM.

[76] No Magic – MagicDraw, http://www.magicdraw.com

[77] Object Management Group (OMG) 1998. Unified Modeling Language Specification. Framingham,

MA: Object Management Group.

[78] Pankoke-Babatz, U. and A. Syri (1997). “Collaborative Workspaces for Time Deferred Electronic

Cooperation”. Proceedings of GROUP '97, Phoenix, AZ, ACM Press.

[79] Pederson, E. R., McCall, K., Moran, T.P., Halasz, F. G. (1993). Tivoli: An Electronic Whiteboard

for Informal Workgroup Meetings. INTERCHI '93. Amsterdam, Netherlands. April.

[80] Popkin Software – System Architect, http://www.popkin.com

[81] Rational Corp. – Rose, http://www.rational.com

[82] Rational Corp – ClearCase, http://www.rational.com

[83] Roseman, M. and S. Greenberg “Building Groupware with Groupkit”. Tcl/Tk Tools, O'Reilly Press:

535-564.

[84] Roseman, M. and S. Greenberg (1996). “TeamRooms: Network places for collaboration”.

Conference on Computer Supported Cooperative Work, Boston, MA, ACM.

[85] Rudebusch, T. (1993) “CSCW: generische Unterstutzung von Teamarbeit in verteilten DV-

Systemen”, Deutscher Universistats-Verlag, GmbH, Wiesbaden. Univerisity of Karlsruhe,
Germany. ISBN 3-8244-2043-0

[86] Rumbaugh, J., Jacobson, I., Booch, G. (1999). The Unified Modeling Language. Addison-Wesley-

 62

Longman.

[87] Rumbaugh, J., Blaha, M.R., Lorensen, W., Eddy, F., Premerlani, W. (1991). Object-Oriented

Modeling and Design. Prentice Hall.

[88] Seaman, C.B. and Basili, V.R. “Communication and Organization in Software Development: An

Empirical Study”. IBM Systems Journal 36(4), 1997.

[89] SMART Technologies, Inc. – SMARTBoard, http://www.smarttech.com

[90] SpeeDev, Inc. – SpeeDEV, http://www.speedev.com

[91] Stefik, M., G. Foster, Bobrow, D.G., Kahn, K., Lanning, S., Suchman, L. (1987). "Beyond The

Chalkboard: Computer Support for Collaboration and Problem Solving in Meetings."
Communications of the ACM 30(1): 32-47.

[92] Streitz, N. A., J. Geißler, Haake, J. M., Hol, J. (1994). “DOLPHIN: integrated meeting support

across local and remote desktop environments and LiveBoards”. Conference on Computer Supprted
Cooperative Work, Chapel Hill. NC.

[93] Streitz, N. A. (1999). “i-LAND: An interactive Landscape for Creativitiy and Innovation”. ACM

Conference on Human Factors in Computing Systems, Pittsburg, PA, ACM Press.

[94] Swenson, K.D. (1993) "The Regatta Project", Proceedings of the First International Conference in

Technologies and Theories for Human Cooperation, Collaboration, and Coordination, Applica `93,
March 1993

[95] Tang, J., C. (1989). “Listing, Drawing and Gesturing in Design: A Study of the Use of Shared

Workspaces by Design Teams”. Ph.D. Thesis, Department of Mechanical Engineering, Stanford
University: 172.

[96] Tang, J., C. (1991). "Findings from Observational Studies of Collaborative Work." International

Journal of Man-Machine Studies. Vol. 34, No. 2, pp. 143-160

[97] Tang, J. C. (1990). VideoDraw: A Video Interface for Collaborative Drawing. CHI '90, Seattle,

WA.

[98] Tang, J. C., Issacs, E.A. , Rua, M,. (1994). “Supporting Distributed Groups with a Montage of

Lightweight Interactions”. Proceedings of CSCW '94, Chapel Hill, NC, ACM Press.

[99] Tang, J. C. and L. J. Leifer (1988). "A Framework for Understanding the Workspace Activities of

Design Teams." Proceedings of the Conference of Office Information Systems, Cambridge, MA.
ACM Press, pp. 244-260.

[100] Tang, J. C. and S. Minneman (1991). “VideoWhiteboard: Video Shadows to Support Remote

Collaboration”. Conference on Human Factors and Computing Systems, New Orleans, LA.

[101] Tang, J. C. and M. Rua (1994). “Montage: Providing Teleproximity for Distributed Groups”. CHI

'94, Boston, MA, ACM Press.

[102] Telelogic – Tau, http://www.telelogic.com

 63

[103] Tichy, W.F., (1985). “RCS--A System for Version Control, Software”. Practice & Experience. Vol.

15, No. 7, pp 637-654.

[104] TogetherSoft Corp. – TogetherSoft, http://www.togethersoft.com

[105] Tung, T. L. (1997). "Mediaboard: A Shared Whiteboard Application for the MBone.". Master’s

Thesis, Computer Science Division, University of California at Berkeley

[106] Virtual Ink Corp – Mimio, http://www.mimio.com/index.shtml

[107] Wagner, A. (1990) “Prototyping: A day in the life of an interface designer”. The Art of Human-

Computer Interface Design. Addison-Wesley, Reading, MA, pp. 79-84

[108] Wang, W., Dorohonceanu, B., Marsic, I. (1999). “Design of the DISCIPLE Sycnhronous

Collaboration Framework”. Internet, Multimedia Systems and Applications, Nassau, Bahamas,
IASTED Press.

[109] Whittiker, S., D. Frohlich, Daly-Jones, O. (1994). “Informal Workplace Communication: What is it

Like and How Might We Support it?. CHI '94, Boston, MA, ACM Press.

[110] Wolf, C. G. and J. R. Rhyne (1993). “Gesturing with Shared Drawing Tools”. CHI '93, Amsterdam,

Holland, ACM Press.

[111] Wong, Y.Y. (1992) “Rough and ready prototypes: Lessons from graphic design”. Short Talks

Proceedings of CHI '92: Human Factors in Computing Systems, pp. 83-84, Monterey, CA,

[112] Wu, J., Graham, T.C.N, Everitt, K., Blostein, D. and Lank, E. (2002) “Modeling Style of Work as

an Aid to the Design and Evaluation of Interactive Systems”. Proceedings of CADUI’02.
Valenciennes, France.

[113] XTV (1993) http://www.cs.odu.edu/~waha_cit/XTV.doc/xtv.html

