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Abstract. We show how the state space exploration tool VeriSoft can
be used to analyze sequential and parallel C/C++ programs with re-
spect to their transition traces. The analysis determines whether or not
a given program can behave as prescribed by some finite transition trace.
VeriSoft’s exploration is always bounded by a user-specified, finite depth
parameter. Therefore, our analysis is guaranteed to terminate, but does
not always provide a definite answer. VeriSoft’s optimization and visual-
ization techniques make the analysis relatively efficient and effective.

1 Introduction

The use of traditional formal methods typically requires a lot of training and
resources. Consequently, there has recently been a lot of interest in making formal
methods more light-weight [12]. Compared to traditional formal methods, light-
weight formal methods

— give more immediate feedback which allows for a more gradual learning curve
and more immediate results,

— offer decidability and efficiency at the expense of expressiveness, and

— are complemented by fully automatic tools which hide the complexities of
the method from the novice user.

Examples of light-weight formal methods include systematic state space explo-
ration through model checking [3], object modeling and analysis with Alloy [10,
11], and systematic program testing through VeriSoft [8]. The overall goal of
these and other light-weight approaches is to allow even novice users more ef-
fective and efficient use of formal techniques and thus pave the way for a more
general adoption. The continued industrial success of model checking, for in-
stance, lends a lot credence to this proposal.

Transition traces form an intuitive model of concurrent computation with
many pleasant theoretical properties [16,6,2]. The use of the transition trace
semantics is, however, not light-weight in the above sense. The trace set of a
program may be hard to compute or difficult to write down concisely. Moreover,
there is no tool support. In this paper, we show how the VeriSoft tool can be used
to analyze parallel programs with respect to their transition traces. Our long-
term goal is a more light-weight, compositional semantic analysis of concurrent
programs.



We proceed by briefly reviewing the transition trace semantics in the next
section. Section 3 describes the VeriSoft tool, and Section 4 shows how it can be
used to automate aspects of the semantics. Section 5 presents a few examples
that illustrate the use of our method. Section 6 concludes and outlines further
work.

2 Transition Traces

Any compositional model of concurrent computation needs to take environment
behaviour into account. Transition traces (sometimes also called potential or
partial computations or extended sequences) have proven very useful for the defi-
nition of compositional models of fair, shared-variable and message-passing con-
currency [16, 6, 2]. The transition trace semantics 7 is based on finite and infinite
traces of the form

(50,80)(51,87) ---(8i,85) ...

where each s; and s} is a state, that is, a mapping from program variables to
values. A trace represents a possible “interactive” computation of a command in
which state changes made by the command (from s; to s}) are interleaved with
state changes made by its environment (from s} to s;11). A trace with s} = s;41
for all ¢ > 0 is called interference-free or execution.

The meaning 7T [D] of a program D is given by its set of transition traces
closed under two conditions called stuttering and mumbling. These closure con-
ditions correspond to, respectively, the reflexive and transitive closure of a stan-
dard “small-step” operational semantics. The semantics models, for instance,
sequential composition as trace concatenation, iteration as repeated concatena-
tion, and parallel composition through a fair merge of traces. A hiding operation
ensures that local variables are inaccessible outside their scope. In this paper,
assignments and expression evaluation will be treated atomically. However, the
semantics can easily be extended to handle different levels of granularity (atom-
icity) [2].

Consider, for instance, the program

Di = newi=11in
while i < 3 do
=z + 1;
t:=1+ 1
od
end

The transition trace set T[D;1] of D; includes

{(so, [so|z = so(z) + 1])(s1,[s1]z = s1(z) + 1]) | 80,81 € Z'Dl}

and

{(80, [So'.’L’ = S()(.’L') + 2]) | So € EDl}



where Xp, denotes the set of all states of D;. So,

(r=0Ai=0,c=1Ai=0)(z=5Ai=3,z=6Ai=23)
(z=0Ai=0,2=2Ai=0)

are two traces of D; where x = v; A i = vy stands for the state s in which =
has value v; and ¢ has value vs, that is, s(z) = v; and s(i) = v2. The first trace
represents an interactive computation of D; in which the environment interferes
between the first and second increment of = and changes the values of z and 7
to 5 and 3, respectively. In the second trace, D; executes without interruption.
However, the following four traces

(z=0Ni=0,z=1Ai=0)(z=5Ai=0,z=6Ai=0)(z=6Ai=0,z=TAi=0)
(z=0Ai=1,z=3Ai=1)
(z=0Ai=1l,z=0Ai=1)
(z=0Ai=0,z2=2Ai=2)

are not traces of D;. Note that the last trace is impossible, because it changes
the value of the local variable .

The transition trace semantics is fully abstract with respect to observational
equivalence [2]. Moreover, Brookes has also shown how it can be extended to
handle procedures by following Reynolds and Oles’ possible worlds model [1]. It
can be used to validate “laws of parallel programming” like, for instance, the
associativity of parallel composition, that is, we have

TP DT ") = TID || [P" || D"]]

for all programs D, D', and D".

Moreover, the semantics supports compositional reasoning about programs
and program transformations. Consider, for instance, program D; above and
programs Ds and D3 below.

Dy = newi=1,t==zin _
while i < 3 do Ds = w=z+1;
fimt + 1 r=z+1
T =t
=1+ 1
od
end

While D; and D> have the same executions, they do not have the same transition
traces. A trace distinguishing D; and D, will be given in Section 5. However,
programs D; and D3 have the same transition traces (and thus also the same
executions). Consequently, an occurrence of D; in some program can, in general,
not be replaced by D»2. However, an occurrence of D; in some program D can
always be replaced by D3 without changing the behaviour of D.



3 VeriSoft

VeriSoft is a systematic testing tool developed at Bell Labs [8,9]. It takes as
input C/C++ programs in which concurrent threads communicate through a
selection of so-called communication objects that include semaphores, channels,
or shared memory. A thread makes an update to such a communication object
visible to the other threads by executing a so-called wvisible action. VeriSoft sys-
tematically enumerates all possible sequences of visible actions a program can
perform. The maximal length of the paths is limited by a user-defined parameter
called depth. During the exploration, VeriSoft checks for livelocks (a process has
no enabled transition during a sequence of more than a user-specified number of
successive states), divergences (a process does not attempt to execute a visible
action for more than a user-specified amount of time), deadlocks, and assertion
violations. Using the statement VS_assert(b), the user can check whether the
boolean expression b is true at a certain location along every execution of the
program. Whenever VeriSoft finds the argument of V.S_assert to be false, it stops
and reports an assertion violation error.

VeriSoft works directly on programs written in C/C++. However, only if the
program meets a few requirements will VeriSoft be able to guarantee the com-
plete coverage of the state space (up to the specified depth). First, the program
must not exhibit nested parallelism, that is, all threads must be created before
the initial state is reached. For threads that are created later, VeriSoft’s state
space exploration may not be exhaustive leading to possibly spurious analysis
results. Second, threads need to communicate via the VeriSoft communication
objects. If an update to such a communication object is supposed to be visible
to the parallel environment, the corresponding visible action needs to be used.
Consider, for instance, the following two programs using the shared variable z.
In VeriSoft, an update to shared variable z is exported, that is, made visible to
the environment, by prefixing it with the visible action VS_synchro_write(“c”).

z:=0;
while true do
VS_synchro_write_file(“z”);

z:=0;
while true do
VS_synchro_write_file(“z”);

pimp 4 1 =z +1;
- ’ VS_synchro_write_file(“z”);
=z +1
od =z +1
od

After the initialization, the environment of both programs will find = to be
monotonically increasing. The environment of the left program, however, will
never be able to find z to be odd, while the environment of the right program
is able to access z when it is odd. Note that the visible actions thus determine
the granularity of the parallel execution.

Suppose program D meets the two requirements above and D is analyzed
with depth d. Then, a successful VeriSoft analysis of D guarantees that the prefix
of length d of every execution of D is free of livelocks, divergences, deadlocks,
and assertion violations.



VeriSoft keeps the state explosion problem in check by safely pruning the
state space. More precisely, it looks for actions that are independent. Consider,
for instance, two threads that update a disjoint set of shared variables.

z:=0| y:=1

Although the program has two different executions, only one of them needs
to be considered, because the two assignments are independent. The order in
which they are being performed does not change the behaviour of the rest of
the program. This optimization is typically called partial order reduction and is
described in, for instance [7].

VeriSoft facilitates the implementation of test harnesses by supporting non-
determinism. The statement VS_toss(n) non-deterministically returns an integer
between 0 and n inclusive.

VeriSoft allows an entire subtree of the state space to be pruned using
VS_abort(b) where bis a boolean expression. The execution of VS_abort(b) causes
b to be evaluated. If b is false, none of the successors of the current state is ex-
plored. The use of this statement is similar to the use of V.S_assert(b) assertion,
except that no error is reported. It can be used to prune parts of the state space
that the user considers uninteresting.

Finally, a graphical user interface allows paths to be displayed and states to
be examined. The tree of all possible paths of the program is shown and the
selection of a node in the tree runs the program up to that point and the current
values of the variables can be examined. In case of an assertion violation, the path
leading to the violating state is displayed. Moreover, the user can steer program
execution by stepping through each of the threads, controlling the interleaved
execution and determining the result of VS_toss operations.

4 Using VeriSoft for transition trace analysis

We want to use VeriSoft to determine whether or not some program D (in some
suitably chosen environment) can behave as prescribed by some finite transition
trace

t = (30336)(31a311) T (Snasiz)'

More precisely, we want to see whether ¢ is the prefix of a transition trace of
D. We assume that the states in ¢ mention exactly the shared variables in D
and that D is written in C/C++, uses the VeriSoft communication objects to
communicate with its environment and contains neither nested parallelism nor
VS_assert statements. To check whether or not ¢ is the prefix of a trace of D, we
use a C/C++ program S(D,t) that declares the shared variables used in D, sets
the initial state to sg, and then forks two processes. The first process executes
D while the other serves as the environment. The purpose of the environment is
to monitor all state changes from s; to s; by the program and to carry out the
changes from s} to s;+1. If the state s created by the program is not equal to



the corresponding state in the trace, the environment will abort the execution
that led to s}. Otherwise, the environment changes the current state to s;+1 and
executes a visible operation to allow for D to interfere and create sj,,. This
process continues until the entire trace has been matched, D terminates, or the
depth of the search is reached. If the entire trace has been matched, we use
an assertion violation to signal success. The pseudo code for S(D,t) is given in
Figure 1.

S(D,t) = declare all shared variables in D;
1:=0;
initialize state to s;;
(D1 BE®)]

where E(t) = while true do
ezport current state to allow for D to interfere;
if current state # s; then
VS_abort(false); // abort, process has not created desired state
else // process has created desired state
i:=1+1;
if > n then
VS_assert(false); // whole trace matched, done
else
change state to s;;
od

and t = (s0,50)(51,81)---(5n,80)

Fig. 1. Pseudo code for transition trace analysis of program D using VeriSoft

The input-output relation of the analysis of S(D, t) with VeriSoft is as follows.
Suppose program D does not contain nested parallelism or VS_assert statements
and that the level of granularity of D coincides with the level of granularity of 7.
Let ¢ be a finite trace over the shared variables in D. Finally, suppose VeriSoft
is run on S(D,t) with depth d. Three outcomes are possible:

1. VeriSoft reports an assertion violation. In this case, D can behave as pre-
scribed by t, that is, ¢ is the prefix of at least one trace in T[D].

2. VeriSoft completes the exploration of all paths of S(D,t) up to depth d
without reporting an assertion violation and D has terminated in the last
state of every path. In this case, ¢ is not the prefix of any trace in 7[D].

3. VeriSoft completes the exploration of all paths of S(D,t) up to depth d
without reporting an assertion violation and D has not terminated in the
last state of at least one path. In this case, ¢ may or may not be the prefix
of a trace in T[D].



Cases 1 and 2 provide definite answers. Case 3, however, does not. In that case,
an increased value of d may allow D to be run to completion and the analysis may
terminate in Case 1 or Case 2. However, if D has non-terminating executions,
no value of d may be large enough. In that case, the user can at least inspect
the state space generated by VeriSoft and thus attempt to get a sense whether
or not t is possible for D.

5 Examples

We sketch a few of the analyses we have performed using VeriSoft.

5.1 Interference
Consider the traces

t1 = (z=0,z=1)(z=0,z=1)
to = (z=0,z=2)

Programs D; and D3 have t; whereas D> does not. All three programs have
to. Trace to demonstrates that a program state change (s;,s;) can have been
brought about by a sequence of multiple visible actions.

5.2 Non-atomic assignment

Although we consider assignments to be atomic in this paper, the effects of non-
atomic assignments can be studied through the use of auxiliary local variables.
Program D, is like D¢ except that the the assignment z:=z+1 in Dy is replaced
by two assignments ¢:=x + 1 ; z:=t where ¢ is a local variable.

Dy = newi=1,t=01in
while i < 3 do
ti=z+ 1;
T :=t;
t:=t+1
od
end

Note that the environment of D4 can change the value of z between the com-
pletion of the evaluation of 4+ 1 in t:=x + 1 and the actual update of z in x:=t.
A trace that illustrates the difference between D, and Dy is

which is a trace of Dy, but not of D;.



5.3 Executions

Since executions are special cases of transition traces, our approach can also be
used to check if a program has some execution ¢, that is, whether or not it is
capable of running through the states in ¢ when executed without environment
interference. Consider, for example, program

D5 = [D4||D4]
We have used our analysis to ascertain that D5 has execution
ts = (2=0,z=0)(z=0,z=1)(z=1lLz=2)(z=2,z2=1)(z=1,2=2)
that is, although z is 0 initially and both threads increment x twice, x may be

equal to 2 at termination and the value of z may actually decrease intermittently.

5.4 N-process tie-breaker algorithm

For a larger case study, we implemented the n-process tie-breaker algorithm [17]
in C/C++ using shared variables. The code is given in Figure 2. The entry

TIE(n) = new in[0.n —1]=0,last[ll.n—1]=—1in [Do || D1 ||...|| Dn-1]

where for 0 <i<n-—-1

D; = while true do

for[:=1ton—1do \
nfi] =1
last[l]:=1;
for j:=1tonst j#1ido entry

while in[j] > I Alast]l] = i do skip protocol

od

od; )

criy  // critical region, always terminating

in[i]:=0; exit protocol

ne;  // non-critical region

od

and where the values of in or last are not changed in cr; or nc;

Fig. 2. Pseudo code for the n-process tie-breaker algorithm

protocol in each process consists of a loop that iterates through n — 1 levels. A
process will only be allowed to enter the critical region, if it has completed all
n — 1 levels. If process D; is on level 1 <1 < mn —2, that is, in[i] =, it is allowed
to advance to level [ + 1, if



— either it is the highest of all processes, that is, in[j] < in[i] for all 0 < j <
n — 1 with j # 4,
— or, it is not the last process to have entered level [, that is, last[l] # i.
The synchronization conditions in the entry protocol are strong enough to guar-
antee mutual exclusion and weak enough to ensure deadlock freedom. Eventual
entry is guaranteed because the condition that a process ¢ is waiting on will
always eventually become true and then remain true until ¢ “moves on” to the
next level.
We have used VeriSoft to analyze the transition traces of TIE(3), the 3-
process tie-breaker algorithm. Consider the traces t5 and tg in Figure 3. Our

ts |in[0] in[1] in[2] last[1] last[2]

sof 0 0 0 -1 -1 te [in[0] in[1] in[2] last[1] last[2]
510 0 0 -1 sl 0 0 0 -1 -1
s1| 1 0 0 0 -1 so| 1 0 0 0 -1
sh| 2 0 0 0 0 s1| 1 1 0 1 -1
S2| 2 0 0 0 0 si| 1 1 0 1 -1
sh| 0 0 0 0 0 s2| 1 1 1 2 -1
s3f 0 0 0O 0 0 shl 1 1 1 2 -1
shl 1 0 0 0 0 s3| 1 2 1 2 1
sal 10 0 0 0 sil 202 1 2 0
syl 2 0 0 0 0 s4| 2 2 1 2 0
ss] 20 0 0 0 syl 0 2 1 2 0
sl 0 0 0 0 0

Fig. 3. Traces t5 and t¢

analysis showed that process Do can do ts5, that is, the process can enter its
critical region repeatedly, if neither D; nor Dy ever begin their entry protocol.
The trace was found at depth 38 after about two minutes and 12 seconds on a
SUN Sparc Ultra-250. In trace tg, process Dy enters level 1, is first joined by Dy
and then by D». Then, D; proceeds to level 2 and Dy does, too. The transition
(s4,8}) has Dy enter and leave its critical region, effectively overtaking D;. This
last transition is impossible for Dy, because Dy cannot enter its critical region in
state s4. This is because in s4 process Dy is not the highest process and also the
last process to have entered level 2, i.e., we have last[2] = 0 in s4. Using VeriSoft,
the exhaustive exploration of the state space to depth 100 took 2 minutes 47
seconds. None of the traces of Dy examined during that search was found to
have t¢ as a prefix.

6 Conclusion, future work and related work

We have shown how the VeriSoft tool can be used to analyze C/C++ programs
with respect to their transition traces or, as a special case, their executions.



We have shown how programs can be analyzed at different levels of granularity
(atomicity) through appropriate use of auxiliary local variables and VeriSoft’s
visible actions. The analysis is sound in the sense that if VeriSoft says that
D can exhibit ¢, then ¢ is indeed the prefix of a transition trace of D. The
analysis is incomplete in the sense that it does not always produce a definite
answer. In that case, a repeated analysis with a larger depth may provide an
answer. The complexity of the analysis grows exponentially with the number
of parallel processes and the search depth. However, due to VeriSoft’s partial
order reduction, the complexity may be substantially better in many cases. The
analysis always produces a state space which can be animated and explored
using VeriSoft. In our examples, threads communicate through shared memory.
Since VeriSoft also supports semaphores and channels, our technique can also
be applied to programs that use these means of communication.

6.1 Related work

There is a lot of loosely related work on, for instance, tool support for process
algebraic models of concurrency [15,4,13], run-time verification and monitoring
of software [14] and software model checking [5]. However, we are not aware of
any tool support for transition traces.

6.2 Future work

An obvious avenue for future work is to extend the approach to allow for the
direct comparison of the trace sets of two different programs. In other words,
given two programs D; and Ds the analysis would provide information about
whether or not the traces of D; are included in the traces of Ds.

Another possible application of VeriSoft is the partial automation of com-
positional proof systems for parallel programs using the assume/guarantee (also
called rely/guarantee) paradigm. For instance, Stirling uses assume/guarantee
specifications of the form

[P,T] D [Q,4]

where P and () are predicates and I" and A are sets of predicates [18]. The above
specification expresses that if program D is run from an initial state satisfying
P and in an environment that preserves all predicates in I then every final
state of D will satisfy @) and every transition of D will leave all predicates in A
unchanged. This kind of specification allows the formulation of a compositional
proof system for parallel programs. It would be interesting to see to what extend
VeriSoft could be used to automate this kind of assume/guarantee reasoning.
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