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Abstract

It is proved that the inverse homomorphic image of every language
generated by a conjunctive grammar can be generated by a conjunctive
grammar as well, and, given an arbitrary grammar G over an alphabet
Γ and a homomorphism h : Σ∗ → Γ∗, a grammar for the language
h−1(L(G)) ⊆ Σ∗ can be effectively constructed. Together with the
known results on conjunctive grammars, this implies that the language
family they generate is a pre-AFL.

Résumé

On montre que l’image homomorphic inverse de chaque langage
produite par une grammaire conjonctive peut être aussi bien produite
par une grammaire conjonctive, et, donné une grammaire arbitraire
G sur d’un alphabet Γ et un homomorphisme h : Σ∗ → Γ∗, une
grammaire pour le langage h−1(L(G)) ⊆ Σ∗ peut être efficacement
construit. Avec les résultats connus sur les grammaires conjonctives,
ceci implique que la famille de langages qu’elles produisent est une
pre-AFL.
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1 Introduction

Conjunctive grammars [2] generalize context-free grammars by allowing
the use of an explicit intersection operation in its rules. Besides being a con-
venient descriptive device, this additional operation gives a certain increase
in the generative power of the model, so that every finite intersection of
context-free languages and even certain languages that are known to be not
representable as such intersection can be described with conjunctive gram-
mars.

On the other hand, the complexity of string recognition [2], as well as
of the general membership problem [4], is the same as in the context-free
case (O(n3) and P-complete respectively), the membership of a string in a
language can also be represented in the form of a tree [2] (in this case, with
shared leaves), and most practically used context-free parsing algorithms
have more general analogs applicable to conjunctive grammars [3, 4, 5]. This
confirms the value of the model and gives motivation for researching its
properties.

However, the theoretical properties of this family of languages are yet to
be studied: even some of the basic closure properties of the family are still
not known. It is obviously closed under union, intersection, concatenation
and star, and is easy to prove not to be closed under homomorphism and
quotient. The closure of the family under complement, ε-free homomorphism
and inverse homomorphism so far remains an open problem.

Concerning the closure under inverse homomorphism, this property is
possessed by all the classic language families in the Chomsky hierarchy [6] ,
and is required by all types of abstract families of languages, from trio and
pre-AFL to full AFL [1]. In this paper we positively solve the problem of the
closure of conjunctive languages under inverse homomorphism, describing an
algorithmic method to construct a grammar for the inverse homomorphic
image of a given conjunctive language.

Section 2 gives the definition of conjunctive grammars and describes some
of their basic properties. One possible method of constructing a conjunctive
grammar for inverse homomorphic image of a given language is explained
in Section 3; this method is easy in terms of the computational complexity
of construction and easy to explain as well. In Section 4 the construction
described in Section 3 is illustrated on an example. Section 5 contains a
formal proof of this construction.

An alternative construction of a grammar G′, such that L(G′) = h−1(G),
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for any given G and h is given in Section 6. This construction is computation-
ally harder (it involves solving P-complete problems), but it yields grammars
of smaller size. The correctness of this construction is obtained as a corollary
of the correctness of the first method.

2 Overview of conjunctive grammars

Definition 1. A conjunctive grammar is a quadruple G = (Σ, N, P, S),
where Σ and N are disjoint finite nonempty sets of terminal and nonter-
minal symbols; P is a finite set of grammar rules of the form

A → α1& . . . &αn (A ∈ N, n > 1, for all i αi ∈ (Σ ∪N)∗), (1)

where the strings αi are distinct, and their order is considered insignificant;
S ∈ N is a nonterminal designated as the start symbol.

Three additional special symbols will be used: ’(’, ’&’ and ’)’; it is assumed
that none of them is in Σ ∪ V .

For each rule of the form (1) and for each i (1 6 i 6 n), A → αi is called
a conjunct. Let conjuncts(P ) denote the set of all conjuncts.

A conjunctive grammar generates strings by deriving them from the start
symbol, generally in the same way as the context-free grammars do. Inter-
mediate strings used in course of a derivation are actually formulae under
concatenation and conjunction:

Definition 2. Let G = (Σ, N, P, S) be a conjunctive grammar. The set of
conjunctive formulae F is defined inductively:

• The empty string ε is a conjunctive formula.

• Any symbol from Σ ∪N is a formula.

• If A and B are nonempty formulae, then AB is a formula.

• If A1, . . . ,An (n > 1) are formulae, then (A1& . . . &An) is a formula.

Definition 3. Let G = (Σ, N, P, S) be a conjunctive grammar. Define
G

=⇒ ,
the relation of one-step derivability on the set of conjunctive formulae.
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1. Any nonterminal in any formula may be rewritten with the body of any
rule for that nonterminal enclosed in parentheses. Formally, for any
s′, s′′ ∈ (Σ ∪ N ∪ {’(’, ’&’, ’)’})∗ and A ∈ N , such that s′As′′ is a
formula, and for all A → α1& . . . &αn ∈ P ,

s′As′′ G
=⇒ s′(α1& . . . &αn)s

′′ (2)

2. If a formula contains a subformula of the form of a conjunction of one
or more identical terminal strings enclosed in parentheses, then these
multiple copies of the string can be glued into one by rewriting the sub-
formula with the same terminal string without parentheses. Formally,
for any s′, s′′ ∈ (Σ ∪ N ∪ {’(’, ’&’, ’)’})∗, n > 1 and w ∈ Σ∗, such
that s′(w& . . . &w︸ ︷︷ ︸

n

)s′′ is a formula,

s′(w& . . . &w︸ ︷︷ ︸
n

)s′′
G

=⇒ s′ws′′ (3)

Let
G

=⇒∗ denote the reflexive and transitive closure of
G

=⇒ .

Definition 4. Let G = (Σ, N, P, S) be a conjunctive grammar. The language
of a formula is the set of all terminal strings derivable from the formula:

LG(A) = {w ∈ Σ∗ | A G
=⇒∗ w}. The language generated by the grammar is

the language generated by its start symbol: L(G) = LG(S).

The semantics of conjunctive grammars is well characterized by the fol-
lowing equalities [2]:

Theorem 1. Let G = (Σ, N, P, S) be a conjunctive grammar. Let
A1, . . . ,An,B be formulae, let A ∈ N , let a ∈ Σ. Then,

LG(ε) = {ε} (4a)

LG(a) = {a} (4b)

LG(A) =
⋃

A→α1&...&αm∈P

LG((α1& . . . &αm)) (4c)

LG(AB) = LG(A) · LG(B) (4d)

LG((A1& . . . &An)) =
n⋂

i=1

LG(Ai) (4e)

4



The representation of a context-free derivation in a form of a tree is
inherited by conjunctive grammars. Every conjunctive derivation

A =⇒ . . . =⇒ B, (5)

where A ∈ N and B is an arbitrary formula, can be represented in the form
of a tree with shared leaves. The leaves of the tree are labeled with symbols
from Σ∪N ∪{ε}. Nonepsilon leaves correspond to terminal and nonterminal
symbols from A, and a leaf can have in-degree of more than one only if it
is labeled with a terminal symbol. Internal vertices of the tree are labeled
with the rules used in the derivation. For each vertex, all outgoing arcs are
considered ordered.

B

B→β1&...&βm

β1 u
...

u
...

...

...
u

...

(ii) (iii)

...

...

βm

...

→→ →→

A

(i)

Figure 1: Construction of a derivation tree.

The derivation tree corresponding to a derivation is defined inductively
on the length of derivation:

• The tree corresponding to a 0-step derivation A =⇒∗ A is a single node
labeled with A (see Figure 1(i)).

• The tree corresponding to an (n + 1)-step derivation of the form

A =⇒ . . . =⇒ s1Bs2 =⇒ s1(β1& . . . &βm)s2 (6)

is made from the tree corresponding to the first n steps of the deriva-
tion (6) by relabelling the leaf corresponding to B with a rule B →
β1& . . . &βm and linking it to the new leaves corresponding to the sym-
bols in the rule, as in Figure 1(ii).

If the rule contains an empty conjunct, then a single ε leaf is created.

5



• The tree corresponding to an (n + 1)-step derivation

A =⇒ . . . =⇒ s1(u& . . . &u)s2 =⇒ s1us2 (7)

is made from the tree corresponding to the first n steps of (7) by identi-
fying for every i (1 6 i 6 |u|) the leaves corresponding to i-th characters
of all words u being glued.

This case is illustrated in Figure 1(iii).

For every language L ⊆ Σ∗, let substrings(L) denote the set of proper
nonempty substrings of the strings from L, let prefixes(L) denote the set of
proper prefixes of the strings from L, and let suffixes(L) denote the set of
proper suffixes of the strings from L:

substrings(L) = {w | w ∈ Σ+, uwv ∈ L for some u, v ∈ Σ∗, |uv| > 1}, (8a)

prefixes(L) = {u | u ∈ Σ∗, uv ∈ L for some v ∈ Σ+}, (8b)

suffixes(L) = {v | v ∈ Σ∗, uv ∈ L for some u ∈ Σ+} (8c)

In the following we shall use this notation only for finite languages. For
instance, if L = {ab, abb, abbb}, then substrings(L) = {a, b, ab, bb, abb, bbb},
prefixes(L) = {ε, a, ab, abb} and suffixes(L) = {ε, b, bb, bbb}.

3 The construction

In this section we describe and explain one possible way to construct a
conjunctive grammar for the inverse homomorphic image of a language de-
noted by a conjunctive grammar, given the latter conjunctive grammar and
the homomorphism. This construction results in a constant times blowup of
the number of nonterminals (where the constant depends on the homomor-
phism alone) in the grammar, and can be performed in deterministic loga-
rithmic space, which allows to use it in complexity-theoretic proofs. Later,
in Section 6, this construction will be modified to create less nonterminals,
but that other construction will be computationally harder and not easily
explainable without referring to the more verbose construction that will now
be presented.

Let h : Σ∗ → Γ∗ be an arbitrary homomorphism and let G = (Γ, N, P, S)
be a conjunctive grammar in the binary normal form. Our goal is to construct
a conjunctive grammar G′ = (Σ, N ′, P ′, S ′), such that L(G′) = h−1(L(G)).
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Let us partition the alphabet Σ into two disjoint classes Σ0 and Σ1, such
that

Σ0 = {a | a ∈ Σ, h(a) = ε}, (9a)

Σ1 = {a | a ∈ Σ, h(a) 6= ε}, (9b)

and Σ = Σ0 ∪ Σ1.
Define

images(h) = {h(a) | a ∈ Σ} ⊆ Γ∗ (10)

Construct the grammar G′ = (Σ, N ′, P ′, S ′), in which the set of nonter-
minals contains so-called “short” and “long” nonterminals.

N ′ = N ′
s ∪N ′

l (11a)

N ′
s = N × substrings(images(h)) (11b)

N ′
l = suffixes(images(h))×N × prefixes(images(h)) (11c)

A

(x, A, y)

w

h(w)x y

A

(A, x)

ε

x

(a) (b)

Figure 2: Two types of nonterminals: (a) “short” and (b) “long”.

The goal of the construction is as follows:

• Any “short” nonterminal (A, x) ∈ N ′
s should generate the string ε ac-

cording to the grammar G′ if and only if the nonterminal A ∈ N gen-
erates the string x according to the grammar G. Short nonterminals
should not derive any other strings.
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• Any “long” nonterminal (x,A, y) ∈ N ′
l should generate some string

w ∈ Σ∗ according to the grammar G′ if and only if the nonterminal
A ∈ N generates the string x · h(w) · y according to the grammar G.

The first and the third component of a “long” nonterminal will be called
its left margin and right margin respecively.

These two types of nonterminals are illustrated in Figure 2, in which dotted
lines denote derivation trees according to G (these derivations are simulated
by G′) and thick lines denote derivation trees according to G′ (these deriva-
tions are actually carried out by G′ in course of the simulation).

The set P ′ contains the following rules:

1. Creation of “short” nonterminals. For all a ∈ Σ1, t ∈ Γ and A ∈ N ,
such that t is a proper substring of h(a) and A → t ∈ P , the new
grammar contains the rule

(A, t) → ε (12)

This type of rule is illustrated in Figure 3(a), where a rule 12, shown

A

(A, t)

ε

x

(a) (b)

yt yi zi

Bi

Ci

A

h(a)

(A, x)

ε

(Bi, yi) (Ci, zi)

for some a h(a) for some a

Figure 3: Operations with “short” nonterminals: (a) creation; (b) extension.

in thick lines, simulates a rule A → t, shown in black dotted lines, in
the intended context shown by gray dotted lines.

2. Extension of “short” nonterminals. For every rule

A → B1C1& . . . &BnCn ∈ P (13)
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of the original grammar, for every x ∈ substrings(images(h)), such that
|x| > 2, and for every n factorizations x = y1z1 = . . . = ynzn, where
yi, zi ∈ Γ+, the set P ′ contains a rule

(A, x) → (B1, y1)(C1, z1)& . . . &(Bn, yn)(Cn, zn) (14)

Figure 3 depicts the operation of one single conjunct A → BiCi of
the rule (13) from the grammar G, which is being simulated by the
conjunct (A, xi) → (Bi, yi)(Ci, zi) of the rule (14) from the grammar
G′.

An application of the rule (13) in a derivation according to G includes
all its n conjuncts, and is consequently simulated by an application of
the rule (14) with all n of its conjuncts.

3. Conversion of “short” nonterminals to “long”. For every x ∈
suffixes(images(h)) and A ∈ N there is a rule

(x,A, ε) → (A, x) (15a)

For every y ∈ prefixes(images(h)) and A ∈ N there is a rule

(ε, A, y) → (A, y) (15b)

The rules (15) of the grammar G′ do not correspond to any derivations
according to the grammar G; their function is restricted to internal
data management within G′ (the transition from “short” to “long”
nonterminals), specific to the present construction.

4. Processing of “long” nonterminals. For every rule

A → B1C1& . . . &BnCn ∈ P (16)

of the original grammar and for every x ∈ suffixes(images(h)) and
y ∈ prefixes(images(h)), the set P ′ contains a rule of the form

(x,A, y) → α1& . . . &αn, (17)

where, for every i (1 6 i 6 n), αi ∈ (Σ ∪N ′)+ if and only if one of the
following is true:
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A

(x, A, y)

h(u)x y

(B, x')

ε

(II)

h(v)

u v

(x, B, ε)
(ε, C, y)

A

x' y

(I)

h(w)

B C

x''

B

C

w

(x'', A, y)

(x, A, y)

Figure 4: “Long” nonterminals: conjuncts of types I and II.

I. αi = (Bi, x
′)(x′′, C, y), where x′x′′ = x and x′, x′′ 6= ε. Here a “short”

nonterminal is concatenated to a “long” nonterminal from the
left, thus increasing its left margin from x′′ to x = x′x′′, but not
deriving any additional terminal symbols. This concatenation is
shown in Figure 4(I).

II. αi = (x,Bi, ε)(ε, Ci, y) (see Figure 4(II)). Here a “long” nonter-
minal with an empty right margin is concatenated to a “long”
nonterminal with an empty left margin.

If (x,Bi, ε) derives a string u ∈ Σ∗ according to the grammar G′

and thus simulates a derivation of x · h(u) ∈ Γ∗ from Bi accord-
ing to the grammar G, and if (ε, Ci, y) derives v ∈ Σ∗ and thus
simulates a derivation of h(v) · y from Ci, then the concatenation
αi derives uv and has margins x and y, therefore simulating a
derivation of x · h(uv) · y from BiCi according to the grammar G.

III. αi = (x,Bi, z
′
i)a(z′′i , Ci, y), where a ∈ Σ, zi, z

′′
i 6= ε and h(a) = z′iz

′′
i .

Here two “long” nonterminals with nonempty margins are con-
catenated to each other in such a way that concatenation of the
right margin or the first nonterminal and the left margin of the
second nonterminal forms a homomorphic image of some symbol
from Σ. This symbol is then is placed between the nonterminals
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being concatenated, as the materialization of the joint of margins.

This type of concatenation is shown in Figure 5(III).

IV. αi = (x, Bi, z
′
i)(Ci, z

′′
i ), where z′iz

′′
i = y.

Concatenation of a “short” nonterminal to a “long” nonterminal
from the right. This case is a mirror image of case I and is illus-
trated in Figure 5(IV).

A

(x, A, y)

h(u)x

(C, y'')

ε

(III)

h(a)

u v

(x, B, z')

A

x y''

(IV)

h(w)

B

C

y'

B

C

w

(x, B, y')

(x, A, y)

y
z' z''

a

h(v)

(z'', C, y)

Figure 5: “Long” nonterminals: conjuncts of types (III) A →
(x, Bi, z

′
i)a(z′′i , Ci, y) and (IV) A → (x,Bi, z

′
i)(Ci, z

′′
i ).

These four possible ways of simulating a derivation from BC in the
grammar G correspond to four types of factorization of a string x ·
h(w) · y (w ∈ Σ∗) into two substrings. For every such factorization
there exists a corresponding conjunct of one of these types (I, II, III or
IV), which derives w ∈ Σ∗ according to G′, at the same time simulating
a derivation of x · h(w) · y ∈ Γ+ from BC according to G.

There are many rules of the form (17) in P ′ corresponding to a single
rule (16) from P , and each of the rules (17) corresponds to a certain set
of use cases of (16). A real derivation from (x,A, y) using one of these
rules would be illustrated by a juxtaposition of n instances of Figures
4 and 5, one for every conjunct in the rule (17).
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5. Handling of symbols with homomorphic images of length one.
For every a ∈ Σ, such that h(a) = s ∈ Γ, and for every A ∈ N , such
that A → s ∈ P , the new grammar contains a rule

(ε, A, ε) → a (18)

6. Handling of symbols with null homomorphic images. For every
nonterminal (x,A, y) ∈ N ′ and for every b ∈ Σ0, there are two rules

(x,A, y) → b(x, A, y) (19a)

(x,A, y) → (x,A, y)b (19b)

These rules allow to derive terminals from Σ0 in arbitrary quantity from
any “long” nonterminal, effectively closing the language generated by
(x,A, y) under left- and right-concatenation with Σ0.

7. Handling of the empty string. If S → ε ∈ P , then P ′ contains the
rule

(ε, S, ε) → ε (20)

Finally, the start symbol of the new grammar is defined as S ′ = (ε, S, ε).

4 Example

Before starting to prove the correctness of our construction, let us illus-
trate it on an example.

Let Γ = {s, t} and consider the language L = {ts2ts4t . . . ts2n−2ts2nt |n >
0} = {t, tsst, tsstsssst, tsstsssstsssssst, . . .}. Following is one of the possible
ways to construct a conjunctive grammar for this language:

S → Mt&SC | t

M → tMss | sM | tss

C → sC | t

(21)
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After conversion to the binary normal form, the grammar (21) becomes

S → MB&SC | t

M → ND | AM | BD

N → BM

A → s

B → t

C → AC | t

D → AA

(22)

Now let Σ = {a, b, c, d} and define a homomorphism h : Σ∗ → Γ∗ as
h(a) = tss, h(b) = t, h(c) = ss and h(d) = ε. Then

images(h) = {tss, t, ss, ε}, (23a)

prefixes(images(h)) = {ε, s, t, ts}, (23b)

suffixes(images(h)) = {ε, s, t, ss}, (23c)

substrings(images(h)) = {t, s, ts, ss} (23d)

Let G′ = (Σ, N ′, P ′, S ′) be the grammar for h−1(L) constructed by the
method of Section 3.

The set of nonterminals contains |N | · |substrings(images(h))| = 7 · 4 =
28 “short” nonterminals of the form (A, x) and |suffixes(images(h))| · |N | ·
|prefixes(images(h))| = 4·7·4 = 112 “long” nonterminals of the form (x,A, y).
The full list of rules in P ′ is omitted due to space considerations; below we
list a subset of these rules, which are used in a given sample derivation.

Consider the string adb ∈ Σ∗. h(adb) = tss · ε · t = tsst ∈ L, and
therefore adb ∈ h−1(L). The derivation tree of the string tsst according to
the grammar G is given in Figure 6(a), and one of the derivation trees of
adb according to G′ is given in Figure 6(b). Let us list the rule used in this
derivation of adb:

• (A, s) → ε, (B, t) → ε and (S, t) → ε are rules of type 1 (creation of
“short” nonterminals).

• (D, ss) → (A, s)(A, s) is a rule of type 2 (extension of “short” nonter-
minals).

• The rules (ε, B, t) → (B, t), (ss,D, ε) → (D, ss) and (ε, S, t) → (S, t)
are rules of type 3 (conversion of “short” nonterminals to “long”).
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• The rule (ε, S, ε) → (ε,M, ε)(ε, B, ε)&(ε, S, t)a(ss, C, ε) is a rule of
type 4 (processing of “long” nonterminals) made out of the rule
S → MB&SC ∈ P : the first conjunct is of type II according, while
the second is of type III.

There are also three one-conjunct rules of type 4: the rule (ε,M, ε) →
(ε, B, t)a(ss,D, ε) is made out of M → BD ∈ P and consists of a
single conjunct of type III; the rules (ss, C, ε) → (A, s)(s, C, ε) and
(s, C, ε) → (A, s)(ε, C, ε) are both made out of C → AC ∈ P and each
of them consists of a single type I conjunct.

• The rules (ε, B, ε) → b and (ε, C, ε) → b are of type 5 (handling of
symbols with homomorphic images of length one), and are made out
of the rules B → t ∈ P and C → t ∈ P , because h(b) = t.

• The rules (ε,M, ε) → (ε,M, ε)d and (ss, C, ε) → d(ss, C, ε) are rules of
type 6 (handling of symbols with null homomorphic images) and are in
P ′ because h(d) = ε.

Let us see that the derivation of adb illustrated in Figure 6(b) actually
simulates the derivation of h(adb) = tsst illustrated in Figure 6(a). In order
to emphasize this simulation, the components of the derivation trees corre-
sponding to each other are printed in black, while the elements specific to
each tree are shown in gray. There are 13 black vertices in each of the two
trees in Figure 6, and their relation to each other is basically the same in
both trees.

For instance, the root vertex S → MB&SC of the first tree is simulated
by the root vertex

(ε, S, ε) → (ε,M, ε)(ε, B, ε)&(ε, S, t)a(ss, C, ε) (24)

of the second tree; the vertex

(ε,M, ε) → (ε, B, t)a(ss,D, ε) (25)

of the second tree corresponds to the vertex M → BD of the first tree, while
the immediate descendant (ε,M, ε) → (ε,M, ε)d of the root of the second tree
(shown in gray) does the work specific to the grammar G′ (generating the
symbol with an empty homomorphic image), which does not have an analog
in the grammar G. Similarly, the immediate descendant of M → BD labeled
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S→MB&SC

B→t S→tM→BD C→AC

t ts s

(a) (b)

a d b

&

(ε,S,ε)→(ε,M,ε)(ε,B,ε)&(ε,S,t)a(ss,C,ε)

ε

(S,t)→ε

ε

(A,s)→ε

(B,t)→ε

ε

ε

(A,s)→ε

ε

(A,s)→ε

ε

(A,s)→ε

(D,ss)→(A,s)(A,s)

(ε,S,t)→(S,t)

(ε,B,ε)→b

(s,C,ε)→(A,s)(ε,C,ε)

(ss,C,ε)→(A,s)(s,C,ε)

(ss,D,ε)→(D,ss)(ε,B,t)→(B,t)

(ε,M,ε)→(ε,M,ε)d

(ε,M,ε)→(ε,B,t)a(ss,D,ε)

(ε,C,ε)→b

(ss,C,ε)→d(ss,C,ε)

&

B→t D→AA
A→s

C→AC

A→s

C→t

A→s A→s

Figure 6: (a) A derivation tree of tsst ∈ L; (b) a derivation tree of adb ∈
h−1(L), which simulates the derivation of h(adb) = tsst ∈ L.

with B → t (on the left) is simulated by the vertex (B, t) → ε (also on the
left), which is not an immediate descendant of the vertex (25), while the
immediate descendant of (25), (ε, B, t) → (B, t) (on the left; shown in gray),
represents internal data management within G′ and does not correspond to
any actions in the derivation of tsst ∈ L(G).

5 The proof of the construction

Observation 1 (Languages generated by “short” nonterminals). For
any x ∈ substrings(images(h)) ⊆ Γ+, LG′(A, x) ⊆ {ε}.
Lemma 1 (Correctness of “short” nonterminals). For any string x ∈
substrings(images(h)), (A, x)

G′
=⇒∗ ε if and only if A

G
=⇒∗ x.

Proof. Let us first note that every rule for (A, x) is of the form (12) if |x| = 1,
and of the form (14) if |x| > 2.

The proof is an induction on the length of x.

Basis |x| = 1. Let x = b ∈ Γ. Then every rule for (A, x) is of the form (12).
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(A, b)
G′

=⇒∗ ε if and only if (A, b) → ε ∈ P ′, which, by the construction
of G′, holds if and only if A → b ∈ P , which is in turn equivalent to

A
G

=⇒∗ b, since G is in the binary normal form.

Induction step. (A, x)
G′

=⇒ ε if and only if there exists a rule of the form

(A, x) → (B1, y1)(C1, z1)& . . . &(Bn, yn)(Cn, zn) ∈ P ′, s.t. (26a)

(Bi, yi)
G′

=⇒∗ ε (for all i: 1 6 i 6 n), (26b)

(Ci, zi)
G′

=⇒∗ ε (for all i: 1 6 i 6 n) (26c)

By the construction of G′, a rule of the form (26a) is in P ′ if and only
if A → B1C1& . . . &BnCn ∈ P , yi, zi ∈ Γ+ and yizi = x for all i. By

the induction hypothesis, (Bi, yi)
G′

=⇒∗ ε if and only if Bi
G

=⇒∗ yi, and

(Ci, zi)
G′

=⇒∗ ε if and only if Ci
G

=⇒∗ zi.

Therefore, (26) is equivalent to the existence of a rule

A → B1C1& . . . &BnCn ∈ P (27a)

and of a factorization

x = y1z1 = . . . = ynzn, such that (27b)

Bi
G

=⇒∗ yi (for all i), (27c)

Ci
G

=⇒∗ zi (for all i) (27d)

Now (26) holds if and only if A
G

=⇒∗ x, which completes the proof.

Lemma 2 (Correctness of “long” nonterminals). For any string w ∈
Σ∗, (x,A, y)

G′
=⇒∗ w if and only if A

G
=⇒∗ x · h(w) · y.

Proof. ⇒© The proof is an induction on the length l of the derivation

(x, A, y)
G′

=⇒ . . .
G′

=⇒ w (28)

Depending on the type of rule applied to (x,A, y) at the first step of the
derivation (28), there are five cases to consider; let us enumerate these cases
from 3 to 7, in correspondence to the types of rules defined in Section 3.
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3. Conversion of “short” nonterminals to “long”. Consider a rule
(x,A, ε) → (A, x) of type 3, and let the derivation (28) be of the form

(x,A, ε)
G′

=⇒ ((A, x))
G′

=⇒ . . .
G′

=⇒ w (29)

Then w = ε by Observation 1, y = ε, and thus x · h(w) · y = x. By

Lemma 1, (A, x)
G′

=⇒∗ ε implies A
G

=⇒∗ x, which proves this case.

The case of rules of the form (ε, A, y) → (A, y) is handled similarly.

4. Processing of “long” nonterminals. Let the first rule in (28) be of
type 4 – i.e., of the form (x, A, y) → α1& . . . &αn, where there is a rule
A → B1C1& . . . &BnCn ∈ P , such that for every i (1 6 i 6 n) the
string αi is of the form specified in the construction in Section 3. Then
the derivation is of the form

(x,A, y)
G′

=⇒ (α1& . . . &αn)
G′

=⇒ . . .
G′

=⇒ w, (30)

and consequently each αi derives w in less than l steps.

Now it suffices to prove that αi
G′

=⇒∗ w implies BiCi
G

=⇒∗ x · h(w) · y
for all i. By the construction of the grammar G′, for each i there are
four cases to consider.

I. αi = (Bi, x
′)(x′′, C, y), where x′x′′ = x and x′, x′′ 6= ε.

By Lemma 1,

Bi
G

=⇒∗ x′ (31)

The nonterminal (x′′, C, y) derives w in less than l steps and thus

Ci
G′

=⇒∗ x′′ · h(w) · y (32)

by the induction hypothesis. Now (31) and (32) are easily com-
bined to obtain a derivation of x′x′′ · h(w) · y out of BiCi.

II. αi = (x, Bi, ε)(ε, Ci, y). If αi derives w, then there exists a factor-
ization w = uv, such that

(x,Bi, ε)
G′

=⇒∗ u (33a)

(ε, Ci, y)
G′

=⇒∗ v (33b)

By the induction hypothesis, this implies that Bi
G

=⇒∗ x ·h(u) and

Ci
G

=⇒∗ h(v) · y, and thus BiCi
x

=⇒∗ · h(u) · h(v) · y = x · h(w) · y.
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III. αi = (x,Bi, z
′
i)a(z′′i , Ci, y), where a ∈ Σ, zi, z

′′
i 6= ε and h(a) = z′iz

′′
i .

There exists a factorization w = uav, such that

(x,Bi, z
′)

G′
=⇒∗ u (34a)

(z′′, Ci, y)
G′

=⇒∗ v (34b)

By the induction hypothesis, Bi
G

=⇒∗ x · h(u) · z′ and Ci
G

=⇒∗ z′′ ·
h(v) · y, and we can derive BiCi

G
=⇒ x · h(u) · z′ · z′′ · h(v) · y,

where

x ·h(u) · z′ · z′′ ·h(v) · y = x ·h(u) ·h(a) ·h(v) · y = x ·h(w) · y (35)

IV. αi = (x,Bi, z
′
i)(Ci, z

′′
i ), where z′iz

′′
i = y. This case is treated simi-

larly to case I.

5. Handling of symbols with homomorphic images of length one.
If the first rule of the derivation is of the form (ε, A, ε) → a, where

a ∈ Σ, h(a) = s ∈ Γ and A → s ∈ P , then A
G

=⇒∗ ε · h(a) · ε = s using
the rule A → s.

6. Handling of symbols with null homomorphic images. Let the
derivation start from the application of the rule (x,A, y) → b(x,A, y).

Then w = bu and (x,A, y)
G′

=⇒∗ u in less than l steps. By the induction
hypothesis,

A
G

=⇒∗ x · h(u) · y, (36)

and thus, since h(w) = h(bu) = h(b) · h(u) = h(u), A
G

=⇒∗ x · h(w) · y.

The case of a rule of the form (x,A, y) → (x,A, y)b is proved similarly.

7. Handling of the empty string. If the first rule in (28) is (ε, S, ε) → ε,
then, by the construction of G′, S → ε ∈ P , and therefore

S
G′

=⇒∗ ε = ε · h(ε) · ε (37)

⇐© Let A
G

=⇒∗ x·h(w)·y for some A ∈ N , w ∈ Σ∗, x ∈ suffixes(images(h))
and y ∈ prefixes(images(h)). By induction on |x · h(w) · y|, let us prove that

(x, A, y)
G′

=⇒∗ w.
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Consider some factorization w = w′
0w1w

′′
0 , such that w′

0, w
′′
0 ∈ Σ∗

0 and w1

is neither in Σ0Σ
∗ nor in Σ∗Σ0 (note that this factorization is unique unless

h(w) = ε). The proof is an induction on the pair

(|x · h(w) · y|, |w′
0w

′′
0 |) (38)

using the lexicographical order (i.e., (i1, j1) < (i2, j2) iff i1 < i2 or i1 = i2 and
j1 < j2).

Basis (0, 0). Since |x · h(w) · y| = 0, it follows that x = ε, h(w) = ε, y = ε
and

A
G

=⇒∗ ε (39)

On the other hand, the emptiness of h(w) means that w ∈ Σ∗
0. Since

the second component of the pair (38) is zero, w = ε.

Since G is in the binary normal form, (39) implies that A = S and
there is a rule S → ε in P . Thus, by the construction of the grammar
G′, the rule (ε, S, ε) → ε is in P ′.

Basis (1, 0). If |x · h(w) · y| = s ∈ Γ and A
G

=⇒∗ s, then there is a rule
A → s ∈ P . There are three cases to consider:

• Case I. x = s, h(w) = ε, y = ε. Since the second component of
(38) is 0, the emptiness of h(w) implies w = ε.

Since s ∈ prefixes(images(h)) and s /∈ ε, it is clear that s ∈
substrings(images(h)). Therefore, there exists a nonterminal
(A, s) ∈ N ′, and, by Lemma 1,

(A, s)
G′

=⇒∗ ε (40)

By the construction of the grammar G′, there is a rule (s, A, ε) →
(A, s) in P ′, and thus

(s, A, ε)
G′

=⇒ ((A, s))
G′

=⇒ . . .
G′

=⇒ (ε)
G′

=⇒ ε, (41)

which proves Case I.

• Case II. x = ε, h(w) = s, y = ε. Then w = a ∈ Σ1, such that
h(a) = s. Then, by the construction of G′, there exists a rule
(ε, A, ε) → a, which can be used to derive a from (ε, A, ε) in one
step, thus proving Case II.
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• Case III. x = ε, h(w) = ε, y = s. This case is handled similarly
to Case I.

Induction step {(l, k) | l < n, k > 0} → (n, 0) (n > 2). Let |x ·h(w) · y| =
n > 2. Then there exists a rule of the original grammar A →
B1C1& . . . &BnCn ∈ P , such that

BiCi
G

=⇒∗ x · h(w) · y (for every i, such that 1 6 i 6 n) (42)

Fix an arbitrary i and consider the i-th conjunct A → BiCi of the rule.
By (42) and Theorem 1, there exists a factorization

x · h(w) · y = z′i · z′′i (z′i, z
′′
i ∈ Γ+), such that (43a)

Bi
G

=⇒∗ z′i and (43b)

Ci
G

=⇒∗ z′′i (43c)

The boundary between z′i and z′′i can fall anywhere within the string

h(w)

x

y(I)

h(a)

y (IV)

h(u)x y(II) h(v)

h(w)

y

x h(w)(III) x h(u) h(v)

h(w)

Figure 7: Possible factorizations of the string x · h(w) · y.

x · h(w) · y; the four possibilities are shown in Figure 7(I, II, III, IV).
Let us consider each of these cases:

I. z′i = x′ and z′′i = x′′ · h(w) · y, where x′x′′ = x, x′ ∈ Γ+ and x′′ ∈ Γ∗.
By Lemma 1, (43b) is equivalent to

(Bi, x
′)

G′
=⇒ . . .

G′
=⇒ ε (44)

The string x′′ · h(w) · y is shorter than x · h(w) · y, and hence we
can invoke the induction hypothesis to obtain that (43c) implies

(x′′, Ci, y)
G′

=⇒ . . .
G′

=⇒ w (45)
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Now (44) can be combined with (45) to obtain a derivation of w
from (Bi, x

′) · (x′′, Ci, u), similar to what was illustrated in the
earlier Figure 4(I).

Define αi = (Bi, x
′)(x′′, Ci, y).

II. z′i = x · h(u) and z′′i = h(v) · y, where w = uv.

We apply the induction hypothesis twice – for (43b) and for (43c)
– to get

(x, Bi, ε)
G′

=⇒ . . .
G′

=⇒ u (46a)

(ε, Ci, y)
G′

=⇒ . . .
G′

=⇒ v (46b)

and consequently derive w = uv from the concatenation (x,Bi, ε) ·
(ε, Ci, y) (see the earlier Figure 4(II)).

Define αi = (x,Bi, ε)(ε, Ci, y).

III. z′i = x · h(u) · x′ and z′′i = y′ · h(v) · y, where w = uav (a ∈ Σ) and
h(x′y′) = a.

As in the previous case, the induction hypothesis is used for (43b)
and (43c), resulting in

(x, Bi, x
′) G′

=⇒ . . .
G′

=⇒ u (47a)

(y′, Ci, y)
G′

=⇒ . . .
G′

=⇒ v (47b)

Now the concatenation (x,Bi, x
′) · a · (y′, Ci, y) is easily seen to

derive the string uav = w.

Define αi = (x,Bi, x
′)a(y′, Ci, y).

IV. z′i = x ·h(w) ·y′ and z′′i = y′′, where y′y′′ = y, y′ ∈ Γ∗ and y′′ ∈ Γ+.
This case is handled similarly to Case I and is illustrated in the
earlier Figure 5(IV). Define αi = (x,Bi, y

′)(Ci, y
′′).

Now, by the construction of the grammar G′, there exists a rule

(x,A, y) → α1& . . . &αn ∈ P ′, (48)

which can be used to derive w from (x,A, y).
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Induction step (n, k − 1) → (n, k) (n > 0, k > 0). If |w′
0w

′′
0 | > 0, then ei-

ther w = bw′ (b ∈ Σ0, w
′ ∈ Σ∗), or w = w′b (b ∈ Σ0, w

′ ∈ Σ∗), or
both.

Assume, without loss of generality, that w = bw′ (the case w = w′b
is handled in exactly the same way). The string w′ has k − 1 lateral
symbols.

We know that A
G

=⇒∗ x · h(w) · y, and it is clear that h(w) = h(bw′) =
h(w′), and therefore

A
G

=⇒∗ x · h(w′) · y (49)

We can now apply the induction hypothesis to x, y and w′ to obtain
that (49) implies

(x,A, y)
G′

=⇒∗ w′ (50)

By the construction of G′, there is a rule (x,A, y) → b(x,A, y) in P ′,
and thus one can construct a derivation

(x, A, y)
G′

=⇒ (b(x,A, y))
G′

=⇒ . . .
G′

=⇒ (bw′)
G′

=⇒ bw′ = w, (51)

which proves this last case.

6 A more succinct construction

The construction given in Section 5 produces grammars of size bounded
by constant times the size of the original grammar; this constant, however,
is excessively large, because many superfluous nonterminals are being cre-
ated. For the purpose of practical construction it is important to reduce this
constant.

Since every “short” nonterminal generates either ∅ of {ε}, it is possible to
remove the rules that refer to the “short” nonterminals that generate ∅, omit
all the instances of the “short” nonterminals generating {ε} in the rules, and
then remove all the short nonterminals from the grammar.

In this section we present an alternative construction, which does not
utilize “short” nonterminals at all, and instead several times solves the mem-
bership problem for the original grammar. This simpler construction is,
however, computationally harder than the construction given in Section 3,
because the membership problem for conjunctive grammars is known to be
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P-complete, and is easily seen to remain P-complete even when the string
being recognized is fixed.

Construct the grammar G′ = (Σ, N ′, P ′, S ′), in which the set of nonter-
minals is defined as

N ′ = suffixes(images(h))×N × prefixes(images(h)), (52)

and the set P ′ contains the following rules:

3. Creation of nonterminals. For every A ∈ N and x ∈
suffixes(images(h)), such that A

G
=⇒∗ x, there is a rule

(x, A, ε) → ε (53a)

For every A ∈ N and y ∈ prefixes(images(h)), such that A
G

=⇒∗ y,
there is a rule

(ε, A, y) → ε (53b)

4. Processing of nonterminals. For every rule

A → B1C1& . . . &BnCn ∈ P (54)

of the original grammar and for every x ∈ suffixes(images(h)) and
y ∈ prefixes(images(h)), the set P ′ contains a rule of the form

(x,A, y) → α1& . . . &αn, (55)

where, for every i (1 6 i 6 n), αi ∈ (Σ ∪N ′)+ if and only if one of the
following is true:

I. αi = (x′′, C, y), where x′x′′ = x, x′, x′′ 6= ε and Bi
G

=⇒∗ x′.

II. αi = (x,Bi, ε)(ε, Ci, y).

III. αi = (x,Bi, z
′
i)a(z′′i , Ci, y), where a ∈ Σ, zi, z

′′
i 6= ε and h(a) = z′iz

′′
i .

IV. αi = (x, Bi, y
′), where y′y′′ = y, y′, y′′ 6= ε and Ci

G
=⇒∗ y′′.

5. Handling of symbols with homomorphic images of length one.
For every a ∈ Σ, such that h(a) = s ∈ Γ, and for every A ∈ N , such
that A → s ∈ P , the new grammar contains a rule

(ε, A, ε) → a (56)
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6. Handling of symbols with null homomorphic images. For every
nonterminal (x,A, y) ∈ N ′ and for every b ∈ Σ0, there are two rules

(x,A, y) → b(x, A, y) (57a)

(x,A, y) → (x,A, y)b (57b)

7. Handling of the empty string. If S → ε ∈ P , then P ′ contains the
rule

(ε, S, ε) → ε (58)

Finally, the start symbol of the new grammar is defined as S ′ = (ε, S, ε).
By Lemma 1, this grammar is easily seen to be equivalent to the grammar

constructed in Section 3.

7 Conclusion

It was proved that the family of languages generated by conjunctive gram-
mars is closed under inverse homomorphism.

One obvious theoretical implication of this result is that it allows to char-
acterize conjunctive languages in terms of abstract families of languages. A
language family is called a pre-AFL [6] if it is closed under intersection with
regular languages, union with {ε}, concatenation through a center marker,
transitive closure of concatenation through a center marker and inverse ho-
momorphism. Since the family generated by conjunctive grammars is easily
seen to be closed under general intersection, union, concatenation and tran-
sitive closure of concatenation [2], the closure of conjunctive languages under
inverse homomorphism proved in this paper allows to conclude that this
family is a pre-AFL.

From a more practical point of view, this effective closure means that a
certain class of languages can be generated by conjunctive grammars, and a
grammar for each of these languages can be relatively easily constructed.
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