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Abstract

We describe a new way to model deletions on formal languages, addliedion along
trajectories We examine its closure properties, and show that it serves as an inverse to shuffle
on trajectories, recently introduced by Mateestal. This leads to results on the decidability
of equations of the fornk. 1 X = R, whereL, R are regular languages aidis unknown.

1 Introduction

Shuffle on trajectories, defined by Mateest@l. [16] unifies operations which insert symbols of

one word into another (see Sect@for definitions). Among those operations in the literature gen-
eralized by shuffle on trajectory are concatenation, reverse and bi-concatenation, arbitrary, literal
and perfect shuffles, and many others. This formalism has proven to be very powerful, and much
work has recently been done on shuffle along trajectories (seel418,[19)).

Concurrent to this research, Kari and othét€, [L1] have done research into the inverses of
insertion-and shuffle-like operations, which have yielded decidability results for equations such as
XL = R whereL, R are regular languages and is unknown. The inverses of insertion- and
shuffle-like operations are deletion-based operations sudelason quotient scattered deletion
andbi-polar deletiorf10].

In this paper, we introduce the notion @életion along trajectoriesvhich is the equivalent of
shuffle along trajectories for deletion-based operations. We show how it unifies operations such as
deletion, quotient, scattered deletion and others. We also show how each shuffle operation based on
a set of trajectorie¥’ has an inverse operation (both right and left inverse, see Séstidefined
by a deletion along a renaming @t This yields the result that it is decidable whether equations
of the form Ly X = R for regular languages, 7" and R has a solutionX .

*Research supported in part by an NSERC PGS-B graduate scholarship.



2 Definitions

For additional background in formal languages and automata theory, please &5 Yief > be
a finite set of symbols, callelétters ThenX* is the set of all finite sequences of letters fram
which are calledvords The empty word is the empty sequence of letters. The length of a word
w = wiwsy - w, € X%, wherew,; € ¥ isn, and is denotetiv|. Note thate is the unique word of
length O.

A languagel is any subset of*. By L, we mear®* — L, the complement of..

A deterministic finite automaton (DFA) is a five-tuplé = (Q, X, 9, qo, F') whereq is a finite
set of statesy. is an alphabet) : ) x ¥ — X is a transition functiong, € @ is the distinguished
start state, and’ C () are the final states. We extefitb ) x ¥* in the usual way. Awordy € X*
is accepted by if §(qo, w) € F. The language recognized By, denoted (1) is the set of all
strings recognized by/. A language is called regular if it is accepted by some DFA.

A nondeterministic finite automaton (NFA) is a five-tuplé = (Q, %, §, qo, F') whereQ, 3, qo
andF are in the deterministic case, while Q x (X U €) — 2% is the nondeterministic transition
function. Again,J is extended ta) x >* in the natural way. A wordv is accepted by if
d(qo, w) N F # (). It is known that the language accepted by an NFA is regular.

Given alphabet’, A, a morphism is a functioh : ¥* — A* satisfyingh(zy) = h(x)h(y) for
all z,y € X%

Shuffle on trajectories is defined by first defining the shuffle of two stringady over an
alphabe®: on a trajectory, which is simply a string i{0, 1}*.

If x = ax’ andy = by’ (with a, b € X)) then ift = et’, we have that

a2z’ by') if e=0;
ey = { blax'wyy') ife=1.

If x = az’ (a € X) andy = ¢, then

e — a(z' g e) if e =0;
€= ¢ otherwise.

If x =eandy = by (b € X), then

[ blewpy) ife=1;
€l Y = { 0 otherwise.

Finally, if z = y = ¢, then

S if et/ =€
"7 0 otherwise.

We extend shuffle on trajectories to séts {0, 1}* of trajectories as follows:
Tlpy = U Tl Y.
teT
Further, forL,, L, C ¥*, we define

Liwgp Ly = U U Tl y.

€Ll yeL>
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We now give our main definition, which models deletion operations with the addition of a set
of trajectories. Letr,y € ¥* be strings withe = ax’, y = by (a,b € X). Lett be a string over
{i,d} such that = et’ with e € {i,d}. Then we define ~; y as follows:

a(x' ~p by') ife=1
Ty =1 &' ~opyf ife=danda =10 .
0 otherwise.

Also,
. a(x' ~pe) ife=i
T e= ¢ otherwise. -

Further,e ~», y = e if t = y = . Otherwiseg ~, y = 0.
LetT C {i,d}*. Then

Z’MTy:UiUMty
teT

We extend this to languages as expected:/let., C ¥* and7 C {i,d}*. Then

Li~q Ly = U U T~ Y.

€Ll yelo

Note that~» is not an associative operation on languages. Also, we note the difference of dele-
tion on trajectories from the operati@plicing on routeslefined by MateescUlE], which is a
generalization of shuffle on trajectories which allows discarding symbols from either input word.
In splicing on routes, the operation is always associative, and deletions may be made from either
word without any co-ordination with the other word involved.

We consider the following examples of deletion along trajectories:

(a) if T =i*d*, then~p= /, the right-quotient operation;

(b) if ' = d*i*, then~,=\, the left-quotient operation;

(c) if T =i*d*i*, then~r=~, the deletion operation (see, e.g., K&1J);

(d) if T'= (i + d)*, then~ is the scattered deletion operation (see, e.getit. [8]);

(e) if T' = d*i*d*, then~p==, the bi-polar deletion operation (see, e.g., Kafi]).

3 Closure and Characterization Results
Lemma 3.1 If T',L,, L, are regular, thenl; ~»7 L, is also regular.

Proof. The construction is straight-forward. L&ft,, M,, My be DFAs forL,, Ly, T, respectively,
with

Li = (Ql7275’wauﬂ) 1= 172
T = (QTa{iad}7éT7qT7FT)
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Then letM = (Q1 X Q2 X Qr, %, 0, [q1, G2, q7], F1 X Fy x Fr) be an NFA withy given by

6(lgi» @5, r), @) = {[01(qi, @), @5, 07 (q, 7)] }

forall [¢;,¢;,qx] € Q1 x Q2 x Q7 anda € X. Further,

5([(]17 QJ7 Qk]v E) = {[51((]’&7 CL), 5(Q]a CL), 5T(Qk> d)] Tac E}
for all [g;, ¢;, qx] € Q1 x Q2 X Qr. We can verify thaf\/ accepts the proper languaga

We now show that if one of, L, or T' is non-regular, the, ~»+ L, may not be regular:

Theorem 3.2 There exist languagek,, L, and a set of trajectorie§’ satisfying each of the fol-
lowing:

(@) L, isaCFL, L, is a singleton and” is regular, butL,; ~» L, in not regular;
(b) L., T are regular, andL, is a CFL, butl,; ~» Lo is not regular;
(c) L, isregular, L, is a singleton, and’ is a CFL, butL, ~»7 L, is not regular.
In each case, the CFL may be chosen to be a linear CFL.
Proof. We first note the following identity:
L~ {e} = L.

Thus, if we take any non-regular (linear) CHEL.we can establish (a).
For (b), we take the following languages:

L1 = a*b*
T = (di)”
Ly = {a"b" : n>0}
Note thatL, is a non-regular (linear) CFL. With these languages, we get thats»; L, =

Lo{e, b*}, which is non-regular.
Finally, to establish part (c), we take

Ll = a*#b*
T = {i"di" : n>0}
Ly, = {#}

We note thafl" is a non-regular linear CFL, and that
L1 T LQ = {a”bn n > 0}

This establishes the theorenm



In Sectiorid], we discuss non-regular sets of trajectories which preserve regularity. We have the
following characterization of deletion along trajectories:

Theorem 3.3 There exist morphisms, p,, 7, ¢ and a regular languag® such that for all.;, L, C
Y*andallT C {i,d}*,

Ly~ Ly = ¢ (pr' (L) Npy (L) N7 H(T) N R) .

Proof. LetL;,L, C ¥* andT C {i,d}*. LetY = {a@ : a € X} be a copy oft. Define the
morphismp, : (XU X U {i,d})" — X* as follows:
pi(a) = pi(a)=a YaekX
pi(i) = p(d)=e
Definep, : (X UX U {i,d})* — * as follows:
p(@) = a VaeX
pa(a) = € VaeX
pa(d) = pa(i) =e

Q>
~—

Definer : (X UX U {i,d})* — * as follows

7(a) = 71(a)=¢ VYa€eX

(i) = 1

T(d) = d
We definep : (LU X U {i,d})* — £* as
pla) = € Yaex
ela) = a YaeXx

p(i) = ¢(d)=e

Finally, we note that the result follows on lettidt)= (iX + d%)*. =

Recall that a cone (or full trio) is a class of languages closed under morphism, inverse morphism
and intersection with regular languagég,[Sect. 3]. Thus, we have the following corollary:

Corollary 3.4 Let L be a cone. Then ldty, Ly, T be languages such that two are regular and the
thirdisin £. ThenL, ~7 Ly € L.

Note that the closure of cones under quotient with regular §et¥Hm. 11.3] is a specific
instance of Corollarf8.4 We also note that the CFLs are a cone, thus we have the following
corollary (a direct construction is also possible):

Corollary 3.5 LetT, Ly, L, be languages such that one is a CFL and the other two are regular
languages. Thelh, ~r L, is a CFL.



Lemma3.]1 can also be proved by appealing to Theol@® The following result shows that
even if we shuffle CFLs along a regular trajectory, the result may not be a CFL:

Theorem 3.6 The CFLs are not closed under deletion along regular sets of trajectories.

Proof. The result is immediate, since is is known (see, Ginsburg and Sp&hi€hin. 3.4]) that
the CFLs are not closed under right quotient (given by the traje@fosyi*d*). =
We also have the following result:

Theorem 3.7 There exist,, L, C ¥*, T C {i,d}*, such thatZ,, T are CFLs,L, is a singleton,
but L, ~r Ly is not a CFL.

Proof. LetY = {a,b,c,#}. Then let
Ly = {a"b"#c™ : n,m >0},
Ly = {#}
T = {i*"di" : n>0}.

Note thatL,, T are indeed CFLs. Then we can verify that
Ly~ Ly = {a"b"c" : n >0},

whichisnota CFL. m

We have one final case to deal with:

Theorem 3.8 There exist.,, L, C ¥*, T' C {i,d}*, such thatl,, T" are CFLs, L is regular, but
L, ~7 Ly is nota CFL.

Proof. LetY = {a,b,c}. Then let
L, = a*b*ct

Ly = {a"b"c : n>0};
T = {(di)*™di"™ : n>0}.

Then we can verify thak, ~»1 L, is the non-CF language
{a"b"c" :n > 0} U {a"b" "2 i n > 0} U {a™b" 2" i > 0} U {a" T " i n > 0},

This completes the proofm

Note that the context-sensitive languages (CSLs) are not a cone, since they are not closed under
arbitrary morphism. Thus, CorollaB/4does not apply to the CSLs. We now construct an example
demonstrating non-closure of the CSLs under deletion of a regular language along a regular set of
trajectories.

This construction is similar to one used by Daley and K2riHrop. 2.4]. We will require the
following theorem (see Salomée27)):



Theorem 3.9 Let X be a language and, b ¢ X. For all recursively enumerable languagésC
¥*, there exists a CSL; C a*bL such that for allx € L, there exists som&bz € L;.

Theorem 3.10 There exist a CSIL, a regular set of trajectorie§” C {i,d}* and a regular lan-
guageR such thatl ~»r R is nota CSL.

Proof. Let L be a recursively enumerable non-CS language.l,éte the CSL given by Theo-
rem3.9

Considerl” = d*i* (i.e., left quotient) and? = a*b. ThenL, ~»7 R = L. This establishes the
result. m

4 Regularity-Preserving Non-Regular Trajectories

Consider the following result of Mateesetal.[[16, Thm. 5.1]: if L, Ly Lo is regular for all regular
languaged.;, L, thenT is regular. This result is clear upon noting that for@Jl0* L, 1* = T.

However, in this section, we note that the same result does not hold if we replace “shuffle on
trajectories” by “deletion along trajectories”. In particular, we demonstrate a class of non-regular
sets of trajectorie€ such that for all regular languagés, L., and for allH € C, L1 ~g Lo iS
regular. We also characterize &l C *d* which preserve regularity, and give some examples of
non-CF trajectories which preserve regularity.

As motivation, we begin with a basic example. B&be an alphabet. Léi = {i"d" : n > 0}.
Note that

Ly ~py Ly ={x € ¥* : Jy € Ly such thatry € L, and|z| = |y|}.

We can establish directly (by constructing an NFA) that for all regular languagds, C >*, the
languagel; ~py L, is regular. HoweverH is a non-regular CFL.

Remark thatl; ~y Lo is similar to proportional removals studied by Stearns and Hartmanis
[24], Seiferas and McNaughtof28], Kosaraju [L3, [12], Kozen [14], Zhang R§], the author 8]
and others. In particular, we note the casg @f), given by

1
Q(L) ={z € ¥*: 3y € ¥* such thatry € L and|z| = |y|}.

The operatior; (L) is one of a class of operations which preserve regularity. Seiferas and
McNaughton completely characterize those binary relatioasN? such that the operation

P(L,r)={x € ¥*: Jy € ¥ such thatry € L andr(|z|, |y|)}

preserves regularity (We note tf‘atL) can be simulated by splicing on the CF rogt¢1"2"
n,m > 0}; see MateescULE] for details).

Recall that a se#l is ultimately periodic (or simply u.p.) if there existg, p such thatvyn >
no(n € A <= n+p € A). Arelationr is u.p.-preserving ifd u.p. implies

r~'(A) ={i : 3j € Asuchthat(i,j)}

is also u.p. Then, thethat preserve regularity are precisely the u.p.-preserving relations.
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We note the inclusion )
Ll ~H L2 g 5([/1) N Ll/LQ.

However, equality does not hold in general. Consider the languages
L, = {0%0"}
L, = {0%}

Then note thab < %(Ll) N Ly/Ly. However0 ¢ L; ~»y L,. Thus, we note that

1
Ly~p Ly # §<L1) N Ly/Ls

in general.
We now consider arbitrary relatiomnsC N? for which

H, ={i"d™ : r(n,m)} Ci*d"

preserves regularity. By modifying the construction of Seiferas and McNaughton, we obtain the
following result:

Theorem 4.1 The operationy, is regularity-preserving iff- is u.p.-preserving.

Proof. Assume that.y _is preserves regularity. Thela~» 5 >* is regular for all regular lan-
guaged.. But
L~g X = P(L,r).

Thus,r must be u.p.-preserving.
For the reverse implication, we modify the construction of Seiferas and McNau@gonim.
1]. Let M; be the minimal complete DFA fak,: M; = (Q1, %, 61, ¢1, F1). Then, for allg € Qy,

we let L'? be the language recognized by the DEA? = (Q1,%,61,90,{q}). Let R, be the
language recognized by the DEA@ = (Q1,%,61,q, F).
As M, is completeX* = | ., L'? Thus,

Ly ~p, Ly = | (L1 ~n, Lo) N Ly,
9€q

Thus, it suffices to demonstrate thdt, ~ 5 L») N L!? is regular. But we now note that

(L1~ L)N LY = {zeLl? : 3ye L,suchthatey € Ly andr(|z|, |y[)}
= {ze L : 3y e (R,N Ly) such that(|z|, |y|)}
= {zex* : Jye (R,N Ly suchthat(|z|, |y|)} N L'
= {wex : zler({lyl sy e (BN L))} LY
Note that if L is regular,{|y| : y € L} is a u.p. set. As is u.p.-preservingr—*({|y| : v €

R, N Ly)}) is also u.p. Further, it is an easy exercise to construct a DFA for the landuage
¥* ¢ |z| € A} forany u.p.sed. =



Note that in general, the equality
Ly ~p, Ly = P(Ly,r) N Ly/Ly
does not hold. We note some particular examples of regularity-preserving trajectories:

(a) Consider the relation= {(n,2") : n > 0}. ThenH, preserves regularity (see, e.g., Zhang
[26, Sect. 3]). HoweverH, is not CF. The sefd. is, however, a linear conjunctive language
(see Okhotini2Q] for the definition of conjunctive and linear conjunctive languages, and for
the proof thatf, is linear conjunctive).

(b) Consider the relatioff = {(n,n!) : n > 0}. ThenH, preserves regularity (see again
Zhang 6, Thm. 5.1]). However/i, is not a CFL, nor a linear conjunctive langua@e€]|

Thus, we note that there are non-CF trajectories which preserve regularity.

5 Deletion as an Inverse of Shuffle on Trajectories

Given two binary word operations « : (3*)? — ¥, we say that is a left-inverse o [10, Defn.
4.1]if, for all u, v, w € ¥*,
WEUXV <= UCWO.

Then we have the following characterization of left-inverses:

Theorem 5.1 Let 7 be the morphism which maps— i and1 — d. LetT C {0,1}* be a set of
trajectories. Thenur and~ () are left-inverses of each other.

Proof. We show that for alt € {0,1}*, (w € ul,v) <= (u € w ~>) v). The proof is by
induction on|w|. For|w| = 0, we havew = e. Thus, by definition of., and~-;, we have that
€ECculhv
& u=v==>0=c¢€
<~ uc (6 () ’U)

Now, assume that the result is true for all strings shorter thaloet w = aw’ for a € 3. First,
assume thatw’ € ui, v. As|t| = |w|, we have that # e. Lett = et’ for somee € {0, 1} and let
u’, v’ be strings such that

w' € u/Lut/ v';
such strings necessarily exist by definition.of-. Thus, by induction,
u' € w ~orppy v
Lete’ = 7(e). We have two cases:
(@) ife =0, thenv = v" andu = au’. Thuse’ = i and

(W~ v) = (aw' ~er@y V')
= a(w/ MT(t') ’U/)

> au =u.



(b) If e =1, thenu = v/ andv = av’. Thuse’ = d and
(w~sryv) = (aW ~erw) av’)

= (W oy )

> v =u.

Thus, we have that in both cases w ~ ¢ v.
Now, let us assume thatc w ~».) v. Then adt| = |7(t)| = |w| > 1, lett = et’ for some
e € {0,1} and letw’, v’ be the strings such that,

u € (W~ ).

By induction,
w € v

We again have two cases:

(@) if e =0, thent(e) = i. Then necessarily = au’, v = v. Thus

(ugv) = (au wep v")
= a(u' )
> aw =w.

(b) if e =1, Thent(e) = i. Then we have that = «' andv = av’. Thus

(ugv) = (u' ey av’)
= a(u iy

> aw =w.

Thusw € uiu; v. This completes the proofm
We note that Theoref.lagrees with the observations of Kéti(] Obs. 4.7].

51 SolvingXuurL=RandX ~p L=R
The following is a result of Karil0, Thm. 4.6]:

Theorem 5.2 Let L, R be languages over. and ¢, x be two binary word operations, which are
left-inverses to each other. If the equati@ne L = R has a solutionX C ¥*, then the language

R =RxL
is also a solution of the equation. Moreov#r,is a superset of all other solutions of the equation.

By Theorent.2, Theorenb.land LemmdB.1, we note the following corollary:
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Corollary 5.3 LetT C {0,1}*. LetT, L, R be regular languages. Then it is decidable whether
the equation
XLUT L=R

has a solutionX.

The idea is the same as discussed by K&Gj Thm. 2.3]: we comput&’ given in Theoren®.2,
and check whethek’ is a solution to the desired equation. Since all languages involved are regular,
the constructions are effective and we can test for equality of regular languages. Also, we note the
following corollary, which is established in the same manner as Cord@&ry

Corollary 5.4 LetT C {i,d}*. LetT, L, R be regular languages. Then it is decidable whether
the equation
X T L=R

has a solutionX .

5.2 SolvingLuir X =R

Given two binary word operations « : (3X*)? — *, we say that is a right-inverse of if, for all
u, v, w € X*,
WEUXV << VEUSW.
Let ¢ be a binary word operation. The word operatigngiven byu ¢" v = v ¢ u is called
reversed [10].

We can repeat the above arguments for right-inverses instead of left-inverses. In all cases, the
proofs are similar to those of the previous section. Thus, we simply state the results:

Theorem 5.5 Let = be the morphism which maps— d and1 — i. LetT C {0, 1}* be a set of
trajectories. Thenu, and (’vm(T))’" are right-inverses of each other.

This again agrees with the observations of Kaf], [Obs. 4.4].

Corollary 5.6 LetT C {0,1}*. LetT, L, R be regular languages. Then it is decidable whether
the equation
LLUT X=R

has a solutionX.

We note that @mpeantet al. have recently investigated the decidability of the existence of
solutions to the equatioX; 1 X, = R (i.e., unrestricted shuffle given iy = (0 + 1)*) where
X1, X, are unknown and is regular[[].
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5.3 Solving{z}urL =R
In this section, we briefly address the problem of finding solutions to equations of the form
{l’} L7 L=R

whereT is a fixed regular set of trajectories, R are regular languages, andis an unknown
word. This is a generalization of the results of K&C].

Theorem 5.7 Let ¥ be an alphabet. Let” C {0, 1}* be a fixed regular set of trajectories. Then
for all regular languagesk, L. C >*, it is decidable whether there exists a ward: >* such that
{z}wrL=R.

Proof. Letr = min{|y| : y € R}. Then note thatz| = |z| + |y| for all z € x1ury (regardless
of T). Thus, itis clear that if: exists satisfyinz}.ur L = R, then|z| < r. Our algorithm then
simply considers all strings of length at most,, and checks whethdr} 1 L = R holds. =

5.4 SolvingL ~7 X =R

We now consider the decidability of solutions to the equafio+ X = R whereT is a fixed set
of trajectories,[, R are regular languages aidis unknown.

This involves considering the right-inverse of; for all T C {i,d}*. However, unlike the
left-inverse of~r, the right-inverse of»; is again a deletion operation. Let {i,d}* — {i, d}*
be the morphism given by= d andd = i.

Theorem 5.8 LetT" C {i,d}* be a set of trajectories. The operatien; has right-inversew .
Proof. Let Y be an arbitrary alphabet. We establish that forall, = € ¥*, and allt € {i,d}*,
(x €y~ 2) <= (z€y~pa).
The proof is by induction offy|.
For|y| =0,y = e. Thus
T EE~ 2
< T=t=z=c¢
— ZEY~~FT.

Assume the result holds for all strings with length less thanConsidery = ay’ for a € X.
Assume that: € ay’ ~», z. Then agt| = |y|, t = et’ for somee € {i,d}. We have two cases:

(@) ife =i, thenz € a(y ~y z). Assumer = az’ for somer’ € ¥*. Thena’ € (y' ~» 2) and
by inductionz € (y' ~ ). Consider then that

!
Yy~ & = ay ~~gp ax
/ /
=

Thusz e~; z, as required.
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(b) if e = d, thenz = a2’ for somez’ € ¥* andz € y' ~y 2. As|y/| < |y|, by induction,
2 €y ~y x. Thus
Y~z = ay~og T
= a(y ~y )

> aZ =2z.

Thus, we have established that
T € (Y~ 2) =2 € (y~ypx).

The reverse implication follows on noting that-¢t. =
We note that Theoref.8 agrees with the observations of KefiJ] Obs. 4.4]. Also, we note
the following result:

Corollary 5.9 LetT C {i,d}*. LetT, L, R be regular languages. Then it is decidable whether
the equation
L o X=R

has a solutionX.

5.5 Solving{z}~r L=R
In this section, we are concerned with decidability of the existence of solutions to the equation
{SL’} ~oT L=R

wherezx is a string inz*, andL, R, T are regular languages. Equations of this form have previously
been considered by Karl]. Our constructions generalize those of Kari directly.
Let 7 again be the renaminy— i, 1 — d. We begin with the following lemma:

Lemma 5.10 Let X be an alphabet. Then for all sets of trajectori€sC {i, d}*, the following
equality holds:

(R, L) ={z : {z} ~r L C R}
Proof. Letz be a string such thdte} ~» L C R, and assume, contrary to what we want to prove,

thatz € Eu_lq—fl(T) L. Then there existg € R,z € L andt € 7!(T) such thatr € yu; z. By
Theorenk.],

Y €T~y 2
As 7(t) € T, we conclude thay € ({z} ~r L) N R. Thus{z} ~»r L C R does not hold,
contrary to our choice of. Thusz € (R, 1) L).
For the reverse inclusion, lete (Ri,-1(r) L). Further, assume théfz} ~7 L) N R # 0.
In particular, there exist stringse L andt € T such that
T~y 2N R#0.

Let y be some string in this intersection. As€ z ~»; 2, by Theorenk.l, we have that: €
YW1 2. Thus,x € Rui.— () L, contrary to our choice of. This proves the resultm
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Thus, we can state the main result of this section:

Theorem 5.11 Let 3 be an alphabet. Let’ C {i, d}* be an arbitrary regular set of trajectories.
Then the problem “Does there exist a wardsuch that{x} ~» L = R is decidable for regular
languaged., R.

Proof. Let L, R be regular languages. We note thakRifs infinite, then the answer to our problem
is no; there can only be finitely many deletions along trajectoriyom a finite stringx. Thus,
assume thar is finite. Then we can construct the following regular language:

P = (T{UJTfl(T) L) - U (EUJTA(T) L).
SCR

Note thatC denotes proper inclusion. We claim tfat= {z : {z} ~r L = R}.
Assumer € P. Then by Lemm&.10 we have that

z € {z : {z}~r LC R} (5.1)
r ¢ {z:{z}~r LCSCR} (5.2)

Thus, we must have that:} ~r L = R, since{z} ~r L is a subset ofz, but is not contained in
any proper subset at.

Similarly, if {z} ~+ L = R, then by Lemm&.10 we have that: € (Ri,-1(r) L). But as
{z} ~r L is not contained in any with S C R, we have that ¢ (Jg. (S,—1(1) L). Thus,
x € P. -

Thus, if R is finite, to decide if a string: exists satisfying{z} ~r L = R, we constructP
and test ifP # (). SinceP will be regular, this can be done effectively (as we have notel,ig
infinite, we answer no).m

6 Recognizing Deletion Along Trajectories

We now consider the problem of giving a monoid recognizing deletion along trajectories.

For a background on recognition of formal languages by monoids, please cons@iPiA [
monoid is a semigroup with unit element. LetC X* be a language. We say that a monaid
recognized. if there exists a morphism : ¥* — M and a subsef' C M such thatl = o~ !(F).

The following is a characterization of the regular languages due to Kleene (see, e.@21,Pin [

p. 17]):
Theorem 6.1 A language is regular iff it is recognized by a finite monoid.

Consider arbitrary regular languagés, L, C ¥* andT C {i,d}*. Then our goal is to
construct a monoid recognizing ~»¢ Lo.

Let My, M,, My be finite monoids recognizing,, L, Ly, with morphismsp; : ¥* — M, for
i=1,2,¢r:{i,d} — My and subset$}, F», Frr, respectively.
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As in Harju et al.[6], we consider the monoi®(M; x M, x Mr) consisting of all subsets of
My x My x M. The monoid operation is given by

AB ={zy :x € A,y € B}

forall A, B € P(M, x My x Mr).
We can now establish th@(M; x M, x Mr) recognized.; ~¢ Lo. We first define a subset
D C M; x My x My which will be useful:

D = {[¢e1(2), pa(@), pr(d™)] : z € 27,
Then we define : ¥* — P(M; x My x Mr) by giving its action on each elemednt :
p(a) = {lp1(za), pa(2), pr(d™i)] : x € =}
Then, we note that for al} € ¥,
e()D = {[p1(a), p2(B), or(t)] : y € a~sy Bwherea,f € X"t € {i,d}'}  (6.3)
Thus, it suffices to take
F={K eP(M, x Myx My) : KDN(F, x Fy x Fr) # 0}.
Thus, considerindd,J), we have that
Ly ~oq Ly = ¢ ' (F).

This establishes th& (M, x M, x My) recognized.; ~>p Lo.

7 Conclusion

We have defined deletion along trajectories, and examined its closure properties. Deletion along
trajectories is shown to be a useful generalization of many deletion-based operations which have
been studied in the literature. The closure properties of differ from that of shuffle on trajectories in

that there exist non-regular and non-CF sets of trajectories which define operations which preserve

regularity.

We have also demonstrated that deletion along trajectories constitutes an elegant inverse to
shuffle along trajectories operations. This leads to positive decidability results for equations in-

volving shuffle on trajectories and deletion along trajectories.
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