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Abstract

We argue that one important aspect of terrorism detection is the ability to detect small-scale, local
correlations against a background of large-scale, diffuse correlations. Singular value decomposition
(SVD) maps variation, and hence correlation, into proximity in low-dimensional spaces. We show, using
artificial datasets whose plausibility we argue for, that SVD is effective at detecting local correlation in
this setting.

The figures in this paper can be understood in black and white but are designed to be seen in
colour.
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Abstract: We argue that one important aspect of terrorism detection is the ability to detect
small-scale, local correlations against a background of large-scale, diffuse correlations. Singular value
decomposition (SVD) maps variation, and hence correlation, into proximity in low-dimensional spaces.
We show, using artificial datasets whose plausibility we argue for, that SVD is effective at detecting
local correlation in this setting.

1 Introduction

Detecting terrorism can be posed as an unsupervised data mining problem in which the goal is to
separate individuals into two classes, threats and non-threats. However, it is unusual because the
members of one class (the threats) are actively trying to look as similar to members of the other
class as possible. Without information about the particular data mining algorithm in use, the best
strategy for doing this is to arrange for their attribute values to be modal.

This has two implications for data mining in terrorism detection: attributes should be such
that it is hard to manipulate their values; and the data mining algorithms used should rely on the
relationships between attributes, rather than simply their values. If attributes are chosen appropri-
ately, then the activities of terrorists and terrorist groups may be visible as unexpected correlation,
both among themselves and between the terrorists and their target. However, this correlation must
be detected against a background of widespread diffuse correlation in the population at large.

Singular value decomposition is a useful tool for detecting unusual correlation because it trans-
forms variation into proximity. Both distance measures and visual inspection can detect proximity
far more easily than they can detect correlation directly.

We present preliminary results using artificial datasets. There is little experience to guide the
form of such datasets, but we argue that the ones we use are at least plausible.

Results are encouraging, in the sense that SVD has high detection accuracy with reasonably
low false positive rates. We are unable, so far, to specify an ideal algorithm schema for applying
SVD, but we show that several strategies are effective.

2 Goals and assumptions

It seems implausible, given our present data mining technologies and understanding of the prob-
lems of counterterrorism, that data mining will be able to be deployed as a frontline tool against
terrorism (at least in the immediate future). However, a useful role for data mining is as a filter,
making it economic to select a manageable subset of individuals for further scrutiny using tradi-
tional intelligence techniques. In this view, the benefit of data mining is primarily to improve the
effectiveness of other counterterrorism methodologies.

We assume, for the sake of concreteness, that we are dealing with datasets whose rows describe
individuals and whose columns are attributes of those individuals. For example, datasets might
contain information about which cities an individual has visited, or which flights he has taken.
Goals.



The untargeted case. Given a dataset, find clusters whose correlations are stronger than average,
and select its members. If a group of terrorists are detectable as a cluster within the background
of other clusters, then their target may also be detectable as part of the same cluster.
The targeted case. Given a dataset and a target, find clusters around the target whose correla-
tions are stronger than expected. Any individual target might be expected to be part of multiple
clusters representing his or her interests and collaborations. Hence, a cluster around them is likely
to include parts of other clusters in which they are involved. This diffuse pattern should show an
unusual concentration if there is a tightly-knit group that is focused on the target.

In the targeted case, the target is of the same kind as the objects described by the rows of the
dataset, individuals in this case. In the untargeted case, other kinds of targets are possible.

Assumptions. We wish to construct a detection model that will select some of these individuals
for further scrutiny. We make the following assumptions:

e The potential consequences of failing to detect a terrorist are so great that a fairly high level
of false positives is acceptable.

e Terrorists act in groups, so individual false negatives are acceptable provided that at least
one member of a group is detected.

Attributes. The attributes in such datasets can be usefully divided into two kinds:

e Incidental attributes that describe properties and actions that are believed to be potentially
correlated to terrorism. These may be static, such as country of citizenship, gender, income
and so on; or based on actions such as purchasing particular kinds of plane tickets.

e Intrinsic attributes that describe properties and, more commonly, actions that are necessary
to carry out a terrorist action, for example carrying out surveillance on a target site.

Both kinds of attributes have values that are shared by terrorists and the general population.
The problem with incidental attributes is that if terrorists can learn the values of these attributes
that trigger the detection model (and they can), then they can arrange to appear innocent. This
leaves the detection model with a 100% false positive rate, which is the worst possible outcome.

The mechanism by which terrorists can learn the relationship of attributes to the detection
model is by probing, the so-called Carnival Booth algorithm [4]. Terrorists arrange to be considered
by the detection model while behaving innocently. Those who do not trigger the model can be
reasonably certain that they will not trigger it again on subsequent, less innocent occasions. The
use of incidental attributes is a major weakness of airline passenger profiling systems.

Models based on incidental attributes can be made more robust by adding uncertainty into
the selection mechanism. This can be done by wrapping the detection model in a layer that
obscures its precise functioning, for example, by randomly selecting some individuals who do not
trigger the detection model and treating them as if they did. It can also be done by using families of
detection models based on different thresholds for individual attributes (i.e. different discretizations
of continuous data) or on different sets of attributes. These techniques all break the assumption
that a person who has not been selected by the detection model on one occasion will not be selected
on another occasion. However, these techniques all add expense and complexity; and using families
of detection models risks one model failing to detect a threat that another model would have, which
may be politically unacceptable if an incident takes place.



Intrinsic attributes are inherently better because terrorists are forced to have certain values for
them. Of course, some of the general public will also share these values; but such attributes allow
the set of individuals to be separated into those who are not terrorists and those who might be.
As we have seen, incidental attributes do not do this reliably. Moreover, the set of individuals who
can be eliminated will tend always to be much larger than the set of possible threats who remain.

The use of intrinsic attributes forces terrorists to come under scrutiny. Their only strategy then
is to conceal themselves among that part of the population who share the same attribute values —
but this becomes harder and harder as the number of attributes increases.

The power of intrinsic attributes can be seen in the aftermath of a terrorist action. Once such
an action has taken place, the set of relevant attributes is clear — to plant a bomb in a certain place
requires being in that place, for example. And once the correct set of attributes is known, terrorists
are often detected very quickly. (This is also the basis of much police work — an alibi is a value for
a very specific attribute which eliminates many possible perpetrators.)

Terrorists can only try to conceal their forced actions among those of many others. This is
difficult for two reasons:

e A terrorist group is forced to make coordinated actions, and such actions are potentially
visible as correlations in the data. For example, if they meet to plan, then they are located
at the same place at the same time.

e A terrorist group is forced to carry out actions that are correlated with their target, and these
actions are also potentially visible in the data. For example, they may travel the same route
as the target but earlier in time.

These properties of datasets available for counterterrorism suggest that the problem is not
closely related to outlier detection because terrorists try, as far as possible, to take on modal values
for attributes. However, if intrinsic attributes are used, terrorist groups cannot avoid correlations
both among themselves and with their targets. It is these correlations, which reveal themselves
as locally dense regions within appropriate representations of the dataset, that data mining must
search for — and which suggest the title of this paper. Some evidence for this is provided by Krebs
[12], who analyzed the connections among the group involved in the destruction of the World Trade
Center. He showed that the members of the group were indeed tightly correlated. Of particular note
is that a single meeting among a subset of them reduced the mean distance between members by
40% from its value given their relationships alone. Such is the power of intrinsic action attributes.

An immediate concern is that datasets describing any human population will be full of correlated
subsets, and it might prove impossible to detect the correlations due to terrorism against such a
noisy background. Consider the dentists of Pittsburgh!. We might expect that they would appear
as a correlated group — they come from similar (educated) socioeconomic groups, they live in
similar settings, and they travel to similar conferences and conventions. However, as we consider
more aspects of their lives, these correlations begin to be diluted by others: they travel to differing
parts of the country for family occasions, their children insist on holidays in different places, and
they have different hobbies. The terrorists of Pittsburgh (should there be any) might also appear
strongly correlated by a few attributes, but this correlation is much less likely to dilute as further
attributes are considered.

More formally, the reasons why correlation in terrorist groups might be visible against a back-
ground of widespread correlation are these:

L Apologies to both dentists and Pittsburgh for this example.



1. Most individuals are part of a fairly large number of subgroups with whom they are correlated
— enough that the strength of membership in each one is quite small.

Consider the folk theorem about six degrees of separation, the contention that a chain of
acquaintances of length less than or equal to six can be built between any two people in
some large population (originally the population of the U.S. in Milgram’s original work, now
often claimed for the total world population). If a given individual is acquainted with (say)
a individuals, then each of these a individuals must be acquainted with a fairly large number
of others outside the original set of a or else the powers do not increase quickly enough (since
a® ~ the large population).

This result contradicts our intuition that an individual’s social circle tends to be small. The
resolution (see, for example, [14]) is that such small social circles are bridged by rare, but not
too rare, ‘long-distance’ connections.

Acquaintanceship is a reasonable, although not perfect, surrogate for correlation in the kind of
datasets we are interested in — we would not be surprised that acquaintances would turn out to
be fairly well correlated in large datasets — they live in similar places and have similar lifestyles,
including travel arrangements. What is less obvious is that the ‘long distance’ connections in
acquaintanceship are likely to produce strong correlations as well — for an acquaintanceship
survives only if its members have ‘something in common’. Hence the implication of six
degrees of separation (and the existence of short paths in acquaintanceship graphs) is that
correlation smears rapidly across subgroups because of the richness of cross-connections of
common interests and behavior.

2. We might expect terrorists to be substantially less connected by correlation than most people
because they have a much narrower focus. Informally, we might suspect that terrorists don’t
buy life insurance, don’t take holidays, don’t buy lottery tickets, and don’t have children in
Little League. We quote from Krebs [12, p49], relying on previous work on the social network
structures of criminals: “Conspirators don’t form many new ties outside of the network and
often minimize the activation of existing ties inside the network”.

These properties provide some assurance that a signature for terrorist actions exists in datasets
that are sufficiently large and diverse. Note that, in this context, high dimensionality is a benefit
because it acts to smear the background correlation in the population at large.

3 Data Generation Models

Since, for obvious reasons, real datasets containing terrorist actions are not available, the quality
of detection models will have to be evaluated using artificial datasets. This immediately raises the
question of what kinds of datasets are plausible and, of course, any choice is open to criticism.

Intrinsic attributes can be divided into those related to actions and those related to state. We
now consider the properties of each.

For action attributes, an immediate issue is how to handle their temporal nature. They could
be coded with time signatures attached and temporal data mining techniques used — but I am not
aware of any present data mining technology powerful enough to detect temporal subsequences
when different parts of them are carried out by different individuals (this is an interesting problem,
though). It seems simpler, and perhaps more robust, to handle temporal properties by creating
attributes for actions covering a period of time. For example, if visits to New York are an action of
interest, then these can be converted into attributes as visits per month: January visits, February
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visits, and so on. It is also sensible to use overlapping time periods (creating partly correlated
attributes) to avoid sensitivity to boundary choices.
Attributes representing actions will also be:

e Sparse, because only a small fraction of the total population of individuals will carry out any
given task (e.g. only a small fraction of the U.S. travelling public visit San Francisco in a
given month).

e Have a frequency distribution whose mode is close to 1 and which decreases quickly (e.g.
those people who visit San Francisco in a given month mostly visit only once 2).

Such attributes can plausibly be generated by first introducing a high level of sparseness and then
generating the nonzero values using a Poisson distribution with mean close to 1.

State attributes will have much flatter distributions. For example, the locations of residences of
members of a terrorist group around a target might be expected to conform to a normal distribution
because of the pressures for closeness to the target, counterbalanced by the pressure to remain far
from each other. State attributes will also tend to be dense (everyone has to live somewhere).

It is, of course, arguable that other distributions are appropriate; for example, human interven-
tion often creates distributions with heavy tails because humans deal quickly with the easy cases,
leaving only harder ones.

4 Singular Value Decomposition

Singular Value Decomposition (SVD) [7] is a well-known technique for reducing the dimensionality
of data.

Suppose that a dataset is represented as a matrix A with n rows (corresponding to individuals)
and m columns (corresponding to their attributes). Then the matrix A can be expressed as

A =USV!

where U is an n X m orthogonal matrix, S is an m X m diagonal matrix whose r non-negative
entries (where A has rank r) are in decreasing order, and V is an m X m orthogonal matrix. The
superscript dash indicates matrix transpose. The diagonal entries of S are called the singular values
of the matrix A.

One way to understand SVD is as an axis transformation to new orthogonal axes (represented
by V'), with stretching in each dimension specified by the values on the diagonal of S. The rows of
U give the coordinates of each original row in the coordinate system of the new axes.

The useful property of SVD is that this transformation is such that the maximal variation
among objects is captured in the first dimension, as much of the remaining variation as possible in
the second dimension, and so on. Hence, truncating the matrices so that Uy is n x k, Si is k X k
and Vj, is m x k gives a representation for the dataset in a lower-dimensional space. Moreover, such
a representation is the best possible with respect to both the Frobenius and Lo norms.

SVD has often been used for dimensionality reduction in data mining. When m is large,
Euclidean distance between objects, represented as points in m-dimensional space is badly behaved.
Choosing some smaller value for k allows a faithful representation in which Euclidean distance is
practical as a similarity metric. When k£ = 2 or 3, visualization is also possible.

2The Zipf distribution is a plausible distribution for attributes such as these.



Another way to understand SVD is the following: suppose that points corresponding to both
rows and columns are plotted in the same k-dimensional space. Then each point corresponding to
a row is at the weighted median of the positions of the points corresponding to the columns and,
simultaneously, each point corresponding to a column is at the weighted median of the positions
of the points corresponding to the rows. Hence SVD can be viewed as translating correlation or
similarity into proximity. Unfortunately, only positive correlation is taken into account by SVD, so
that rows that are strongly negatively correlated will not be placed close together in space.

SVD measures variation with respect to the origin, so it is usual to transform the matrix A
so that the attributes have zero mean. If this is not done, the first singular vector represents the
vector from the origin to the center of the data, and this information is not usually particularly
useful. For example, when A is the adjacency matrix of a graph, it is the second singular vector
which describes the partitioned structure (if any) of the graph.

While SVD is a workhorse of data manipulation, it has number of subtle properties that are
not well-known. We will use four of them.

Fact 1: The singular value decomposition of a matrix is insensitive to the addition (or subtraction)
of independent zero-mean random variables with bounded variance [1]. This property has been used
to speed up the computation of SVD by sampling or by quantizing the values of the matrix. In
counterterrorism, the effect we are looking for is so small and the results so important that neither
of these is attractive. However, the fact does explain why SVD is good at detecting clusters within
clusters — the outer cluster representing the majority of the data has zero mean (by normalization)
and so, by the fuzzy central limit theorem, increasingly resembles a normal distribution as the
number of ordinary individuals (and the number of attributes) increases.

Fact 2: SVD is a numerical technique, and so the magnitudes of the attribute values matter.
However, multiplying the attribute values of a row of A by a scalar larger than 1 has the effect of
moving the corresponding point further from the origin. Because the positions of all of the other
points depend, indirectly, on their correlations with the scaled point, via their mutual interactions
with the attributes, points that are correlated with the scaled point are pulled towards it. When
there is little structure in the low-dimensional representation of a dataset, this scaling technique
can be used to find the individuals who are (positively) correlated with a given individual. In
practice, this often makes it easier to see a cluster that would otherwise be hidden inside another
in a visualization.

Fact 3: Although SVD translates only positive correlation to proximity, negative correlation
information can be extracted from the SVD indirectly. Let Ay be the product

A = UpSyV)

The matrix C = AjAj, can be understood as a kind of correlation matrix in which some kinds
of correlation have been discarded (those arising from dimensions k& + 1 and higher) while some
higher-order correlation information has been included [10, 11]. In other words, entries in C are
non-zero even when the corresponding entry of AA’ was zero (that is, even when there is no direct
correlation between a pair of individuals).

The connection between the sign of entries in this matrix and correlation was noticed empirically
by Konstotathis and Pottenger [11]. It is also related to a well-known technique for partitioning
graphs using spectral methods [2,9]. The following explanation shows why the magnitude of the



entries of C' can be regarded as correlations (both positive and negative) between individuals.
Consider the ijth entry of C. This entry arises as a sum of values, each of which is the product of
a column of U, an entry of S, and a row of V. Such an entry is negative when individuals ¢ and
j are on opposite sides of the origin in one of the dimensions. A sum of such values represents an
average ‘reflection’ in the origin in all £ dimensions.

When the ijth entry of C is negative, we can conclude that individuals 7 and j are negatively
correlated. In fact, we can go further — when entry Cj; is smaller than Cj; we can conclude that
the correlation between individuals ¢ and j is weak.

Fact 4: The decomposition depends on all the data used, both normal and anomalous. The
precise geometry of the detection boundary of SVD is hard to predict without performing the
decomposition, and impossible without knowledge of the dataset. Hence, a terrorist group cannot
reverse engineer the transformation to determine how they will appear, even knowing that SVD is
being used. In particular, SVD is resistant to probing attacks since any attempt to probe cannot
control for the innocent individuals considered at the same time.

5 Algorithms

There are a number of algorithmic tools based on SVD that can be combined in various ways. Our
results do not indicate a clear optimal strategy for using SVD, but they do reveal several effective
tactics.

If we start with a high-dimensional dataset (e.g. m = 30), then we can apply SVD, truncate U to
two or three columns and plot the corresponding rows. Their positions are the best low-dimensional
representation of the original data.

Zero-mean normally distributed data appears as a spherical cluster centered on the origin even
in low dimension. Any correlated set of individuals tends to appear as a cluster further from the
origin along the first singular vector (and sometimes the second). Hence, a frequency plot of the first
column of U may sometimes reveal a possible target and associated terrorists. Visual inspection of
the plot can also be revealing.

When a target is known, there are several further options for selecting individuals as potential
threats:

e Project points onto the vector from the origin to the target point in the transformed two- or
three-dimensional space, and classify either the individuals whose points are further from the
origin than the target, or are close to the target as threats.

e (lassify the ¢ closest neighbors of the target in two- or three- dimensional space as threats.

e (Classify the individuals whose points fall in a cone from the origin centered at the target as
threats (i.e. the cosine similarity used in latent semantic indexing [5]).

In all of these techniques, the target can be selected after the SVD has been computed — hence
only one SVD is required.
Correlation information can be used in three ways:

e The selection mechanisms described above can be used in the plots based only on the points
correlated with a particular target. This requires only replotting and not recomputation of
the SVD. However, as we will see, there is little to be gained from this.



e Individuals who are not correlated with the target can be successively removed, and the
SVD repeated on the resulting smaller dataset. This typically reduces the dataset size by
75% or more, but the contraction at each repetition becomes smaller because the remaining
individuals all have fairly strong correlation with the target. All SVDs after the first have to
be recomputed for each target because the winnowed datasets are target dependent.

e The sizes of the datasets remaining after each round themselves provide information. If
the target does not have an unusual correlation with other individuals then the contracted
datasets shrink in size quite slowly. When there is an unusual correlation of other individuals
with the target, the contracted datasets tend to become smaller quite rapidly.

6 Experiments

In the experiments that follow, the part of the matrix A representing normal individuals will consist
of 1000 rows and 30 columns. The 30 columns represent a set of attributes about each individual —
we assume that these are intrinsic attributes and that a threat is forced to correlate with a target in
the values of at least some of these attributes. Each dataset has a small number of additional rows
added to represent a terrorist group. The results presented are qualitative, partly because there
are too many free parameters to make an exhaustive analysis straightforward, and partly because
there is not yet agreement about what structures in datasets are plausible. However, the results
are for the first random dataset of each kind generated — no selection of datasets to provide better
than average results was made. Many of our experiments were more clear cut than the examples
reported here.

In plots of two- or three-dimensional space, points corresponding to normal individuals are
shown as (blue) dots, the target is shown as a (red) star, and the points corresponding to terrorist
as (blue) squares.

Experiment 1. We begin with a dataset in which the points corresponding to ordinary individ-
uals are generated distributed normally around the origin with variance 1. A terrorist group of
size 10 is generated distributed normally with variance 1 around one of the normal individuals.
Figure 1 shows how SVD can detect a small cluster against a background cluster. Here we assume
that no target is specified beforehand — the labelling confirms the fairly clear presence of a small
cluster to the left of the main cluster.

Figure 2 plots only those points that are correlated with the target. This is, of course, artificial
since we are assuming that we do not know the target. However, it illustrates what selection for
correlation is doing — it removes many points but does not help much with identifying the terrorist
cluster because the points that are removed are far from the target in the transformed space.

Experiment 2. In the previous experiment, the terrorist cluster had the same variance as the
base cluster. Hence, it is likely that points from the terrorist cluster will be overrepresented among
points far from the origin. We now show that this is not the reason for the quality of the SVD plot
by repeating the experiment with the variance of the terrorist cluster at 0.5. We now expect points
from the terrorist cluster to remain inside the background cluster on average.

Figure 3 shows that the presence of an outlier cluster in the transformed space is as clear as it
was before. Figure 4 plots only those points correlated with the target and, as before, the separation
of the target cluster is a little clearer.
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Figure 1: Plot of first two dimensions of the transformed space. Individuals normally distributed
with mean 0 and variance 1, one individual randomly chosen as target, terrorists normally dis-
tributed around that individual in 30 dimensions with variance 1.
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Figure 2: Same plot as in Figure 1 showing only individuals correlated with the target. Note the
change of scale on the axes.

10



0.1

0.05

u2

—-0.05

T

-0.1r

~0.15 I I I I ]
-0.15 -0.1 —-0.05 0 0.05 0.1

Ul

Figure 3: Individuals normally distributed with mean 0 and variance 1, one individual randomly
chosen as target, terrorists normally distributed around it with variance 0.5.
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In these datasets, SVD discovers the terrorist cluster without knowing the target because, by
Fact 1, the base cluster has little linear structure. The first singular value is overwhelmingly likely
to point towards the median of the smaller embedded cluster around the target even if its points
are entirely inside the larger cluster.

This is arguably an easy dataset, but not entirely trivial because the fuzzy central limit theo-
rem suggests that, given enough data, and given that normalization takes place after the data is
collected, we can expect that many parts of a dataset should look as if they were generated by a
normal distribution.

Experiment 3. We now consider a dataset with following structure: 100 points are generated,
normally distributed around 0 with variance 1. 100 clusters of 10 points are generated, normally
distributed with variance 1 with centers at each of the original points. A terrorist cluster of size 10,
normally distributed with variance 1 is generated around a random one of the second level points.
So rather than a single background cluster around zero, we have a large set of background clusters
with many different centers.

Figure 5 shows the resulting plot. It is clear that the terrorist cluster cannot be distinguished
from the background without prior knowledge of the target, and only imperfectly then. Even when
the uncorrelated points are removed from the plot (Figure 6), the terrorist cluster is not cleanly
separated either by projection along a line to the target or by proximity to the target. However,
Figure 7 shows that the target cluster is fairly well identified using cosine similarity to the target
(we have shown a cluster that would include the entire terrorist group, but many cones with smaller
angles would also detect several members of the group).

Experiment 4. Figure 8 shows the plot for the dataset of Experiment 3 when the row corre-
sponding to the target is scaled by a factor of 1.2. Figure 9 shows only the points correlated with
the target. There is very little difference between these plots and those where the target row is
unweighted.

However, we now repeat the SVD using only those 422 rows of the original matrix that are
correlated with the target. The results are shown in Figures 10 and 11 (with only the points that
are still correlated with the target plotted). Both projection onto a vector from the origin to the
target, and proximity now begin to discover the terrorist cluster.

Figures 12 and 13 show what happens after a third round of SVD on the 362 points correlated
with the target on the previous round. Both projection onto a vector and proximity continue to
improve their predictive performance, and now clearly identify the terrorist group. Notice the
flattening of the number of uncorrelated points being removed at each stage.

Experiment 5. Using the dataset of Experiment 3, we now multiply the row corresponding to
the target by 4. Figure 14 shows what happens — the target point moves far from the origin, but
it also tends to pull the correlated points towards it, and so away from the main cluster. Both
proximity and proximity on the projection onto the vector from origin to target are effective at
finding the terrorist cluster.

Experiment 6. In the previous experiments (Experiments 3-5), the terrorist cluster was still
distinguished because it was the only cluster at the ‘third’ level. We now generate a dataset with
100 points, normally distributed around 0 with variance 1. 100 clusters of 10 points are generated,
normally distributed with variance 1 around each of the original points, and 20 clusters of size 10
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Figure 6: Same plot showing the 422 individuals correlated with the target.
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Figure 7: Same plot showing low false positive rate using a cone aimed at the target as a selector.
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Figure 9: Same plot showing only the 422 individuals correlated with the target.
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Figure 10: Repeated SVD using only the 422 individuals correlated with the target in the first
round.
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plot showing only the 362 individuals still correlated with the target.
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Figure 12: Repeated SVD using only the 362 individuals correlated with the target.
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Figure 13: Same plot showing only the 337 individuals still correlated with the target.
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Figure 14: 10 normal clusters with variance 1 with centers drawn from a normal distribution with
mean 0 and variance 1; terrorist cluster normally distributed around a randomly chosen individual
with variance 1; weight of 4 on the target.
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Figure 15: Same plot showing only the individuals correlated with the target.

normally distributed with variance 1 are generated around randomly chosen points in the second
level. One of these ‘third’ level clusters is chosen as the terrorist cluster and its center as the target.

Figure 16 shows that both projection and proximity find the terrorist cluster with reasonable
accuracy. Figure 17 shows the plot of the points correlated with the target.

Experiment 7. In the dataset, the local environment of each of the second level cluster centers
is the same and we can choose any of them as possible terrorist clusters. On the other hand, the
local environment of all of the other points is quite different. Figure 18 shows the sizes of the
sets of points correlated with a particular point, when that point is a second-level cluster center (a
possible target) and when it is one of the other points.

Those points that are targets have neighborhoods that start out smaller and shrink more rapidly
than the neighborhoods of points that are not targets. The difference between the two types of
points is marked, even by the third round.

Experiment 8. In our experiments so far, the number of terrorists has been about 1% of the total
number of individuals. This fraction is too large to be realistic, even if a substantial prescreening
process is applied before this kind of data mining is used.

Figure 19 shows the three-dimensional plot of a dataset with 10000 rows, normally distributed
around the origin with variance 1, with a 10-terrorist cluster normally distributed with variance 1
generated around one of the ordinary individuals. The terrorist cluster is now much more diffuse.
However, note that the extremal point along the projection on the vector from the origin to the
target is a terrorist, and several others project on this vector further from the origin than the target.
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Figure 16: Three levels of clusters: first level of 100 cluster centers normally distributed around 0
with variance 1; second level of 10 cluster centers normally distributed with variance 1 around these;
then 20 clusters of size 10 distributed around these. One second-level cluster center designated as
the target.
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Figure 17: Same plot showing only those individuals correlated with the target.

After Size of sets correlated with a point
rnd that is a target | that is not a target
145 | 419 | 199 | 831 | 370 | 586 | 416
20| 27| 47 | 513 | 90 | 194 | 150
20 | 461 | 48 | 86 | 78
400 | 42| 56 | 65
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Figure 18: Sizes of correlated sets after elimination of uncorrelated individuals. Initial size of all
sets is 1200.
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Figure 20: Same dataset with the target weight scaled by 4.

As Figure 20 shows, adding a weight of 4 to the target clearly selects the majority of the terrorist
group, so even in large datasets SVD is effective.

Experiment 9. Fact 1 suggests that sparseness in datasets will not cause difficulties for SVD. This
illustrates one of the strong properties of SVD — it is capable of detecting correlation even between
individuals who have no (non-zero values of) attributes in common, via higher-order correlations.

Figure 21 shows a plot of a dataset similar to that of Experiment 1, but with 80% of the values
set to zero. Although many of the terrorist cluster are not close to the target, several members still
are. A dataset like this represents a situation where underlying attributes exist but are missing for
some reason.

Another kind of sparse dataset is one in which there are no meaningful values for the zero
entries. Figure 22 shows the plot of such a dataset. Here all 1010 rows are generated using a
normal distribution with mean zero and variance 1, and a random row among the first 1000 is
selected as the target. The rows of the terrorist cluster are then correlated with the target in the
following way: if a target attribute has a non-zero value then, with 70% probability, the terrorist
row is changed to a value drawn from a normal distribution whose mean is the value of the target
attribute and whose variance is 1; otherwise the value is left unchanged. The correlation of the
terrorist cluster with the target is plainly visible. Figure 23 shows the same plot with the points
uncorrelated with the target removed.

Experiment 10. We now show that similar effects hold for distributions other than the nor-
mal distribution. The Poisson distribution with mean 1 generates many values close to 1, with
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Figure 21: A sparse dataset generated by setting 80% of the values in a dense dataset from Exper-
iment 1 to zero.
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Figure 22: A sparse dataset generated directly.
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Figure 23: The same plot without the points uncorrelated with the target.
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Figure 24: Ordinary individuals generated from a Poisson distribution, terrorist cluster normally
distributed around a randomly chosen target.

the frequency decreasing rapidly with magnitude. We build a dataset of a 1000 rows from this
distribution, subtracting A to make the values approximately zero mean.

Figure 24 shows the results when the terrorist cluster is generated using a normal distribution
with variance 1 around a randomly chosen row. Figure 25 shows the results when the terrorist
cluster is also generated by the same Poisson distribution around the target (i.e the mean of the
terrorist distribution is roughly the target). Figure 26 shows the same plot with only the correlated
points shown.

Some settings have data that is binary in nature; each person did, or did not do some action,
or does or does not have some particular attribute. The Poisson distributions above are quite close
to such datasets because we used a mean of 1 and the results are similar.

7 Related Work

Techniques used for detecting outlying objects or outlying processes, for example Independent
Component Analysis (ICA) [8], and 1-Class Classification [15, 16] seem less likely to provide good
solutions for terrorism detection, although they may be effective when the wvalues are completely
beyond the control of individuals.

Singular value decomposition has been known since 1873, and used extensively in computing
since Golub discovered an effective algorithm to compute it [7]. There is a vast literature on its
use for dimensionality reduction; and it has been used for information retrieval where proximity
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Figure 25: Ordinary individuals generated from a Poisson distribution, terrorist cluster Poisson
distributed around a randomly chosen target.
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Figure 26: The same plot without the points uncorrelated with the target.
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(in the sense of cosine similarity) serves as a proxy for correlation [3].

Social Network Analysis [6] study the interactions between individuals and derives global prop-
erties from the structure of the resulting graphs. There are two serious drawbacks to the use of
SNA techniques for terrorism detection:

e Networks are built by adding pairwise links between two individuals, and this will not scale
well since the number of potential links is quadratic in the number of individuals. In practice,
SNA seems to have been used when a particular individual threat has been identified as a
tool to discover his or her collaborators. In other words, SNA has a bootstrap problem (but
may be useful once the kind of prescreening we suggest here has been applied).

e Links are made between individuals as the result of some interaction between them, rather
than because of some correlation between them. In other words, SNA may discover two
collaborators who meet at a target site, but will not discover them simply because they both
visit the target site.

Link or traffic analysis has similar drawbacks: it can be useful once at least one member
of a terrorist group has been identified; but it has the same limitation of only detecting direct
relationships between two individuals, rather than their correlated actions. Traffic analysis has
been used to detect unusually strong patterns of interaction, but only on the basis of a handful of
attributes.

The paper [13] describes experiments using Inductive Logic Programming on relational datasets
recording nuclear smuggling and contract killing. This work could presumably be generalized to
counterterrorism.

8 Conclusion

We have shown that SVD is able to detect small correlated clusters, representing terrorists, against
a variety of backgrounds representing degrees of innocent correlation. Qualitatively, in every case
there exists a mechanism that identifies at least one (usually more) of the terrorist cluster based on
proximity to the target, either directly in a low-dimensional space or by projection along a vector
derived from the target. The number of false positives induced by these procedures is not trivial,
but it is arguably reasonable. Our results do not suggest an optimal strategy for applying SVD for
terrorist detection — rather they suggest a number of effective techniques. More experience will be
required to determine how best to combine these techniques.

Many questions remain: are the generated datasets used for these experiments reasonable ana-
logues of real-world datasets, can the ad hoc detection procedures used here be codified and au-
tomated, and does the performance remain acceptable as datasets become larger, perhaps much
larger?
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