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Abstract

We have designed and implemented a prototype tool, called Embee, which
makes use of the Alloy Analyzer to automatically check the conformance of Java
executions against Alloy specifications. Running time tests were conducted as
part of the performance analysis of this tool. This report describes these tests
and their results. Some of the results were unexpected, leading to questions
about how the Alloy Analyzer functions.

1 Motivation

In the course of researching “Runtime Conformance Checking of Objects Using
Alloy” [1, 2], we have designed and implemented a prototype tool, which can
be used to check the conformance of a Java program’s execution against an
Alloy [4, 6] specification. This tool, called Embee, makes use of the Alloy Ana-
lyzer [3, 7] to automatically check the conformance of a target implementation
against structural constraints specified in Alloy. A series of running time tests
were conducted as part of the performance analysis of our prototype.

The purpose of this report is to document the motivation for testing and
the test series used. In addition, we will interpret the results. Finally, some of
these results were unexpected; we will discuss these and outline future work to
study the discrepancies.
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2 Background

Execution of Embee occurs in three phases. The first phase focusses on creating
a static mapping between the naming scheme used in the Alloy specification
and that used in the Java implementation. The second phase makes use of the
JPDA [8] to execute the target implementation and halt it at user-specified
breakpoints. The objects that exist at the top of the target’s runtime stack are
examined and information about these objects, and the relationships between
them, is output to a series of textual dump files.

In the third phase, Embee creates a set of empty dynamic mappings repre-
senting all of the objects and relations that could exist in a given finite scope.
Then, using the information from an individual dump file, Embee populates
these dynamic mappings and extracts a Boolean array representing the Al-
loy atoms and relations that exist at that particular breakpoint. This array
is passed, along with the original specification, to the Alloy Analyzer. The
Analyzer determines whether or not the array represents a satisfying instance
of the specification. This third phase actually mimics the functionality of the
Analyzer’s ‘Edit Instance’ command, with the exception that Embee edits the
instance automatically.

3 Objectives

After Embee was implemented, a series of performance tests were executed in
order to examine the running time of each phase.

3.1 Primary Objective

The primary objective of these tests was to explore the running times of each
phase of Embee, with a particular emphasis on Phase 3, i.e., conformance
checking. Our goal was to demonstrate that the computations performed by
Embee to create the Boolean array in Phase 3 required less running time than
the Analyzer’s computations to check that array against the specification.

3.2 Secondary Objectives

We also had several secondary objectives relating to how the running time of
the conformance check is affected by the scope of analysis and the complexity
of the specification. The following objectives are presented in reverse order of
importance:
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1. Evaluate the effect of the scope of analysis on the running time of Phase
3. The scope of analysis for any particular breakpoint is a finite number,
equal to the maximum number of objects of any one type found at that
breakpoint. We expect that the higher the scope of analysis, the longer
the running time of the conformance check.

2. Evaluate the effect of the number of explicit facts on the running time
of Phase 3. The specifications in our test families are distinguished by
the number of explicit facts in the specification; Section 4.1 discusses this
concept. We expect that the conformance check running time will increase
with the number of explicit facts within a particular test family.

3. Determine whether or not a certain, simple estimate of the complexity of
a specification is a valid measure of the running time required to complete
Phase 3. The complexity of the Analyzer’s portion of this check has been
described as linear [9] in the size of the Boolean formula representing
the specification (in a certain scope). We would therefore expect that
a specification with a longer formula would take longer to check than
one with a shorter formula. Unfortunately, we do not have the means to
determine the exact length of these formulas; therefore, we attempt to
estimate the length of the formulas. We decided to use the number of
operators in the formula as it is passed to the Analyzer, as discussed in
Section 4.1.1. Our last secondary objective is to determine whether or
not this simple estimate is useful for determining the running time of our
test cases.

4 Testing

4.1 Methodology

Our tests focus on three factors, or dimensions, affecting the running time of
the conformance checking phase:

1. First, we performed the tests on three families of specification, each one of
which describes a simple data structure, such as a list, graph or tree. The
specifications for these three structures are listed in Appendix A. Each
of these three family groups contains different numbers of signatures and
relations, with different arities of relations. In addition, within each family
group, there were several specifications, identical except for the number
of explicit facts.

2. The second dimension is the number of explicit facts in a particular spec-
ification. Explicit facts are those which appear in the second set of braces
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of a signature or as separate (named) facts. These explicit facts were
used to create sets of specifications with different complexities, e.g., a list
specification with two explicit facts would be considered more complex
than the same specification with no explicit facts.

3. The final dimension is the number of objects at each breakpoint. We cre-
ated implementations of each of the three data structures; for each data
structure, we create a large number of objects, e.g., a list with many nodes,
etc. A breakpoint is encountered at the end of each add method; the con-
formance of the implementation at each breakpoint was then checked.
The number of node objects existing at a particular breakpoint becomes
the scope of the analysis. Finally, the target implementations were de-
signed to conform to the specification; this forces the Analyzer to evaluate
all of the objects and their relationships, resulting in longer (worst-case)
running times.

When executing Embee, an OutOfMemory error occasionally occurs, for in-
stance, when the specification gets overly complex, or when many objects are
being checked for conformance. This is an error caused by the fact that the
Java Virtual Machine (JVM) reserves a certain amount of memory for itself;
the default is 64MB. It is quite simple for a conformance check to require more
than this amount of memory, for example, with a large number of dynamic
mappings and a complicated Boolean formula. In order to provide an equal
baseline for all tests, we ran the conformance check with additional memory
for the JVM—256MB to be exact. All tests were performed on a Pentium III,
650MHz, with a total of 512MB of RAM.

4.1.1 Estimating the Length of the Boolean Formula

The Boolean formula represents the original Alloy specification and is affected
by both the complexity of the specification itself and the scope of the analysis.
It is possible to retrieve a textual representation of the formula from the Alloy
Analyzer. We have created a small utility, which extracts a count of the number
of Boolean operators (“and”, “or”, and “not”) from the formula. We estimate
the length of the formula as the total count of these operators.

For example, Table 1 contains the estimates for our three test families, from
scope = 1 through scope = 4. The size of the formula quickly becomes very
large (and our simple utility is extremely inefficient and thus quickly runs out
of memory); therefore, we did not compute our estimates past scope 4.
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Table 1: Estimate of Boolean formula size, determined by number of Boolean operators
(“and”, “or”, “not”)

Example 1 - List

scope 0 Facts 1 Fact 2 Facts
1 23 34 43
2 197 657 729
3 671 13,799 15,200
4 1,731 91,435 96,771

Example 2 - Graph

scope Facts 1 Fact 2 Facts 3 Facts
1 — — — —
2 185 1,005 1,783 2,181
3 674 66,722 118,250 142,328
4 1,787 635,811 1,153,063 1,319,611

Example 3 - Tree

scope 0 Facts 1 Fact 2 Facts 3 Facts 4 Facts
1 39 78 93 103 104
2 367 1,601 2,487 2,629 2,715
3 1,283 38,528 73,472 76,196 76,568
4 3,359 234,595 456,459 466,979 468,087

For the most part, we can see that adding explicit facts to a particular
specification increases the number of operators in the related Boolean formula.
In some cases, the increase is not great, but the additional explicit fact never
decreases the length of the formula. The size of the formula is largest for the
Graph specifications and smallest for the List specifications, so we would expect
the Graph conformance checks to take the most time and the List conformance
checks to take the least time.

4.2 Test Series

Table 2 summarizes the series of tests performed to determine the running time
of the conformance checking phase. Our intention was to test each series up
to a scope of 40. However, in some cases, we were forced to reduce the size of
the scope, such as when an OutOfMemory occurred even with 256MB, or when
the test ran too long (we imposed a limit of one hour for these tests). Finally,
some series were aborted when the conformance check became unstable; this
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issue is discussed in Section 5.1.2.

Table 2: Test series for evaluating the running time of confor-
mance checking

Test Data Explicit Number
Family Structure

S1 R2 arity(ri)
3

Facts
scope

of Tests

List singly 2 2 2, 2 0 1–40 40
linked 1 1–32 32
list 2 1–31 31

Graph directed 2 2 2, 3 0 2–40 39
acyclic 1 2–40 39
graph 2 2–34 33

3 2–34 23

Tree binary 3 4 2, 2, 2, 2 0 1–40 40
tree 1 1–40 40

2 1–32 32
3 1–32 32
4 1–32 32

Total Number of Tests (Conformance Checks) 413
1 S is the number of signatures which are used in the specification.
2 R is the number of relations (or fields) in the specification.
3 Each relation has an arity, e.g., binary, ternary, etc. The arity(ri) column

contains the arity of all of the relations in the specification.

5 Results

5.1 General Results

Table 3 contains the running times of each phase for three of our test cases.
These times give a general feel of how the fast Embee works in its entirety.
In each case, a data structure was created with 20 nodes. As can be seen
from the table, the conformance checking phase (Phase 3) takes the longest to
complete. Interestingly enough however, even this phase does not take long
when the scope is kept to a reasonable size, i.e., scope ≤ 16. Checking the first
16 breakpoints takes significantly less time than checking the last 4 breakpoints,
regardless of the complexity of the specification.
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Table 3: Running times for each phase and total running time of Embee
Test Case Running Time (m:ss)

Object Number of Phase 3
Model

Scope
Breakpoints

Phase 1 Phase 2
First 16 Last 4

Total

List 20 20 0:07 0:32 0:12 6:39 07:30
Graph 20 19 0:07 1:27 0:35 44:10 46:19
Tree 20 20 0:04 1:20 0:21 6:04 07:49

5.1.1 Phase 3

Figure 1 shows the running times for the conformance checking phase for all of
our test series.

Running Times for List, Graph and Tree Example
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Figure 1: Comparison of conformance check running times for all three specifications,
with differing numbers of facts. For the most part, specifications with no
additional facts require less than a minute of running time. The Graph
specification, with all three of its explicit facts takes the most running time.
The List specification, with 1 or 2 explicit facts, is comparable to the Tree
specification with 3 or 4 facts. Finally, the Tree specification with 1 or 2
facts and the Graph specification with 0, 1 or 2 facts all have comparable
running times.
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General comments results for each test family are summarized below:

list The conformance check of the List specification with no explicit facts
takes well under a minute, regardless of the scope of analysis (up to 40).
Increasing the number of explicit facts drastically increases the running
time.

graph The running times of the conformance check of the Graph specification
with 0, 1 or 2 explicit facts are almost identical, although the addition
of the third and final fact drastically increases the running time. This
specification is the only one with a ternary relation; the higher arity
obviously affects the running time, as even the specification with no
additional explicit facts takes longer than the other two specifications
without explicit facts. The conformance check for 1 and 2 facts be-
comes unstable around scope = 33. The running time with 3 facts was
halted when it surpassed one hour.

tree The conformance check of the Tree specification with no explicit facts
takes well under a minute. Increasing the number of explicit facts
drastically increases the running time. However, the running time for
4 facts is not much greater than that for 3 facts, even though the
specification should be more complex. The conformance check for 2,
3 and 4 facts becomes unstable around scope = 33.

Figure 1 confirms that the running time of the conformance checking phase
depends exponentially on the scope. Also, notice how the running time remains
near zero until the scope reaches approximately 16 and then suddenly becomes
exponential. We suspect that the deterioration in performance is due to the
fact that the Alloy Analyzer has been optimized to deal with small scopes [5].
Note that Embee itself has not been particularly optimized; we were interested
in creating a functional prototype, not necessarily an optimally performing one.

5.1.2 Instability

As mentioned above, several of the test series become unstable around scope =
33. In other words, the simple data structures created in our tests suddenly
become nonconforming at this scope. We attempted to explore this supposed
nonconformance with the Alloy Analyzer; however, we have not been successful
in using the Edit Instance command with such a high scope.
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5.2 Specific Results

The remainder of this section discusses these results in the context of our
primary and secondary research objectives.

5.2.1 Primary Objective

As discussed in Section 3.1, our primary objective was to compare the running
times required by Embee and by the Alloy Analyzer for Embee’s conformance
checking phase. The total running time for a conformance check is divided
between Embee (creating and populating the dynamic mappings and extract-
ing the appropriate Boolean array) and the Alloy Analyzer (interpreting the
specification with the information from the Boolean array).

After the scope reaches 16, the bulk of the running time is required by the
Alloy Analyzer to interpret the propositional formula with the truth assign-
ment. According to our test results, when the scope of the analysis is less than
or equal to 16, the Embee portion of Phase 3 takes between 15 and 90 percent
of the total running time; however, the total running time of the phase remains
less than a minute. However, as the scope increases past 16, the Alloy Ana-
lyzer suddenly accounts for 93 to 99 percent of the phase’s running time. The
running time after this point is significantly longer than for the smaller scopes.

Therefore, we conclude that Embee does in fact require more running time
than the Analyzer to check the conformance up to and including scope = 16.
However, the total running time of this phase is generally very short, making
the division of labour between the two programs insignificant at small scopes.
On the other hand, as the scope passes 16, the Alloy Analyzer suddenly requires
much more time than Embee to check the conformance at a breakpoint. As
the total running time of this phase becomes longer and longer, the fact that
the Analyzer requires more than 90% of the running time becomes much more
significant. Conformance checks at higher scopes are therefore limited by the
speed of the Analyzer, and not by Embee itself.

5.2.2 Secondary Objectives

We also had three secondary objectives, as discussed in Section 3.2:

1. Our first secondary objective was to evaluate the effect of scope on running
time of Phase 3. As can be seen in Figure 1, as scope increases, so does
the time required to perform the conformance check. More importantly,
however, is the fact that the running times of the conformance checks are
negligible up to and including scope = 16. When the scope passes this
number, the running time increases exponentially.
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2. Our next objective was to evaluate the effect of explicit facts on the run-
ning time of Phase 3. The results of our tests, as shown in Figure 1,
demonstrate that the addition of extra explicit facts to a particular spec-
ification occasionally increases the running time required to perform the
conformance check. However, this is not always the case; for instance, the
running times for the Graph specification are the same with 0, 1 and 2
facts. The only conclusion that we can infer from these results is that ad-
ditional explicit facts may or may not increase the required running time.
However, additional explicit facts will not decrease the required running
time of the conformance check.

3. Our final secondary objective was concerned with whether or not simply
counting the number of operators in the Boolean formula representing
the specification was a possible indicator of the amount of running time
required to perform a conformance check. Based on our estimates of the
lengths of the formulas representing our specifications, we expected the
Graph conformance checks to take the longest and the List conformance
checks to take the least amount of time. It is indeed the case that the
Graph specifications do require the most running time for the confor-
mance check; this is thought to be caused by the fact that this is the
only test family with a higher-than-binary relation. However, as can be
seen in Figure 1, the List specifications actually require more time than
the Tree specifications. In other words, simply counting the number of
operations in the Boolean formula is not an accurate measure of how long
the conformance check should take.

5.3 Surprising Results

For the most part, our results are as expected; Embee’s runtime performance
is acceptable for reasonably sized scopes, especially when compared with the
running time required by the Alloy Analyzer during the third phase. However,
two findings were surprising:

1. The first surprise was the fact that Embee’s third phase takes less than
a minute for any conformance check up to a scope of 16. This quick
response occurs regardless of the complexity of the specification; all twelve
of our test series performed this quickly. However, as soon as the scope of
analysis passed 16, the running time of the conformance check increases
dramatically, in some cases exponentially. As alluded to earlier, we believe
that this threshold of 16 is somehow related to how the Alloy Analyzer
is optimized to work in small scopes. We were not surprised that larger
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scopes required significantly more time to analyze than smaller ones, but
we were surprised by such an abrupt change in performance at scope = 16.

2. The second surprise is more disturbing. Most of the test series became
unstable around scope = 33; in other words, the conformance check sud-
denly began to return false-negative results. In addition, the results were
returned relatively quickly, implying that the entire Boolean formula was
not being evaluated by the Analyzer before a false term was found. We
are unsure as to why a conforming data structure with 32 nodes would
suddenly become nonconforming when one more (appropriately placed)
node was added. Obviously, this instability means that Embee should
not be used when the scope of analysis becomes large; the results at such
scopes could not be trusted.

6 Conclusions and Future Work

Based on the running time test discussed in this report, we are satisfied that
the use of Embee to check conformance in certain scopes can be efficient. In
fact, up to and including scope = 16, the conformance checking phase actually
takes very little time. Unfortunately, the fact that many or our test series
became unstable around scope = 33 means that Embee should not be used for
large scopes.

6.1 Future Work

Future work will focus on the surprising results which we discovered. First,
we would like to investigate why the Alloy Analyzer responds so quickly up to
and including scope = 16. Is this threshold based on how the Analyzer has
been optimized? Is it possible to increase this threshold? Second, we would
like to explore the instability demonstrated around scope = 33. How is this
threshold related to the Analyzer? Is this instability a bug in the Analyzer,
or perhaps an unknown error in Embee’s implementation? Has this type of
problem been noticed by other users? Finally, we would like to experiment with
other specifications and implementations to determine if these two thresholds
hold over other test series.

A Alloy Specifications

The following specifications were used for the performance tests. The explicit
facts have been indicated with comments.
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A.1 List

module List

sig Node {

next : option Node

}

sig List {

first : Node

}

//Explicit Fact #1

fact NodeInOneList {

all n : Node | one l : List | n in (l.first).*next

}

//Explicit Fact #2

fact NoCycle {

all n : Node | n ! in n.^next

}

fun Show() {}

run Show for 3

A.2 Graph

module Graph

sig Node {}

{

//Explicit Fact #1

one g : Graph | this in (g.first).*(g.next)

}

sig Graph {

first : Node,

next : Node -> Node

}{

//Explicit Fact #2

//For every pair of nodes in a graph’s next relationship,

//the left hand node (n1) must be in that graph

all n1, n2 : Node | n1 in n2.~next => n1 in first.*next

}
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//Explicit Fact #3

fact NoCycle {

all g : Graph | all n : Node | n ! in n.^(g.next)

}

fun Show(){}

run Show for 3

A.3 Tree

module Tree

sig Key {}

sig Node {

key : Key,

left : option Node,

right : option Node

}

sig Tree {

root : Node

}

//Explicit Fact #1

fact KeysUnique {

all t : Tree | all n1, n2 : nodesInTree(t) |

n1.key = n2.key => n1 = n2

}

//Explicit Fact #2

fact EveryNodeInOneTree {

all n : Node | one t : Tree | n in nodesInTree(t)

}

//Explicit Fact #3

fact NoCycles {

all n : Node | n ! in descendants(n)

}

//Explicit Fact #4

fact OnlyOneParent {

all n : Node | sole (n.~left + n.~right)

}
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fun descendants (n : Node) : set Node {

result = n.^(left + right)

}

fun nodesInTree(t : Tree) : set Node {

result = t.root + descendants(t.root)

}

fun Show(){}

run Show for 3
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