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Abstract

An RLC circuit, certain parameters of which are measured sequen-

tially, that is, one after the other, undergoes signi�cant perturbations

that a�ect its dynamical behavior. By contrast, these perturbations

are usually eliminated when the measurements are performed in par-

allel, that is, when the parameters are measured simultaneously. This

result con�rms the existence of physical systems with the property

that certain operations on them can be performed successfully in par-

allel but not sequentially.
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1 Introduction

Parallel computation is a form of information processing whereby n proces-

sors, n > 1, cooperate to solve a computational problem by working on it

simultaneously. The expectation is that this approach speeds up computa-

tions that would otherwise require an inordinate amount of time if performed

sequentially (that is, using one processor). Over the last twenty �ve years,

considerable progress has been achieved to ful�ll the promise of parallel com-

putation. Results, both in theory and in practice, were obtained to demon-

strate that signi�cant improvements are possible, not only in the speed with

which a solution is obtained, but also in the quality of the solution itself.

In the aforementioned results, the level of improvement achieved through

parallel computation varied over a wide range depending on the problem be-

ing solved, from sublinear, to linear, or even superlinear in the number of

processors used on the parallel computer. Furthermore, those results were

obtained within conventional paradigms (such as, for example, when all the

data required by a computation are available at the outset), as well as uncon-

ventional paradigms (such as, for example, when the data arrive in real time

and the results must be delivered by a certain strict deadline). For surveys

of these results, see [1, 2, 4, 8].

An important characteristic of traditional analyses of parallel computa-

tion is that the conditions governing the computational environment are, in

a fashion, fully determined by the human in charge and the model of compu-

tation used. For example, in a real-time computation, if it is deemed that the

arrival rate of the data is too high, it is possible for the people responsible

for the computation to slow down the arrival rate, or to extend the deadline

by which a solution is to be delivered, or to use a faster computer, and so

on.

A radical departure from this paradigm was taken recently. In [3], the

focus is on computational environments in which a computation can succeed

if and only if it is performed in parallel. In these environments, it is the

laws of nature that prevail, rather than human-imposed computational cir-

cumstances or conditions on the computation. Speci�cally, it is shown that

the principles governing such �elds as physics, chemistry, and biology, are

responsible for causing the inevitable failure of any sequential approach to

solving the problem at hand, while at the same time allowing a parallel ap-

proach to succeed. A typical example of such principles is the uncertainty

involved in measuring several related parameters of a physical system. An-
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other principle expresses the way in which the components of a system in

equilibrium react when subjected to outside stress.

In this paper we exhibit one such environment, namely, dynamical sys-

tems. In general, a system is a collection of elements that interact with

one another. The system is characterized by a number of variables among

which relationships of cause and e�ect hold. In particular, the system re-

ceives a number of inputs and produces a number of outputs based on these

inputs. In a static system, the current values of the outputs depend only

on the instantaneous values of the present inputs. If, on the other hand,

the system has memory such that current outputs are based on present as

well as past inputs, it is said to be a dynamical system. Here, variables are

time-dependent. Excitations and responses vary with time. Moreover, the

derivatives of variables with respect to time at any moment depend on the

values of these variables at that moment [6]. Examples of dynamical sys-

tems include electrical systems, mechanical systems, thermal systems, uid

systems, and so on.

For the purposes of this paper, we have selected a very simple dynam-

ical system in order to convey our point in the clearest possible way. A

resistance-inductance-capacitance (RLC) circuit is used to demonstrate the

thesis advanced in [3]. Speci�cally, we show that an RLC circuit, certain

parameters of which are measured sequentially, that is, one after the other,

undergoes signi�cant perturbations that a�ect its dynamical behavior. By

contrast, these perturbations are usually eliminated when the measurements

are performed in parallel, that is, when the parameters are measured simul-

taneously. This result con�rms the existence of physical systems with the

property that certain operations on them can be performed successfully in

parallel but not sequentially.

2 An RLC Circuit

Consider the circuit in Fig. 1 in which

E is the voltage provided by a source (measured in volts)

I is the current owing in the circuit (measured in amperes)

R is a resistor (o�ering a resistance measured in ohms)

L is an inductor (o�ering an inductance measured in henries)

C is a capacitor (o�ering a capacitance measured in farads)

UC is the voltage across C.
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Figure 1: RLC circuit.

In this RLC circuit, the following relations hold:

L
dI

dt
= E � IR� UC ; C

dUC

dt
= I: (1)

In order to solve equation (1), we need initial conditions, or the values of

I and UC . Suppose that we choose to measure I and UC . However, the act

of measuring these two quantities may induce perturbations on the system

as we now show.

Let us assume that the amperemeter and voltmeter used to measure I

and UC , respectively, have resistances R1 and R2, as shown in Fig. 2.

Figure 2: Measuring I and UC .

The equations describing the system now become
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L
dI

dt
= E � I(R + R1)� UC ; C

dUC

dt
= I � UC

R2

: (2)

In general, it is reasonable to assume that R1 is very small and R2 very

large. Here, we focus on comparing the perturbations a�ecting the system

when sequential and parallel measurement schemes are used.

For convenience, we transform equation (2) into standard homogeneous

(ordinary di�erential equation) form, obtaining:

d

dt

 
x

y

!
=

 
a1 + �a1 a2

a3 a4 + �a4

! 
x

y

!
(3)

where

x = I � I0 ; y = UC � U0 ;

I0 =
U0

R2

; U0 =
ER2

(R +R1 +R2)
;

a1 = �
R

L
; �a1 = �

R1

L
;

a2 = �
1

L
; a3 =

1

C
;

a4 = 0 and �a4 = �
1

R2C
:

In other words, the perturbations are on the diagonal elements of the

parameter matrix

 
a1 + �a1 a2

a3 a4 + �a4

!
:

A general solution of equation (3) can be written as:

 
x

y

!
= c1 ~v1e

�1t + c2 ~v2e
�2t (4)
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where �1 and �2 are the eigenvalues of the parameter matrix, ~v1 and ~v2
are the corresponding eigenvectors, and c1 and c2 are coe�cients which can

be determined by the initial values of x and y. Equation (4) shows that the

dynamical behavior of the system described by equation (3) is determined by

the eigenvalues of the parameter matrix. Indeed, let the real and imaginary

parts of eigenvalue �i be denoted by Re(�i) and Im(�i), respectively, for

i = 1; 2. The quantities Re(�1) and Re(�2) determine whether or not the

system is experiencing damping. Similarly, Im(�1) and Im(�2) represent the

frequencies of the system oscillations. For example, if both Re(�1) and Re(�2)

are less than zero, and one of Im(�1) and Im(�2) is not equal to zero, the

system is in oscillation with damping.

The eigenvalues �1 and �2 are obtained from the parameter matrix in

equation (3) as:

�1;2 =
1

2
(a1 + �a1 + �a4 �

q
(a1 + �a1 � �a4)2 + 4a2a3): (5)

When a2
1
+4a2a3 6= 0, j�a1j � ja

2

1
+4a2a3

2a1
j, and j�a4j � ja

2

1
+4a2a3

2a1
j, equation (5)

can be expanded into a Taylor series up to the �rst order of j�a1j and j�a4j.
Thus,

�1;2 ' �1;2j�a1=0;�a4=0 +
@�1;2

@�a1
j�a1=0 �a1 +

@�1;2

@�a4
j�a4=0 �a4

= �
(0)

1;2 + �
(1)

1;2 + �
(2)

1;2

where

�
(0)

1;2 =
1

2

�
a1 �

q
a21 + 4a2a3

�
;

�
(1)

1;2 =
1

2

0
@1� a1q

a2
1
+ 4a2a3

1
A �a1;

and

�
(2)

1;2 =
1

2

0
@1� a1q

a2
1
+ 4a2a3

1
A �a4:

If I and UC are measured sequentially, that is, one after the other, the

perturbations on the eigenvalues caused by the measurements are �
(1)

1;2 and
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�
(2)

1;2, respectively. On the other hand, if I and UC are measured in parallel,

that is, at the same time, the perturbation is

�
(1)

1;2 + �
(2)

1;2 =
1

2
(�a1 + �a4) +

1

2

a1q
a2
1
+ 4a2a3

(�a1 � �a4): (6)

Now recall that for the RLC circuit

a1 = �
R

L
;

a2
1
+ 4a2a3 =

R2

L2
� 4

LC
;

and

�a1 � �a4 = �
R1

L
+

1

R2C
:

We now analyze the perturbations on the eigenvalues in the following cases:

Case 1 : a2
1
+ 4a2a3 > 0. This implies that

a1q
a2
1
+ 4a2a3

< �1:

Therefore, the term a1p
a2
1
+4a2a3

plays a more important role than the

constant term 1 in �
(1)

1;2 and �
(2)

1;2, especially when it is much smaller

than �1. In this case, measuring one of I or UC before the other may

cause big perturbations on �1;2. However, the perturbations may be

decreased if a simultaneous measurement scheme is adopted. This is

because

j�a1 � �a4j = j �
R1

L
+

1

R2C
j < jR1

L
j+ j 1

R2C
j = j�a1j+ j�a4j:

In particular, if
R1

L
=

1

R2C
;

the perturbation �
(1)

1;2 + �
(2)

1;2 is such that

j�(1)
1;2 + �

(2)

1;2j =
R1

L
;

which is much smaller than j�(1)
1;2j and j�

(2)

1;2j.
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Case 2 : a2
1
+ 4a2a3 < 0. Here, the term

a1q
a21 + 4a2a3

is imaginary. In this case, this term a�ects the frequency of the system

oscillations. In particular, when �a2
1
�4a2a3 ! 0 and a1 keeps limited,

the frequency of the original system, namely,

q
�(a2

1
+ 4a2a3)

is low but the perturbations on the frequency from a sequential mea-

surement could be big, namely,

a1q
�(a2

1
+ 4a2a3)

�a1; or
a1q

�(a2
1
+ 4a2a3)

�a4:

A simultaneous measurement scheme, however, may reduce the pertur-

bations, especially when �a1 � �a4 is very small.

Finally, when a2
1
+ 4a2a3 = 0, we have from equation (5)

�1;2 '
1

2

�
a1 �

q
2a1(�a1 � �a4)

�
: (7)

Since a1, �a1, and �a4 are all negative, the perturbation �a1 a�ects the

damping, and �a4 the frequency of the oscillation. Simultaneous measure-

ment, however, may decrease both perturbations, depending on the value of

j�a1 � �a4j. When �a1 � �a4 = 0, both perturbations disappear.

From the above analysis on a simple RLC circuit, it is possible to conclude

that in some situations a simultaneous measurement approach can be more

advantageous than a sequential one in terms of suppressing the perturbations

on a system's dynamical behavior.

As demonstrated by the foregoing analysis, we are interested here in the

short-term dynamical behavior of the RLC circuit. Such behavior is impor-

tant in the context of real-time control applications, where the parameters of

a system need to be monitored on a permanent basis and measured at regular

intervals [7]. By contrast, it is clear that the long-term behavior of the RLC

circuit (a linear dynamical system) is very simple: The circuit settles into a

stable equilibrium state. Asymptotically, I tends to 0 and UC tends to E.
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3 Conclusion

A hypothetical physical system is described in [3] with the property that cer-

tain operations on its parameters can only succeed if performed in parallel.

Instances of these operations include measuring or setting a number of phys-

ical attributes of the system, such as temperature, pressure, voltage, and so

on. Success or failure of these operations is determined by the laws of nature

governing the behavior of the system. Examples of these laws are Heisen-

berg's uncertainty principle in quantum mechanics, which puts a limit on our

ability to measure with a high degree of accuracy pairs of `complementary'

variables, Le Châtelier's principle of chemical systems in equilibrium, and

the homeostatic principle in biology which is concerned with the behavior

displayed by an organism under stress.

In this paper we presented an example of such a system. A simple RLC

circuit is described whose dynamical behavior is signi�cantly a�ected by se-

quential measurements of its parameters. A parallel measurement approach,

on the other hand, greatly mitigates these perturbations and often eliminates

them altogether.

As mentioned at the end of Section 2, the RLC circuit under considera-

tion in this paper is a linear dynamical system [5]. As such, the perturbations

it experiences from measurement of its parameters are, in general, relatively

small. It remains to see whether dynamical systems that are nonlinear su�er

more dramatically from sequential measurements of their attributes. Fur-

thermore, the result of this paper may be generalized in the sense of allowing

more than two measurements to be performed in parallel.
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