
Deletion along Trajectories
Technical Report 2003-464

Michael Domaratzki∗

School of Computing, Queen’s University,
Kingston, ON K7L 3N6.

email: domaratz@cs.queensu.ca

Abstract

We describe a new way to model deletions on formal languages, calleddeletion along
trajectories. We examine its closure properties, and show that it serves as an inverse to shuffle
on trajectories, recently introduced by Mateescuet al. This leads to results on the decidability
of equations of the formL T X = R, whereL,R are regular languages andX is unknown.

1 Introduction

Shuffle on trajectories, defined by Mateescuet al. [16] unifies operations which insert symbols of
one word into another (see Section2 for definitions). Among those operations in the literature gen-
eralized by shuffle on trajectory are concatenation, reverse and bi-concatenation, arbitrary, literal
and perfect shuffles, and many others. This formalism has proven to be very powerful, and much
work has recently been done on shuffle along trajectories (see, e.g., [4, 18, 19]).

Concurrent to this research, Kari and others [10, 11] have done research into the inverses of
insertion-and shuffle-like operations, which have yielded decidability results for equations such as
XL = R whereL,R are regular languages andX is unknown. The inverses of insertion- and
shuffle-like operations are deletion-based operations such asdeletion, quotient, scattered deletion
andbi-polar deletion[10].

In this paper, we introduce the notion ofdeletion along trajectories, which is the equivalent of
shuffle along trajectories for deletion-based operations. We show how it unifies operations such as
deletion, quotient, scattered deletion and others. We also show how each shuffle operation based on
a set of trajectoriesT has an inverse operation (both right and left inverse, see Section5), defined
by a deletion along a renaming ofT . This yields the result that it is decidable whether equations
of the formL T X = R for regular languagesL, T andR has a solutionX.

∗Research supported in part by an NSERC PGS-B graduate scholarship.

1

2 Definitions

For additional background in formal languages and automata theory, please see Yu [25]. Let Σ be
a finite set of symbols, calledletters. ThenΣ∗ is the set of all finite sequences of letters fromΣ,
which are calledwords. The empty wordε is the empty sequence of letters. The length of a word
w = w1w2 · · ·wn ∈ Σ∗, wherewi ∈ Σ is n, and is denoted|w|. Note thatε is the unique word of
length 0.

A languageL is any subset ofΣ∗. By L, we meanΣ∗ − L, the complement ofL.
A deterministic finite automaton (DFA) is a five-tupleM = (Q, Σ, δ, q0, F) whereQ is a finite

set of states,Σ is an alphabet,δ : Q× Σ → Σ is a transition function,q0 ∈ Q is the distinguished
start state, andF ⊆ Q are the final states. We extendδ to Q×Σ∗ in the usual way. A wordw ∈ Σ∗

is accepted byM if δ(q0, w) ∈ F . The language recognized byM , denotedL(M) is the set of all
strings recognized byM . A language is called regular if it is accepted by some DFA.

A nondeterministic finite automaton (NFA) is a five-tupleM = (Q, Σ, δ, q0, F) whereQ, Σ, q0

andF are in the deterministic case, whileδ : Q× (Σ ∪ ε) → 2Q is the nondeterministic transition
function. Again,δ is extended toQ × Σ∗ in the natural way. A wordw is accepted byM if
δ(q0, w) ∩ F 6= ∅. It is known that the language accepted by an NFA is regular.

Given alphabetsΣ, ∆, a morphism is a functionh : Σ∗ → ∆∗ satisfyingh(xy) = h(x)h(y) for
all x, y ∈ Σ∗.

Shuffle on trajectories is defined by first defining the shuffle of two stringsx andy over an
alphabetΣ on a trajectoryt, which is simply a string in{0, 1}∗.

If x = ax′ andy = by′ (with a, b ∈ Σ) then if t = et′, we have that

x et′ y =

{
a(x′ t′ by

′) if e = 0;
b(ax′ t′ y

′) if e = 1.

If x = ax′ (a ∈ Σ) andy = ε, then

x et′ ε =

{
a(x′ t′ ε) if e = 0;
∅ otherwise.

If x = ε andy = by′ (b ∈ Σ), then

ε et′ y =

{
b(ε t′ y

′) if e = 1;
∅ otherwise.

Finally, if x = y = ε, then

ε et′ ε =

{
ε if et′ = ε
∅ otherwise.

We extend shuffle on trajectories to setsT ⊆ {0, 1}∗ of trajectories as follows:

x T y =
⋃
t∈T

x t y.

Further, forL1, L2 ⊆ Σ∗, we define

L1 T L2 =
⋃

x∈L1

⋃
y∈L2

x T y.

2

We now give our main definition, which models deletion operations with the addition of a set
of trajectories. Letx, y ∈ Σ∗ be strings withx = ax′, y = by′ (a, b ∈ Σ). Let t be a string over
{i, d} such thatt = et′ with e ∈ {i, d}. Then we definex ;t y as follows:

x ;t y =





a(x′ ;t′ by′) if e = i
x′ ;t′ y′ if e = d anda = b
∅ otherwise.

.

Also,

x ;t ε =

{
a(x′ ;t′ ε) if e = i
∅ otherwise.

.

Further,ε ;t y = ε if t = y = ε. Otherwise,ε ;t y = ∅.
Let T ⊆ {i, d}∗. Then

x ;T y =
⋃
t∈T

x ;t y

We extend this to languages as expected: LetL1, L2 ⊆ Σ∗ andT ⊆ {i, d}∗. Then

L1 ;T L2 =
⋃

x∈L1

⋃
y∈L2

x ;T y.

Note that;T is not an associative operation on languages. Also, we note the difference of dele-
tion on trajectories from the operationsplicing on routesdefined by Mateescu [15], which is a
generalization of shuffle on trajectories which allows discarding symbols from either input word.
In splicing on routes, the operation is always associative, and deletions may be made from either
word without any co-ordination with the other word involved.

We consider the following examples of deletion along trajectories:

(a) if T = i∗d∗, then;T = /, the right-quotient operation;

(b) if T = d∗i∗, then;T = \, the left-quotient operation;

(c) if T = i∗d∗i∗, then;T =;, the deletion operation (see, e.g., Kari [9, 10]);

(d) if T = (i + d)∗, then;T is the scattered deletion operation (see, e.g., Itoet al. [8]);

(e) if T = d∗i∗d∗, then;T =­, the bi-polar deletion operation (see, e.g., Kari [10]).

3 Closure and Characterization Results

Lemma 3.1 If T ,L1, L2 are regular, thenL1 ;T L2 is also regular.

Proof. The construction is straight-forward. LetM1,M2,MT be DFAs forL1, L2, T , respectively,
with

Li = (Qi, Σ, δi, qi, Fi) i = 1, 2

T = (QT , {i, d}, δT , qT , FT)

3

Then letM = (Q1 ×Q2 ×QT , Σ, δ, [q1, q2, qT], F1 × F2 × FT) be an NFA withδ given by

δ([qi, qj, qk], a) = {[δ1(qi, a), qj, δT (qk, i)]}

for all [qi, qj, qk] ∈ Q1 ×Q2 ×QT anda ∈ Σ. Further,

δ([qi, qj, qk], ε) = {[δ1(qi, a), δ(qj, a), δT (qk, d)] : a ∈ Σ}

for all [qi, qj, qk] ∈ Q1 ×Q2 ×QT . We can verify thatM accepts the proper language.

We now show that if one ofL1, L2 or T is non-regular, thenL1 ;T L2 may not be regular:

Theorem 3.2 There exist languagesL1, L2 and a set of trajectoriesT satisfying each of the fol-
lowing:

(a) L1 is a CFL,L2 is a singleton andT is regular, butL1 ;T L2 in not regular;

(b) L1, T are regular, andL2 is a CFL, butL1 ;T L2 is not regular;

(c) L1 is regular,L2 is a singleton, andT is a CFL, butL1 ;T L2 is not regular.

In each case, the CFL may be chosen to be a linear CFL.

Proof. We first note the following identity:

L ;i∗ {ε} = L.

Thus, if we take any non-regular (linear) CFLL, we can establish (a).
For (b), we take the following languages:

L1 = a∗b∗

T = (di)∗

L2 = {anbn : n ≥ 0}

Note thatL2 is a non-regular (linear) CFL. With these languages, we get thatL1 ;T L2 =
L2{ε, b2}, which is non-regular.

Finally, to establish part (c), we take

L1 = a∗#b∗

T = {indin : n ≥ 0}
L2 = {#}

We note thatT is a non-regular linear CFL, and that

L1 ;T L2 = {anbn : n ≥ 0}.

This establishes the theorem.

4

In Section4, we discuss non-regular sets of trajectories which preserve regularity. We have the
following characterization of deletion along trajectories:

Theorem 3.3 There exist morphismsρ1, ρ2, τ, ϕ and a regular languageR such that for allL1, L2 ⊆
Σ∗ and allT ⊆ {i, d}∗,

L1 ;T L2 = ϕ
(
ρ−1

1 (L1) ∩ ρ−1
2 (L2) ∩ τ−1(T) ∩R

)
.

Proof. Let L1, L2 ⊆ Σ∗ andT ⊆ {i, d}∗. Let Σ̂ = {â : a ∈ Σ} be a copy ofΣ. Define the
morphismρ1 : (Σ̂ ∪ Σ ∪ {i, d})∗ → Σ∗ as follows:

ρ1(â) = ρ1(a) = a ∀a ∈ Σ

ρ1(i) = ρ1(d) = ε

Defineρ2 : (Σ̂ ∪ Σ ∪ {i, d})∗ → Σ∗ as follows:

ρ2(â) = a ∀a ∈ Σ

ρ2(a) = ε ∀a ∈ Σ

ρ2(d) = ρ2(i) = ε

Defineτ : (Σ̂ ∪ Σ ∪ {i, d})∗ → Σ∗ as follows

τ(â) = τ(a) = ε ∀a ∈ Σ

τ(i) = i

τ(d) = d

We defineϕ : (Σ̂ ∪ Σ ∪ {i, d})∗ → Σ∗ as

ϕ(â) = ε ∀a ∈ Σ

ϕ(a) = a ∀a ∈ Σ

ϕ(i) = ϕ(d) = ε

Finally, we note that the result follows on lettingR = (iΣ + dΣ̂)∗.

Recall that a cone (or full trio) is a class of languages closed under morphism, inverse morphism
and intersection with regular languages [17, Sect. 3]. Thus, we have the following corollary:

Corollary 3.4 LetL be a cone. Then letL1, L2, T be languages such that two are regular and the
third is inL. ThenL1 ;T L2 ∈ L.

Note that the closure of cones under quotient with regular sets [7, Thm. 11.3] is a specific
instance of Corollary3.4. We also note that the CFLs are a cone, thus we have the following
corollary (a direct construction is also possible):

Corollary 3.5 Let T, L1, L2 be languages such that one is a CFL and the other two are regular
languages. ThenL1 ;T L2 is a CFL.

5

Lemma3.1can also be proved by appealing to Theorem3.3. The following result shows that
even if we shuffle CFLs along a regular trajectory, the result may not be a CFL:

Theorem 3.6 The CFLs are not closed under deletion along regular sets of trajectories.

Proof. The result is immediate, since is is known (see, Ginsburg and Spanier [5, Thm. 3.4]) that
the CFLs are not closed under right quotient (given by the trajectoryT = i∗d∗).

We also have the following result:

Theorem 3.7 There existL1, L2 ⊆ Σ∗, T ⊆ {i, d}∗, such thatL1, T are CFLs,L2 is a singleton,
butL1 ;T L2 is not a CFL.

Proof. Let Σ = {a, b, c, #}. Then let

L1 = {anbn#cm : n,m ≥ 0};
L2 = {#};
T = {i2ndin : n ≥ 0}.

Note thatL1, T are indeed CFLs. Then we can verify that

L1 ;T L2 = {anbncn : n ≥ 0},

which is not a CFL.

We have one final case to deal with:

Theorem 3.8 There existL1, L2 ⊆ Σ∗, T ⊆ {i, d}∗, such thatL2, T are CFLs,L1 is regular, but
L1 ;T L2 is not a CFL.

Proof. Let Σ = {a, b, c}. Then let

L1 = a∗b∗c+;

L2 = {anbnc : n ≥ 0};
T = {(di)2ndin : n ≥ 0}.

Then we can verify thatL1 ;T L2 is the non-CF language

{anbncn : n ≥ 0} ∪ {anbn+1cn+2 : n ≥ 0} ∪ {anbn+2cn+1 : n ≥ 0} ∪ {an+1bncn+2 : n ≥ 0}.

This completes the proof.

Note that the context-sensitive languages (CSLs) are not a cone, since they are not closed under
arbitrary morphism. Thus, Corollary3.4does not apply to the CSLs. We now construct an example
demonstrating non-closure of the CSLs under deletion of a regular language along a regular set of
trajectories.

This construction is similar to one used by Daley and Kari [2, Prop. 2.4]. We will require the
following theorem (see Salomaa [22]):

6

Theorem 3.9 Let Σ be a language anda, b /∈ Σ. For all recursively enumerable languagesL ⊆
Σ∗, there exists a CSLL1 ⊆ a∗bL such that for allx ∈ L, there exists someaibx ∈ L1.

Theorem 3.10 There exist a CSLL, a regular set of trajectoriesT ⊆ {i, d}∗ and a regular lan-
guageR such thatL ;T R is not a CSL.

Proof. Let L be a recursively enumerable non-CS language. LetL1 be the CSL given by Theo-
rem3.9.

ConsiderT = d∗i∗ (i.e., left quotient) andR = a∗b. ThenL1 ;T R = L. This establishes the
result.

4 Regularity-Preserving Non-Regular Trajectories

Consider the following result of Mateescuet al.[16, Thm. 5.1]: ifL1 T L2 is regular for all regular
languagesL1, L2, thenT is regular. This result is clear upon noting that for allT , 0∗ T 1∗ = T .

However, in this section, we note that the same result does not hold if we replace “shuffle on
trajectories” by “deletion along trajectories”. In particular, we demonstrate a class of non-regular
sets of trajectoriesC such that for all regular languagesL1, L2, and for allH ∈ C, L1 ;H L2 is
regular. We also characterize allH ⊆ i∗d∗ which preserve regularity, and give some examples of
non-CF trajectories which preserve regularity.

As motivation, we begin with a basic example. LetΣ be an alphabet. LetH = {indn : n ≥ 0}.
Note that

L1 ;H L2 = {x ∈ Σ∗ : ∃y ∈ L2 such thatxy ∈ L1 and|x| = |y|}.
We can establish directly (by constructing an NFA) that for all regular languagesL1, L2 ⊆ Σ∗, the
languageL1 ;H L2 is regular. However,H is a non-regular CFL.

Remark thatL1 ;H L2 is similar to proportional removals studied by Stearns and Hartmanis
[24], Seiferas and McNaughton [23], Kosaraju [13, 12], Kozen [14], Zhang [26], the author [3]
and others. In particular, we note the case of1

2
(L), given by

1

2
(L) = {x ∈ Σ∗ : ∃y ∈ Σ∗ such thatxy ∈ L and|x| = |y|}.

The operation1
2
(L) is one of a class of operations which preserve regularity. Seiferas and

McNaughton completely characterize those binary relationsr ⊆ N2 such that the operation

P (L, r) = {x ∈ Σ∗ : ∃y ∈ Σ∗ such thatxy ∈ L andr(|x|, |y|)}

preserves regularity (We note that1
2
(L) can be simulated by splicing on the CF route{1n1

n
2

m
:

n,m ≥ 0}; see Mateescu [15] for details).
Recall that a setA is ultimately periodic (or simply u.p.) if there existsn0, p such that∀n ≥

n0(n ∈ A ⇐⇒ n + p ∈ A). A relationr is u.p.-preserving ifA u.p. implies

r−1(A) = {i : ∃j ∈ A such thatr(i, j)}

is also u.p. Then, ther that preserve regularity are precisely the u.p.-preserving relations.

7

We note the inclusion

L1 ;H L2 ⊆ 1

2
(L1) ∩ L1/L2.

However, equality does not hold in general. Consider the languages

L1 = {02, 04}
L2 = {03}

Then note that0 ∈ 1
2
(L1) ∩ L1/L2. However,0 /∈ L1 ;H L2. Thus, we note that

L1 ;H L2 6= 1

2
(L1) ∩ L1/L2

in general.
We now consider arbitrary relationsr ⊆ N2 for which

Hr = {indm : r(n,m)} ⊆ i∗d∗

preserves regularity. By modifying the construction of Seiferas and McNaughton, we obtain the
following result:

Theorem 4.1 The operation;Hr is regularity-preserving iffr is u.p.-preserving.

Proof. Assume that;Hr is preserves regularity. ThenL ;Hr Σ∗ is regular for all regular lan-
guagesL. But

L ;Hr Σ∗ = P (L, r).

Thus,r must be u.p.-preserving.
For the reverse implication, we modify the construction of Seiferas and McNaughton [23, Thm.

1]. Let M1 be the minimal complete DFA forL1: M1 = (Q1, Σ, δ1, q1, F1). Then, for allq ∈ Q1,
we let L(q)

1 be the language recognized by the DFAM
(q)
1 = (Q1, Σ, δ1, q0, {q}). Let Rq be the

language recognized by the DFAN (q)
1 = (Q1, Σ, δ1, q, F).

As M1 is complete,Σ∗ =
⋃

q∈Q L
(q)
1 . Thus,

L1 ;Hr L2 =
⋃
q∈Q

(L1 ;Hr L2) ∩ L
(q)
1 .

Thus, it suffices to demonstrate that(L1 ;Hr L2) ∩ L
(q)
1 is regular. But we now note that

(L1 ;Hr L2) ∩ L
(q)
1 = {x ∈ L

(q)
1 : ∃y ∈ L2 such thatxy ∈ L1 andr(|x|, |y|)}

= {x ∈ L
(q)
1 : ∃y ∈ (Rq ∩ L2) such thatr(|x|, |y|)}

= {x ∈ Σ∗ : ∃y ∈ (Rq ∩ L2) such thatr(|x|, |y|)} ∩ L
(q)
1

= {x ∈ Σ∗ : |x| ∈ r−1({|y| : y ∈ (Rq ∩ L2)})} ∩ L
(q)
1

Note that ifL is regular,{|y| : y ∈ L} is a u.p. set. Asr is u.p.-preserving,r−1({|y| : y ∈
Rq ∩ L2)}) is also u.p. Further, it is an easy exercise to construct a DFA for the language{x ∈
Σ∗ : |x| ∈ A} for any u.p. setA.

8

Note that in general, the equality

L1 ;Hr L2 = P (L1, r) ∩ L1/L2

does not hold. We note some particular examples of regularity-preserving trajectories:

(a) Consider the relatione = {(n, 2n) : n ≥ 0}. ThenHe preserves regularity (see, e.g., Zhang
[26, Sect. 3]). However,He is not CF. The setHe is, however, a linear conjunctive language
(see Okhotin [20] for the definition of conjunctive and linear conjunctive languages, and for
the proof thatHe is linear conjunctive).

(b) Consider the relationf = {(n, n!) : n ≥ 0}. ThenHf preserves regularity (see again
Zhang [26, Thm. 5.1]). However,Hf is not a CFL, nor a linear conjunctive language [20].

Thus, we note that there are non-CF trajectories which preserve regularity.

5 Deletion as an Inverse of Shuffle on Trajectories

Given two binary word operations¦, ? : (Σ∗)2 → Σ∗, we say that¦ is a left-inverse of? [10, Defn.
4.1] if, for all u, v, w ∈ Σ∗,

w ∈ u ? v ⇐⇒ u ∈ w ¦ v.

Then we have the following characterization of left-inverses:

Theorem 5.1 Let τ be the morphism which maps0 → i and1 → d. LetT ⊆ {0, 1}∗ be a set of
trajectories. Then T and;τ(T) are left-inverses of each other.

Proof. We show that for allt ∈ {0, 1}∗, (w ∈ u t v) ⇐⇒ (u ∈ w ;τ(t) v). The proof is by
induction on|w|. For |w| = 0, we havew = ε. Thus, by definition of t and;t, we have that

ε ∈ u t v

⇐⇒ u = v = t = ε

⇐⇒ u ∈ (ε ;τ(t) v)

Now, assume that the result is true for all strings shorter thanw. Let w = aw′ for a ∈ Σ. First,
assume thataw′ ∈ u t v. As |t| = |w|, we have thatt 6= ε. Let t = et′ for somee ∈ {0, 1} and let
u′, v′ be strings such that

w′ ∈ u′ t′ v
′;

such strings necessarily exist by definition ofT . Thus, by induction,

u′ ∈ w′ ;τ(t′) v′.

Let e′ = τ(e). We have two cases:

(a) if e = 0, thenv = v′ andu = au′. Thuse′ = i and

(w ;τ(t) v) = (aw′ ;e′τ(t′) v′)

= a(w′ ;τ(t′) v′)

3 au′ = u.

9

(b) If e = 1, thenu = u′ andv = av′. Thuse′ = d and

(w ;τ(t) v) = (aw′ ;e′τ(t′) av′)

= (w′ ;τ(t′) v′)

3 u′ = u.

Thus, we have that in both casesu ∈ w ;τ(t) v.
Now, let us assume thatu ∈ w ;τ(t) v. Then as|t| = |τ(t)| = |w| ≥ 1, let t = et′ for some

e ∈ {0, 1} and letu′, v′ be the strings such that,

u′ ∈ (w′ ;τt′ v′).

By induction,
w′ ∈ u′ t v

′.

We again have two cases:

(a) if e = 0, thenτ(e) = i. Then necessarilyu = au′, v′ = v. Thus

(u t v) = (au′ et′ v
′)

= a(u′ t′ v
′)

3 aw′ = w.

(b) if e = 1, Thenτ(e) = i. Then we have thatu = u′ andv = av′. Thus

(u t v) = (u′ et′ av′)

= a(u′ t′ v
′)

3 aw′ = w.

Thusw ∈ u t v. This completes the proof.

We note that Theorem5.1agrees with the observations of Kari [10, Obs. 4.7].

5.1 SolvingX T L = R and X ;T L = R

The following is a result of Kari [10, Thm. 4.6]:

Theorem 5.2 Let L,R be languages overΣ and ¦, ? be two binary word operations, which are
left-inverses to each other. If the equationX ¦ L = R has a solutionX ⊆ Σ∗, then the language

R′ = R ? L

is also a solution of the equation. Moreover,R′ is a superset of all other solutions of the equation.

By Theorem5.2, Theorem5.1and Lemma3.1, we note the following corollary:

10

Corollary 5.3 Let T ⊆ {0, 1}∗. Let T, L, R be regular languages. Then it is decidable whether
the equation

X T L = R

has a solutionX.

The idea is the same as discussed by Kari [10, Thm. 2.3]: we computeR′ given in Theorem5.2,
and check whetherR′ is a solution to the desired equation. Since all languages involved are regular,
the constructions are effective and we can test for equality of regular languages. Also, we note the
following corollary, which is established in the same manner as Corollary5.3:

Corollary 5.4 Let T ⊆ {i, d}∗. Let T, L, R be regular languages. Then it is decidable whether
the equation

X ;T L = R

has a solutionX.

5.2 SolvingL T X = R

Given two binary word operations¦, ? : (Σ∗)2 → Σ∗, we say that¦ is a right-inverse of? if, for all
u, v, w ∈ Σ∗,

w ∈ u ? v ⇐⇒ v ∈ u ¦ w.

Let ¦ be a binary word operation. The word operation¦r given byu ¦r v = v ¦ u is called
reversed¦ [10].

We can repeat the above arguments for right-inverses instead of left-inverses. In all cases, the
proofs are similar to those of the previous section. Thus, we simply state the results:

Theorem 5.5 Let π be the morphism which maps0 → d and1 → i. LetT ⊆ {0, 1}∗ be a set of
trajectories. Then T and(;π(T))

r are right-inverses of each other.

This again agrees with the observations of Kari [10, Obs. 4.4].

Corollary 5.6 Let T ⊆ {0, 1}∗. Let T, L, R be regular languages. Then it is decidable whether
the equation

L T X = R

has a solutionX.

We note that Ĉampeanuet al. have recently investigated the decidability of the existence of
solutions to the equationX1 X2 = R (i.e., unrestricted shuffle given byT = (0 + 1)∗) where
X1, X2 are unknown andR is regular [1].

11

5.3 Solving{x} T L = R

In this section, we briefly address the problem of finding solutions to equations of the form

{x} T L = R

whereT is a fixed regular set of trajectories,L,R are regular languages, andx is an unknown
word. This is a generalization of the results of Kari [10].

Theorem 5.7 Let Σ be an alphabet. LetT ⊆ {0, 1}∗ be a fixed regular set of trajectories. Then
for all regular languagesR, L ⊆ Σ∗, it is decidable whether there exists a wordx ∈ Σ∗ such that
{x} T L = R.

Proof. Let r = min{|y| : y ∈ R}. Then note that|z| = |x| + |y| for all z ∈ x T y (regardless
of T). Thus, it is clear that ifx exists satisfying{x} T L = R, then|x| ≤ r. Our algorithm then
simply considers all stringsx of length at mostr, and checks whether{x} T L = R holds.

5.4 SolvingL ;T X = R

We now consider the decidability of solutions to the equationL ;T X = R whereT is a fixed set
of trajectories,L,R are regular languages andX is unknown.

This involves considering the right-inverse of;T for all T ⊆ {i, d}∗. However, unlike the
left-inverse of;T , the right-inverse of;T is again a deletion operation. Let· : {i, d}∗ → {i, d}∗
be the morphism given byi = d andd = i.

Theorem 5.8 LetT ⊆ {i, d}∗ be a set of trajectories. The operation;T has right-inverse;T .

Proof. Let Σ be an arbitrary alphabet. We establish that for allx, y, z ∈ Σ∗, and allt ∈ {i, d}∗,
(x ∈ y ;t z) ⇐⇒ (z ∈ y ;t x).

The proof is by induction on|y|.
For |y| = 0, y = ε. Thus

x ∈ ε ;t z

⇐⇒ x = t = z = ε

⇐⇒ z ∈ y ;t x.

Assume the result holds for all strings with length less than|y|. Considery = ay′ for a ∈ Σ.
Assume thatx ∈ ay′ ;t z. Then as|t| = |y|, t = et′ for somee ∈ {i, d}. We have two cases:

(a) if e = i, thenx ∈ a(y′ ;t′ z). Assumex = ax′ for somex′ ∈ Σ∗. Thenx′ ∈ (y′ ;t′ z) and
by inductionz ∈ (y′ ;t′ x′). Consider then that

y ;t x = ay ;dt′ ax′

= y′ ;t′ x′

3 z.

Thusz ∈;t x, as required.

12

(b) if e = d, thenz = az′ for somez′ ∈ Σ∗ andx ∈ y′ ;t′ z′. As |y′| < |y|, by induction,
z′ ∈ y′ ;t′ x. Thus

y ;t x = ay ;it′ x

= a(y ;t′ x)

3 az′ = z.

Thus, we have established that

x ∈ (y ;t z) ⇒ z ∈ (y ;t x).

The reverse implication follows on noting thatt = t.

We note that Theorem5.8 agrees with the observations of Kari [10, Obs. 4.4]. Also, we note
the following result:

Corollary 5.9 Let T ⊆ {i, d}∗. Let T, L, R be regular languages. Then it is decidable whether
the equation

L ;T X = R

has a solutionX.

5.5 Solving{x} ;T L = R

In this section, we are concerned with decidability of the existence of solutions to the equation

{x} ;T L = R

wherex is a string inΣ∗, andL,R, T are regular languages. Equations of this form have previously
been considered by Kari [10]. Our constructions generalize those of Kari directly.

Let τ again be the renaming0 → i, 1 → d. We begin with the following lemma:

Lemma 5.10 Let Σ be an alphabet. Then for all sets of trajectoriesT ⊆ {i, d}∗, the following
equality holds:

(R τ−1(T) L) = {x : {x} ;T L ⊆ R}.
Proof. Let x be a string such that{x} ;T L ⊆ R, and assume, contrary to what we want to prove,
thatx ∈ R τ−1(T) L. Then there existsy ∈ R, z ∈ L andt ∈ τ−1(T) such thatx ∈ y t z. By
Theorem5.1,

y ∈ x ;τ(t) z.

As τ(t) ∈ T , we conclude thaty ∈ ({x} ;T L) ∩ R. Thus{x} ;T L ⊆ R does not hold,

contrary to our choice ofx. Thusx ∈ (R τ−1(T) L).

For the reverse inclusion, letx ∈ (R τ−1(T) L). Further, assume that({x} ;T L) ∩ R 6= ∅.
In particular, there exist stringsz ∈ L andt ∈ T such that

x ;t z ∩R 6= ∅.
Let y be some string in this intersection. Asy ∈ x ;t z, by Theorem5.1, we have thatx ∈
y τ−1(t) z. Thus,x ∈ R τ−1(T) L, contrary to our choice ofx. This proves the result.

13

Thus, we can state the main result of this section:

Theorem 5.11 Let Σ be an alphabet. LetT ⊆ {i, d}∗ be an arbitrary regular set of trajectories.
Then the problem “Does there exist a wordx such that{x} ;T L = R is decidable for regular
languagesL,R.

Proof. Let L,R be regular languages. We note that ifR is infinite, then the answer to our problem
is no; there can only be finitely many deletions along trajectoryT from a finite stringx. Thus,
assume thatR is finite. Then we can construct the following regular language:

P = (R τ−1(T) L)−
⋃

S(R

(S τ−1(T) L).

Note that(denotes proper inclusion. We claim thatP = {x : {x} ;T L = R}.
Assumex ∈ P . Then by Lemma5.10, we have that

x ∈ {x : {x} ;T L ⊆ R} (5.1)

x /∈ {x : {x} ;T L ⊆ S (R} (5.2)

Thus, we must have that{x} ;T L = R, since{x} ;T L is a subset ofR, but is not contained in
any proper subset ofR.

Similarly, if {x} ;T L = R, then by Lemma5.10, we have thatx ∈ (R τ−1(T) L). But as

{x} ;T L is not contained in anyS with S (R, we have thatx /∈ ⋃
S(R (S τ−1(T) L). Thus,

x ∈ P .
Thus, if R is finite, to decide if a stringx exists satisfying{x} ;T L = R, we constructP

and test ifP 6= ∅. SinceP will be regular, this can be done effectively (as we have noted, ifR is
infinite, we answer no).

6 Recognizing Deletion Along Trajectories

We now consider the problem of giving a monoid recognizing deletion along trajectories.
For a background on recognition of formal languages by monoids, please consult Pin [21]. A

monoid is a semigroup with unit element. LetL ⊆ Σ∗ be a language. We say that a monoidM
recognizesL if there exists a morphismϕ : Σ∗ → M and a subsetF ⊆ M such thatL = ϕ−1(F).

The following is a characterization of the regular languages due to Kleene (see, e.g., Pin [21,
p. 17]):

Theorem 6.1 A language is regular iff it is recognized by a finite monoid.

Consider arbitrary regular languagesL1, L2 ⊆ Σ∗ and T ⊆ {i, d}∗. Then our goal is to
construct a monoid recognizingL1 ;T L2.

Let M1, M2,MT be finite monoids recognizingL1, L2, LT , with morphismsϕi : Σ∗ → Mi for
i = 1, 2, ϕT : {i, d} → MT and subsetsF1, F2, FT , respectively.

14

As in Harjuet al.[6], we consider the monoidP(M1 ×M2 ×MT) consisting of all subsets of
M1 ×M2 ×MT . The monoid operation is given by

AB = {xy : x ∈ A, y ∈ B}
for all A,B ∈ P(M1 ×M2 ×MT).

We can now establish thatP(M1 ×M2 ×MT) recognizesL1 ;T L2. We first define a subset
D ⊆ M1 ×M2 ×MT which will be useful:

D = {[ϕ1(x), ϕ2(x), ϕT (d|x|)] : x ∈ Σ∗}.
Then we defineϕ : Σ∗ → P(M1 ×M2 ×MT) by giving its action on each elementa ∈ Σ:

ϕ(a) = {[ϕ1(xa), ϕ2(x), ϕT (d|x|i)] : x ∈ Σ∗}.
Then, we note that for ally ∈ Σ∗,

ϕ(y)D = {[ϕ1(α), ϕ2(β), ϕT (t)] : y ∈ α ;t β whereα, β ∈ Σ∗, t ∈ {i, d}∗} (6.3)

Thus, it suffices to take

F = {K ∈ P(M1 ×M2 ×MT) : KD ∩ (F1 × F2 × FT) 6= ∅}.
Thus, considering (6.3), we have that

L1 ;T L2 = ϕ−1(F).

This establishes thatP(M1 ×M2 ×MT) recognizesL1 ;T L2.

7 Conclusion

We have defined deletion along trajectories, and examined its closure properties. Deletion along
trajectories is shown to be a useful generalization of many deletion-based operations which have
been studied in the literature. The closure properties of differ from that of shuffle on trajectories in
that there exist non-regular and non-CF sets of trajectories which define operations which preserve
regularity.

We have also demonstrated that deletion along trajectories constitutes an elegant inverse to
shuffle along trajectories operations. This leads to positive decidability results for equations in-
volving shuffle on trajectories and deletion along trajectories.

References

[1] CÂMPEANU, C., SALOMAA , K., AND V ÁGVÖLGYI , S. Shuffle decompositions of regular
languages.Int. J. Found. Comp. Sci. 13, 6 (2002), 799–816.

[2] DALEY, M., AND KARI , L. Some properties of ciliate bio-operations. InDLT 2002: Devel-
opments in Language Theory, Sixth International Conference(2002), pp. 122–139.

15

[3] DOMARATZKI , M. State complexity of proportional removals.To appear, J. Automata,
Languages and Combinatorics 7, 4 (2002), 455–468.

[4] DOMARATZKI , M., AND SALOMAA , K. State complexity of shuffle on trajectories. In
Descriptional Complexity of Formal Systems (DCFS)(2002), pp. 81–94.

[5] GINSBURG, S.,AND SPANIER, E. Quotients of context-free languages.J. ACM 10, 4 (1963),
487–492.

[6] HARJU, T., MATEESCU, A., AND SALOMAA , A. Shuffle on trajectories: The
Scḧutzenberger product and related operations. InMFCS 1998, no. 1450 in LNCS. Springer-
Verlag, 1998, pp. 503–511.

[7] HOPCROFT, J. E.,AND ULLMAN , J. D. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

[8] ITO, M., KARI , L., AND THIERRIN, G. Shuffle and scattered deletion closure of languages.
Theor. Comp. Sci. 245(2000), 115–133.

[9] KARI , L. Generalized derivatives.Fund. Inf. 18(1993), 27–39.

[10] KARI , L. On language equations with invertible operations.Theor. Comp. Sci. 132(1994),
129–150.

[11] KARI , L., AND THIERRIN, G. Maximal and minimal solutions to language equations.J.
Comp. Sys. Sci. 53(1996), 487–496.

[12] KOSARAJU, S. Correction to “Regularity Preserving Functions”.ACM SIGACT News 6, 3
(1974), 22.

[13] KOSARAJU, S. Regularity preserving functions.ACM SIGACT News 6, 2 (1974), 16–17.

[14] KOZEN, D. On regularity-preserving functions. Tech. Rep. TR95-1559, Department of
Computer Science, Cornell University, 1995.

[15] MATEESCU, A. Splicing on routes: a framework of DNA computation. InUnconvential
Models of Computation(1998), C. Calude, J. Casti, and M. Dinneen, Eds., Springer, pp. 273–
285.

[16] MATEESCU, A., ROZENBERG, G., AND SALOMAA , A. Shuffle on trajectories: Syntactic
constraints.Theor. Comp. Sci. 197(1998), 1–56.

[17] MATEESCU, A., AND SALOMAA , A. Aspects of classical language theory. InHandbook
of Formal Languages, Vol. I, G. Rozenberg and A. Salomaa, Eds. Springer-Verlag, 1997,
pp. 175–246.

[18] MATEESCU, A., AND SALOMAA , A. Nondeterministic trajectories. InFormal and Natural
Computing, vol. 2300 ofLNCS. Springer-Verlag, 2002, pp. 96–106.

16

[19] MATEESCU, A., SALOMAA , K., AND YU, S. On fairness of many-dimensional trajectories.
J. Automata, Languages and Combinatorics 5(2000), 145–157.

[20] OKHOTIN , A. Automaton representation of linear conjunctive languages. InDLT 2002:
Developments in Language Theory, Sixth International Conference(2002), pp. 327–341.

[21] PIN , J.-E.Varities of Formal Languages. Plenum, 1986.

[22] SALOMAA , A. Formal Languages. Academic Press, 1973.

[23] SEIFERAS, J., AND MCNAUGHTON, R. Regularity-preserving relations.Theoretical Com-
puter Science 2(1976), 147–154.

[24] STEARNS, R., AND HARTMANIS , J. Regularity preserving modifications of regular expres-
sions.Inf. and Cont. 6, 1 (1963), 55–69.

[25] YU, S. Regular languages. InHandbook of Formal Languages, Vol. I, G. Rozenberg and
A. Salomaa, Eds. Springer-Verlag, 1997, pp. 41–110.

[26] ZHANG, G.-Q. Automata, boolean matrices, and ultimate periodicity.Information and
Computation 152(1999), 138–154.

17

	Introduction
	Definitions
	Closure and Characterization Results
	Regularity-Preserving Non-Regular Trajectories
	Deletion as an Inverse of Shuffle on Trajectories
	Solving X .3pt1ex.3em.3pt.3pt1ex .3em.3pt.3pt1ex .3pt1ex.3em.3pt.3pt1ex .3em.3pt.3pt1ex .2pt.7ex.2em.2pt.2pt.7ex .2em.2pt.2pt.7ex .3pt1ex.3em.3pt.3pt1ex .3em.3pt.3pt1ex2muT L = R and X T L = R
	Solving L .3pt1ex.3em.3pt.3pt1ex .3em.3pt.3pt1ex .3pt1ex.3em.3pt.3pt1ex .3em.3pt.3pt1ex .2pt.7ex.2em.2pt.2pt.7ex .2em.2pt.2pt.7ex .3pt1ex.3em.3pt.3pt1ex .3em.3pt.3pt1ex2muT X = R
	Solving {x } .3pt1ex.3em.3pt.3pt1ex .3em.3pt.3pt1ex .3pt1ex.3em.3pt.3pt1ex .3em.3pt.3pt1ex .2pt.7ex.2em.2pt.2pt.7ex .2em.2pt.2pt.7ex .3pt1ex.3em.3pt.3pt1ex .3em.3pt.3pt1ex2muT L = R
	Solving L T X = R
	Solving { x } T L = R

	Recognizing Deletion Along Trajectories
	Conclusion

